In my thesis I study the problem of predicting the evolution of the epidemic spreading on networks when incomplete information, in form of a partial observation, is available. I focus on the irreversible process described by the discrete time version of the Susceptible-Infected-Recovered (SIR) model on networks. Because of its intrinsic stochasticity, forecasting the SIR process is very difficult, even if the structure of individuals contact pattern is known. In today's interconnected and interdependent society, infectious diseases pose the threat of a worldwide epidemic spreading, hence governments and public health systems maintain surveillance programs to report and control the emergence of new disease event ranging from the seasonal influenza to the more severe HIV or Ebola. When new infection cases are discovered in the population it is necessary to provide real-time forecasting of the epidemic evolution. However the incompleteness of accessible data and the intrinsic stochasticity of the contagion pose a major challenge. The idea behind the work of my thesis is that the correct inference of the contagion process before the detection of the disease permits to use all the available information and, consequently, to obtain reliable predictions. I use the Belief Propagation approach for the prediction of SIR epidemics when a partial observation is available. In this case the reconstruction of the past dynamics can be efficiently performed by this method and exploited to analyze the evolution of the disease. Although the Belief Propagation provides exact results on trees, it turns out that is still a good approximation on general graphs. In this cases Belief Propagation may present convergence related issues, especially on dense networks. Moreover, since this approach is based on a very general principle, it can be adapted to study a wide range of issues, some of which I analyze in the thesis.

Belief Propagation approach to epidemics prediction on networks / Bindi, Jacopo. - (2017). [10.6092/polito/porto/2679357]

Belief Propagation approach to epidemics prediction on networks

BINDI, JACOPO
2017

Abstract

In my thesis I study the problem of predicting the evolution of the epidemic spreading on networks when incomplete information, in form of a partial observation, is available. I focus on the irreversible process described by the discrete time version of the Susceptible-Infected-Recovered (SIR) model on networks. Because of its intrinsic stochasticity, forecasting the SIR process is very difficult, even if the structure of individuals contact pattern is known. In today's interconnected and interdependent society, infectious diseases pose the threat of a worldwide epidemic spreading, hence governments and public health systems maintain surveillance programs to report and control the emergence of new disease event ranging from the seasonal influenza to the more severe HIV or Ebola. When new infection cases are discovered in the population it is necessary to provide real-time forecasting of the epidemic evolution. However the incompleteness of accessible data and the intrinsic stochasticity of the contagion pose a major challenge. The idea behind the work of my thesis is that the correct inference of the contagion process before the detection of the disease permits to use all the available information and, consequently, to obtain reliable predictions. I use the Belief Propagation approach for the prediction of SIR epidemics when a partial observation is available. In this case the reconstruction of the past dynamics can be efficiently performed by this method and exploited to analyze the evolution of the disease. Although the Belief Propagation provides exact results on trees, it turns out that is still a good approximation on general graphs. In this cases Belief Propagation may present convergence related issues, especially on dense networks. Moreover, since this approach is based on a very general principle, it can be adapted to study a wide range of issues, some of which I analyze in the thesis.
2017
File in questo prodotto:
File Dimensione Formato  
ThesisCh_template.pdf

accesso aperto

Descrizione: Doctoral Thesis
Tipologia: Tesi di dottorato
Licenza: Creative commons
Dimensione 5.03 MB
Formato Adobe PDF
5.03 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2679357
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo