In distributed SDN architectures, the network is controlled by a cluster of multiple controllers. This distributed approach permits to meet the scalability and reliability requirements of large operational networks. Despite that, a logical centralized view of the network state should be guaranteed, enabling the simple development of network applications. Achieving a consistent network state requires a consensus protocol, which generates control traffic among the controllers whose timely delivery is crucial for network performance. We focus on the state-of-art ONOS controller, designed to scale to large networks, based on a cluster of self-coordinating controllers. In particular, we study the inter-controller control traffic due to the adopted consistency protocols. Based on real traffic measurements and the analysis of the adopted consistency protocols, we develop some empirical models to quantify the traffic exchanged among the controllers, depending on the considered shared data structures, the current network state (e.g. topology) and the occurring network events (e.g. flow or host addition). Our models provide a formal tool to be integrated into the design and dimension the control network interconnecting the controllers. Our results are of paramount importance for the proper design of large SDN networks, in which the control plane is implemented in-band and cannot exploit dedicated network resources.

Inter-controller Traffic to Support Consistency in ONOS Clusters / Muqaddas, ABUBAKAR SIDDIQUE; Giaccone, Paolo; Bianco, Andrea; Maier, Guido. - In: IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT. - ISSN 1932-4537. - ELETTRONICO. - 14:4(2017), pp. 1018-1031. [10.1109/TNSM.2017.2723477]

Inter-controller Traffic to Support Consistency in ONOS Clusters

MUQADDAS, ABUBAKAR SIDDIQUE;GIACCONE, PAOLO;BIANCO, ANDREA;
2017

Abstract

In distributed SDN architectures, the network is controlled by a cluster of multiple controllers. This distributed approach permits to meet the scalability and reliability requirements of large operational networks. Despite that, a logical centralized view of the network state should be guaranteed, enabling the simple development of network applications. Achieving a consistent network state requires a consensus protocol, which generates control traffic among the controllers whose timely delivery is crucial for network performance. We focus on the state-of-art ONOS controller, designed to scale to large networks, based on a cluster of self-coordinating controllers. In particular, we study the inter-controller control traffic due to the adopted consistency protocols. Based on real traffic measurements and the analysis of the adopted consistency protocols, we develop some empirical models to quantify the traffic exchanged among the controllers, depending on the considered shared data structures, the current network state (e.g. topology) and the occurring network events (e.g. flow or host addition). Our models provide a formal tool to be integrated into the design and dimension the control network interconnecting the controllers. Our results are of paramount importance for the proper design of large SDN networks, in which the control plane is implemented in-band and cannot exploit dedicated network resources.
File in questo prodotto:
File Dimensione Formato  
main.pdf

accesso aperto

Descrizione: Camera ready
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 2.44 MB
Formato Adobe PDF
2.44 MB Adobe PDF Visualizza/Apri
04.pdf

non disponibili

Descrizione: Published version
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 2.5 MB
Formato Adobe PDF
2.5 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2675391
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo