In the future, orbital space robots will assist humans in space by constructing and maintaining space modules and structures. Robotic manipulators will play essential roles in orbital operations. This work is devoted to the implemented designs of two different orbital manipulation mechanical grippers developed in collaboration with Thales Alenia Space Italy and NASA Jet Propulsion Laboratory – California Institute of Technology. The consensus to a study phase for an IXV (Intermediate eXperimental Vehicle) successor, a preoperational vehicle called SPACE RIDER (Space Rider Reusable Integrated Demonstrator for European Return), has been recently enlarged, as approved during last EU Ministerial Council. One of the main project task consists in developing SPACE RIDER to conduct on orbit servicing activity with no docking. SPACE RIDER would be provided with a robotic manipulator system (arm and gripper) able to transfer cargos, such as scientific payloads, from low Earth orbiting platforms to SPACE RIDER cargo bay. The platform is a part of a space tug designed to move small satellites and other payloads from Low Earth Orbit (LEO) to Geosynchronous Equatorial Orbit (GEO) and viceversa. The assumed housing cargo bay requirements in terms of volume (<100l) and mass (<50kg) combined with the required overall arm dimensions (4m length), and mass of the cargo (5-30kg) force to developing an innovative robotic manipulator with the task-oriented end effector. It results in a seven degree-of-freedom arm to ensure a high degree of dexterity and a dedicate end-effector designed to grasp the cargo interface. The gripper concept developed consists in a multi-finger hand able to lock both translational and rotational cargo degrees of freedom through an innovative underactuation strategy to limit its mass and volume. A configuration study on the cargo handle interface was performed together with some computer aided design models and multibody analysis of the whole system to prove its feasibility. Finally, the concept of system control architecture, the test report and the gripper structural analysis were defined. In order to be able to accurately analyze a sample of Martian soil and to determine if life was present on the red planet, a lot of mission concepts have been formulating to reach Mars and to bring back a terrain sample. NASA JPL has been studying such mission concepts for many years. This concept is made up of three intermediate mission accomplishments. Mars 2020 is the first mission envisioned to collect the terrain sample and to seal it in sample tubes. These sealed sample tubes could be inserted in a spherical envelope named Orbiting Sample (OS). A Mars Ascent Vehicle (MAV) is the notional rocket designed to bring this sample off Mars, and a Rendezvous Orbiting Capture System (ROCS) is the mission conceived to bring this sample back to Earth through the Earth Entry Vehicle (EEV). MOSTT is the technical work study to create new concepts able to capture and reorient an OS. This maneuver is particularly important because we do not know an OS incoming orientation and we need to be able to capture, to reorient it (2 rotational degrees of freedom), and to retain an OS (3 translational degrees of freedom and 2 rotational ones). Planetary protection requirements generate a need to enclose an OS in two shells and to seal it through a process called Break-The-Chain (BTC). Considering the EEV would return back to Earth, the tubes orientation and position have to be known in detail to prevent any possible damage during the Earth hard landing (acceleration of ∼1300g). Tests and analysis report that in order for the hermetic seals of the sample tubes to survive the impact, they should be located above an OS equator. Due to other system uncertainties an OS presents the potential requirement to be properly reoriented before being inserted inside the EEV. Planetary protection issues and landing safety are critical mission points and provide potential strict requirements to MOSTT system configuration. This task deals with the concept, design, and testbed realization of an innovative electro-mechanical system to reorient an OS consistent with all the necessary potential requirements. One of these electro-mechanical systems consists of a controlled-motorized wiper that explores all an OS surface until it engages with a pin on an OS surface and brings it to the final home location reorienting an OS. This mechanism is expected to be robust to the incoming OS orientation and to reorient it to the desired position using only one degree of freedom rotational actuator.

Space Exploration Robotic Systems - Orbital Manipulation Mechanisms / Dolci, Marco. - (2018 Apr 10). [10.6092/polito/porto/2705511]

Space Exploration Robotic Systems - Orbital Manipulation Mechanisms

Marco Dolci
2018

Abstract

In the future, orbital space robots will assist humans in space by constructing and maintaining space modules and structures. Robotic manipulators will play essential roles in orbital operations. This work is devoted to the implemented designs of two different orbital manipulation mechanical grippers developed in collaboration with Thales Alenia Space Italy and NASA Jet Propulsion Laboratory – California Institute of Technology. The consensus to a study phase for an IXV (Intermediate eXperimental Vehicle) successor, a preoperational vehicle called SPACE RIDER (Space Rider Reusable Integrated Demonstrator for European Return), has been recently enlarged, as approved during last EU Ministerial Council. One of the main project task consists in developing SPACE RIDER to conduct on orbit servicing activity with no docking. SPACE RIDER would be provided with a robotic manipulator system (arm and gripper) able to transfer cargos, such as scientific payloads, from low Earth orbiting platforms to SPACE RIDER cargo bay. The platform is a part of a space tug designed to move small satellites and other payloads from Low Earth Orbit (LEO) to Geosynchronous Equatorial Orbit (GEO) and viceversa. The assumed housing cargo bay requirements in terms of volume (<100l) and mass (<50kg) combined with the required overall arm dimensions (4m length), and mass of the cargo (5-30kg) force to developing an innovative robotic manipulator with the task-oriented end effector. It results in a seven degree-of-freedom arm to ensure a high degree of dexterity and a dedicate end-effector designed to grasp the cargo interface. The gripper concept developed consists in a multi-finger hand able to lock both translational and rotational cargo degrees of freedom through an innovative underactuation strategy to limit its mass and volume. A configuration study on the cargo handle interface was performed together with some computer aided design models and multibody analysis of the whole system to prove its feasibility. Finally, the concept of system control architecture, the test report and the gripper structural analysis were defined. In order to be able to accurately analyze a sample of Martian soil and to determine if life was present on the red planet, a lot of mission concepts have been formulating to reach Mars and to bring back a terrain sample. NASA JPL has been studying such mission concepts for many years. This concept is made up of three intermediate mission accomplishments. Mars 2020 is the first mission envisioned to collect the terrain sample and to seal it in sample tubes. These sealed sample tubes could be inserted in a spherical envelope named Orbiting Sample (OS). A Mars Ascent Vehicle (MAV) is the notional rocket designed to bring this sample off Mars, and a Rendezvous Orbiting Capture System (ROCS) is the mission conceived to bring this sample back to Earth through the Earth Entry Vehicle (EEV). MOSTT is the technical work study to create new concepts able to capture and reorient an OS. This maneuver is particularly important because we do not know an OS incoming orientation and we need to be able to capture, to reorient it (2 rotational degrees of freedom), and to retain an OS (3 translational degrees of freedom and 2 rotational ones). Planetary protection requirements generate a need to enclose an OS in two shells and to seal it through a process called Break-The-Chain (BTC). Considering the EEV would return back to Earth, the tubes orientation and position have to be known in detail to prevent any possible damage during the Earth hard landing (acceleration of ∼1300g). Tests and analysis report that in order for the hermetic seals of the sample tubes to survive the impact, they should be located above an OS equator. Due to other system uncertainties an OS presents the potential requirement to be properly reoriented before being inserted inside the EEV. Planetary protection issues and landing safety are critical mission points and provide potential strict requirements to MOSTT system configuration. This task deals with the concept, design, and testbed realization of an innovative electro-mechanical system to reorient an OS consistent with all the necessary potential requirements. One of these electro-mechanical systems consists of a controlled-motorized wiper that explores all an OS surface until it engages with a pin on an OS surface and brings it to the final home location reorienting an OS. This mechanism is expected to be robust to the incoming OS orientation and to reorient it to the desired position using only one degree of freedom rotational actuator.
10-apr-2018
File in questo prodotto:
File Dimensione Formato  
MDolci_PhD_thesis_final.pdf

accesso aperto

Descrizione: Doctoral Dissertation
Tipologia: Tesi di dottorato
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 80.49 MB
Formato Adobe PDF
80.49 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2705511
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo