The purpose of this work is the development of a numerical tool devoted to the study of the flow field in the components of aerospace propulsion systems. The goal is to obtain a code which can efficiently deal with both steady and unsteady problems, even in the presence of complex geometries. Several physical models have been implemented and tested, starting from Euler equations up to a three equations RANS model. Numerical results have been compared with experimental data for several real life applications in order to understand the range of applicability of the code. Performance optimization has been considered with particular care thanks to the participation to two international Workshops in which the results were compared with other groups from all over the world. As far as the numerical aspect is concerned, state-of-art algorithms have been implemented in order to make the tool competitive with respect to existing softwares. The features of the chosen discretization have been exploited to develop adaptive algorithms (p, h and hp adaptivity) which can automatically refine the discretization. Furthermore, two new algorithms have been developed during the research activity. In particular, a new technique (Feedback filtering [1]) for shock capturing in the framework of Discontinuous Galerkin methods has been introduced. It is based on an adaptive filter and can be efficiently used with explicit time integration schemes. Furthermore, a new method (Enhance Stability Recovery [2]) for the computation of diffusive fluxes in Discontinuous Galerkin discretizations has been developed. It derives from the original recovery approach proposed by van Leer and Nomura [3] in 2005 but it uses a different recovery basis and a different approach for the imposition of Dirichlet boundary conditions. The performed numerical comparisons showed that the ESR method has a larger stability limit in explicit time integration with respect to other existing methods (BR2 [4] and original recovery [3]). In conclusion, several well known test cases were studied in order to evaluate the behavior of the implemented physical models and the performance of the developed numerical schemes.

Computational fluid dynamics for aerospace propulsion systems: an approach based on discontinuous finite elements / Ferrero, Andrea. - (2015). [10.6092/polito/porto/2598559]

Computational fluid dynamics for aerospace propulsion systems: an approach based on discontinuous finite elements

FERRERO, ANDREA
2015

Abstract

The purpose of this work is the development of a numerical tool devoted to the study of the flow field in the components of aerospace propulsion systems. The goal is to obtain a code which can efficiently deal with both steady and unsteady problems, even in the presence of complex geometries. Several physical models have been implemented and tested, starting from Euler equations up to a three equations RANS model. Numerical results have been compared with experimental data for several real life applications in order to understand the range of applicability of the code. Performance optimization has been considered with particular care thanks to the participation to two international Workshops in which the results were compared with other groups from all over the world. As far as the numerical aspect is concerned, state-of-art algorithms have been implemented in order to make the tool competitive with respect to existing softwares. The features of the chosen discretization have been exploited to develop adaptive algorithms (p, h and hp adaptivity) which can automatically refine the discretization. Furthermore, two new algorithms have been developed during the research activity. In particular, a new technique (Feedback filtering [1]) for shock capturing in the framework of Discontinuous Galerkin methods has been introduced. It is based on an adaptive filter and can be efficiently used with explicit time integration schemes. Furthermore, a new method (Enhance Stability Recovery [2]) for the computation of diffusive fluxes in Discontinuous Galerkin discretizations has been developed. It derives from the original recovery approach proposed by van Leer and Nomura [3] in 2005 but it uses a different recovery basis and a different approach for the imposition of Dirichlet boundary conditions. The performed numerical comparisons showed that the ESR method has a larger stability limit in explicit time integration with respect to other existing methods (BR2 [4] and original recovery [3]). In conclusion, several well known test cases were studied in order to evaluate the behavior of the implemented physical models and the performance of the developed numerical schemes.
2015
File in questo prodotto:
File Dimensione Formato  
Ferrero_PhD_thesis.pdf

accesso aperto

Tipologia: Tesi di dottorato
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 8.05 MB
Formato Adobe PDF
8.05 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2598559
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo