Dendrimers are nanosized, nonlinear, hyperbranched polymers whose overall 3D shape is key for their biological activity. Poly(PhosphorHydrazone) (PPH) dendrimers capped with aza-bisphosphonate (ABP) end groups are known to have anti-inflammatory properties enabling the control of inflammatory diseases in different mouse models. Here we screen the anti-inflammatory activity of a series of PPH dendrimers bearing between 2 and 16 ABP end groups in a mouse model of arthritis and confront the biological results with atomistic simulations of the dendrimers. We show that only the PPH dendrimers capped with 10 and 12 ABP end groups can control the flare of the inflammatory disease. All-atom accelerated molecular dynamics simulations show that dendrimers with a low number of ABP end groups are directional but highly flexible/dynamic and have thereby limited efficiency in establishing multivalent interactions. The largest dendrimer appears as nondirectional, having 16 ABP end groups forming patches all over the dendrimer surface. Conversely, intermediate dendrimers having 10 or 12 ABP end groups reach the best compromise between the number of surface groups and their stable directional gathering, a real maximization of multivalency.

Three-Dimensional Directionality Is a Pivotal Structural Feature for the Bioactivity of Azabisphosphonate-Capped Poly(PhosphorHydrazone) Nanodrug Dendrimers / Hayder, M.; Garzoni, M.; Bochicchio, D.; Caminade, A. -M.; Couderc, F.; Ong-Meang, V.; Davignon, J. -L.; Turrin, C. -O.; Pavan, G. M.; Poupot, R.. - In: BIOMACROMOLECULES. - ISSN 1525-7797. - 19:3(2018), pp. 712-720. [10.1021/acs.biomac.7b01398]

Three-Dimensional Directionality Is a Pivotal Structural Feature for the Bioactivity of Azabisphosphonate-Capped Poly(PhosphorHydrazone) Nanodrug Dendrimers

Pavan G. M.;
2018

Abstract

Dendrimers are nanosized, nonlinear, hyperbranched polymers whose overall 3D shape is key for their biological activity. Poly(PhosphorHydrazone) (PPH) dendrimers capped with aza-bisphosphonate (ABP) end groups are known to have anti-inflammatory properties enabling the control of inflammatory diseases in different mouse models. Here we screen the anti-inflammatory activity of a series of PPH dendrimers bearing between 2 and 16 ABP end groups in a mouse model of arthritis and confront the biological results with atomistic simulations of the dendrimers. We show that only the PPH dendrimers capped with 10 and 12 ABP end groups can control the flare of the inflammatory disease. All-atom accelerated molecular dynamics simulations show that dendrimers with a low number of ABP end groups are directional but highly flexible/dynamic and have thereby limited efficiency in establishing multivalent interactions. The largest dendrimer appears as nondirectional, having 16 ABP end groups forming patches all over the dendrimer surface. Conversely, intermediate dendrimers having 10 or 12 ABP end groups reach the best compromise between the number of surface groups and their stable directional gathering, a real maximization of multivalency.
File in questo prodotto:
File Dimensione Formato  
Hayder-Postprint-Author.pdf

Open Access dal 15/02/2019

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 5.34 MB
Formato Adobe PDF
5.34 MB Adobe PDF Visualizza/Apri
acs.biomac.7b01398.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 4.75 MB
Formato Adobe PDF
4.75 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
bm7b01398_si_001.pdf

non disponibili

Descrizione: Supporting information (pdf)
Tipologia: Altro materiale allegato
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 812.91 kB
Formato Adobe PDF
812.91 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2813822