The paper proposes a methodology to evaluate the resilience of the critical infrastructures networks hit by Hurricane Sandy in October 2012. The region analyzed in the case study is New York metropolitan area which includes New York City and the nearby state of New Jersey. This region was the most affected by the storm and it is one of the most densely populated regions of the United States due to its high concentration of businesses and several critical infrastructures. The identified critical infrastructure systems are highly interconnected, forming a heterogeneous network that is very vulnerable to catastrophic events, such as hurricanes. Due to several existing interdependencies, the systems are subjected to disruptive cascading effects. The disruption of one or more of these systems directly affects people, businesses, the government and leads to additional indirect damages. After a critical comparison of the different methodologies to analyze infrastructure interdependency, the input-output method is selected in order to indentify and rank the different types of dependencies in the network as well as to prioritize the different actions during the restoration process. Previous analyses have shown that power, transportation, and fuel were the most damaged networks in the region generating severe cascading effects due to the interdependencies between them. A series of recommendations to improve the global resilience in the region are provided which will be able to prevent cascading effects and prioritize the recovery effort in the future.

A new methodology to model interdependency of Critical Infrastructure Systems during Hurricane Sandy’s event / Crupi, P.; Agrawal, A.; Cimellaro, GIAN PAOLO. - ELETTRONICO. - (2016). (Intervento presentato al convegno Engineering mechanics Institute Conference 2016 and Probabilistic Mechanics & Reliability Conference 2016 (EMI 2016 & PMC 2016) tenutosi a Nashville, nel May 22-25, 2016).

A new methodology to model interdependency of Critical Infrastructure Systems during Hurricane Sandy’s event

CIMELLARO, GIAN PAOLO
2016

Abstract

The paper proposes a methodology to evaluate the resilience of the critical infrastructures networks hit by Hurricane Sandy in October 2012. The region analyzed in the case study is New York metropolitan area which includes New York City and the nearby state of New Jersey. This region was the most affected by the storm and it is one of the most densely populated regions of the United States due to its high concentration of businesses and several critical infrastructures. The identified critical infrastructure systems are highly interconnected, forming a heterogeneous network that is very vulnerable to catastrophic events, such as hurricanes. Due to several existing interdependencies, the systems are subjected to disruptive cascading effects. The disruption of one or more of these systems directly affects people, businesses, the government and leads to additional indirect damages. After a critical comparison of the different methodologies to analyze infrastructure interdependency, the input-output method is selected in order to indentify and rank the different types of dependencies in the network as well as to prioritize the different actions during the restoration process. Previous analyses have shown that power, transportation, and fuel were the most damaged networks in the region generating severe cascading effects due to the interdependencies between them. A series of recommendations to improve the global resilience in the region are provided which will be able to prevent cascading effects and prioritize the recovery effort in the future.
File in questo prodotto:
File Dimensione Formato  
160226 EMI-PMC 2016 PAPER draft Pietro Crupi.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 1.48 MB
Formato Adobe PDF
1.48 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2656563
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo