This paper considers the problem of coherent (in the sense that both amplitudes and relative phases of the polarimetric returns are used to construct the decision statistic) multipolarization synthetic aperture radar change detection starting from the availability of image pairs exhibiting possible power mismatches/miscalibrations. The principle of invariance is used to characterize the class of scale-invariant decision rules which are insensitive to power mismatches and ensure the constant false alarm rate property. A maximal invariant statistic is derived together with the induced maximal invariant in the parameter space which significantly compresses the data/parameter domain. A generalized likelihood ratio test is synthesized both for the cases of two- and three-polarimetric channels. Interestingly, for the two-channel case, it is based on the comparison of the condition number of a data-dependent matrix with a suitable threshold. Some additional invariant decision rules are also proposed. The performance of the considered scale-invariant structures is compared to those from two noninvariant counterparts using both simulated and real radar data. The results highlight the robustness of the proposed method and the performance tradeoff involved.

Forcing Scale Invariance in Multipolarization SAR Change Detection / Carotenuto, Vincenzo; DeMaio Antonio, Clemente Carmine; Soraghan, John J.; Alfano, Giuseppa. - In: IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING. - ISSN 0196-2892. - ELETTRONICO. - 54:1(2016), pp. 36-50. [10.1109/TGRS.2015.2449332]

Forcing Scale Invariance in Multipolarization SAR Change Detection

ALFANO, GIUSEPPA
2016

Abstract

This paper considers the problem of coherent (in the sense that both amplitudes and relative phases of the polarimetric returns are used to construct the decision statistic) multipolarization synthetic aperture radar change detection starting from the availability of image pairs exhibiting possible power mismatches/miscalibrations. The principle of invariance is used to characterize the class of scale-invariant decision rules which are insensitive to power mismatches and ensure the constant false alarm rate property. A maximal invariant statistic is derived together with the induced maximal invariant in the parameter space which significantly compresses the data/parameter domain. A generalized likelihood ratio test is synthesized both for the cases of two- and three-polarimetric channels. Interestingly, for the two-channel case, it is based on the comparison of the condition number of a data-dependent matrix with a suitable threshold. Some additional invariant decision rules are also proposed. The performance of the considered scale-invariant structures is compared to those from two noninvariant counterparts using both simulated and real radar data. The results highlight the robustness of the proposed method and the performance tradeoff involved.
File in questo prodotto:
File Dimensione Formato  
changed.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 2.49 MB
Formato Adobe PDF
2.49 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2704710
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo