Biopharmaceuticals are often stored in a lyophilized form. However, stresses due to both the freezing and the drying steps of the lyophilization process can be harmful to protein stability, and appropriate excipients must be added to minimize detrimental effects. In this work, molecular dynamics was used to provide insight into the mechanisms of protein stabilization by different osmolytes, using lactate dehydrogenase as model protein. Our simulations indicate that good cryoprotectants are not always equally good as lyoprotectants, suggesting that synergistic effects may arise when different excipients are combined. This observation is in accordance with the experimental results. In fact, the enzymatic activity of lactate dehydrogenase after freeze-drying was investigated for various formulations, and the trend predicted by molecular dynamics was confirmed. More specifically, we found that the most effective stabilization of the protein structure is achieved when a good cryoprotectant is coupled with an efficient lyoprotectant. Ultimately, we propose a new approach to the design of formulations for protein-based therapeutics to be lyophilized, which combines simulations and experiments. In this new concept, the computational investigation allows a more knowledge-driven and targeted experimental campaign for the selection of the optimal excipients, making the whole process extremely time- and cost-effective.

Designing the optimal formulation for biopharmaceuticals: a new approach combining molecular dynamics and experiments / Arsiccio, Andrea; Paladini, Andrea; Pattarino, Franco; Pisano, Roberto. - In: JOURNAL OF PHARMACEUTICAL SCIENCES. - ISSN 0022-3549. - STAMPA. - 108:1(2019), pp. 431-438. [10.1016/j.xphs.2018.09.002]

Designing the optimal formulation for biopharmaceuticals: a new approach combining molecular dynamics and experiments

Arsiccio, Andrea;Paladini, Andrea;Pisano, Roberto
2019

Abstract

Biopharmaceuticals are often stored in a lyophilized form. However, stresses due to both the freezing and the drying steps of the lyophilization process can be harmful to protein stability, and appropriate excipients must be added to minimize detrimental effects. In this work, molecular dynamics was used to provide insight into the mechanisms of protein stabilization by different osmolytes, using lactate dehydrogenase as model protein. Our simulations indicate that good cryoprotectants are not always equally good as lyoprotectants, suggesting that synergistic effects may arise when different excipients are combined. This observation is in accordance with the experimental results. In fact, the enzymatic activity of lactate dehydrogenase after freeze-drying was investigated for various formulations, and the trend predicted by molecular dynamics was confirmed. More specifically, we found that the most effective stabilization of the protein structure is achieved when a good cryoprotectant is coupled with an efficient lyoprotectant. Ultimately, we propose a new approach to the design of formulations for protein-based therapeutics to be lyophilized, which combines simulations and experiments. In this new concept, the computational investigation allows a more knowledge-driven and targeted experimental campaign for the selection of the optimal excipients, making the whole process extremely time- and cost-effective.
File in questo prodotto:
File Dimensione Formato  
a-2019_JPS_108(1)_431-438.pdf

non disponibili

Descrizione: a-2019_JPS_108(1)_431-438
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.25 MB
Formato Adobe PDF
1.25 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2738152
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo