The use of Ground Water Heat Pumps (GWHPs) for the heating and cooling of buildings is getting more and more popular due to the sustainability and economic convenience of this technology. One of the most critical design issues of these systems is the hydraulic and thermal short-circuit between the abstraction and the injection well(s), which impairs the energy efficiency of the heat pump and may even lead to the plant failure. A number of mathematical tools has already been developed to assess thermal short-circuit in well doublets with a prescribed injection temperature (thermal feedback), but this assumption is rarely met in the reality. In order to assess thermal short-circuit for a prescribed temperature difference between injection and abstraction (thermal recycling), a numerical code called TRS (Thermal Recycling Simulator) was therefore developed and is presented in this paper. The code is based on the potential flow theory and it has been validated against coupled flow and heat transport simulations with FEFLOW. TRS is freely available at http://goo.gl/AdjCp6 and works in MATLAB environment. An empirical formula, which describes the time evolution of the extracted water temperature, has also been derived from a series of simulations with TRS. The developed mathematical tools can be used to assess the long-term sustainability of a certain plant setup, to perform sensitivity analyses and for large-scale assessments of the thermal exchange capacity of aquifers.

Models and tools for the assessment of thermal-short circuit in open-loop geothermal systems / Casasso, Alessandro; Sethi, Rajandrea. - In: RENDICONTI ONLINE DELLA SOCIETÀ GEOLOGICA ITALIANA. - ISSN 2035-8008. - ELETTRONICO. - 42:(2017), pp. 50-53. [10.3301/ROL.2017.12]

Models and tools for the assessment of thermal-short circuit in open-loop geothermal systems

CASASSO, ALESSANDRO;SETHI, RAJANDREA
2017

Abstract

The use of Ground Water Heat Pumps (GWHPs) for the heating and cooling of buildings is getting more and more popular due to the sustainability and economic convenience of this technology. One of the most critical design issues of these systems is the hydraulic and thermal short-circuit between the abstraction and the injection well(s), which impairs the energy efficiency of the heat pump and may even lead to the plant failure. A number of mathematical tools has already been developed to assess thermal short-circuit in well doublets with a prescribed injection temperature (thermal feedback), but this assumption is rarely met in the reality. In order to assess thermal short-circuit for a prescribed temperature difference between injection and abstraction (thermal recycling), a numerical code called TRS (Thermal Recycling Simulator) was therefore developed and is presented in this paper. The code is based on the potential flow theory and it has been validated against coupled flow and heat transport simulations with FEFLOW. TRS is freely available at http://goo.gl/AdjCp6 and works in MATLAB environment. An empirical formula, which describes the time evolution of the extracted water temperature, has also been derived from a series of simulations with TRS. The developed mathematical tools can be used to assess the long-term sustainability of a certain plant setup, to perform sensitivity analyses and for large-scale assessments of the thermal exchange capacity of aquifers.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2667623
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo