In this paper, we address the problem of energy-conscious cache placement in wireless ad hoc networks. We consider a network comprising a server with an interface to the wired network, and some nodes requiring access to the information stored at the server. In order to reduce access latency in such a communication environment, an effective strategy is caching the server information at some nodes distributed across the network. Caching, however, can considerably impact the system energy expenditure; for instance, disseminating information incurs additional energy burden. Since wireless devices have limited amounts of available energy, we need to design caching strategies that optimally trade-off between energy consumption and access latency. We pose our problem as an integer linear program. We show that this problem is the same as a special case of the connected facility location problem, which is known to be NP-hard. We devise a polynomial time algorithm which provides a sub-optimal solution. The proposed algorithm applies to any arbitrary network topology and can be implemented in a distributed and asynchronous manner. In the case of a tree topology, our algorithm gives the optimal solution. In the case of an arbitrary topology, it finds a feasible solution with an objective function value within a factor of 6 of the optimal value. This performance is very close to the best approximate solution known today, which is obtained in a centralized manner. We compare the performance of our algorithm against three candidate caching schemes, and show via extensive simulation that our algorithm consistently outperforms these alternative schemes.

Energy-Efficient Caching Strategies in Ad Hoc Wireless Networks / P., Nuggehalli; V., Srinivasan; Chiasserini, Carla Fabiana; R. R., Rao. - STAMPA. - (2003), pp. 25-34. (Intervento presentato al convegno ACM MobiHoc 2003 nel Giugno) [10.1145/778415.778419].

Energy-Efficient Caching Strategies in Ad Hoc Wireless Networks

CHIASSERINI, Carla Fabiana;
2003

Abstract

In this paper, we address the problem of energy-conscious cache placement in wireless ad hoc networks. We consider a network comprising a server with an interface to the wired network, and some nodes requiring access to the information stored at the server. In order to reduce access latency in such a communication environment, an effective strategy is caching the server information at some nodes distributed across the network. Caching, however, can considerably impact the system energy expenditure; for instance, disseminating information incurs additional energy burden. Since wireless devices have limited amounts of available energy, we need to design caching strategies that optimally trade-off between energy consumption and access latency. We pose our problem as an integer linear program. We show that this problem is the same as a special case of the connected facility location problem, which is known to be NP-hard. We devise a polynomial time algorithm which provides a sub-optimal solution. The proposed algorithm applies to any arbitrary network topology and can be implemented in a distributed and asynchronous manner. In the case of a tree topology, our algorithm gives the optimal solution. In the case of an arbitrary topology, it finds a feasible solution with an objective function value within a factor of 6 of the optimal value. This performance is very close to the best approximate solution known today, which is obtained in a centralized manner. We compare the performance of our algorithm against three candidate caching schemes, and show via extensive simulation that our algorithm consistently outperforms these alternative schemes.
2003
1581136846
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/1408802
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo