Serial buses are ubiquitous interconnections in embedded computing systems that are used to interface processing elements with peripherals, such as sensors, actuators, and I/O controllers. Despite their limited wiring, as off-chip connections they can account for a significant amount of the total power consumption of a system-on-chip device. Encoding the information sent on these buses is the most intuitive and affordable way to reduce their power contribution; moreover, the encoding can be made even more effective by exploiting the fact that many embedded applications can tolerate intermediate approximations without a significant impact on the final quality of results, thus trading off accuracy for power consumption. We propose a simple yet very effective approximate encoding for reducing dynamic energy in serial buses. Our approach uses differential encoding as a baseline scheme and extends it with bounded approximations to overcome the intrinsic limitations of differential encoding for data with low temporal correlation. We show that the proposed scheme, in addition to yielding extremely compact codecs, is superior to all state-of-the-art approximate serial encodings over a wide set of traces representing data received or sent from/to sensor or actuators.

Approximate energy-efficient encoding for serial interfaces / JAHIER PAGLIARI, Daniele; Macii, Enrico; Poncino, Massimo. - In: ACM TRANSACTIONS ON DESIGN AUTOMATION OF ELECTRONIC SYSTEMS. - ISSN 1084-4309. - ELETTRONICO. - 22:4(2017), pp. 1-25. [10.1145/3041220]

Approximate energy-efficient encoding for serial interfaces

JAHIER PAGLIARI, DANIELE;MACII, Enrico;PONCINO, MASSIMO
2017

Abstract

Serial buses are ubiquitous interconnections in embedded computing systems that are used to interface processing elements with peripherals, such as sensors, actuators, and I/O controllers. Despite their limited wiring, as off-chip connections they can account for a significant amount of the total power consumption of a system-on-chip device. Encoding the information sent on these buses is the most intuitive and affordable way to reduce their power contribution; moreover, the encoding can be made even more effective by exploiting the fact that many embedded applications can tolerate intermediate approximations without a significant impact on the final quality of results, thus trading off accuracy for power consumption. We propose a simple yet very effective approximate encoding for reducing dynamic energy in serial buses. Our approach uses differential encoding as a baseline scheme and extends it with bounded approximations to overcome the intrinsic limitations of differential encoding for data with low temporal correlation. We show that the proposed scheme, in addition to yielding extremely compact codecs, is superior to all state-of-the-art approximate serial encodings over a wide set of traces representing data received or sent from/to sensor or actuators.
File in questo prodotto:
File Dimensione Formato  
main.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 2.01 MB
Formato Adobe PDF
2.01 MB Adobe PDF Visualizza/Apri
3041220.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.06 MB
Formato Adobe PDF
1.06 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2674324
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo