Determination of contact forces exchanged between wheel and rail is one of the most important topics in railway dynamics. Recent studies are oriented to improve the existing contact methods in terms of computational efficiency on one side and on the other side to develop more complex and precise representation of the contact problem. This work shows some new results of the contact code developed at Politecnico di Torino identified as RTCONTACT; this code, which is an improvement of the CONPOL algorithm, is the result of long term activities, early versions were used in conjunction with MBS codes or in Matlab® environment to simulate vehicle behaviour. The code has been improved also using experimental tests performed on a scaled roller-rig. More recently the contact model was improved in order to obtain a higher computational efficiency that is a required for the use inside of a Real Time process. Benefit of a Real Time contact algorithm is the possibility to use complex simulation models in diagnostic or control systems in order to improve their performances. This work shows several comparisons of the RTCONTACT contact code respect commercial codes, standards and benchmark results.

RTCONTACT: An Efficient Wheel-Rail Contact Algorithm for Real-Time Dynamic Simulations / Bosso, Nicola; Gugliotta, Antonio; Zampieri, Nicolo'. - ELETTRONICO. - (2012). (Intervento presentato al convegno 2012 Joint Rail Conference tenutosi a Philadelphia nel 17-19 April 2012).

RTCONTACT: An Efficient Wheel-Rail Contact Algorithm for Real-Time Dynamic Simulations

BOSSO, NICOLA;GUGLIOTTA, Antonio;ZAMPIERI, NICOLO'
2012

Abstract

Determination of contact forces exchanged between wheel and rail is one of the most important topics in railway dynamics. Recent studies are oriented to improve the existing contact methods in terms of computational efficiency on one side and on the other side to develop more complex and precise representation of the contact problem. This work shows some new results of the contact code developed at Politecnico di Torino identified as RTCONTACT; this code, which is an improvement of the CONPOL algorithm, is the result of long term activities, early versions were used in conjunction with MBS codes or in Matlab® environment to simulate vehicle behaviour. The code has been improved also using experimental tests performed on a scaled roller-rig. More recently the contact model was improved in order to obtain a higher computational efficiency that is a required for the use inside of a Real Time process. Benefit of a Real Time contact algorithm is the possibility to use complex simulation models in diagnostic or control systems in order to improve their performances. This work shows several comparisons of the RTCONTACT contact code respect commercial codes, standards and benchmark results.
File in questo prodotto:
File Dimensione Formato  
JRC2012-74044.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 908.79 kB
Formato Adobe PDF
908.79 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2499935