The paper shows how a generalization of the elasticity theory to four dimensions and to spacetime allows for a consistent description of the homogeneous and isotropic universe, including the accelerated expansion. The analogy is manifested by the inclusion in the traditional Lagrangian of general relativity of an additional term accounting for the strain induced in the manifold (i.e. in space-time) by the curvature, be it induced by the presence of a texture defect or by a matter/energy distribution. The additional term is sufficient to account for various observed features of the universe and to give a simple interpretation for the so called dark energy. Then, we show how the same approach can be adopted back in three dimensions to obtain the equilibrium configuration of a given solid subject to strain induced by defects or applied forces. Finally, it is shown how concepts coming from the familiar elasticity theory can inspire new approaches to cosmology and in return how methods appropriated to General Relativity can be applied back to classical problems of elastic deformations in three dimensions.

From the elasticity theory to cosmologyand vice versa / Luca, Levrino; Tartaglia, Angelo. - In: SCIENCE CHINA. PHYSICS, MECHANICS & ASTRONOMY. - ISSN 1674-7348. - ELETTRONICO. - (2014). [10.1007/s11433-013-5169]

From the elasticity theory to cosmologyand vice versa

TARTAGLIA, Angelo
2014

Abstract

The paper shows how a generalization of the elasticity theory to four dimensions and to spacetime allows for a consistent description of the homogeneous and isotropic universe, including the accelerated expansion. The analogy is manifested by the inclusion in the traditional Lagrangian of general relativity of an additional term accounting for the strain induced in the manifold (i.e. in space-time) by the curvature, be it induced by the presence of a texture defect or by a matter/energy distribution. The additional term is sufficient to account for various observed features of the universe and to give a simple interpretation for the so called dark energy. Then, we show how the same approach can be adopted back in three dimensions to obtain the equilibrium configuration of a given solid subject to strain induced by defects or applied forces. Finally, it is shown how concepts coming from the familiar elasticity theory can inspire new approaches to cosmology and in return how methods appropriated to General Relativity can be applied back to classical problems of elastic deformations in three dimensions.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2497351
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo