Thermal treatments are a valid clinical option in the management of several solid tumors. The difficulties to perform an accurate prediction improve the selectivity of the treatment effects represent the main hurdles in the spread of these techniques. Among other solutions, thermometric techniques are gaining acceptance in monitoring the effects of thermal treatments because they provide a clear end-point to obtain the complete removal of cancer without damaging the surrounding healthy tissue. This paper proposes a custom needle-like probe made of carbon fibers to embed seven fiber Bragg grating (FBG) sensors. This tool aims at a multiple points monitoring the tissue temperature during the thermal procedures, streamlining the FBG sensors insertion within the organ. After the description of the probe manufacturing, we reported the calibration of the seven sensors embedded within the probe, their step response, and the feasibility assessment of the probe for temperature monitoring during laser ablation on animal model (both in vivo and ex vivo). Results show that the proposed probe is easily maneuverable by the clinician, the sensors have a linear response with the temperature and a short step response; moreover, the probe allows measuring the temperature in seven points of the tissue; finally, it can be used during CTand MR-guided procedures without causing any artifact to the images. Thanks to these features the probe may be an useful solution to improve the safety and the outcomes of minimally invasive thermal ablation procedures, so to spread these procedures in the clinical field.

Novel carbon fiber probe for temperature monitoring during thermal therapies / Saccomandi, P.; Schena, E.; Caponero, M. A.; Gassino, R.; Perrone, G.; Vallan, A.; Diana, M.; Costamagna, G.; Marescaux, J.. - ELETTRONICO. - (2017), pp. 873-876. (Intervento presentato al convegno 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2017) tenutosi a Seogwipo, South Korea) [10.1109/EMBC.2017.8036963].

Novel carbon fiber probe for temperature monitoring during thermal therapies

R. Gassino;G. Perrone;A. Vallan;
2017

Abstract

Thermal treatments are a valid clinical option in the management of several solid tumors. The difficulties to perform an accurate prediction improve the selectivity of the treatment effects represent the main hurdles in the spread of these techniques. Among other solutions, thermometric techniques are gaining acceptance in monitoring the effects of thermal treatments because they provide a clear end-point to obtain the complete removal of cancer without damaging the surrounding healthy tissue. This paper proposes a custom needle-like probe made of carbon fibers to embed seven fiber Bragg grating (FBG) sensors. This tool aims at a multiple points monitoring the tissue temperature during the thermal procedures, streamlining the FBG sensors insertion within the organ. After the description of the probe manufacturing, we reported the calibration of the seven sensors embedded within the probe, their step response, and the feasibility assessment of the probe for temperature monitoring during laser ablation on animal model (both in vivo and ex vivo). Results show that the proposed probe is easily maneuverable by the clinician, the sensors have a linear response with the temperature and a short step response; moreover, the probe allows measuring the temperature in seven points of the tissue; finally, it can be used during CTand MR-guided procedures without causing any artifact to the images. Thanks to these features the probe may be an useful solution to improve the safety and the outcomes of minimally invasive thermal ablation procedures, so to spread these procedures in the clinical field.
2017
978-1-5090-2809-2
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2704853
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo