Gentle topographic variations significantly alter the mass and momentum exchange rates between the land surface and the atmosphere from their flat-world state. This recognition is now motivating basic studies on how a wavy surface impacts the flow dynamics near the ground for high bulk Reynolds numbers Reh. Using detailed flume experiments on a train of gentle hills, we explore the spatial structure of the mean longitudinal u and vertical w velocities at high Reh. We show that classical analytical theories proposed by Jackson and Hunt JH75 for isolated hills can be extended to a train of gentle hills if the background velocity is appropriately defined. We also show that these theories can reproduce the essential 2D structure of the Reynolds stresses. The basic assumptions in the derivation of the JH75 model are also experimentally investigated. We found that the linearization of the advective acceleration term and the mixing length proposed in JH75 are reasonable within the inner layer. We also show that the measured variability in the linearized mean longitudinal advective acceleration term can explain much of the measured variability in the entire nonlinear advective acceleration term for the longitudinal mean momentum balance.

An experimental investigation of turbulent flows over a hilly surface / Poggi, Davide; Katul, G. G.; Albertson, J. D.; Ridolfi, Luca. - In: PHYSICS OF FLUIDS. - ISSN 1070-6631. - 19:(2007), pp. 036601-1-036601-12. [10.1063/1.2565528]

An experimental investigation of turbulent flows over a hilly surface

POGGI, DAVIDE;RIDOLFI, LUCA
2007

Abstract

Gentle topographic variations significantly alter the mass and momentum exchange rates between the land surface and the atmosphere from their flat-world state. This recognition is now motivating basic studies on how a wavy surface impacts the flow dynamics near the ground for high bulk Reynolds numbers Reh. Using detailed flume experiments on a train of gentle hills, we explore the spatial structure of the mean longitudinal u and vertical w velocities at high Reh. We show that classical analytical theories proposed by Jackson and Hunt JH75 for isolated hills can be extended to a train of gentle hills if the background velocity is appropriately defined. We also show that these theories can reproduce the essential 2D structure of the Reynolds stresses. The basic assumptions in the derivation of the JH75 model are also experimentally investigated. We found that the linearization of the advective acceleration term and the mixing length proposed in JH75 are reasonable within the inner layer. We also show that the measured variability in the linearized mean longitudinal advective acceleration term can explain much of the measured variability in the entire nonlinear advective acceleration term for the longitudinal mean momentum balance.
2007
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/1551003
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo