In today’s world, large volumes of data are being continuously generated by many scientific applications, such as bioinformatics or networking. Since each monitored event is usually characterized by a variety of features, high-dimensional datasets have been continuously generated. To extract value from these complex collections of data, different exploratory data mining algorithms can be used to discover hidden and non-trivial correlations among data. Frequent closed itemset mining is an effective but computational expensive technique that is usually used to support data exploration. Thanks to the spread of distributed and parallel frameworks, the development of scalable approaches able to deal with the so called Big Data has been extended to frequent itemset mining. Unfortunately, most of the current algorithms are designed to cope with low-dimensional datasets, delivering poor performances in those use cases characterized by high-dimensional data. This work introduces PaMPa-HD, a MapReduce-based frequent closed itemset mining algorithm for high dimensional datasets. An efficient solution has been proposed to parallelize and speed up the mining process. Furthermore, different strategies have been proposed to easily configure the algorithm parameter. The experimental results, performed on real-life high-dimensional use cases, show the efficiency of the proposed approach in terms of execution time, load balancing and robustness to memory issues.

A Parallel MapReduce Algorithm to Efficiently Support Itemset Mining on High Dimensional Data / Apiletti, Daniele; Baralis, Elena; Cerquitelli, Tania; Garza, Paolo; Pulvirenti, Fabio; Michiardi, Pietro. - In: BIG DATA RESEARCH. - ISSN 2214-5796. - 10:(2017), pp. 53-69. [10.1016/j.bdr.2017.10.004]

A Parallel MapReduce Algorithm to Efficiently Support Itemset Mining on High Dimensional Data

Apiletti, Daniele;Baralis, Elena;Cerquitelli, Tania;Garza, Paolo;Pulvirenti, Fabio;
2017

Abstract

In today’s world, large volumes of data are being continuously generated by many scientific applications, such as bioinformatics or networking. Since each monitored event is usually characterized by a variety of features, high-dimensional datasets have been continuously generated. To extract value from these complex collections of data, different exploratory data mining algorithms can be used to discover hidden and non-trivial correlations among data. Frequent closed itemset mining is an effective but computational expensive technique that is usually used to support data exploration. Thanks to the spread of distributed and parallel frameworks, the development of scalable approaches able to deal with the so called Big Data has been extended to frequent itemset mining. Unfortunately, most of the current algorithms are designed to cope with low-dimensional datasets, delivering poor performances in those use cases characterized by high-dimensional data. This work introduces PaMPa-HD, a MapReduce-based frequent closed itemset mining algorithm for high dimensional datasets. An efficient solution has been proposed to parallelize and speed up the mining process. Furthermore, different strategies have been proposed to easily configure the algorithm parameter. The experimental results, performed on real-life high-dimensional use cases, show the efficiency of the proposed approach in terms of execution time, load balancing and robustness to memory issues.
File in questo prodotto:
File Dimensione Formato  
PampaHD_BDR.pdf

non disponibili

Descrizione: Articolo principale - versione editoriale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 2.94 MB
Formato Adobe PDF
2.94 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
pampa_public.pdf

Open Access dal 07/10/2019

Descrizione: Versione articolo accettato
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Creative commons
Dimensione 5.14 MB
Formato Adobe PDF
5.14 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2693039