The International Energy Agency Technology Collaboration Programme for Ocean Energy Systems (OES) initiated the OES Wave Energy Conversion Modelling Task, which focused on the verification and validation of numerical models for simulating wave energy converters (WECs). The long-term goal is to assess the accuracy of and establish confidence in the use of numerical models used in design as well as power performance assessment of WECs. To establish this confidence, the authors used different existing computational modelling tools to simulate given tasks to identify uncertainties related to simulation methodologies: (i) linear potential flow methods; (ii) weakly nonlinear Froude-Krylov methods; and (iii) fully nonlinear methods (fully nonlinear potential flow and Navier-Stokes models). This article summarizes the code-to-code task and code-to-experiment task that have been performed so far in this project, with a focus on investigating the impact of different levels of nonlinearities in the numerical models. Two different WECs were studied and simulated. The first was a heaving semi-submerged sphere, where free-decay tests and both regular and irregular wave cases were investigated in a code-to-code comparison. The second case was a heaving float corresponding to a physical model tested in a wave tank. We considered radiation, diffraction, and regular wave cases and compared quantities, such as the WEC motion, power output and hydrodynamic loading.

Ocean energy systemswave energy modelling task: Modelling, verification and validation ofwave energy converters / Wendt, F.; Nielsen, K.; Yu, Y. -H.; Bingham, H.; Eskilsson, C.; Kramer, M.; Babarit, A.; Bunnik, T.; Costello, R.; Crowley, S.; Gendron, B.; Giorgi, G.; Giorgi, S.; Girardin, S.; Greaves, D.; Heras, P.; Hoffman, J.; Islam, H.; Jakobsen, K. -R.; Janson, C. -E.; Jansson, J.; Kim, H. Y.; Kim, J. -S.; Kim, K. -H.; Kurniawan, A.; Leoni, M.; Mathai, T.; Nam, B. -W.; Park, S.; Rajagopalan, K.; Ransley, E.; Read, R.; Ringwood, J. V.; Rodrigues, J. M.; Rosenthal, B.; Roy, A.; Ruehl, K.; Schofield, P.; Sheng, W.; Shiri, A.; Thomas, S.; Touzon, I.; Yasutaka, I.. - In: JOURNAL OF MARINE SCIENCE AND ENGINEERING. - ISSN 2077-1312. - 7:11(2019), p. 379. [10.3390/jmse7110379]

Ocean energy systemswave energy modelling task: Modelling, verification and validation ofwave energy converters

Giorgi G.;
2019

Abstract

The International Energy Agency Technology Collaboration Programme for Ocean Energy Systems (OES) initiated the OES Wave Energy Conversion Modelling Task, which focused on the verification and validation of numerical models for simulating wave energy converters (WECs). The long-term goal is to assess the accuracy of and establish confidence in the use of numerical models used in design as well as power performance assessment of WECs. To establish this confidence, the authors used different existing computational modelling tools to simulate given tasks to identify uncertainties related to simulation methodologies: (i) linear potential flow methods; (ii) weakly nonlinear Froude-Krylov methods; and (iii) fully nonlinear methods (fully nonlinear potential flow and Navier-Stokes models). This article summarizes the code-to-code task and code-to-experiment task that have been performed so far in this project, with a focus on investigating the impact of different levels of nonlinearities in the numerical models. Two different WECs were studied and simulated. The first was a heaving semi-submerged sphere, where free-decay tests and both regular and irregular wave cases were investigated in a code-to-code comparison. The second case was a heaving float corresponding to a physical model tested in a wave tank. We considered radiation, diffraction, and regular wave cases and compared quantities, such as the WEC motion, power output and hydrodynamic loading.
File in questo prodotto:
File Dimensione Formato  
WENDT Ocean Energy Systems Wave Energy Modelling Task 10 2019.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 5.62 MB
Formato Adobe PDF
5.62 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2835294