An analytical solution is presented for steady inviscid separated flows modelled by hollow vortices, that is, by closed vortex sheets bounding a region with fluid at rest. Steady flows past arbitrary obstacles protruding from an infinite wall are considered. The solution is similar to that of the vortex patch model; it depends on two free parameters that define the size of the hollow vortex and the location of the separation point. When a sharp edge constrains the separation point (Kutta condition), the solution depends on a single parameter. As with the vortex patch model, families of growing vortices exist, which represent the continuation of desingularized point vortices. Numerical results are presented for the flows past a semicircular bump, a Ringleb snow cornice and a normal flat plate. The differences from the previous results found in the literature are analysed and discussed with the present solutions for the flow past a normal flat plate. Key words:

Hollow wakes past arbitrarily shaped obstacles / Telib, Haysam; Zannetti, Luca. - In: JOURNAL OF FLUID MECHANICS. - ISSN 0022-1120. - STAMPA. - 669:(2011), pp. 214-224. [10.1017/S0022112010006154]

Hollow wakes past arbitrarily shaped obstacles

TELIB, HAYSAM;ZANNETTI, LUCA
2011

Abstract

An analytical solution is presented for steady inviscid separated flows modelled by hollow vortices, that is, by closed vortex sheets bounding a region with fluid at rest. Steady flows past arbitrary obstacles protruding from an infinite wall are considered. The solution is similar to that of the vortex patch model; it depends on two free parameters that define the size of the hollow vortex and the location of the separation point. When a sharp edge constrains the separation point (Kutta condition), the solution depends on a single parameter. As with the vortex patch model, families of growing vortices exist, which represent the continuation of desingularized point vortices. Numerical results are presented for the flows past a semicircular bump, a Ringleb snow cornice and a normal flat plate. The differences from the previous results found in the literature are analysed and discussed with the present solutions for the flow past a normal flat plate. Key words:
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2382228
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo