In the present study a numerical model is proposed for the response of out-of-plane loaded calcarenite masonry walls strengthened with vertical CFRP strips applied on the substrate by means of epoxy resin. A simplified structural scheme is considered consisting in a beam fixed at one end, subjected to constant axial load and out-of-plane lateral force monotonically increasing. Two different constraint conditions are taken into account: in the first one, the panel is assumed free to rotate at the top end while, in the second one, the rotation is restrained. Three-dimensional finite elements are used for the calcarenite parts and an equivalent constitutive law available in the literature is considered for the compressive behavior of the system ashlar-mortar. Conversely, shell elements are used for modeling the CFRP strips and linear elastic behavior is assumed for the composite while cohesive contact properties are introduced at the FRP-calcarenite interface. The model is validated using both experimental results available in the literature and simplified analytical formulations recently presented by the authors in a previous paper.

Finite element analysis of the out-of-plane behavior of FRP strengthened masonry panels / Monaco, Alessia; Minafo', Giovanni; Cucchiara, Calogero; D'Anna, Jennifer; LA MENDOLA, Lidia. - In: COMPOSITES. PART B, ENGINEERING. - ISSN 1359-8368. - STAMPA. - 115:(2017), pp. 188-202. [10.1016/j.compositesb.2016.10.016]

Finite element analysis of the out-of-plane behavior of FRP strengthened masonry panels

MONACO, Alessia;
2017

Abstract

In the present study a numerical model is proposed for the response of out-of-plane loaded calcarenite masonry walls strengthened with vertical CFRP strips applied on the substrate by means of epoxy resin. A simplified structural scheme is considered consisting in a beam fixed at one end, subjected to constant axial load and out-of-plane lateral force monotonically increasing. Two different constraint conditions are taken into account: in the first one, the panel is assumed free to rotate at the top end while, in the second one, the rotation is restrained. Three-dimensional finite elements are used for the calcarenite parts and an equivalent constitutive law available in the literature is considered for the compressive behavior of the system ashlar-mortar. Conversely, shell elements are used for modeling the CFRP strips and linear elastic behavior is assumed for the composite while cohesive contact properties are introduced at the FRP-calcarenite interface. The model is validated using both experimental results available in the literature and simplified analytical formulations recently presented by the authors in a previous paper.
File in questo prodotto:
File Dimensione Formato  
Monacoetal.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 6.57 MB
Formato Adobe PDF
6.57 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2716353
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo