
02 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Automatic Identification of Functionally Untestable Cell-Aware Faults in Microprocessors / Deligiannis, Nikolaos; Faller,
Tobias; Iacopo, Guglielminetti; Cantoro, Riccardo; Becker, Bernd; SONZA REORDA, Matteo. - (2023), pp. 1-6.
(Intervento presentato al convegno Asian Test Symposium (ATS) tenutosi a Beijing (China) nel 14-17 October 2023)
[10.1109/ATS59501.2023.10317988].

Original

Automatic Identification of Functionally Untestable Cell-Aware Faults in Microprocessors

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/ATS59501.2023.10317988

Terms of use:

Publisher copyright

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2982242 since: 2023-09-18T08:06:05Z

IEEE

Automatic Identification of Functionally Untestable
Cell-Aware Faults in Microprocessors
Nikolaos I. Deligiannis†, Tobias Faller∗, Iacopo Guglielminetti‡, Riccardo Cantoro†,

Bernd Becker∗, Matteo Sonza Reorda†
† Politecnico di Torino, Department of Control and Computer Engineering (DAUIN) - Turin, Italy

‡ STMicroelectronics — Turin, Italy ∗ University of Freiburg, Department of Computer Science — Freiburg, Germany

Abstract—In-field test of microprocessors is a major topic
for the industry, especially in the safety-critical domain, where
the respective standards mandate high test coverage thresh-
olds. The dominant fault models used are the transition delay
and the stuck-at fault model. However, the adoption of very
advanced semiconductor technologies to manufacture devices
used in safety-critical applications pushes toward considering
new fault models that are better suited to catch subtle and
age-related defects. Among the other phenomena, latent cell-
internal defects emerged as relevant causes for several failures.
Hence, the necessity for the Cell-Aware Test (CAT) was born,
and the inclusion of the CAT fault model in the latest safety
standards. Although CAT amends the issue of the numerous test
escapes, it may suffer as well from the presence of functionally
untestable faults that may pollute the overall test efficiency with
their presence. In this paper, we propose a solution, based on
formal methods, for the automatic identification of functionally
untestable faults under the Cell-Aware fault model for the case
where the DUT is a fully pipelined processor. As a case study,
we used the RISC-V processor RI5CY for which we applied the
minimum constraints required to ensure a functional behavior to
demonstrate the effectiveness and impact of the approach. With
the considered constraints, a significant percentage of functionally
untestable faults was located in the several modules within the
processor. Furthermore, the method allows to flexibly take into
account any constraint stemming from the system configuration
and the application. The obtained results have been validated by
resorting to commercial EDA tools.

Index Terms—Cell-Aware Test, Functionally Untestable Faults,
Microprocessor, RISC-V, In-Field Test, Bounded Model Check-
ing, Safety

I. INTRODUCTION

While Design-for-Testability (DfT) infrastructures are the
dominant solution for manufacturers, functional at-speed test-
ing methods are widely used for testing products during their
mission cycle. Functional safety standards (e.g., ISO26262 for
automotive) strengthen the necessity for functional test proce-
dures by not only rendering them popular but also mandating
for functional test procedures to reach certain high coverage
thresholds in the safety-critical domain of applications. For
example, in the automotive industry, ISO26262 mandates a
98% functional fault coverage for every critical environment
in the car (e.g. airbags). Therefore, in such systems, it is nec-
essary for test engineers to know which faults are untestable
(safe), i.e., cannot cause a failure in the considered operational
scenario. The presence of untestable faults (if not identified)
can negatively impact the achieved fault coverage, and thus,
they can become a major concern for test engineers.

In recent years, statistics have reported an increasing num-
ber of failing devices returned to semiconductor suppliers,
although their test flows have been sufficient in terms of
achieved test coverage (thus complying with the thresholds
mandated by the standards). The root cause of the failing
devices was in some cases proved to be latent defects related
to cell-internal faults [1]. These defects are not covered by
the state-of-the-art fault models (e.g., stuck-at and transition
delay faults) because in these models, the common assumption
is that a fault can only be present on the connections between
cells (i.e., the ports of the technology library cells). Other fault
models were proposed in order to target these cases, such as
N-detect [2] and Gate Exhaustive testing [3]. However, these
fault models are not applicable for industrial-scale circuits due
to the fact that they result in excessively high test costs in terms
of time and tester memory footprint. On the other hand, the
cell-aware fault model [4] has been proposed as a solution to
systematically target all cell-internal defects of a technology
library with great success. Researchers have presented results
from high volume production tests that showed a significant
reduction in the defective-parts-per-million (dppm) rate.

Although these aforementioned benefits of cell-aware test-
ing (CAT) regard the end-of-manufacturing test, the in-field
test can also benefit from it. Most dominant fault models
share the common assumption that a fault is not occurring
in the internal part of the cells. Thus, the same latent defects
(if not caught early) could still be a serious threat in a safety-
critical system. CAT, being able to amend these defects, has the
potential to be included as a complementary fault model in the
upcoming safety standards revisions. Furthermore, in the area
of advanced semiconductor technology manufacturing, where
silicon aging is a prime concern, the cell-aware test seems to
be a valuable solution.

However, the issue of the identification of the functionally
untestable faults (i.e., those faults that will never be able to
produce any failure in the considered operational scenario)
under the cell-aware fault model remains an open topic. In this
paper, we face this issue for the first time to the best of our
knowledge and present a method based on Bounded Model
Checking (BMC) to systematically identify the untestable
static cell-aware faults in combinational cells in a micropro-
cessor given a set of functional constraints. To demonstrate its
effectiveness, our method was applied to a RISC-V processor
with a minimum functional constraint set i.e., the minimum

constraints required to enable a functional behavior of the
system. That is, no assumptions about the software executed
on the core were made.

In Section II we present the state-of-the-art and previous
works related to the identification of untestable faults in
microprocessors, in Section III we present our formal method’s
approach to tackle the problem, in Section IV we present
our experimental results and in Section V we draw some
conclusions and provide some insight on our future work.

II. BACKGROUND

A. Functionally Untestable Faults

Fault Universe

Functionally
Untestable

Structurally
Untestable Functionally

Testable

Fig. 1. Fault universe

Untestable faults are divided into two main categories, as
depicted in fig. 1; structurally and functionally untestable
faults. The former set, which is a subset of the latter, is
connected to fault sites that cannot be forced to a specific logic
value due to (i) being unconnected (redundant connection) or
(ii) being tied to 0 or 1. Furthermore, the set contains faults
that can be excited but whose effects cannot be propagated to
an observable point. The research community has extensively
studied the problem of structurally untestable fault identifi-
cation [5, 6, 7]. The latter set is a superset of the previous
one, which also contains faults that, although excitable and
propagatable to an observable point of the circuit, are not
able to produce any failure under the considered operational
scenario. For example, assuming a processor as the underlying
circuit, faults in the debugger module might be testable by DfT
infrastructures (e.g., scan) yet, since the debug unit remains
inactive when the system is in functional mode, it is not
possible to excite and/or propagate them.

For in-field functional testing, the most used fault models
currently employed by the industry are the stuck-at and the
transition delay fault model. The problem of the identification
of untestable faults has been extensively studied in the past for
both fault models [8, 9]. As researchers have showcased, given
the mission application profile of the system, it is possible to
discover a large volume of functionally untestable faults (more
than 10% of the total faults). In order to distinguish between
functionally testable and untestable faults, an analysis must be
performed on the application code and system configuration
in order to identify which functional blocks for the circuit
under test (CUT) are fully, partially used, or unused (e.g.,
the debugger module) by the application and to analyze the
propagation chances of any fault. Currently, this analysis is
mainly performed in a manual manner with reduced support
by the EDA tools.

In a mission-critical system the circuit is expected to per-
form a well-defined set of functions in specific configurations
(e.g., in terms of used instructions or memory address space).
Among the several possible solutions, the Failure Mode, Ef-
fects and Criticality Analysis (FMECA) is in charge to identify
which faults are not able to produce any failure (safe faults
according to ISO26262). Since FMECA is barely automated
at the moment, the issue of identifying such faults is a major
concern for the industry.

Numerous solutions have been proposed in the past by
the research community, considering various fault models. In
[10], the authors propose a method based on model-checking
in order to identify functionally untestable stuck-at faults in
the registers of a circuit. In [11], the researchers propose
techniques based on local multi-node conflicts derived from
the circuits’ sequential implications to systematically identify
functionally untestable faults. Regarding the transition delay
fault model, in [9, 12] the authors present a methods based
on static-logic implications and implication graphs to identify
functionally untestable transition delay faults.

The subject has also been extensively studied under other
fault models. In [13], the authors study the problem of
untestable bridging faults identification and propose a low-
cost solution based on iterative logic arrays and symbolic
simulation. In [14] the author proposes a methodology to
identify untestable faults under the two-cycle gate-exhaustive
model based on the launch-on-capture and launch-on-shift
techniques.

Up to our knowledge, this is the first paper that proposes
a complete methodology to identify functionally untestable
faults under the static cell-aware fault model.

B. Cell Aware Test and User Defined Fault Models

The quality requirements imposed on the industry in recent
years are becoming increasingly tougher. This means that
the manufacturers have to refine their test flow in order to
improve the defect coverage of their products. However, as
mentioned previously, an increasing number of failing devices
has been reported by the consumers to their suppliers although
sufficient coverage percentages have been achieved under the
state-of-the-art fault models. These numerous test escapes led
to cell-aware and other fault models to be developed. Instead
of focusing only on defects outside the cell and only its
interconnections with neighboring cells, the internal structure
is also included in the fault model generation.

Typically, each cell’s behavior is simulated via an electrical
simulator (e.g., SPICE) under different defects and operating
conditions. A cell-aware fault model is derived from the result-
ing defect injection campaign, called Cell Test Model (CTM)
[15], or User Defined Fault Model (UDFM) [16]. During
automatic test pattern generation (ATPG), the cell-aware fault
model is applied to the cells in the circuit which approximates
the faulty behavior of the defective cell. Experimental results
have showcased the effectiveness of CAT in industrial scale
circuits in terms of reduced dppm figures [4]. Ultimately,
test escapes related to internal-cell defects can be effectively

targeted by CAT or even custom fault models [17]. Although
it is true that the generation of the cell test models can be time
consuming due to SPICE simulations being computationally
expensive, this process needs to happen only once for each
new technology library.

III. PROPOSED APPROACH

Given the gate-level description of a pipelined processor
and a cell-aware fault model, we aim to identify the static
cell-aware faults on combinational cells that are functionally
untestable. In other words, we want to identify the faults for
which no test stimuli can be generated for under the given
functional constraints. The set of functional constraints varies
according to the application. For instance, certain functionality
limitations (e.g., subset of the ISA) or configurations (e.g.,
limited memory address space) can result in functionally
untestable faults. For this reason, we incorporate the con-
straints in our BMC-based ATPG using a validity checker
module (VCM) which is an efficient method to accurately
define and enforce functional constraints using an auxiliary
circuit observing the CUT.

In Section III-A we first present the process of transforming
the cell-aware fault model into the BMC instance. In Sec-
tion III-B we will then present how the functional constraints
are applied to the BMC instance.

A. Cell-Aware Test via Bounded Model Checking

BMC is a well known technique that has been used exten-
sively in the test and reliability domain for a variety of prob-
lems: From software-based self-test generation purposes under
the stuck-at [18] and transition delay [19] fault models up to
functional stress stimuli generation [20] and untestable fault
identification [10]. The core concept of BMC is to extract the
Boolean formula of the CUT and convert it into a conjunctive
normal form (CNF). Then, custom requirements are encoded
on top in the form of properties (invariances). For example,
the textual definition of the property for identifying if a fault X
is uncontrollable would be: “Can the fault site X be assigned
to both logic values?”. After the BMC instance is formulated,
the BMC solver is started with the task of identifying a model
(solution) for the BMC instance. The solver unrolls and solves
the BMC problem incrementally by typically translating it to
multiple satisfiability (SAT) instances that are solved by a SAT-
solver, up until a predefined maximum unrolling depth k is
reached or a timeout is reached.

For test generation the cell-aware fault model specifies a
set of faults per cell of the technology library in the form
of defect matrices. Each fault can have one or multiple test
alternatives that excite the fault. Table I contains a simplified
defect matrix representing a defect in an AND gate with two
inputs A and B, and one output O. This fault model only
contains the input combinations for which the cell’s outputs
differ from the fault-free outputs. In this example, the cell has
two different entries, called test alternatives in the following,
with input combinations, called fault conditions, for which the

fault effect of the respective combination is made visible to
the gate’s output port.

Alternative No. A B O

1 1 0 1
2 1 1 0

TABLE I
EXAMPLE DEFECT MATRIX

For each fault in the cell-aware fault model an ATPG
process is started. This process builds a BMC instance for the
defect matrix and solves the BMC instance generating a test
pattern or reports it to be unreachable. In the case that a test
pattern could be generated, the fault is marked testable and
a fault dropping simulation is performed to check for other
detectable faults. In case no test pattern could be generated
the fault is marked untestable.

In the case of the example from Table I, a BMC instance
encoding both test alternatives is generated. The faulty gate is
encoded according to the formula shown in Figure 2, where
the first two lines encode the faulty behavior according to the
defect matrix; the third line encodes the behavior of the gate
when none of the test alternatives is applied to the gate’s inputs
and is equal to the fault-free gate behavior.

A ∧ ¬B → O

A ∧ B → ¬O
¬(A ∧ ¬B) ∧ ¬(A ∧B) → (A ∧B ↔ O)︸ ︷︷ ︸

fault-free behavior

Fig. 2. Encoding of faulty AND gate for example model

O
B
A
0
1

0
O

B
A
1
0

1
O

B
A
0
0

0
Faulty

Fig. 3. Fault injection on AND gate for example model

Additionally, the BMC instance is extended to enforce a
fault activation in at least one timeframe. This is shown in
Figure 3, where the middle timeframe is sensitized, while
the first and last timeframes show no fault behavior. The
propagation of the fault effect is then enforced to at least one
primary output.

B. Validity Checking

Functional constraints are applied to the CUT via a so-
called validity checker module (VCM). The VCM is a circuit
only used for ATPG that contains the functional constraints.
Similarly to the CUT, the VCM is synthesized and encoded
into the CUT’s CNF. As shown in Figure 4, the VCM observes
selected inputs, outputs, and internal signals of the CUT’s

VCM
Observe & Validate

Faulty
Processor

Test
Pattern

0 1 1
1 0 1
1 1 1

Functional
Constraints

Processor

0 1 1
1 0 1
1 1 1

Fig. 4. Validity Checker Module

miter circuit and validates the correct functional behavior of
the CUT according to the functional constraints. The computed
validation results in the form of multiple so-called constraint-
valid signals are connected to the VCM’s outputs. During
the creation of the BMC instance, the VCM’s outputs are
forced to have a high (constraint valid) value which leads to
the encoded constraints being enforced. During fault dropping
simulation, the constraints are validated by observing the
VCM’s outputs and only regarding a fault as detected if all
constraint outputs are high (constraint valid) until the fault has
fully been propagated i.e., it has reached a primary output.

IV. RESULTS

The described approach has been implemented as workflow
via the FreiTest ATPG framework actively developed by the
University of Freiburg. This required changes that included
the addition of the new cell-aware fault model and a workflow
to orchestrate the BMC and the fault dropping simulation. In
total roughly 600 lines of C++ code have been written for
implementing the cell-aware fault injection and roughly 350
lines for the workflow itself.

According to the application running on the CUT, a different
set of functional constraints may apply. We consider the
general case where the set of minimal constraints is chosen that
ensures the functional behavior of the processor. The minimal
constraint set includes the following constraints and ensures
that the ATPG only allows valid functional behavior.

• Valid processor control (reset, run, etc.)
• Valid pipeline control (stall, IF misses)
• Valid executed instructions (ISA)
• Valid control and status registers (CSRs)
• Disable interrupts
• Disable auxiliary processing unit (APU)
• Disable debug interface
The executed instructions of the processor are constrained

on the instruction bus itself by encoding the RISC-V ISA
opcodes into the VCM by automatically transforming them
from the official RISC-V opcode specifications into Verilog
code [21]. The interrupts are disabled assuming that typically
the interrupts are disabled at the start of an in-field test.

A total of 1600 SystemVerilog code lines have been
used for specifying the constraints via the VCM. 1500 of them
are automatically generated wire declarations and connections

for observing decoded RISC-V instructions and operands. The
VCM is synthesized with Yosys and the resulting gate-level
VCM has a size of 405 gates.

In order to validate the proposed approach we evaluated it
resorting to the processor RI5CY synthesized for the Nan-
gate 45nm PDK [22]. The BMC depth has been set to 50
timeframes and the timeout to 5 minutes. The experiments
have been run on an AMD Threadripper 3970X system (32
cores, 64 threads) with 256 GB of RAM and a dual AMD
EPYC 7343 system (2x16 cores, 2x32 threads) with 2 TB of
RAM in parallel.

The RI5CY core is a 4 stage 32-bit RISC-V in-order
processor core. The ISA of RI5CY was extended to support
multiple additional instructions, including hardware loops,
post-increment load and store instructions, and additional ALU
instructions that are not part of the standard RV ISA. RI5CY
has become a popular core for a wide variety of applications,
especially for IoT designs.

For evaluation two fault models in UDFM format are used.
The first fault model is created for comparison with the
conventional stuck-at fault model. It is created by a custom
tool and the resulting cell-aware fault model is equivalent to a
simple stuck-at model that only contains stuck-at faults at all
the input and output ports of the cells. Note that this fault list
contains equivalent faults. This UDFM allows for simplified
comparison with conventional stuck-at simulation results. The
UDFM has 534 faults with a total of 2,410 test alternatives.
The second fault model is a cell-aware fault model generated
by a commercial tool for the Nangate 45nm PDK which is
converted into the UDFM format. It contains fault models
for testable open, short, and transistor open and short defects
derived from Nangate 45nm PDK SPICE cell models that
have been extended with parasitic elements from the layout
information. This UDFM has 1,244 faults with a total of
10,546 test alternatives.

Table II shows the results of our method. The first half
of the table concerns the untestability analysis under the
stuck-at fault model whereas the second half under the cell-
aware respectively. The reported percentages for the two fault
models are not correlated i.e., one is not a subset of the other.
As mentioned earlier, the constraint set we have applied is
the minimum functional one. That is, no further constraints
derived from assumptions about the executed program(s) or

Stuck-At Cell-Aware

Combinational Sequential Total Structurally Functionally Total Structurally Functionally
Functional Unit Cells Cells Faults Untestable Untestable Faults Untestable Untestable

if_stage 2,013 304 10,979 123 (1.12 %) 179 (1.63 %) 22,387 161 (0.72 %) 218 (0.97 %)
id_stage 2,944 590 16,240 226 (1.39 %) 196 (1.21 %) 31,336 426 (1.36 %) 247 (0.79 %)
id_stage/regs 3,561 992 27,079 0 (0.00 %) 0 (0.00 %) 61,878 26 (0.04 %) 0 (0.00 %)
ex_stage 168 6 593 26 (4.38 %) 2 (0.34 %) 904 50 (5.53 %) 1 (0.11 %)
ex_stage/alu 4,583 107 24,948 18 (0.07 %) 4 (0.02 %) 48,782 201 (0.41 %) 7 (0.01 %)
ex_stage/mult 3,814 3 24,381 2 (0.01 %) 19 (0.08 %) 83,360 69 (0.08 %) 69 (0.08 %)
ls_unit 712 40 4,511 0 (0.00 %) 15 (0.33 %) 9,121 14 (0.15 %) 21 (0.23 %)
cs_registers 2,088 974 15,730 188 (1.20 %) 3,679 (23.39 %) 36,479 363 (1.00 %) 6,378 (17.48 %)
pmp_unit 11,983 1 50,591 4 (0.01 %) 22,744 (44.96 %) 98,792 144 (0.15 %) 31,790 (32.18 %)
top 25 1 118 2 (1.69 %) 8 (6.78 %) 150 2 (1.33 %) 11 (7.33 %)

total 31,891 3,018 175,170 589 (0.34 %) 26,846 (15.33 %) 393,189 1,456 (0.37 %) 38,742 (9.85 %)

CPU Time (hours) 128.96 h (2.42 s per fault on EPYC system) 285.27 h (2.50 s per fault on EPYC system)

TABLE II
UNTESTABLE STUCK-AT AND CELL-AWARE FAULTS IDENTIFIED BY FREITEST

the system configuration are made. For instance, combinatorial
logic blocks in the fetch and decode stages that are driven by
the reset and the clock gating enabling signals are marked
as safe due to the fact that they are always expected to be
forced to fixed values in order to ensure functional behavior.
Furthermore, extra functionally untestable faults arise for logic
related to the program counter, which is bound to a specific
start and end address as is typical to happen in an embedded
system in a mission-critical system with limited or shared
resources with other peripheral devices that share the same
memory which is divided into distinctive regions. In total,
1.12 % / 1.63 % of structurally / functionally untestable faults
have been identified for the fetch stage for the stuck-at fault
model and 0.72 % / 0.97 % for the cell-aware respectively.

Since the solver is completely agnostic of the architecture’s
ISA, we enforce all valid instructions with valid operands
and operand ranges. Hence, any kind of interrupt stemming
from an invalid instruction during decode is not triggered,
and thus, the logic blocks related to handling such cases, nest
functionally untestable faults. Furthermore, certain control and
status registers related to the generation and the handling of
interrupts also contain functionally untestable faults. This is
because, in the in-field test scenario, the test is scheduled
during idle periods of the system; hence, the interrupts are
being disabled during this time to avoid any unpredictable
scenario occurring which could potentially have catastrophic
consequences to the system and finally to the user(s). For
the decode stage, we have identified 1.39 % / 1.21 % of
structurally / functionally untestable faults for the stuck-at and
1.36 % / 0.79 % for the cell-aware.

The highest amount of untestable faults is detected in the
physical memory protection (PMP) unit and the CSRs. The
PMP unit provides machine-mode control and status registers
per hardware thread to allow memory access privileges to
be specified for each physical memory region. The unit is
performing checks on both the instruction and data memory
of the system and is accessible via dedicated CSRs. Certain
registers in our configuration were disallowed, which is some-

thing that leads to a large number of faults inside the PMP
unit to be identified as safe. Furthermore, regarding the CSR
unit, the number of safe faults identified is a result of only user
level [23] being considered in the processor configuration. For
the CSRs, we have identified 1.20 % / 23.39% of structurally
/ functionally untestable faults for the stuck-at and 1.00 % /
17.48 % respectively for the cell-aware. For the PMP unit,
the percentages are 0.01 % / 44.96 % and 0.15 % / 32.18 %
respectively.

Overall, a total of 9.85% of functionally untestable faults
have been identified on the whole processor by our method for
the static, combinational cell-aware fault model and 15.33%
for the stuck-at model. To verify the results of our method,
we have performed a fault simulation of a manually written
Software Test Library (STL) that has been developed for
the stuck-at fault model, reaching ≈ 60% of fault coverage
and compared with our findings. Two flows were developed
in Z01X. One for the stuck-at and one for the cell-aware
model. The results showed that the proven untestable faults in
Z01X which correspond to structurally untestable faults were a
subset of the faults we have detected with our method. Lastly,
the untested faults in Z01X were proven to be functionally
untestable faults by our method with a minute percentage (less
than 0.1 %) of mismatches due to configuration differences.

V. CONCLUSIONS

Functional at-speed test is widely adopted for both end-of-
manufacturing test from the suppliers and also in-field test
from the customers. The generation of such test libraries,
which is primarily done with limited automation, requires
a lot of time and is further complicated by the presence
of functionally untestable faults that negatively impact the
computation of the test coverage. In the safety critical domain
specifically, the identification of these faults is of utmost
importance in order to meet the coverage threshold imposed
by the respective standards.

Notwithstanding the success of stuck-at and transition delay
fault models, which are the dominant fault models used
especially for stimuli destined for safety critical systems, a

significant amount of failing devices has been reported in re-
cent years due to internal cell defects, that the aforementioned
fault models did not account for. CAT was developed to amend
this issue with great success.

In this paper, for the first time to our knowledge, we present
a BMC-based method to identify functionally untestable faults
in microprocessor circuits, also considering static CAT faults.
Our method was applied to the RISC-V processor RI5CY
for the stuck-at and static cell-aware fault models and was
able to identify 15.33 % (stuck-at) and 9.85 % (cell-aware) of
functionally untestable faults, starting from a minimum set of
functional constraints. Clearly, the reported results are strongly
dependent on the considered set of constraints but show the
ability of the method to effectively solve the faced problem.
The results have been compared with a stuck-at test program
reaching ≈ 60% of functional test coverage that has been fault
simulated for both fault models. As a future work, we plan to
extend our method to further identify dynamic untestable cell-
aware faults.

ACKNOWLEDGMENT

This work was supported in part by the German Federal
Ministry of Education and Research (BMBF) within the
project Scale4Edge under contract no. 16ME0132.

REFERENCES

[1] F. Hapke et al. “Defect-oriented cell-aware ATPG and
fault simulation for industrial cell libraries and designs”.
In: International Test Conference. 2009. DOI: 10.1109/
TEST.2009.5355741.

[2] I. Pomeranz and S.M. Reddy. “On n-detection test sets
and variable n-detection test sets for transition faults”.
In: VLSI Test Symposium. 1999. DOI: 10.1109/VTEST.
1999.766662.

[3] Y. C. Kyoung, S. Mitra, and E.J. McCluskey. “Gate
exhaustive testing”. In: IEEE International Conference
on Test. 2005. DOI: 10.1109/TEST.2005.1584040.

[4] F. Hapke et al. “Cell-Aware Test”. In: IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits
and Systems 33 (2014), pp. 1396–1409. DOI: 10.1109/
TCAD.2014.2323216.

[5] H-C. Liang et al. “A sequential redundant fault identi-
fication scheme and its application to test generation”.
In: Asian Test Symposium (ATS). 1994. DOI: 10.1109/
ATS.1994.367253.

[6] D. E. Long et al. “FILL and FUNI: Algorithms to Iden-
tify Illegal States and Sequentially Untestable Faults”.
In: ACM Transactions on Design Automation of Elec-
tronic Systems 5 (2000), pp. 631–657. DOI: 10.1145/
348019.348311.

[7] N. I. Deligiannis et al. “New Techniques for the Auto-
matic Identification of Uncontrollable Lines in a CPU
Core”. In: IEEE VLSI Test Symposium. 2021. DOI: 10.
1109/VTS50974.2021.9441040.

[8] P. Bernardi et al. “On-line functionally untestable fault
identification in embedded processor cores”. In: Design,
Automation & Test in Europe Conference & Exhibition
(DATE). 2013. DOI: 10.7873/DATE.2013.298.

[9] X. Liu and M.S. Hsiao. “On identifying functionally
untestable transition faults”. In: Ninth IEEE Interna-
tional High-Level Design Validation and Test Workshop.
2004. DOI: 10.1109/HLDVT.2004.1431252.

[10] J. Raik et al. “Untestable Fault Identification in Sequen-
tial Circuits Using Model-Checking”. In: Asian Test
Symposium. 2008. DOI: 10.1109/ATS.2008.22.

[11] M. Syal and M.S. Hsiao. “New techniques for
untestable fault identification in sequential circuits”. In:
IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems 25 (2006), pp. 1117–1131.
DOI: 10.1109/TCAD.2005.855967.

[12] K. Heragu et al. “Fast identification of untestable de-
lay faults using implications”. In: IEEE International
Conference on Computer Aided Design (ICCAD). 1997.
DOI: 10.1109/ICCAD.1997.643606.

[13] M. Syal et al. “Efficient implication-based untestable
bridge fault identifier”. In: VLSI Test Symposium. 2003.
DOI: 10.1109/VTEST.2003.1197680.

[14] I. Pomeranz. “Efficient Identification of Undetectable
Two-Cycle Gate-Exhaustive Faults”. In: IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits
and Systems 41 (2022), pp. 776–783. DOI: 10 .1109 /
TCAD.2021.3062767.

[15] Synopsys. CMGen User Guide. 2022.
[16] Siemens EDA. Tessent Shell Reference Manual. 2019.
[17] S. Kundu et al. “Using Custom Fault Models to Improve

Understanding of Silicon Failures”. In: IEEE Interna-
tional Test Conference. 2022. DOI: 10.1109/ITC50671.
2022.00043.

[18] T. Faller et al. “Constraint-Based Automatic SBST Gen-
eration for RISC-V Processor Families”. In: European
Test Symposium. 2023.

[19] Y. Zhang et al. “BMC-Based Temperature-Aware SBST
for Worst-Case Delay Fault Testing Under High Tem-
perature”. In: IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 30 (2022), pp. 1677–1690.
DOI: 10.1109/TVLSI.2022.3186946.

[20] N. I. Deligiannis et al. “Automating the Generation of
Functional Stress Inducing Stimuli for Burn-In Testing”.
In: European Test Symposium. 2023.

[21] RISC-V International. RISC-V Opcodes. https://github.
com/riscv/riscv-opcodes. 2022.

[22] Silvaco. Open-Cell 45nm FreePDK. https : / / si2 . org /
open-cell-library/.

[23] RISC-V International. Privileged Specification version
20211203. https://riscv.org/technical/specifications/.

