This paper investigates the possibility of interpreting progressive shear failure in hard soils and soft rocks as the result of shear propagation of a pre-existing natural defect. This is done through the application of the principles of fracture mechanics, a slip-weakening model (SWM) being used to simulate the non-linear zone at the tips of the discontinuity. A numerical implementation of the SWM in a computation method based on the boundary element technique of the displacement discontinuity method (DDM) is presented. The crack and the non-linear zone at the advancing tip are represented through a set of elements, where the displacement discontinuity (DD) in the tangential direction is determined on the basis of a friction law. A residual friction angle is assumed on the crack elements. Shear resistance decreases on elements in the non-linear zone from a peak value at the tip, which is characteristic of intact material, to the residual value. The simulation of a uniaxial compressive test in plane strain conditions is carried out to exemplify the numerical methodology. The results emphasize the role played by the critical DD on the mechanical behaviour of the specimen. A validation of the model is shown through the back analysis of some experimental observations. The results of this back analysis show that a non-linear fracture mechanics approach seems very promising to simulate experimental results, in particular with regards to the shear band evolution pattern.

A numerical method for the study of shear band propagation in soft rocks / Castelli, Marta; Allodi, Andrea; Scavia, Claudio. - In: INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS. - ISSN 0363-9061. - STAMPA. - 33:(2009), pp. 1561-1587. [10.1002/nag.778]

A numerical method for the study of shear band propagation in soft rocks

CASTELLI, Marta;ALLODI, Andrea;SCAVIA, Claudio
2009

Abstract

This paper investigates the possibility of interpreting progressive shear failure in hard soils and soft rocks as the result of shear propagation of a pre-existing natural defect. This is done through the application of the principles of fracture mechanics, a slip-weakening model (SWM) being used to simulate the non-linear zone at the tips of the discontinuity. A numerical implementation of the SWM in a computation method based on the boundary element technique of the displacement discontinuity method (DDM) is presented. The crack and the non-linear zone at the advancing tip are represented through a set of elements, where the displacement discontinuity (DD) in the tangential direction is determined on the basis of a friction law. A residual friction angle is assumed on the crack elements. Shear resistance decreases on elements in the non-linear zone from a peak value at the tip, which is characteristic of intact material, to the residual value. The simulation of a uniaxial compressive test in plane strain conditions is carried out to exemplify the numerical methodology. The results emphasize the role played by the critical DD on the mechanical behaviour of the specimen. A validation of the model is shown through the back analysis of some experimental observations. The results of this back analysis show that a non-linear fracture mechanics approach seems very promising to simulate experimental results, in particular with regards to the shear band evolution pattern.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/1933060
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo