Modeling unsteady windblown sand dynamics requires not only treatment of the sand present in the air as a suspended constituent of a mixture but also consideration of erosion and sedimentation phenomena and consequently of the morphodynamic evolution of the sand-bed surface, including avalanching, especially in the presence of natural or human-built obstacles, artifacts, and infrastructures. With this aim in mind, we present a comprehensive multiphase model capable of accurately simulating all the physical phenomena mentioned above, producing satisfactory results, with reasonable computational effort. As test cases, two- and three-dimensional simulations of dune evolution are reported, as is windblown sand transport over a straight vertical wall. Examples of sand transport around other obstacles are given to show the flexibility of the model and its usefulness for such engineering applications.

A fully Eulerian multiphase model of windblown sand coupled with morphodynamic evolution: Erosion, transport, deposition, and avalanching / Lo Giudice, A.; Preziosi, L.. - In: APPLIED MATHEMATICAL MODELLING. - ISSN 0307-904X. - ELETTRONICO. - 79:(2020), pp. 68-84. [10.1016/j.apm.2019.07.060]

A fully Eulerian multiphase model of windblown sand coupled with morphodynamic evolution: Erosion, transport, deposition, and avalanching

Lo Giudice A.;Preziosi L.
2020

Abstract

Modeling unsteady windblown sand dynamics requires not only treatment of the sand present in the air as a suspended constituent of a mixture but also consideration of erosion and sedimentation phenomena and consequently of the morphodynamic evolution of the sand-bed surface, including avalanching, especially in the presence of natural or human-built obstacles, artifacts, and infrastructures. With this aim in mind, we present a comprehensive multiphase model capable of accurately simulating all the physical phenomena mentioned above, producing satisfactory results, with reasonable computational effort. As test cases, two- and three-dimensional simulations of dune evolution are reported, as is windblown sand transport over a straight vertical wall. Examples of sand transport around other obstacles are given to show the flexibility of the model and its usefulness for such engineering applications.
File in questo prodotto:
File Dimensione Formato  
logiudicePreziosi_fullyEulerian2020.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 3.14 MB
Formato Adobe PDF
3.14 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2777112