Repetitive Scenario Design (RSD) is a randomized approach to robust design based on iterating two phases: a standard scenario design phase that uses N scenarios (design samples), followed by randomized feasibility phase that uses No test samples on the scenario solution. We give a full and exact probabilistic characterization of the number of iterations required by the RSD approach for returning a solution, as a function of N, No, and of the desired levels of probabilistic robustness in the solution. This novel approach broadens the applicability of the scenario technology, since the user is now presented with a clear tradeoff between the number N of design samples and the ensuing expected number of repetitions required by the RSD algorithm. The plain (one-shot) scenario design becomes just one of the possibilities, sitting at one extreme of the tradeoff curve, in which one insists in finding a solution in a single repetition: this comes at the cost of possibly high N. Other possibilities along the tradeoff curve use lower N values, but possibly require more than one repetition.

Repetitive Scenario Design / Calafiore, Giuseppe Carlo. - In: IEEE TRANSACTIONS ON AUTOMATIC CONTROL. - ISSN 0018-9286. - STAMPA. - 62:3(2017), pp. 1125-1137. [10.1109/TAC.2016.2575859]

Repetitive Scenario Design

CALAFIORE, Giuseppe Carlo
2017

Abstract

Repetitive Scenario Design (RSD) is a randomized approach to robust design based on iterating two phases: a standard scenario design phase that uses N scenarios (design samples), followed by randomized feasibility phase that uses No test samples on the scenario solution. We give a full and exact probabilistic characterization of the number of iterations required by the RSD approach for returning a solution, as a function of N, No, and of the desired levels of probabilistic robustness in the solution. This novel approach broadens the applicability of the scenario technology, since the user is now presented with a clear tradeoff between the number N of design samples and the ensuing expected number of repetitions required by the RSD algorithm. The plain (one-shot) scenario design becomes just one of the possibilities, sitting at one extreme of the tradeoff curve, in which one insists in finding a solution in a single repetition: this comes at the cost of possibly high N. Other possibilities along the tradeoff curve use lower N values, but possibly require more than one repetition.
File in questo prodotto:
File Dimensione Formato  
repeated_scenario_2col_final_II.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 1.11 MB
Formato Adobe PDF
1.11 MB Adobe PDF Visualizza/Apri
Calafiore-Repetitive.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 786.58 kB
Formato Adobe PDF
786.58 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2645176
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo