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Abstract: This paper conducts an extensive comparative study of state-of-the-art solutions for im-
plementing the SHA-3 hash function. SHA-3, a pivotal component in modern cryptography, has
spawned numerous implementations across diverse platforms and technologies. This research aims
to provide valuable insights into selecting and optimizing Keccak SHA-3 implementations. Our
study encompasses an in-depth analysis of hardware, software, and software–hardware (hybrid)
solutions. We assess the strengths, weaknesses, and performance metrics of each approach. Critical
factors, including computational efficiency, scalability, and flexibility, are evaluated across differ-
ent use cases. We investigate how each implementation performs in terms of speed and resource
utilization. This research aims to improve the knowledge of cryptographic systems, aiding in the
informed design and deployment of efficient cryptographic solutions. By providing a comprehensive
overview of SHA-3 implementations, this study offers a clear understanding of the available options
and equips professionals and researchers with the necessary insights to make informed decisions in
their cryptographic endeavors.

Keywords: hash function; SHA-3; Keccak; hardware design; accelerator; FPGA; ASIC; cryptography;
post-quantum cryptography; HW/SW co-design

1. Introduction

Open contests have become a preferred method for selecting cryptographic standards
in the U.S. and worldwide, beginning with the Advanced Encryption Standard (AES)
contest organized by the NIST in 1997–2000. Four typical criteria taken into account
in the evaluation of candidates in such contests are security, performance in software,
performance in hardware, and flexibility [1]. Security, though crucial, is complex to assess
quickly in contests. Hardware performance often serves as a tiebreaker when other criteria
fail to declare a clear winner among cryptographic algorithms. In this survey, we focus on
Secure Hash Algorithm 3 (SHA-3). It is a cryptographic hash function standard selected by
the National Institute of Standards and Technology (NIST) in 2015. It emerged victorious
in a rigorous competition organized by the NIST to find a successor to the aging SHA-2.

Among the contenders, Keccak, designed by Guido Bertoni, Joan Daemen, Michaël
Peeters, and Gilles Van Assche, stood out for its innovative design and strong security
properties, ultimately earning its place as the foundation of SHA-3. This achievement
marked a significant milestone in modern cryptography, ensuring robust and efficient
hash functions for various security applications. While it currently stands as the leader
in resisting recent cryptanalysis attacks and excels in hardware performance, there is a
continuous demand for developing an efficient implementation, be it software, e.g., Central
Processing Unit (CPU), or hardware, e.g., Field-Programmable Gate Array (FPGA) and
Application-Specific Integrated Circuit (ASIC). Common software implementations on a
microcontroller offer high flexibility, but they may not provide the required performance for
cryptographic algorithms with high computational demands. Microcontrollers are versatile
and programmable, making them suitable for a wide range of applications, but they may
struggle with the computational intensity of modern cryptographic algorithms. Moving up
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the spectrum, an extensible processor, such as an application microprocessor, co-processors
(i.e., [2]), or a Digital Signal Processor (DSP), offers more significant performance potential
than fixed ones. These processors can be optimized for specific cryptographic operations,
providing better throughput and efficiency than a generic microcontroller. However, they
are still limited by their general-purpose architecture, which may not match the specialized
requirements of specific cryptographic algorithms. A programmable datapath takes the
customization a step further by allowing users to design custom hardware accelerators for
cryptographic tasks. This approach offers a balance between flexibility and performance.
Programmable datapaths enable the efficient execution of cryptographic algorithms through
parallel processing and custom hardware instructions (i.e., [3]). Finally, the least flexible
but most efficient solution is the hardwired datapath, typically implemented in ASICs
(Application-Specific Integrated Circuits). ASICs are designed specifically for a particular
cryptographic algorithm or set of algorithms, making them highly efficient in terms of
speed and power consumption. However, their lack of flexibility means that any changes
or updates to cryptographic algorithms require a new hardware design.
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Figure 1. Space of solutions.

In summary, the choice of implementation approach for cryptographic algorithms
depends on the trade-off between flexibility and efficiency, as shown in Figure 1. Selecting
the most suitable implementation space depends on the specific cryptographic requirements
and application constraints.

The rest of the article is organized as follows: Section 2 reports a background about
SHA-3 construction. Section 3 describes Keccak structure. Section 4 is developed to report
all of the solutions found in the state of the art for implementing SHA-3, compared with
each other, while, in Section 6, there are comments and examinations of different hardware
implementation solutions more in details; Section 6 reports implementations results, and
Section 7 the conclusion of this analysis.

2. SHA-3

SHA-3 is a subset of the Keccak family standardized by the NIST. The standard lists
four specific instances of SHA-3 and two extendable-output functions (SHAKE128 and
SHAKE256). While the SHA-3 functions have a specified output length, the two SHAKE
variants permit extraction of a variable length of output data, which makes SHA-3 a suitable
candidate for pseudo-random bit generation [4]. All SHA-3 functions operate within a
shared foundational framework known as the sponge construction (as shown in Figure 2a).
This framework is highly adaptable and allows for the generation of hash values with
variable length, making it well suited for diverse applications.

The NIST standard defines four versions of the Keccak sponge function [5] for a
message M and an output length d, as shown in Table 1. The algorithm uses two parameters
for the sponge construction: the bitrate with r-bits, which determines the number of bits
absorbed in each step, and the capacity with c-bits, which determines the attainable security
level (Figure 2a).
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Table 1. SHA3 instances.

Instance Output Size d Rate r Capacity c

SHA3-224 224 1152 448

SHA3-256 256 1088 512

SHA3-384 384 832 768

SHA3-512 512 576 1024

The flow of a sponge function can be understood through the following steps:

• Initialization: the sponge function is initialized depending on r and c parameters.
• Padding: The input message is padded to ensure that length is a multiple of r. Most

of the architectures utilize a software scheduler for preparing the input by splitting
and padding long messages into blocks of 1600 bits (multi-block messages) for trun-
cating, if necessary, the output of the hash computation in the appropriate size of the
selected mode of operation and for updating the state matrix in the case of multi-block
messages. As an example, in [4,6–8] the input to the SHA-3 block is assumed to be
already padded.
In other works, i.e., [8], the hardware block is not performing only the f-transform, but
it also has a Versioning and XOR-iring module (VSX) that is responsible for forming
the appropriate state per algorithm version.
There are some implementations in which all the steps of the sponge function are
supported (padding, mapping, and truncation), but, generally, these architectures
assume that the input can only be of a certain length (i.e., [9] considers input messages
whose length is fixed to 64 bits), or have a precise application (i.e., [10] considers only
the CRYSTALS-Kyber 768 algorithm).

• Absorbing Phase: Here, the padded message is divided into blocks of a size of r bits
each, and each block is XORed with the current state of the sponge function. The
resulting state is then processed through a series of bitwise operations, typically using
a permutation function, to mix the input data with the current state. The function f
acts on the state, with a width of b = r + c.

• Squeezing Phase: After all of the message blocks have been absorbed, the function
produces the hash output by repeatedly extracting r bits from the state. These bits are
concatenated to form the final hash value. The squeezing phase continues until the
desired hash length is achieved.

• Finalization: in the end, the sponge function may perform additional operations
to finalize the hash value, such as truncating it to the desired length or applying
additional cryptographic transformations.

0
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f f f f f
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Figure 2. (a) Sponge Function. (b) Keccak State.

Central to the sponge construction is the concept of state. The state has a length of
1600 bits and consists of a three-dimensional 5× 5× 64 table, as shown in Figure 2b. Each
bit of this cube can be addressed with A[x, y, z]. In order to facilitate the description of the
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applied functions, the following conventions are used: the part of the state that presents
the word is also called a lane, a two-dimensional part of the state with a fixed z is called a
slice, and all lanes with the same x-coordinate form a sheet.

3. Keccak

The most important part of the SHA-3 and SHAKE primitives is the Keccak permuta-
tion function, which calls for 24 rounds of the f-1600 function. Each round is characterized
by the five consecutive steps θ, ρ, π, χ, and ι. These steps have a state array A as input and
an output B, which is a processed new state array. As shown in Equation (1), θ consists of a
parity computation, a rotation of one position, and a bitwise XOR.

θ : C[x] = A[x, 0]⊕ A[x, 1]⊕ A[x, 2]⊕ A[x, 3]⊕ A[x, 4] 0 ≤ x ≤ 4

D[x] = C[x− 1]⊕ ROT(C[x + 1], 1) 0 ≤ x ≤ 4

A[x, y] = A[x, y]⊕ D[x] 0 ≤ x, y ≤ 4

(1)

In Equation (2), ρ is a rotation by an offset that depends on the word position, and π is
a permutation.

ρ− π : B[y, 2x + 3y] = ROT(A[x, y], r[x, y]) 0 ≤ x, y ≤ 4 (2)

In Equation (3), χ consists of bitwise XOR, NOT, and AND gates.

χ : A[x, y] = B[x, y]⊕ (( B[x + 1, y]) · (B[x + 2, y])) 0 ≤ x, y ≤ 4 (3)

Lastly, ι, in Equation (4) is a constant round addition.

ι : A[0, 0] = A[0, 0]⊕ RC 0 ≤ x, y ≤ 4 (4)

When these five are completed, a round is completed. Table 2 reports the round
constant function RC[i], which is a 24-value permutation that assigns 64-bit data to the
Keccak function. Table 3 reports the cyclic shift offset r[x,y].

Table 2. Values RC[i] constants.

RC[0] 0x0000000000000001 RC[8] 0x000000000000008a RC[16] 0x8000000000008002
RC[1] 0x0000000000008082 RC[9] 0x0000000000000088 RC[17] 0x8000000000000080
RC[2] 0x800000000000808a RC[10] 0x0000000080008009 RC[18] 0x000000000000800a
RC[3] 0x8000000080008000 RC[11] 0x000000008000000a RC[19] 0x800000008000000a
RC[4] 0x000000000000808b RC[12] 0x000000008000808b RC[20] 0x8000000080008081
RC[5] 0x0000000080000001 RC[13] 0x800000000000008b RC[21] 0x8000000000008080
RC[6] 0x8000000080008081 RC[14] 0x8000000000008089 RC[22] 0x0000000080000001
RC[7] 0x8000000000008009 RC[15] 0x8000000000008003 RC[23] 0x8000000080008008

Table 3. Values r[x,y] constants.

X = 3 X = 4 X = 0 X = 1 X = 2

Y = 2 25 39 3 10 43

Y = 1 55 20 36 44 6

Y = 0 28 27 0 1 62

Y = 4 56 14 18 2 61

Y = 5 21 8 41 45 15

More information about the Keccak algorithm can be found in [11].
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4. Implementation

When developing a real implementation, a diverse array of possibilities within the
design space is available. These options encompass entirely hardware-based solutions,
pure software implementations, and hybrid approaches, such as Integrated Software
Environments (ISE) or Application-Specific Instruction Processor (ASIP). Strictly hardware-
based solutions involve dedicated IP cores, while pure software implementations rely
solely on software resources. ISEs (Integrated Software Environment) or ASIP, representing
a hybrid solution, enhance general-purpose processor cores with specialized hardware
and instructions.

Figure 3 shows the different aspects covered in the next sections and proposes for
each implementation approach a choice of proper references. Let us now delve into the
intricacies of each conceivable approach.

Figure 3. Implementation possibilities scheme.

4.1. Hardware Solutions

Hardware implementations of Keccak demand careful consideration of trade-offs.
When implementing Keccak in hardware, the choice of design parameters and strategies
heavily depends on the specific goals and constraints of the target application. These
objectives typically revolve around factors such as speed, power efficiency, and area utiliza-
tion. In this section, we will explore the various aspects that can be considered during the
hardware implementation of Keccak, with a focus on these key parameters.

Unrolling. Unrolling is particularly efficient in improving the throughput for single-
message hashing. Considering Keccak, the f-permutation block can be replicated and
unrolled in the SHA-3 hash function. As an example, Refs. [6,12] implement SHA-3
considering an unrolling factor of two, while, in [7], an even higher degree of unrolling has
been analyzed. Moumni et al. [9] and Nannipieri et al. [13] have made several attempts,
instantiating from a single instance to twelve, going from 24 clock cycles to 2; however, this
resulted in an onerous increase in area.

Pipelining. Pipelining brings the advantages of combined data throughput enhance-
ment in multi-message hashing, where the function processes more than one message
concurrently. In addition, two different types of pipelining can be distinguished:

• Classic pipelining, generally used between one round and another;
• Sub-pipelining, inserted instead between two steps of the same round.

For instance, in [8,14], the pipeline is inserted between the π and χ steps, while, in [12],
it is inserted between the θ and ρ steps.

Folding. Towards a more compact SHA-3 structure, folding of the round computation
can be considered. In the case of [15], each round is computed over multiple clock cycles,
depending on the folding factor.
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Cutting the Keccak state. The efficient management of the Keccak state is of paramount
importance [16]. There are multiple alternatives, namely using slice-wise, plane-wise,
and bit-interleaving techniques. Jungk et al. [17] propose a very compact slice-oriented
Keccak hardware, based on the observation that all Keccak steps except ρ can be performed
efficiently with slice-wise processing. However, since input messages for absorption
generally arrive in a lane-oriented fashion, the plane-wise partitioning is favorable (adjacent
bits in a register belong to the same lane).

Interleaved lanes. Bit-interleaving is a technique that can be used to break large 64-bit
lanes of Keccak into smaller chunks [18].

Resource Sharing. Resource area sharing is a crucial optimization technique employed
in hardware design, particularly in the context of FPGAs and ASICs. It aims to maximize the
efficient utilization of available resources while minimizing the overall hardware footprint,
which can lead to cost savings, improved performance, and reduced power consumption.
An interesting example is the co-processor presented in [2], named AE$HA-3, which
combines two of the NIST’s standardized algorithms, i.e., Advance Encryption Standard
(AES) and SHA-3. Maache et al. [3] also present a multi-purpose cryptographic system
performing both AES and SHA-3, implementing it on the IntelFPGA Cyclone-V device.

To sum up, the hardware implementation of Keccak is a multifaceted task that ne-
cessitates careful consideration of various trade-offs and objectives. The specific design
choices will be heavily influenced by the unique demands of the target application, whether
it be a high-performance cryptographic accelerator, a low-power embedded system, or
any other use case in which Keccak is employed. Each implementation will strike a bal-
ance between speed, power efficiency, area utilization, and security to meet its intended
purpose effectively.

4.2. Software Solutions

Enhancing the software implementation of an algorithm holds the key to unlocking
superior performance. By optimizing code, leveraging hardware-specific features, and
minimizing resource overhead, software improvements can significantly boost algorithmic
efficiency, resulting in faster execution and better utilization of available hardware resources.
Accelerating the SHA-3 algorithm on FPGA devices, RISC-V, or ARM without dedicated
hardware accelerators involves optimizing the software implementation to maximize
performance. Here are some techniques to achieve this.

Parallelization. Using parallelization for implementing multi-threading or multi-
processing when having multiple CPU cores can significantly improve performances. Each
core can work on a separate chunk of data, improving overall throughput. Pereira et al. [19]
present a technique for parallel processing on Graphics Processing Units (GPUs) of the Kec-
cak hash algorithm. They provide the core functionality, and the evaluation is performed
on a Xilinx Virtex 5 FPGA.

Vectorization (SIMD). Utilize the SIMD (Single Instruction, Multiple Data) instructions
available in modern processors (e.g., ARM NEON, RISC-V RVV) to process multiple data
elements in parallel. This can significantly speed up the hashing process, especially when
dealing with large datasets. For example, Ref. [20] proposes a set of six custom instructions
for Keccak- f , p [1600, 800, 400, 200] primitives, and, similarly to other crypto-instructions
(e.g., Intel AES-NI and SHA), they exploit the wide SIMD (Single Instruction, Multiple Data)
registers. Li et al. [21] explore the full potential of parallelization of Keccak-f [1600] in RISC-
V-based processors through custom vector extensions on 32-bit and 64-bit architectures.

Loop Unrolling. Unroll loops in the SHA-3 algorithm code to reduce loop overhead and
enable the compiler to optimize the code more effectively. This can result in faster execution,
especially on CPUs with pipelined execution units. Ref. [22] reports several analyses
about security versus area versus the timing of PQC decapsulation algorithms, after loop
unrolling, showing how, in most cases, this brings a significant reduction in latency.

Instruction-Level Optimization. Hand-tune critical sections of the code to use
processor-specific instructions and features. This may include using assembly language or
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intrinsic to access specialized instructions for SHA-3 operations. Ref. [23] presents two new
techniques for the fast implementation of the Keccak permutation on the A-profile of the
Arm architecture: the elimination of explicit rotations in the Keccak permutation through
barrel shifting, and the construction of hybrid implementations concurrently leveraging
both the scalar and the Neon instruction sets of AArch64.

Optimized Compiler Flags. Use compiler optimization flags (-O2, -O3, i.e., in [24]) to
instruct the compiler to apply various optimizations, including loop unrolling, inline
function expansion, and instruction scheduling. Ref. [25] uses -On command line flags
during GCC compilation to improve performance at the cost of increased compilation times.

Memory Access Optimization. Minimize memory access latency by optimizing data
structures and memory access patterns. Cache-friendly data structures and efficient mem-
ory layouts can reduce the number of cache misses. Choi et al. [26] discuss optimizations,
memory management strategies, and parallelization schemes, aiming to enhance the per-
formance and throughput of SHA-3 operations on graphics processing units (GPUs).

Prefetching. Use prefetching techniques to load data into the cache before it is actually
needed, reducing memory access stalls and improving data processing speed. Lee et al. [27],
using NVIDIA GPU, exploit the feature for which arithmetic instructions and memory
load/store instructions can be executed concurrently, as long as there is no dependency
between the executing instruction and data being loaded/stored. They prefetch the input
data of Keccak before XORing it into the state, so that address calculation and bitwise XOR
operation can run in parallel with the memory copy operation.

The effectiveness of these techniques will depend on the specific platform, compiler,
and workload, so thorough testing and profiling are essential to achieve optimal results.
Continuously profiling and benchmarking the software implementation will help identify
performance bottlenecks and areas for improvement. This iterative process can lead to
significant performance gains.

4.3. Hybrid Solutions

Hybrid solutions, which combine both software and hardware components, represent
a versatile approach to solving complex problems by harnessing the strengths of each
domain. These solutions essentially encompass all of the techniques discussed in the
previous section and merge them into a cohesive, integrated system.

In the realm of technology and problem-solving, software and hardware have tradi-
tionally been seen as separate entities. Software provides flexibility and adaptability, while
hardware offers raw processing power and efficiency. A hybrid solution brings together the
computational capabilities of hardware and the logic and adaptability of software to create a
powerful and agile system. It allows optimization of the performance by distributing tasks
between software and hardware according to their respective strengths. This means that
computationally intensive tasks can be offloaded to dedicated hardware accelerators, while
software can handle tasks that require flexibility and frequent updates. This balance ensures
that the system operates efficiently without bottlenecks. Moreover, being that software
is inherently adaptable, it is easier to implement changes and updates to meet evolving
requirements. Fritzmann et al. [4] present RISQ-V, an enhanced RISC-V architecture that
integrates a set of powerfully coupled accelerators. Here, hardware/software co-design
techniques have been combined to develop complex and highly customized solutions,
designing tightly and loosely coupled accelerators and Instruction Set Architecture (ISA)
extensions. This is an example of how combining the hardware and software provides the
flexibility to adjust algorithms, logic, or functionality in response to changing needs while
maintaining the stability and speed of the hardware.

5. Micro-Architecture Details

The Keccak permutation, which consists of five main steps (θ, ρ, π, χ, and ι), is
designed to be highly parallelizable, which means that the order of these steps can affect
synthesis results and performance on an FPGA. The reasons are manifold.
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Different FPGA architectures have distinct types and quantities of resources, and,
therefore, the order of the permutation steps can influence how these resources are utilized.
Additionally, the timing requirements of the FPGA may vary depending on the order of the
steps. Certain steps may introduce longer or shorter critical paths, impacting the maximum
achievable clock frequency. Some steps of the Keccak permutation are inherently more
parallelizable than others. For example, the θ and χ steps can be parallelized more easily
than the ρ step, which involves shifting bits. The order in which these steps are arranged
can determine how effectively parallelism can be exploited, affecting overall performance.

Obviously, FPGA synthesis tools must be considered too, since they employ various
algorithms and optimization techniques to map the design onto the target FPGA.

Considering these factors, it is useful to explore different combinations of the permuta-
tion steps during FPGA design to find the optimal arrangement for a given FPGA platform.
Some syntheses have been performed on Cyclone V (5CEFA9F31C8), with a time constraint
of 6 ns. In this analysis, only performance is considered. As can be observed from Table 4,
the best results are in cases 2, 3, 4, 7, 8, and 9, which have in common the sequence χ− ι− θ.
Obviously, changing the rotation order disrupts the dependencies between steps, requiring
additional clock cycles to ensure data integrity and correctness, thus increasing the overall
processing time by at least one clock cycle (as can be seen from the fifth column of Table 4).

Table 4. Analysis of Keccak permutation steps.

Case Rotation Order F [MHz] Latency [µs] Number of Iterations % with Respect
to Case 1

1 θ − ρ− π − χ− ι 168 0.143 24
2 ρ− π − χ− ι− θ 180 0.139 25 −2.78%
3 π − χ− ι− θ − ρ 184 0.136 25 −4.89%
4 χ− ι− θ − ρ− π 183 0.137 25 −4.37%
5 ι− θ − ρ− π − χ 165 0.15 25 6.06%

6 * θ − ρ− π − χ− ι 84 0.143 12 0.00%
7 * ρ− π − χ− ι− θ 93.84 0.139 13 −3.03%
8 * π − χ− ι− θ − ρ 94.77 0.137 13 −3.98%
9 * χ− ι− θ − ρ− π 95.06 0.137 13 −4.27%
10 * ι− θ − ρ− π − χ 72.83 0.18 13 24.95%

* double instance of the round unit (unrolling factor = 2).

Moreover, there are different possible options for what concerns implementation of
the round constant generator (constants reported in Table 2). There are three plausible
implementations. First, a circuit constructed using Linear Feedback Shift Register (LFSR)
can be employed to perform on-the-fly generation of the round constant values. Another
solution is storing all of the 24 pre-calculated round constants of a 64-bit length in memory
forms (such as registers or circular buffers) and transferring them to the ι module via a
multiplexer [8]. Since efficient resource utilization is vital for hardware implementations, it
has been proved that the length of the RC values can be reduced to less than a byte size
(see Table 5) by storing only the non-zero bits in each of the round constant values [12,28].
This will also save 55–56 XORs in the ι step.

Table 5. Simplified round constants.

RC[0] 0x01 RC[6] 0xf1 RC[12] 0x7b RC[18] 0x2a

RC[1] 0x32 RC[7] 0xa9 RC[13] 0x9b RC[19] 0xca

RC[2] 0xba RC[8] 0x1a RC[14] 0xb9 RC[20] 0xf1

RC[3] 0xe0 RC[9] 0x18 RC[15] 0xa3 RC[21] 0x90

RC[4] 0x3b RC[10] 0x69 RC[16] 0xa2 RC[22] 0xf1

RC[5] 0x41 RC[11] 0x4a RC[17] 0x90 RC[23] 0e8
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In addition, a combinatorial circuit using a series of logical gates can be realized to
compute the round constant value upon every iteration. For example, the counter value,
which was used within SHA-3 to keep track of the number of iterations, was used as input
to calculate on-the-fly RC values.

RC[0] = A′C + CE′ + BDE′ + A′B′D′E′

RC[1] = BD′E′ + BDE + BCD′ + AC′E′ + AC′D + B′C′DE′ + A′CD′E′ + A′B′C′D′E

RC[2] = 0

RC[3] = BC′ + BD′ + BE′ + C′DE′ + AC′D + A′CD′E′ + B′CDE

RC[4] = BD′ + A′CE′ + ACD′ + C′D′E + A′B′DE′

RC[5] = A′DE′ + A′CE′ + CDE + AC′E′ + ACD′ + A′B′C′E

RC[6] = C′DE + BC′D + ADE + ACE′ + B′CDE′ + BCD′E′ + A′B′CD′E

RC[7] = AD′ + AE + A′B′D + A′CD + BCE

(5)

In particular, considering A as the MSB of the counter and E as the LSB, seven logical
expressions were constructed to obtain the constants shown in Table 5. This solution has
been synthesized by targeting an ASIC on 65 nm technology with a time constraint of
0.73 ns. Area results are reported in Table 6: the second and third solutions provide a
slight improvement in terms of area occupancy without changing the critical path of the
entire circuit.

Table 6. Round constant generator analysis.

Case Total Cell Area
[µm2] Combinational Area [µm2] Noncombinational Area [µm2]

RC-64bit 55,293.48 42,285.24 13,008.24

RC-8bit 55,061.28 42,015.96 13,045.32

RC-8bit * 54,997.20 41,954.40 13,042.80
* evaluated on the fly.

These kinds of exploration help achieve the best balance between resource utilization,
performance, and power consumption, ultimately leading to a more efficient and effective
hardware implementation of the Keccak permutation for a specific FPGA target or a
particular technology. Additionally, it allows designers to adapt the design to different
platforms without starting from scratch, saving time and effort in the development process.

6. Results
6.1. Stand-Alone Solutions

Regarding FPGA implementation, there are four main parameters to take into account:

• Maximum achievable frequency: the maximum clock frequency with which the FPGA
design can operate. It indicates the speed at which the system can work. The higher it
is, the faster the overall performance.

• Area: the amount of FPGA resources consumed by the design.
• Throughput: the rate at which a message can be processed. The higher it is, the higher

the number of messages that can be handled in the same amount of time.
• Efficiency: the whole effectiveness of the design. The higher it is, the more the FPGA

utilization resources and performance are improved.

Tables 7 and 8 both report the results gathered from the different works found in the
state of the art.
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Table 7. Unrolling and pipeline on FPGA.

Reference Unrolling
Factor

Pipeline
Factor Device Frequency

[MHz] Area [Slices] Throughput
[Gbps]

Efficiency
[Mbps/Slices]

[6] 1 1 Virtex-6 412 1115 9.888 8.868
[6] 2 2 Virtex-6 391 2296 18.768 8.174

[7] 3 3 Virtex-6 391 3965 28.152 7.000
[7] 4 4 Virtex-6 392 4117 37.63 9.141

[12] 2 - Virtex-6 45 2145 2.16 1.00
[12] 2 2 Virtex-6 85 1416 4.08 2.88
[12] 2 2 (* 2) Virtex-6 344 1406 16.51 11.47

[8] - - (* 1) Virtex-6 397 1649 19.1 11.6

[15] 1 1 Virtex-5 223 1192 5.35 4.49
[15] 2 1 Virtex-5 273 1163 7.8 6.06

[9] 1 1 Virtex-6 413.77 1432 9.93 6.93
[9] 12 1 Virtex-6 57.91 15,579 16.67 1.07

[28] 2 1 (* 2) Virtex-6 344.62 1348 16.54 12.27

* Sub-pipelining.

The throughput of a hash function is evaluated as:

Throughput =
(#bits)× Frequency

c
(6)

In Table 7, the cases in which the unfolding and pipelining/sub-pipelining techniques
described in Section 4 are used are examined. In Table 8, on the other hand, the results
obtained with straightforward implementations are reported.

Generally, when multiple throughput results are given, SHA3-512 is taken as a refer-
ence. However, many of the examples do not provide the results on the different instances
of SHA3 or only provide the results of one of the primitives (which may not be the reference
one). For further clarification on the type of primitive performed and the length of the
input messages absorbed, please refer to the proper reference paper. Obviously, efficient
implementation selection does not hinge solely on architectural design; it also depends on
the particulard FPGA platform in use.

Based on the results of Table 7, sub-pipelining is observed to be effective in critical
path reduction, while unrolling with pipelining enables simultaneous processing in the
SHA-3 hash function [12]. In general, both of the techniques bring positive effects on
the throughput performance. As previously stated, Table 8 shows the results obtained
with straightforward implementations. Since these are standard implementations of the
algorithm, and since we have previously described all of the possible implementations that
are generally used in Sections 3 and 4, more detailed descriptions of individual values are
not given here. The Table is provided in order to be able to compare the different solutions.

The most relevant implementations mentioned in the previous sections are also re-
ported in the plot of Figure 4, where the efficiency (expressed in terms of Mbit per second
over the number of occupied slices) is shown together with the complexity (mentioned in
terms of slices).
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Table 8. Straightforward implementations results.

Reference Device Frequency
[MHz] Area [Slices] Throughput

[Gbps]
Efficiency

[Mbps/Slices]

[29] Virtex-4 143 2024 6.07 3.0

[30] Virtex-5 285 2573 5.7 2.21

[31] Virtex-5 259 1370 10.77 7.69

[32] Virtex-5 277 1236 6.64 5.37

[33] Virtex-5 265 448 0.05 0.11

[33] Virtex-5 122 1330 5.2 3.9

[34] Virtex-5 137 1647 2.39 1.45

[35] Virtex-5 271 1414 12.3 8.68

[14] Virtex-5 317 4793 12.68 2.71

[36] Virtex-5 189 1117 0.085 0.42

[37] Virtex-5 277 1217 12.56 10.32

[38] Virtex-5 248 134 0.25 1.16

[39] Virtex-5 282 192 81.8 4.32

[40] Virtex-5 520 151 0.501 3.32

[41] Virtex-5 313 1304 7.51 5.75

[42] Virtex-6 291 1015 6.99 6.89

[43] Virtex-6 299 106 0.136 1.28

[44] Virtex-6 286 1207 12.98 10.75

[2] Virtex-6 328.15 1380 8400.64 2.45

[45] Virtex-6 195 1048 8.830 8.42

[46] Virtex-6 197 397 1.071 2.19

[47] Virtex-6 311 91 0.203 2.23

[48] Virtex-6 291 1.015 6.99 6.89

[49] Virtex-6 285 188 0.077 0.41

[48] Virtex-7 255 1.039 6.12 5.88

[50] Virtex-7 299 983 7.17 7.27

[8] Virtex-7 434 1618 20.8 12.9

[28] Virtex-7 396 1452 19.021 13.10

[51] Virtex-7 374 1454 7.979 5.49

[52] Virtex-7 414 1418 16.58 11.97

The utilization of distinct FPGA models—specifically Virtex 5, Virtex 6, and
Virtex 7—clearly makes the whole comparison approximate. Each of these boasts slices
corresponding to the same quantity of Lookup Tables (LUTs), which is set at four. How-
ever, the crux of the matter lies in the fact that, despite these FPGA models sharing an
identical number of inputs, the LUTs within them possess varying numbers of outputs.
Consequently, the findings presented in Figure 4 should be interpreted with caution, given
the subtle yet consequential differences in LUT configurations across the three FPGA mod-
els under examination. Additional works exist that have not been incorporated into this
analysis because they employed distinct FPGA architectures and evaluation metrics and
were not included in this comparison table due to the complexities involved in conducting
an equitable comparison with the other showcased studies.
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Figure 4. Efficiency vs. area scheme. The different icons and numbers must be referred to citations
presented in the Bibliography.

In this application, power considerations are not typically the primary focus. Instead,
the predominant emphasis lies in enhancing performance, encompassing throughput,
latency, and frequency, alongside the resultant increase in area. Regrettably, relatively few
studies delve into power analysis. Furthermore, comparing these sporadic power results
proves challenging, as the analysis may occur post-synthesis, post-layout, or post-place
and route, accounting for diverse environmental conditions and technology variations.
Kundi et al. [53] propose a low-power SHA-3 design using an embedded digital signal
processing slice on FPGA. Their compact design on Kintex-7 consumed 88 mW of power
which is 1/7th and 1/9th of the designs in [54] and [34], respectively. Ref. [55] presents
the hardware implementation of a cryptographic accelerators suite, which comprises a
SHA3 unit. Considering the post-synthesis power consumption on 7 nm technology, the
SHA3-unit consumes about 72 mW.

6.2. Integrated Solution

When defining integrated solutions, there are a series of slightly different metrics to
be considered with respect to the stand-alone implementations. Cycle count is a measure
of the complexity as well as the energy consumption of an implementation on a specific
processor. It is also inversely proportional to the throughput, which describes how fast the
algorithm works for a given clock frequency.

In [4], they develop an alternative solution for Keccak that presents a trade-off between
performance and area. To avoid a high access rate to the main memory, the state is not split
into multiple parts. However, instead of a standalone loosely coupled Keccak accelerator,
they design a hardware accelerator for a single round of the Keccak permutation, using
RISC-V Floating-Point Register Set (FPR) and a part of the General-Purpose Register Set
(GPR). The performance is shown in Table 9.

Table 9. Clock cycles performance.

Reference Platform Function Software Version Accelerated Version Type

[4] PULPino SHAKE256 31,907 308 Tightly-coupled
[24] PULPissimo Keccak 26,529 1348 Loosely-coupled
[56] LEON3 Keccak-512 188,708 100,663 ASIP
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The results show that their design outperforms the uniform and binomial sampling
of [57], which uses a loosely coupled high-performance Keccak implementation, which is
able to calculate two Keccak rounds in one clock cycle. However, the large communication
overhead poses a substantial drawback to their architecture. In [24], a Keccak accelerator
is proposed to speed up SHA3 computations for post-quantum cryptographic algorithms
on the RISCV-based advanced microcontroller PULPissimo (more information about the
microcontroller can be found in [58]). Differently from the previous work, the accelerator is
driven in a memory-mapped fashion style and attached to the SoC through an AXI plug.
This makes the accelerator more versatile and easier to integrate than the previous ones but
at the price of a higher overhead when data need to be exchanged from the processor to the
accelerator. Ref. [56] describes an FPGA-based acceleration of SHA-3 on a 32-bit processor,
supporting Keccak-224, Keccak-256, Keccak-384, and Keccak-512. The LEON3 processor
has been used, achieving around an 87% reduction in execution cycles.

In [59], the Keccak performance on ARMv7-M has been optimized thanks to two kinds
of optimizations: the first one consists of taking advantage of the inline barrel shifter in
order to remove explicit rotations in the linear layer, and the second consists of a more
efficient memory access scheduling to avoid pipeline hazards. Ref. [60] presents instead a
hardware implementation of an SHA-3 Application-Specific Instruction Set Processor. A
custom implementation of the 32-bit MIPS ISA is developed, where a subset of the MIPS
instructions are implemented with the aid of Codasip Studio, and both the C-language
compiler and the HDL design are generated and tested. Afterward, two ISEs are advanced
to resolve the SHA-3 bottlenecks. Ref. [61] implements algorithm-specific ISEs based on
finite state machines for address generation, Lookup Table integration, and extension of
computational units through microcode instructions. Rawat et al. [16] propose a set of six
custom instructions to support a broad range of Keccak-based cryptographic applications
in the context of an ARMv7 micro-architecture. Since the results are reported in terms of
instructions/byte for various Keccak modes, they are not inserted into Table 10. It can be
briefly commented that with SHA-3 (c = 1024), they obtain a speed-up of ×2.2.

Table 10. Clock cycles/bytes performance.

Reference Function Processor Clock Cycles/Bytes Technique

[59]

SHA3-224

ARMv7-M4

72.4

ISESHA3-256 77
SHA3-384 97.9
SHA3-512 138.4

[60] SHA3 32-MIPS 137.9 Co-processor ISE

[61] Keccak PIC24 188 ISE

7. Conclusions

In conclusion, this paper has undertaken a thorough and insightful journey into the
world of SHA-3 implementations, examining a diverse array of solutions across hardware,
software, and hybrid domains. By critically evaluating their strengths, weaknesses, and
performance metrics, we have contributed valuable knowledge to the field of modern
cryptography. Our research has shed light on the critical factors that shape the selection
and optimization of Keccak SHA-3 implementations, emphasizing computational efficiency,
scalability, and flexibility in various use cases. Through a meticulous analysis of speed and
resource utilization, we have provided a comprehensive view of how these implementations
fare in real-world scenarios.

The outcomes of this study have far-reaching implications, enhancing the under-
standing of cryptographic systems and facilitating the design and deployment of efficient
solutions. Professionals and researchers alike are now better equipped to make informed
decisions when navigating the intricate landscape of SHA-3 implementations, ultimately
contributing to the advancement of secure and resilient cryptographic practices.
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As the realm of cryptography continues to evolve, our commitment to rigorous evalua-
tion and informed decision-making remains paramount. This research stands as a testament
to our dedication to strengthening the foundations of cryptographic knowledge, ensur-
ing that we continue to safeguard the digital world with ever more robust and efficient
cryptographic solutions.
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