
03 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

REFU: Redundant Execution with Idle Functional Units, Fault Tolerant GPGPU architecture / Raghunandana, K. K.;
Varaprasad, B. K. S. V. L.; Sonza Reorda, M.; Singh, Virendra. - (2022), pp. 394-397. (Intervento presentato al
convegno 2022 IEEE Computer Society Annual Symposium on VLSI (ISVLSI) tenutosi a Nicosia, Cyprus nel 04-06 July
2022) [10.1109/ISVLSI54635.2022.00088].

Original

REFU: Redundant Execution with Idle Functional Units, Fault Tolerant GPGPU architecture

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/ISVLSI54635.2022.00088

Terms of use:

Publisher copyright

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2981818 since: 2023-09-08T16:08:17Z

IEEE

REFU: Redundant Execution with Idle Functional
Units, Fault Tolerant GPGPU architecture

Raghunandana K K
U R Rao Satellite Center

Bangalore, India
kkraghu@ursc.gov.in

Varaprasad BKSVL
U R Rao Satellite Center

Bangalore, India
bksvlvp@ursc.gov.in

M. Sonza Reorda
Politecnico di Torino

Torino, Italy
matteo.sonzareorda@polito.it

Virendra Singh
Indian Institute of Technology

Bombay Mumbai, India
viren@ee.iitb.ac.in

Abstract— The General-Purpose Graphics Processing Units
(GPGPU) with energy efficient execution are increasingly used
in wide range of applications due to high performance. These
GPGPUs are fabricated with the cutting-edge technologies.
Shrinking transistor feature size and aggressive voltage scaling
has increased the susceptibility of devices to intrinsic and
extrinsic noise leading to major reliability issues in the form of
the transient faults. Therefore, it is essential to ensure the
reliable operation of the GPGPUs in the presence of the
transient faults. GPGPUs are designed for high throughput and
execute the multiple threads in parallel, that brings a new
challenge for the fault detection with minimum overheads
across all threads. This paper proposes a new fault detection
method called REFU, an architectural solution to detect the
transient faults by temporal redundant re-execution of
instructions using the idle functional execution units of the
GPGPU. The performance of the REFU is evaluated with
standard benchmarks, for fault free run across different
workloads REFU shows mean performance overhead of 2%,
average power overhead of 6%, and peak power overhead of
10%.

Keywords— GPGPU, Fault tolerant, Redundant, Functional
units

I. INTRODUCTION
The increased computing power and programmability

of GPGPUs expanded their utilization in wide range of
parallel applications. The sensitive nature of these
applications for data errors, demand 100% correct execution.
On the other hand, to meet the demand for faster and high
throughput devices, GPGPUs are fabricated with energy
efficient, scaled down, faster transistors with reduced voltage
levels. The shrinking dimensions and aggressive voltage
scaling led to increased susceptibility to intrinsic and extrinsic
noise [1] which will be manifested as transient fault. With the
technology scaling and high packing density of transistors,
soft error rate (SER) of IC’s is increasing [2]. The transient
faults modify the logic state of processor’s memory elements
known as single event upset and cause a timing or functional
failure.

In current GPGPUs the memory structures such as register
files, L1/L2 caches, shared memory and DRAM are protected
using the parity or ECC [3] [4] [5]. Other structures like
arithmetic logic units (ALUs), instruction schedulers and
interconnect network are prone to transient faults. In execution
pipeline of GPGPUs, error free operation of the ALUs is key
in achieving the programmed order instruction flow and
correctness of the program executed.

In this paper, we propose a microarchitecture hardware
solution for detecting the transient faults in the execution
pipelines of the GPGPUs. We have analysed the vulnerability
of microarchitecture structures for transient faults, and fault
coverage of overall system is assessed.

In the proposed method, ALU is logically divided into
independent sub functional units and temporal re-execution
redundancy is used for the error detection. Every ALU
executed instructions along with the operands, results and
associated flags are stored in a re-execution buffer called
replay buffer. The stored instructions are re-executed
whenever the functional units are free or replay buffer is full.
Errors are detected by comparing the stored result of primary
execution with re-execution result.

The benefits of the proposed method are demonstrated
through set of ISPASS 2009 and RODINIA benchmarks.
Performance and power overhead are compared with the
original microarchitecture configuration. Experimental results
show almost full fault coverage across all threads is achieved
with mean performance overhead of 2%, average power
overhead of 6%, and peak power overhead of 10%.

The major contributions of the paper are

1) A fault tolerant (FT) architecture transparent to
user is proposed. Replay buffer stores the
dependency resolved operand values, result and
flags for re-execution and verification. Different
warp instructions can reside in replay buffer.

2) The functional units (FU) of the ALU
simultaneously execute different primary and
redundant instructions minimizing the
performance degradation due to temporal sharing
of FUs.

3) Near real time error detection capability across
different warps and threads.

4) Fault coverage capability comparable with the
DMR system.

The paper is organized as follows. The related work on FT
processor architectures are discussed in Section II. Section III
presents the proposed REFU architecture for fault detection.
The effectiveness of the REFU for fault coverage and its
analysis is discussed in Section IV. The simulation results
estimating performance and power impact are presented in
Section V, followed by conclusion of our work in section V

II. RELATED WORK
A GPGPU consists of a scalable number of in-order
Streaming Multiprocessors (SM), each SM use number of
Streaming Processors (SP) which are in order machines.
Some of the CPUs FT techniques are adopted for GPGPUs
with modifications. Sohi et al. [6] proposed a simple
instruction duplication and time redundant execution of
instruction on execution units. REESE [7] proposed by
Nickel et al. utilizes the idle capacity that is inherent in
general purpose processors to time multiplex main and
redundant execution for transient errors detection. Viney et

394

2022 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)

2159-3477/22/$31.00 ©2022 IEEE
DOI 10.1109/ISVLSI54635.2022.00088

20
22

 IE
EE

 C
om

pu
te

r S
oc

ie
ty

 A
nn

ua
l S

ym
po

siu
m

 o
n

VL
SI

 (I
SV

LS
I)

|
97

8-
1-

66
54

-6
60

5-
9/

22
/$

31
.0

0
©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IS
VL

SI
54

63
5.

20
22

.0
00

88

Authorized licensed use limited to: Politecnico di Torino. Downloaded on September 08,2023 at 16:03:13 UTC from IEEE Xplore. Restrictions apply.

d001894
Rettangolo

d001894
Rettangolo

al. [8] proposed the utilization of floating resources in a fixed
pipeline for fault detection, they utilized the idle functional
units of in order processor as floating resource to launch
simultaneous main & redundant execution. In order to
overcome the masking effect of permanent faults in detecting
transient faults Patel et al. proposed RESO [9], where the
duplicated instruction operates on the shifted operand. For
Superscalar processors Shoba et al. [10] proposed an
architecture REMO where the concept of re-execute
instruction during retire is used for fault detection.

For the GPGPUs Ralph et al. [11] proposed Argus-G to detect
errors in a thread’s data flow by comparing the static data
flow graph (DFG) to the dynamic DFG computed by the SP
during execution. Josie et al. [12] evaluated the sensitivity of
the pipeline registers in the GPUs to SEU when applications
are hardened with the low-level software mechanisms. Fang
et al. [13] have analyzed the reliability properties of the
application running on GPUs by fault injection. Backer et al.
[14] proposed tunable fault detection scheme to balance GPU
performance and fault checking, threads are replicated and
assigned across different SPs for lockstep execution.
Warped-DMR proposed by Jeon et al. [15] uses the inactive
threads to verify execution of active threads in the same warp
and uses a special purpose Replay Queue to duplicate
execution warps and executed on free SM when functional
unit within SMs are not free. Condia et al. [16] identified the
modules that are more likely to impact the execution and
applied a selective hardening strategy at device level by
selective hardening the GPU modules to mitigate the soft
errors. RISE proposed by Tan et al. [17] predicts the warp
stall time and estimates the load imbalances among cores, for
soft-error detection re-uses the fully idled SPs in the GPU
core caused by the long-latency memory accesses and the
load imbalance among cores. All these proposals have high
performance and power overhead.

III. PROPOSED ARCHITECTURE

A. FT architecture
In GPGPUs each SM consists of multiple SPs using Single

Instruction Multiple Thread (SIMT) execution model. In
current GPGPUs, the memory structures are protected using
the parity or ECC, thus part of the GPGPU structures are
protected by information redundancy. To achieve the high
fault coverage it is sufficient to develop detection mechanisms
for the unprotected system parts. In the GPGPU execution
pipeline ALUs are vulnerable for the transient faults.

Instructions which do not use the ALU functional units such
as mov, nop, direct load/store operation results are protected
via parity hence re-execution is not required. Re-execution of
ALU instructions will result in high fault coverage of
execution pipeline. A typical ALU [18] of SP is as shown in
Figure 1.

At any given time all hardware resources of ALU are not fully
utilized by ALU instructions. Logically ALU can be divided
into smaller independent sub functional units such as
add/subtract unit, logical operation unit, multiplier unit, data
conversion etc. The different type of instructions issued by the
warp scheduler provide an opportunity window for re-
execution of instructions when functional units are free.

Fig. 1. Functional Units of ALU.

B. Implementation
To implement the fault tolerant architecture, the following
structures are newly added : (i) Replay buffer (ii) Control
logic to stall the SP pipeline when replay buffer is full or ALU
functional unit is busy, and (iii) Result comparison logic.
Figure 2 shows the modified SM with Replay Buffer.

Fig. 2. GPGPU Instruction flow for FT architecture.

Replay buffer’s valid bit is to indicate authentic instruction
ready for the re-execution and re-execute bit to indicate the
progress of re-execution so that no new instruction can be
written into current replay buffer location.

C. Working principle
Working principle of the proposed method is shown in Figure
3 for the replay buffer size of 1. Instructions tagged with the
’M’ are the primary executions and ’R’ are the redundant
instructions executions from the replay buffer. Similar to
example illustrated in Figure 3, multiple instructions can
execute in an SP every cycle using different functional units.

Fig. 3. Comparison of Instruction execution in Normal and FT mode.

When instruction is issued by the warp scheduler, the ALU
independent instructions are executed and not marked for re-

395

Authorized licensed use limited to: Politecnico di Torino. Downloaded on September 08,2023 at 16:03:13 UTC from IEEE Xplore. Restrictions apply.

d001894
Rettangolo

execution. The ALU dependent instructions once execution
is over, instructions along with operands and result are stored
in the replay buffer and marked for re-execution.
Concurrent execution of multiple instructions in ALU using
different sub functional units hide performance loss due to
redundant re-execution. Errors are detected by comparing
stored primary execution results with that of redundant re-
execution.

IV. FAULT ANALYSIS & COVERAGE
In REFU replay buffer and temporal re-execution provide
physical and logical sphere of replication (SOR) for part of
processor hardware, apart from this vulnerability of
execution pipeline stages are analyzed for SOR to asses fault
coverage.

A. Coverage Analysis
Case i) Transient faults in the FU of ALU: A single bit flips
in functional unit will alter the result. The same altered result
will be stored in the replay buffer along with the operands.
Hence during the re-execution, the error will be detected.
Case ii) Any single bit flip in the Replay buffer: A single bit
flips in any of (i) operands, (ii) result, and (iii) flags will be
detected during the re-execution. A bit flip in the instruction
type will lead to wrong operation and result mismatch will be
detected. The vulnerable fields are Warp ID, valid-bit and the
re-execute bit they are protected using parity.

B. Vulnerability of execution pipeline
1) Fetch unit: The I-Cache and associated bus are

protected using parity or ECC so correctness data and
instruction is ensured, it falls within SOR.

2) Decoder unit: Decoding error will result in the wrong
operation and it cannot be detected so it is outside
SOR.

3) Register file: Register file is protected using parity
hence input to execution unit is within SOR.

4) Execution unit: The faults in execution unit are
detected through redundant re-execution hence it is
within SOR

5) Write Back unit: Results are written back to register
file after execution is completed and correctness of
result is verified later. On detection of a fault entire
warp is re-executed from the previous check point
hence it is within SOR.

6) Memory unit: It uses the address generated by the
execution pipeline stages. On fault detection the
recovery mechanism is similar to write back unit.
L1/L2 cache and DRAM are protected through parity
hence it is within SOR.

7) Instruction scheduler(IS): IS uses Program counter
(PC) of warp, re-convergent buffer and scoreboard to

schedule an instruction, memory structures used by IS
are protected through parity and at every instruction
issue the current PC is compared with the predicted
PC stored in memory hence it is also falls within SOR.

From SOR analysis of execution pipeline of SM we conclude
that decoder unit is vulnerable to faults it need to be hardened
with fault detection techniques, other pipe line structures are
within SOR and provide fault detection capability hence
recovery can be initiated.

V. EVALUATION
The cycle accurate GPGPU architecture simulator GPGPU-
sim [19] is modified to incorporate the replay buffer, pipeline
stall mechanism and re-execution logic. GPUWattch [20] is
used to estimate the power overhead of redundant execution.
Set of ISPASS 2009 and RODINIA benchmarks are used for
evaluation with different replay buffer size 1 to 4. For each
benchmark power and performance estimate of the
unmodified GPGPU-sim over total execution time
normalized to 100 is taken for baseline comparison. The
Table I shows are over all configuration of the GPGPU-sim.

TABLE I. GPGPU-SIM CONFIGURATION

GPGPU Architecture: GTX480
Number of Clusters: 15
Cores per Cluster: 1
Maximum Warps per SM: 48
Warp scheduler: LRR

GPU Pipeline Width
Number of SP units: 2
Number of SFU units: 1
Number of LD/ST units: 1
L1/Shared memory: 48KB

A. Performance
The Figure 3 shows the performance of the REFU. Majority
of the benchmarks show performance overhead less than 3%,
over the entire range of benchmarks mean performance
overhead is 2%.

B. Power
The Figure 4 and Figure 5 show average and peak power
overhead of the REFU, with minimum performance overhead
majority of the workloads show less than 4% increase in
average power and less than 8% increase in peak power. Over
entire range of benchmarks average power overhead is 6%
and peak power overhead is 10%.
The performance improvement is directly proportional to
peak and average power overheads. Table II shows mean
performance and power overheads taken over all
benchmarks.

TABLE II. MEAN PERFORMANCE AND POWER

Replay Buffer size 1 2 3 4
IPC 93.83 98.52 98.63 98.42
Average Power 100.91 106.21 106.2 105.68
peak Power 105.03 109.28 110.3 109.6

Fig. 4. GPGPU Instruction flow for FT architecture.

396

Authorized licensed use limited to: Politecnico di Torino. Downloaded on September 08,2023 at 16:03:13 UTC from IEEE Xplore. Restrictions apply.

d001894
Rettangolo

Fig. 5. GPGPU Instruction flow for FT architecture.

Fig. 6. GPGPU Instruction flow for FT architecture.

VI. CONCLUSION
GPGPUs are used in wide range of applications such as
scientific computing, Machine Learning Classification,
Automatic Driving Assistance etc, the sensitive nature of
scientific applications to data errors demand 100% correct
execution. we presented a microarchitecture solution called
REFU, it effectively utilizes the idle functional units of
ALU for temporal redundant re-execution to detect
transient faults. REFU achieves high fault coverage with
minimal performance and power overheads. For standard
benchmarks we have shown that REFU has mean
performance overhead of 2%, average power overhead of
6%, and peak power overhead of 10%.

REFERENCES
[1] J. W. McPherson, “Reliability challenges for 45nm and beyond”, in

DAC, July 2006, pp. 176–181.
[2] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, and L. Alvisi,

“Modeling the effect of technology trends on the soft error rate of
combinational logic,” in Proc. Intl. Conf. on Dependable Systems
and Networks, pages 389-398, 2002.

[3] NVIDIA Fermi Architecture Whitepaper. [Online]. Available:
http://www.nvidia.com/content/pdf/fermi white papers/nvidia fermi
compute architecture whitepaper.pdf

[4] NVIDIA Kepler GK110 Architecture Whitepaper. [Online].
Available: https://www.nvidia.com/content/PDF/kepler/NVIDIA-
Kepler-GK110- Architecture-Whitepaper.pdf

[5] GP100 Pascal Whitepaper. [Online]. Available:
https://images.nvidia. com/content/pdf/tesla/whitepaper/pascal-
architecture-whitepaper.pdf

[6] Sohi,G.,Franklin, M. and Saluja,K, ”A Study of Time Redundant
Fault Tolerant Techniques,” in High Performance Pipelined
Computers. Proc. FTCS-19.pp. 436-443,1989.

[7] Nickel, J. B., and Somani, A. K., 2001 July, “Reese: a method of soft
error detection in microprocessors”, in 2001 International
Conference on Dependable Systems and Networks, pp. 401–410.

[8] Viney Kumar, Rahul Raj Choudhary, Virendra Singh,“FREP: A Soft
Error Resilient Pipelined RISC Architecture”, 2010 East west
Design and Test symposium 1010, pp 330–333.

[9] Patel, J. H., and Fung, L. Y., 1982 July, “Concurrent error detection
in alu’s by recomputing with shifted operands”, IEEE Transactions
on Computers C-31, 589–595.

[10] Shoba Gopalakrishnan and Virendra Singh., July 2016, “REMO:
Redundant Execution with Minimum Area,Power, Performance
Overhead Fault Tolerant Architecture”, 22nd IEEE IOLTS.

[11] Ralph Nathan,Daniel J. Sorin, “Argus-G: Comprehensive, Low-Cost
Error Detection for GPGPU Cores”, IEEE Computer Architecture
Letters 2015.

[12] Josie E. Rodriguez Condia,Marcio M. Goncalves,Jose Rodrigo
Azambuja,Matteo Sonza Reorda,Luca Sterpone, “Analysing the
Sensitivity of GPU Pipeline Registers to Single Events Upsets”,
2020 IEEE Computer Society Annual Symposium on VLSI.

[13] Karthik Pattabiraman; Matei Ripeanu; Sudhanva Gurumurthi, “A
Systematic Methodology for Evaluating the Error Resilience of
GPGPU Applications Bo Fang”, IEEE Transactions on Parallel and
Distributed Systems (Volume: 27, Issue: 12, Dec. 1 2016).

[14] Jerry B. Backer; Ramesh Karri, “Balancing Performance and Fault
Detection for GPGPU Workloads”, 2012 IEEE 30th International
Conference on Computer Design (ICCD).

[15] Hyeran Jeon Murali Annavaram, “Warped-DMR: Light-weight
Error Detection for GPGPU”, 2012 45th Annual IEEE/ACM
International Symposium on Microarchitecture.

[16] Josie E. Rodriguez Condia; Paolo Rech; Fernando Fernandes dos
Santos; Luigi Carrot; M S Reorda, “Protecting GPU’s
Microarchitectural Vulnerabilities via Effective Selective
Hardening”, 2021 IEEE 27th International Symposium on On-Line
Testing and Robust System Design.

[17] ingweijia Tan, Xin Fu RISE, “ Improving the Streaming Processors
Reliability Against Soft Errors in GPGPUs”,International
Conference on Parallel Architecture and Compilation Techniques
(PACT)PACT’ 12.

[18] Josie E. Rodriguez Condia, Pierpaolo Narducci, M. Sonza Reorda,
L. Sterpone , “ A dynamic reconfiguration mechanism to increase
the reliability of GPGPUs”, 2020 IEEE 38th VLSI Test Symposium.

[19] Mahmoud Khairy, Zhesheng Shen, Tor M. Aamodt, Timothy G
Rogers, “ Accel-Sim: An Extensible Simulation Framework for
Validated GPU Modeling”, in proceedings of the 47th IEEE/ACM
International Symposium on Computer Architecture (ISCA), 2020.

[20] Jingwen Leng, Tayler Hetherington, Ahmed ElTantawy, Syed
Gilani, Nam Sung Kim,Tor M. Aamodt, Vijay Janapa Reddi, “
GPUWattch: Enabling Energy Optimizations in GPGPUs”, in
proceedings of the ACM/IEEE International Symposium on
Computer Architecture (ISCA 2013), Tel-Aviv, Israel, June 23-27,
2013.

397

Authorized licensed use limited to: Politecnico di Torino. Downloaded on September 08,2023 at 16:03:13 UTC from IEEE Xplore. Restrictions apply.

d001894
Rettangolo

