The potential of pilot injection has been assessed on a low-temperature combustion diesel engine for automotive applications, which was characterized by a reduced compression-ratio, high EGR rates and postponed main injection timings. Dwell time sweeps have been carried out for pilot injections with distinct energizing times under different representative steady-state working conditions of the medium load and speed area of the New European Driving Cycle. The results of in-cylinder analyses of the pressure, heat-release rate, temperature and emissions are presented. Combustion noise has been shown to decrease significantly when the pilot injected mass increases, while it is scarcely affected by the dwell time between the pilot and main injections. The HC, CO and fuel consumption trends, with respect to both the pilot injection dwell time and mass, are in line with those of conventional combustion systems, and in particular decreasing trends occur as the pilot injection energizing time is increased. Furthermore, a reduced sensitivity of NOx emissions to both dwell time and pilot injected mass has been found, compared to conventional combustion systems. Finally, it has been observed that soot emissions diminish as the energizing time is shortened, and their dependence on dwell time is influenced to a great extent by the presence of local zones with reduced air-to-fuel ratios within the cylinder. A combined analysis of the results of swirl sweeps and dwell time sweeps is here proposed as a methodology for the detection of any possible interference between pilot combustion burned gases and the main injected fuel. The effect of pilot injection on engine performance and emissions has also been assessed in the presence of rate-shaped main injections. These main injection profiles have been implemented with solenoid injectors by designing the injection fusion between a pre injection shot, which is added after the pilot injection, and the main injection. This innovative strategy shows benefits, with respect to combustion noise, although it still results in a reduced impact on NOx emissions. Furthermore, the brake specific fuel consumption and soot levels generally become worse than in the case of the simple pilot–main injection schedules. The injection fusion strategy has a significant impact on the soot versus dwell time dependence, which is influenced by the interference between the main injection and pilot combustion.

Effects of pilot injection parameters on low temperature combustion diesel engines equipped with solenoid injectors featuring conventional and rate-shaped main injection / D'Ambrosio, Stefano; Ferrari, Alessandro. - In: ENERGY CONVERSION AND MANAGEMENT. - ISSN 0196-8904. - 110:(2016), pp. 457-468. [10.1016/j.enconman.2015.12.014]

Effects of pilot injection parameters on low temperature combustion diesel engines equipped with solenoid injectors featuring conventional and rate-shaped main injection

D'AMBROSIO, Stefano;FERRARI, Alessandro
2016

Abstract

The potential of pilot injection has been assessed on a low-temperature combustion diesel engine for automotive applications, which was characterized by a reduced compression-ratio, high EGR rates and postponed main injection timings. Dwell time sweeps have been carried out for pilot injections with distinct energizing times under different representative steady-state working conditions of the medium load and speed area of the New European Driving Cycle. The results of in-cylinder analyses of the pressure, heat-release rate, temperature and emissions are presented. Combustion noise has been shown to decrease significantly when the pilot injected mass increases, while it is scarcely affected by the dwell time between the pilot and main injections. The HC, CO and fuel consumption trends, with respect to both the pilot injection dwell time and mass, are in line with those of conventional combustion systems, and in particular decreasing trends occur as the pilot injection energizing time is increased. Furthermore, a reduced sensitivity of NOx emissions to both dwell time and pilot injected mass has been found, compared to conventional combustion systems. Finally, it has been observed that soot emissions diminish as the energizing time is shortened, and their dependence on dwell time is influenced to a great extent by the presence of local zones with reduced air-to-fuel ratios within the cylinder. A combined analysis of the results of swirl sweeps and dwell time sweeps is here proposed as a methodology for the detection of any possible interference between pilot combustion burned gases and the main injected fuel. The effect of pilot injection on engine performance and emissions has also been assessed in the presence of rate-shaped main injections. These main injection profiles have been implemented with solenoid injectors by designing the injection fusion between a pre injection shot, which is added after the pilot injection, and the main injection. This innovative strategy shows benefits, with respect to combustion noise, although it still results in a reduced impact on NOx emissions. Furthermore, the brake specific fuel consumption and soot levels generally become worse than in the case of the simple pilot–main injection schedules. The injection fusion strategy has a significant impact on the soot versus dwell time dependence, which is influenced by the interference between the main injection and pilot combustion.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0196890415011140-main.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.48 MB
Formato Adobe PDF
1.48 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
PROPOSTA_ID_910727_AAM.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Creative commons
Dimensione 592.34 kB
Formato Adobe PDF
592.34 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2653508
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo