This paper proposes one-dimensional layer-wise theories that make use of higher-order zig-zag functions defined over fictitious/mathematical layers of the cross-sectional area. These advanced kinematics enable the computational costs to be reduced while the accuracy of the classical layer-wise theories in which the number of physical and numerical layers coincide, is maintained. Variable kinematics theories have been obtained using piecewise continuous power series expansions of an arbitrary order defined over the whole cross-section of the structure. As in the classical layer-wise approach, the cross-section can be divided into a variable number of mathematical subdomains. The expansion order of each subdomain is therefore an input parameter of the analysis. This feature enables the solution to be refined locally as the kinematics expansion can be enriched over generic regions of the cross-section. The governing equations have been obtained by applying the Principle of Virtual Displacements, along with the Carrera Unified Formulation, and have been solved using the Finite Element method. Numerical simulations have been performed considering laminated and sandwich beams with very low length-todepth ratio values. Comparisons between the present results and solutions available in the literature have pointed out the advantages of this approach, in terms of accuracy of the displacements, of the stress distributions over the beam cross-section and of the natural frequencies with respect to the classical layer-wise theories.

Bending and vibrations analyses of laminated beams by using a zig-zag-layer-wise theory / Filippi, Matteo; Carrera, Erasmo. - In: COMPOSITES. PART B, ENGINEERING. - ISSN 1359-8368. - STAMPA. - 98:(2016), pp. 269-280. [10.1016/j.compositesb.2016.04.050]

Bending and vibrations analyses of laminated beams by using a zig-zag-layer-wise theory

FILIPPI, MATTEO;CARRERA, Erasmo
2016

Abstract

This paper proposes one-dimensional layer-wise theories that make use of higher-order zig-zag functions defined over fictitious/mathematical layers of the cross-sectional area. These advanced kinematics enable the computational costs to be reduced while the accuracy of the classical layer-wise theories in which the number of physical and numerical layers coincide, is maintained. Variable kinematics theories have been obtained using piecewise continuous power series expansions of an arbitrary order defined over the whole cross-section of the structure. As in the classical layer-wise approach, the cross-section can be divided into a variable number of mathematical subdomains. The expansion order of each subdomain is therefore an input parameter of the analysis. This feature enables the solution to be refined locally as the kinematics expansion can be enriched over generic regions of the cross-section. The governing equations have been obtained by applying the Principle of Virtual Displacements, along with the Carrera Unified Formulation, and have been solved using the Finite Element method. Numerical simulations have been performed considering laminated and sandwich beams with very low length-todepth ratio values. Comparisons between the present results and solutions available in the literature have pointed out the advantages of this approach, in terms of accuracy of the displacements, of the stress distributions over the beam cross-section and of the natural frequencies with respect to the classical layer-wise theories.
File in questo prodotto:
File Dimensione Formato  
TE_LW_revised.pdf

accesso aperto

Tipologia: 1. Preprint / submitted version [pre- review]
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 1.73 MB
Formato Adobe PDF
1.73 MB Adobe PDF Visualizza/Apri
Bending and vibrations analyses of laminated beams by using a zig-zag-layer-wise theory.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 2.42 MB
Formato Adobe PDF
2.42 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2657277
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo