There is a recent and growing interest in joining ceramic parts due to their increased use in several fields such as next-generation nuclear plants, aeronautic engine parts and aerospace components. For high temperature applications, glass-ceramics are used as an “adhesive” for ceramic parts, this generates the need for test methods suitable to assess their bond strength. Unfortunately, the various test procedures currently used lead to different results. One recent test is based on torsion of hourglass shaped joined ceramics, originated from a modification of the ASTM F734-95 standard, with the aim of obtaining failure under a pure shear state in the bondline subjected to torsion. However, results obtained from different versions of the hourglass geometry show differences which are still difficult to compare. Moreover, due to the brittle nature of the materials and especially when the adhesive strength is comparable to that of the substrates, the failure is not confined in the bond and propagates also in the substrates. In this case, the results are still of arguable application for design purposes. The aim of this paper is to give an insight on torsion of hourglass-shaped joined ceramics and on the interpretation of the obtained results, by means of detailed analytical and numerical studies of the stress distribution in the specimen, and taking into account the brittle nature of the materials. The main findings are: i) the stress state in the bondline is not singular; ii) a non negligible stress concentration arises out of the bondline.

BONDING OF CERAMICS: AN ANALYSIS OF THE TORSION HOURGLASS SPECIMEN / Goglio, Luca; Ferraris, Monica. - In: INTERNATIONAL JOURNAL OF ADHESION AND ADHESIVES. - ISSN 0143-7496. - STAMPA. - 70:(2016), pp. 46-52. [10.1016/j.ijadhadh.2016.05.006]

BONDING OF CERAMICS: AN ANALYSIS OF THE TORSION HOURGLASS SPECIMEN

GOGLIO, Luca;FERRARIS, Monica
2016

Abstract

There is a recent and growing interest in joining ceramic parts due to their increased use in several fields such as next-generation nuclear plants, aeronautic engine parts and aerospace components. For high temperature applications, glass-ceramics are used as an “adhesive” for ceramic parts, this generates the need for test methods suitable to assess their bond strength. Unfortunately, the various test procedures currently used lead to different results. One recent test is based on torsion of hourglass shaped joined ceramics, originated from a modification of the ASTM F734-95 standard, with the aim of obtaining failure under a pure shear state in the bondline subjected to torsion. However, results obtained from different versions of the hourglass geometry show differences which are still difficult to compare. Moreover, due to the brittle nature of the materials and especially when the adhesive strength is comparable to that of the substrates, the failure is not confined in the bond and propagates also in the substrates. In this case, the results are still of arguable application for design purposes. The aim of this paper is to give an insight on torsion of hourglass-shaped joined ceramics and on the interpretation of the obtained results, by means of detailed analytical and numerical studies of the stress distribution in the specimen, and taking into account the brittle nature of the materials. The main findings are: i) the stress state in the bondline is not singular; ii) a non negligible stress concentration arises out of the bondline.
File in questo prodotto:
File Dimensione Formato  
JAAD_1849 Accepted Manuscript.pdf

accesso aperto

Descrizione: Articolo completo con grafici e tabelle
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Creative commons
Dimensione 1.11 MB
Formato Adobe PDF
1.11 MB Adobe PDF Visualizza/Apri
Bonding of ceramics_ An analysis of the torsion hourglass specimen.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.8 MB
Formato Adobe PDF
1.8 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2666394
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo