Wireless sensor networks (WSN) take on an invaluable technology in many applications. Their prevalence, however, is threatened by a number of technical difficulties, especially the shortage of energy in sensors. To mitigate this problem, we propose a smart reduction in data communication by sensors. Indeed, in case we have a solution to this end, the components of a sensor, including its radio, can be turned off most of the time without noticeable influence on network operation. Thus, reducing the acquired data, the sensors can be idle for longer and power can be saved. The main idea in devising such a solution is to minimize the correlation between the data communicated. In order to reduce the measurements, we present a data prediction method based on neural networks which performs an adaptive, data-driven, and non-uniform sampling. Evidently, the amount of possible reduction in required samples is bounded by the extent to which the sensed data is stationary. The proposed method is validated on simulated and experimental data. The results show that it leads to a considerable reduction of the number of samples required (and hence also a power saving) while still providing a good approximation of the data.

A neural data-driven algorithm for smart sampling in wireless sensor networks / LUCA MESIN; Siamak Aram; PASERO EROS GIAN ALESSANDRO. - ELETTRONICO. - 2014:(2014), pp. 1-8. [10.1186/1687-1499-2014-23]

A neural data-driven algorithm for smart sampling in wireless sensor networks

MESIN, LUCA;ARAM, SIAMAK;PASERO, EROS GIAN ALESSANDRO
2014

Abstract

Wireless sensor networks (WSN) take on an invaluable technology in many applications. Their prevalence, however, is threatened by a number of technical difficulties, especially the shortage of energy in sensors. To mitigate this problem, we propose a smart reduction in data communication by sensors. Indeed, in case we have a solution to this end, the components of a sensor, including its radio, can be turned off most of the time without noticeable influence on network operation. Thus, reducing the acquired data, the sensors can be idle for longer and power can be saved. The main idea in devising such a solution is to minimize the correlation between the data communicated. In order to reduce the measurements, we present a data prediction method based on neural networks which performs an adaptive, data-driven, and non-uniform sampling. Evidently, the amount of possible reduction in required samples is bounded by the extent to which the sensed data is stationary. The proposed method is validated on simulated and experimental data. The results show that it leads to a considerable reduction of the number of samples required (and hence also a power saving) while still providing a good approximation of the data.
EURASIP Journal on Wireless Communications and Networking
File in questo prodotto:
File Dimensione Formato  
1687-1499-2014-23.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Creative commons
Dimensione 2.36 MB
Formato Adobe PDF
2.36 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11583/2535087
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo