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Abstract— The General-Purpose Graphics Processing Units 
(GPGPU) with energy efficient execution are increasingly used 
in wide range of applications due to high performance. These 
GPGPUs are fabricated with the cutting-edge technologies. 
Shrinking transistor feature size and aggressive voltage scaling 
has increased the susceptibility of devices to intrinsic and 
extrinsic noise leading to major reliability issues in the form of 
the transient faults. Therefore, it is essential to ensure the 
reliable operation of the GPGPUs in the presence of the 
transient faults. GPGPUs are designed for high throughput and 
execute the multiple threads in parallel, that brings a new 
challenge for the fault detection with minimum overheads 
across all threads. This paper proposes a new fault detection 
method called REFU, an architectural solution to detect the 
transient faults by temporal redundant re-execution of 
instructions using the idle functional execution units of the 
GPGPU. The performance of the REFU is evaluated with 
standard benchmarks, for fault free run across different 
workloads REFU shows mean performance overhead of 2%, 
average power overhead of 6%, and peak power overhead of 
10%. 

Keywords— GPGPU, Fault tolerant, Redundant, Functional 
units  

I. INTRODUCTION  
The increased computing power and programmability 

of GPGPUs expanded their utilization in wide range of 
parallel applications. The sensitive nature of these 
applications for data errors, demand 100% correct execution. 
On the other hand, to meet the demand for faster and high 
throughput devices, GPGPUs are fabricated with energy 
efficient, scaled down, faster transistors with reduced voltage 
levels. The shrinking dimensions and aggressive voltage 
scaling led to increased susceptibility to intrinsic and extrinsic 
noise [1] which will be manifested as transient fault. With the 
technology scaling and high packing density of transistors, 
soft error rate (SER) of IC’s is increasing [2]. The transient 
faults modify the logic state of processor’s memory elements 
known as single event upset and cause a timing or functional 
failure.  

In current GPGPUs the memory structures such as register 
files, L1/L2 caches, shared memory and DRAM are protected 
using the parity or ECC [3] [4] [5]. Other structures like 
arithmetic logic units (ALUs), instruction schedulers and 
interconnect network are prone to transient faults. In execution 
pipeline of GPGPUs, error free operation of the ALUs is key 
in achieving the programmed order instruction flow and 
correctness of the program executed. 

In this paper, we propose a microarchitecture hardware 
solution for detecting the transient faults in the execution 
pipelines of the GPGPUs. We have analysed the vulnerability 
of microarchitecture structures for transient faults, and fault 
coverage of overall system is assessed. 

In the proposed method, ALU is logically divided into 
independent sub functional units and temporal re-execution 
redundancy is used for the error detection. Every ALU 
executed instructions along with the operands, results and 
associated flags are stored in a re-execution buffer called 
replay buffer. The stored instructions are re-executed 
whenever the functional units are free or replay buffer is full. 
Errors are detected by comparing the stored result of primary 
execution with re-execution result. 

The benefits of the proposed method are demonstrated 
through set of ISPASS 2009 and RODINIA benchmarks. 
Performance and power overhead are compared with the 
original microarchitecture configuration. Experimental results 
show almost full fault coverage across all threads is achieved 
with mean performance overhead of 2%, average power 
overhead of 6%, and peak power overhead of 10%. 

The major contributions of the paper are 

1) A fault tolerant (FT) architecture transparent to 
user is proposed. Replay buffer stores the 
dependency resolved operand values, result and 
flags for re-execution and verification. Different 
warp instructions can reside in replay buffer.  

2) The functional units (FU) of the ALU 
simultaneously execute different primary and 
redundant instructions minimizing the 
performance degradation due to temporal sharing 
of FUs.  

3) Near real time error detection capability across 
different warps and threads.  

4) Fault coverage capability comparable with the 
DMR system. 

The paper is organized as follows. The related work on FT 
processor architectures are discussed in Section II. Section III 
presents the proposed REFU architecture for fault detection. 
The effectiveness of the REFU for fault coverage and its 
analysis is discussed in Section IV. The simulation results 
estimating performance and power impact are presented in 
Section V, followed by conclusion of our work in section V 

II. RELATED WORK 
A GPGPU consists of a scalable number of in-order 
Streaming Multiprocessors (SM), each SM use number of 
Streaming Processors (SP) which are in order machines. 
Some of the CPUs FT techniques are adopted for GPGPUs 
with modifications. Sohi et al. [6] proposed a simple 
instruction duplication and time redundant execution of 
instruction on execution units. REESE [7] proposed by 
Nickel et al. utilizes the idle capacity that is inherent in 
general purpose processors to time multiplex main and 
redundant execution for transient errors detection. Viney et 
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al. [8] proposed the utilization of floating resources in a fixed 
pipeline for fault detection, they utilized the idle functional 
units of in order processor as floating resource to launch 
simultaneous main & redundant execution. In order to 
overcome the masking effect of permanent faults in detecting 
transient faults Patel et al. proposed RESO [9], where the 
duplicated instruction operates on the shifted operand. For 
Superscalar processors Shoba et al. [10] proposed an 
architecture REMO where the concept of re-execute 
instruction during retire is used for fault detection. 
 
For the GPGPUs Ralph et al. [11] proposed Argus-G to detect 
errors in a thread’s data flow by comparing the static data 
flow graph (DFG) to the dynamic DFG computed by the SP 
during execution. Josie et al. [12] evaluated the sensitivity of 
the pipeline registers in the GPUs to SEU when applications 
are hardened with the low-level software mechanisms. Fang 
et al. [13] have analyzed the reliability properties of the 
application running on GPUs by fault injection. Backer et al. 
[14] proposed tunable fault detection scheme to balance GPU 
performance and fault checking, threads are replicated and 
assigned across different SPs for lockstep execution. 
Warped-DMR proposed by Jeon et al. [15] uses the inactive 
threads to verify execution of active threads in the same warp 
and uses a special purpose Replay Queue to duplicate 
execution warps and executed on free SM when functional 
unit within SMs are not free. Condia et al. [16] identified the 
modules that are more likely to impact the execution and 
applied a selective hardening strategy at device level by 
selective hardening the GPU modules to mitigate the soft 
errors. RISE proposed by Tan et al. [17] predicts the warp 
stall time and estimates the load imbalances among cores, for 
soft-error detection re-uses the fully idled SPs in the GPU 
core caused by the long-latency memory accesses and the 
load imbalance among cores. All these proposals have high 
performance and power overhead. 
 

III. PROPOSED ARCHITECTURE 

A.  FT architecture 
In GPGPUs each SM consists of multiple SPs using Single 

Instruction Multiple Thread (SIMT) execution model. In 
current GPGPUs, the memory structures are protected using 
the parity or ECC, thus part of the GPGPU structures are 
protected by information redundancy. To achieve the high 
fault coverage it is sufficient to develop detection mechanisms 
for the unprotected system parts. In the GPGPU execution 
pipeline ALUs are vulnerable for the transient faults. 

Instructions which do not use the ALU functional units such 
as mov, nop, direct load/store operation results are protected 
via parity hence re-execution is not required. Re-execution of 
ALU instructions will result in high fault coverage of 
execution pipeline. A typical ALU [18] of SP is as shown in 
Figure 1. 

At any given time all hardware resources of ALU are not fully 
utilized by ALU instructions. Logically ALU can be divided 
into smaller independent sub functional units such as 
add/subtract unit, logical operation unit, multiplier unit, data 
conversion etc. The different type of instructions issued by the 
warp scheduler provide an opportunity window for re-
execution of instructions when functional units are free. 

 
Fig. 1. Functional Units of ALU. 

B. Implementation 
To implement the fault tolerant architecture, the following 
structures are newly added : (i) Replay buffer (ii) Control 
logic to stall the SP pipeline when replay buffer is full or ALU 
functional unit is busy, and (iii) Result comparison logic. 
Figure 2 shows the modified SM with Replay Buffer. 
 

 
Fig. 2. GPGPU Instruction flow for FT architecture. 

Replay buffer’s valid bit is to indicate authentic instruction 
ready for the re-execution and re-execute bit to indicate the 
progress of re-execution so that no new instruction can be 
written into current replay buffer location. 

C. Working principle 
Working principle of the proposed method is shown in Figure 
3 for the replay buffer size of 1. Instructions tagged with the 
’M’ are the primary executions and ’R’ are the redundant 
instructions executions from the replay buffer. Similar to 
example illustrated in Figure 3, multiple instructions can 
execute in an SP every cycle using different functional units. 
 

 
Fig. 3. Comparison of Instruction execution in Normal and FT mode. 

When instruction is issued by the warp scheduler, the ALU 
independent instructions are executed and not marked for re-
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execution. The ALU dependent instructions once execution 
is over, instructions along with operands and result are stored 
in the replay buffer and marked for re-execution. 
Concurrent execution of multiple instructions in ALU using 
different sub functional units hide performance loss due to 
redundant re-execution. Errors are detected by comparing 
stored primary execution results with that of redundant re-
execution. 

IV. FAULT ANALYSIS & COVERAGE 
In REFU replay buffer and temporal re-execution provide 
physical and logical sphere of replication (SOR) for part of 
processor hardware, apart from this vulnerability of 
execution pipeline stages are analyzed for SOR to asses fault 
coverage. 

A. Coverage Analysis 
Case i) Transient faults in the FU of ALU: A single bit flips 
in functional unit will alter the result. The same altered result 
will be stored in the replay buffer along with the operands. 
Hence during the re-execution, the error will be detected. 
Case ii) Any single bit flip in the Replay buffer: A single bit 
flips in any of (i) operands, (ii) result, and (iii) flags will be 
detected during the re-execution. A bit flip in the instruction 
type will lead to wrong operation and result mismatch will be 
detected. The vulnerable fields are Warp ID, valid-bit and the 
re-execute bit they are protected using parity. 

B. Vulnerability of execution pipeline 
1) Fetch unit: The I-Cache and associated bus are 

protected using parity or ECC so correctness data and 
instruction is ensured, it falls within SOR.  

2) Decoder unit: Decoding error will result in the wrong 
operation and it cannot be detected so it is outside 
SOR.  

3) Register file: Register file is protected using parity 
hence input to execution unit is within SOR.  

4) Execution unit: The faults in execution unit are 
detected through redundant re-execution hence it is 
within SOR  

5) Write Back unit: Results are written back to register 
file after execution is completed and correctness of 
result is verified later. On detection of a fault entire 
warp is re-executed from the previous check point 
hence it is within SOR.  

6) Memory unit: It uses the address generated by the 
execution pipeline stages. On fault detection the 
recovery mechanism is similar to write back unit. 
L1/L2 cache and DRAM are protected through parity 
hence it is within SOR.  

7) Instruction scheduler(IS): IS uses Program counter 
(PC) of warp, re-convergent buffer and scoreboard to 

schedule an instruction, memory structures used by IS 
are protected through parity and at every instruction 
issue the current PC is compared with the predicted 
PC stored in memory hence it is also falls within SOR. 

From SOR analysis of execution pipeline of SM we conclude 
that decoder unit is vulnerable to faults it need to be hardened 
with fault detection techniques, other pipe line structures are 
within SOR and provide fault detection capability hence 
recovery can be initiated. 

V.  EVALUATION 
The cycle accurate GPGPU architecture simulator GPGPU-
sim [19] is modified to incorporate the replay buffer, pipeline 
stall mechanism and re-execution logic. GPUWattch [20] is 
used to estimate the power overhead of redundant execution. 
Set of ISPASS 2009 and RODINIA benchmarks are used for 
evaluation with different replay buffer size 1 to 4. For each 
benchmark power and performance estimate of the 
unmodified GPGPU-sim over total execution time 
normalized to 100 is taken for baseline comparison. The 
Table I shows are over all configuration of the GPGPU-sim. 

TABLE I.  GPGPU-SIM CONFIGURATION  

GPGPU Architecture: GTX480  
Number of Clusters: 15  
Cores per Cluster: 1  
Maximum Warps per SM: 48  
Warp scheduler: LRR 

GPU Pipeline Width 
Number of SP units: 2 
Number of SFU units: 1 
Number of LD/ST units: 1 
L1/Shared memory: 48KB

A. Performance 
The Figure 3 shows the performance of the REFU. Majority 
of the benchmarks show performance overhead less than 3%, 
over the entire range of benchmarks mean performance 
overhead is 2%. 

B. Power 
The Figure 4 and Figure 5 show average and peak power 
overhead of the REFU, with minimum performance overhead 
majority of the workloads show less than 4% increase in 
average power and less than 8% increase in peak power. Over 
entire range of benchmarks average power overhead is 6% 
and peak power overhead is 10%. 
The performance improvement is directly proportional to 
peak and average power overheads. Table II shows mean 
performance and power overheads taken over all 
benchmarks. 

TABLE II.  MEAN PERFORMANCE AND POWER  

Replay Buffer size 1 2 3  4 
IPC  93.83  98.52 98.63  98.42 
Average Power  100.91 106.21 106.2  105.68 
peak Power  105.03 109.28 110.3  109.6 

 
Fig. 4. GPGPU Instruction flow for FT architecture. 
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Fig. 5. GPGPU Instruction flow for FT architecture. 

 
Fig. 6. GPGPU Instruction flow for FT architecture. 

VI. CONCLUSION 
GPGPUs are used in wide range of applications such as 
scientific computing, Machine Learning Classification, 
Automatic Driving Assistance etc, the sensitive nature of 
scientific applications to data errors demand 100% correct 
execution. we presented a microarchitecture solution called 
REFU, it effectively utilizes the idle functional units of 
ALU for temporal redundant re-execution to detect 
transient faults. REFU achieves high fault coverage with 
minimal performance and power overheads. For standard 
benchmarks we have shown that REFU has mean 
performance overhead of 2%, average power overhead of 
6%, and peak power overhead of 10%. 
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