Hydrophobic zeolites are nanoporous materials that are attracting an increasing interest, especially for catalysis, desalination, energy storage and biomedical applications. Nevertheless, a more profound understanding and control of water infiltration in their nanopores is still desirable to rationally design zeolite-based materials with tailored properties. In this work, both atomistic simulations and previous experimental data are employed to investigate water infiltration in hydrophobic MFI zeolites with different concentration of hydrophilic defects. Results show that limited concentrations of defects (e.g. 1%) induce a change in the shape of infiltration isotherms (from type-V to type-I), which denotes a sharp passage from typical hydrophobic to hydrophilic behavior. A correlation parametrized on both energy and geometric characteristics of the zeolite (infiltration model) is then adopted to interpolate the infiltration isotherms data by means of a limited number of physically-meaningful parameters. Finally, the infiltration model is combined with the water-zeolite interaction energy computed by simulations to correlate the water intrusion mechanism with the atomistic details of the zeolite crystal, such as defects concentration, distribution and hydrophilicity. The suggested methodology may allow a faster (more than one order of magnitude) and more systematic preliminary computational screening of innovative zeolite-based materials for energy storage, desalination and biomedical purposes.

Mechanistic correlation between water infiltration and framework hydrophilicity in MFI zeolites / Fasano, Matteo; Bevilacqua, Alessio; Chiavazzo, Eliodoro; Humplik, Thomas; Asinari, Pietro. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - ELETTRONICO. - 9:1(2019), p. 18429. [10.1038/s41598-019-54751-5]

Mechanistic correlation between water infiltration and framework hydrophilicity in MFI zeolites

Fasano, Matteo;Bevilacqua, Alessio;Chiavazzo, Eliodoro;Asinari, Pietro
2019

Abstract

Hydrophobic zeolites are nanoporous materials that are attracting an increasing interest, especially for catalysis, desalination, energy storage and biomedical applications. Nevertheless, a more profound understanding and control of water infiltration in their nanopores is still desirable to rationally design zeolite-based materials with tailored properties. In this work, both atomistic simulations and previous experimental data are employed to investigate water infiltration in hydrophobic MFI zeolites with different concentration of hydrophilic defects. Results show that limited concentrations of defects (e.g. 1%) induce a change in the shape of infiltration isotherms (from type-V to type-I), which denotes a sharp passage from typical hydrophobic to hydrophilic behavior. A correlation parametrized on both energy and geometric characteristics of the zeolite (infiltration model) is then adopted to interpolate the infiltration isotherms data by means of a limited number of physically-meaningful parameters. Finally, the infiltration model is combined with the water-zeolite interaction energy computed by simulations to correlate the water intrusion mechanism with the atomistic details of the zeolite crystal, such as defects concentration, distribution and hydrophilicity. The suggested methodology may allow a faster (more than one order of magnitude) and more systematic preliminary computational screening of innovative zeolite-based materials for energy storage, desalination and biomedical purposes.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2771892
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo