The design of the superconducting magnet system of the European DEMO fusion reactor is currently being pursued in the framework of the EUROfusion Magnets Work Package (WPMAG). Three alternative winding pack (WP) options for the Toroidal Field Coils (TFCs) are being proposed by different research units, each featuring a different conductor manufacturing technology (react-and-wind vs. wind-and-react) or winding layout (layer vs. pancake). One of the options (namely, WP#2), proposed by Italian ENEA, features a layer-wound WP design adopting a wind-and-react conductor with rectangular cross section with high aspect ratio, obtained squeezing an initially circular conductor. In order to assess the capability of all the TFC components to withstand the electromagnetic loads due to the huge Lorentz forces without any structural failure during the magnet lifetime, the mechanical analysis of the 2016 version of the WP#2 design option is performed here applying a hierarchical approach herein defined as the Stress Recovery Tool (SRT): the Finite Element Analysis (FEA) of a whole magnet (including the casing) is performed at a low computational cost adopting a coarse WP model with smeared (homogenized) properties. The displacements computed on the smeared WP are then used as boundary conditions for a refined FEA of some WP slices, located in selected (critical) poloidal positions, where all the conductors detailed features (jacket, insulations) are properly accounted for.

Mechanical analysis of the ENEA TF coil proposal for the EU DEMO fusion reactor / Biancolini, M. E.; Bonifetto, R.; Chiappa, A.; Giorgetti, F.; Corato, V.; Muzzi, L.; Turtù, S.. - In: IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY. - ISSN 1051-8223. - STAMPA. - 28:4(2018), p. 4901405. [10.1109/TASC.2018.2796619]

Mechanical analysis of the ENEA TF coil proposal for the EU DEMO fusion reactor

R. Bonifetto;
2018

Abstract

The design of the superconducting magnet system of the European DEMO fusion reactor is currently being pursued in the framework of the EUROfusion Magnets Work Package (WPMAG). Three alternative winding pack (WP) options for the Toroidal Field Coils (TFCs) are being proposed by different research units, each featuring a different conductor manufacturing technology (react-and-wind vs. wind-and-react) or winding layout (layer vs. pancake). One of the options (namely, WP#2), proposed by Italian ENEA, features a layer-wound WP design adopting a wind-and-react conductor with rectangular cross section with high aspect ratio, obtained squeezing an initially circular conductor. In order to assess the capability of all the TFC components to withstand the electromagnetic loads due to the huge Lorentz forces without any structural failure during the magnet lifetime, the mechanical analysis of the 2016 version of the WP#2 design option is performed here applying a hierarchical approach herein defined as the Stress Recovery Tool (SRT): the Finite Element Analysis (FEA) of a whole magnet (including the casing) is performed at a low computational cost adopting a coarse WP model with smeared (homogenized) properties. The displacements computed on the smeared WP are then used as boundary conditions for a refined FEA of some WP slices, located in selected (critical) poloidal positions, where all the conductors detailed features (jacket, insulations) are properly accounted for.
File in questo prodotto:
File Dimensione Formato  
J49_2018_TAS_DEMO_TF_mechanics_AuthorPostprint.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 805.82 kB
Formato Adobe PDF
805.82 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2698443
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo