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ABSTRACT Solar energy production has significantly increased in recent years in the European Union
(EU), accounting for 12% of the total in 2022. The growth in solar energy production can be attributed to the
increasing adoption of solar photovoltaic (PV) panels, which have become cost-effective and efficient means
of energy production, supported by government policies and incentives. The maturity of solar technologies
has also led to a decrease in the cost of solar energy, making it more competitive with other energy sources.
As a result, there is a growing need for efficient methods for detecting and mapping the locations of PV
panels. Automated detection can in fact save time and resources compared to manual inspection. Moreover,
the resulting information can also be used by governments, environmental agencies and other companies
to track the adoption of renewable sources or to optimize energy distribution across the grid. However,
building effective models to support the automated detection and mapping of solar photovoltaic (PV) panels
presents several challenges, including the availability of high-resolution aerial imagery and high-quality,
manually-verified labels and annotations. In this study, we address these challenges by first constructing a
dataset of PV panels using very-high-resolution (VHR) aerial imagery, specifically focusing on the region
of Piedmont in Italy. The dataset comprises 105 large-scale images, providing more than 9,000 accurate and
detailed manual annotations, including additional attributes such as the PV panel category. We first conduct
a comprehensive evaluation benchmark on the newly constructed dataset, adopting various well-established
deep-learning techniques. Specifically, we experiment with instance and semantic segmentation approaches,
such as Rotated Faster RCNN and Unet, comparing strengths and weaknesses on the task at hand. Second,
we apply ad-hoc modifications to address the specific issues of this task, such as the wide range of scales of
the installations and the sparsity of the annotations, considerably improving upon the baseline results. Last,
we introduce a robust and efficient post-processing polygonization algorithm that is tailored to PV panels.
This algorithm converts the rough raster predictions into cleaner and more precise polygons for practical use.
Our benchmark evaluation shows that both semantic and instance segmentation techniques can be effective
for detecting and mapping PV panels. Instance segmentation techniques are well-suited for estimating
the localization of panels, while semantic solutions excel at surface delineation. We also demonstrate the
effectiveness of our ad-hoc solutions and post-processing algorithm, which can provide an improvement up
to +10% on the final scores, and can accurately convert coarse raster predictions into usable polygons.

INDEX TERMS Computer vision, deep learning, image processing, machine learning, semantic segmenta-
tion, instance segmentation, remote sensing.

I. INTRODUCTION
Considering the European soil, solar energy production has
The associate editor coordinating the review of this manuscript and grown significantly in recent years. In 2022, solar energy
approving it for publication was Mohammad Shorif Uddin . accounted for 12% of total energy production in the European
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Union (EU) [1], making it one of the largest sources of renew-
able energy in the continent, together with hydroelectrical and
wind [2]. The recent growth of solar energy production in
Europe can be attributed to several factors: first and foremost,
the increasing adoption of solar photovoltaic (PV) panels in
households, businesses, and facilities. Given the established
technology, PV panels have slowly become a cost-effective
and efficient means of energy production, and their deploy-
ment has been steadily supported by government policies and
incentives in many EU countries [3]. The consequent market
growth and the derived maturity of solar technologies also
contribute to a decrease in the overall cost of solar energy,
making it more competitive with other energy sources.

Last but not least, its inherently renewable nature repre-
sents a major contributing factor: while, on one hand the cost
of fossil fuel resources has been steadily growing, on the
other hand solar energy is a clean and renewable source of
electricity that does not produce greenhouse gases or other
pollutants, making it an attractive alternative to other sources.
This transition trend into sustainable sources is expected to
grow significantly in the coming years, making solar energy
an increasingly important asset [2].

As aresult, there is a growing need for efficient methods for
detecting and mapping the locations of PV panels, exploiting
resources such as satellite and aerial images to produce a
detailed and automatically updated census. Accurate detec-
tion of solar installations can in fact be extremely beneficial
for several reasons. First and foremost, automated detection
allows for rapid identification of PV panels, saving time and
resources compared to a manual inspection. This is true for
registered large-scale farms, as well as smaller agricultural
or domestic plants, where the extent and location are often
unknown. Second, the information contained in updated solar
maps can be exploited by governments, environmental agen-
cies and other companies to track the adoption of renewable
sources or to optimize energy distribution across the grid.
This can also include the identification of malfunctioning
installations to cut down maintenance and repair costs and
maintain high efficiency for longer periods. Last but not
least, automatically detecting areas where PV panels are
already deployed can also be exploited to identify promising
regions where an increased deployment could provide greater
benefits.

However, effective and accurate automated detections
present several unique challenges, often derived from typical
issues of aerial computer vision. Image quality and resolution
are essential factors in determining the accuracy and relia-
bility of models, particularly with regard to the recall of PV
panels. Very-High Resolution (VHR) acquisitions, especially
considering extents lower than 1m per pixel, can greatly bene-
fit the final detection performance, and most importantly rep-
resent the only viable option for smaller installations. In fact,
PV panels appear in a wide range of scales, from small res-
idential components, partially covering roofs, to industrial-
grade plants, covering entire fields. Moreover, varying
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lighting conditions or occluding structures such as trees,
buildings or other constructions can negatively impact the
delineation or the classification of a given panel into a spe-
cific category. Lastly, machine learning approaches typically
require large amounts of high-quality annotations to be effec-
tive, which are often hard to come by, especially considering
the specific task.

In this work, we attempt to address these problems using
several incremental steps. First, we construct our own dataset
of PV panels using VHR aerial imagery to cope with the lack
of data, especially considering the European soil. We focus
our efforts in Piedmont, one of the regions with the highest
count of photovoltaic plants in Italy [4]. The dataset com-
prises 105 large-scale images, each measuring on average
20,000 x 16,000 pixels, and provides more than 9,000
accurate manual annotations including every known indus-
trial plant and a large portion of smaller agricultural and
domestic installations. Each polygon label is also enriched
with several attributes, such as its category (polycrystalline
or monocrystalline), the installation type (domestic, agricul-
tural or industrial), orientation, area, and power generation
estimate.

Exploiting this dataset, we then provide a comprehensive
evaluation of different segmentation techniques, comparing
instance and semantic approaches. The former comprises the
generation of a single output for each detected panel, consist-
ing of the predicted class, a bounding box defining its bound-
aries, and a segmentation mask delineating the perimeter [5].
While, on the one hand, instance segmentation outputs are
very well suited for this task thanks to their ability to separate
each panel into a single component, on the other hand, they
are often more difficult to train due to the complexity of
their architecture. Conversely, semantic segmentation can be
instead defined as a classification of each pixel in the image
[6], which allows for a precise localization of PV panels and
background information. However, generating a probability
distribution for each point independently may include some
noise in the final predictions, consisting of incomplete panels
(false negatives), background noise (false positives), or panel
surfaces with mixed categories (classification errors).

The task of delineating PV panels also presents several
unique challenges, including the wide range of scales of
the installations, and the sparsity of the annotations, which
cover a relatively small surface of the overall dataset. For
these reasons, we propose to further improve the perfor-
mance of these baselines through ad-hoc modifications, that
specifically address such issues. These include (i) a dataset
extension process, that combines the annotated portions of
the images with the remaining visual content lacking its
own annotations, to generate artificially augmented samples.
(i) A multiscale training paradigm for semantic segmen-
tation and adjustments to the region proposal for instance
segmentation, to cope with the variety of shapes in input.
(iii) A post-processing phase to polygonize the raster output
and generate a cleaner result.
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In summary, our contributions can be summarized as

follows:

« We construct and release a new dataset aimed at the
delineation and classification of PV panels using VHR
aerial imagery. The dataset provides thousands of accu-
rate manual annotations. To our knowledge, this is the
first dataset to provide not only the boundaries of the
panels but also their categorization and several useful
metadata information.

o We provide a comprehensive benchmark including a
comparison between instance and semantic segmenta-
tion techniques, highlighting their strengths and weak-
nesses in the context of this task.

« To further improve on the baselines, we provide a bag of
tricks specifically aimed at this delineation task, includ-
ing a post-processing algorithm to polygonize and regu-
larize the final output.

To foster further work in this field, we intend to make the

code and dataset publicly accessible for research purposes.!

The remainder of this document is organized in the follow-

ing way. In Sec. II we discuss works related to instance and
semantic segmentation tasks, as well as ad-hoc aerial tech-
niques, including solutions for PV panels analysis. In Sec. III
we introduce the VHR dataset, describing data acquisition,
processing, and annotation procedure. In Sec. IV we for-
mally introduce the problem setting, describing our semantic
and instance segmentation approaches, and then providing
a series of improvements for each modality. In Sec. V we
present the experimental validation of the proposed methods,
discussing the results on the benchmark and the resulting
performance boost from our approaches. Last, in Sec. VI
we draw final conclusions, as well as possible directions for
future research in this field.

Il. RELATED WORK

A. SEMANTIC SEGMENTATION

Deep learning-based approaches for semantic segmentation
are mostly based on convolutional encoder-decoder architec-
tures, where features from deeper layers of the network are
expanded back to the pixel space by either using multiscale
aggregation or by repeated upsampling and integration with
shallower features.

Solutions using multiscale aggregation include models
such as PSPNet [7], where the decoding step exploits Pyramid
Pooling modules to capture context information at multiple
scales. Similarly, DeepLab [8] introduces the atrous con-
volution, which adopts larger kernels with increasing dila-
tions instead of pooling to increase the receptive field, while
maintaining a higher output resolution, and the Conditional
Random Fields (CRF) to further clean the segmentation out-
put. DeepLabV?2 [9] improves upon its predecessor by adopt-
ing ResNet101 as a deeper encoder, and by introducing the
Atrous Spatial Pyramid Pooling (ASPP) layer, a multiscale
module that encodes the input features with parallel filters

1 https://github.com/edornd/solar-panels
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with different dilations. Last, DeepLabV3 [10] incrementally
improves upon DeepLabV2, introducing cascaded convolu-
tions and a parallel ASPP with image-level features, and
DeepLabV3+4 [11] provides a deeper decoder, with a more
efficient ASPP module, exploiting separable convolutions.
Derivative works build onto these architectures in several
ways, providing better decoding stages or more efficient par-
allel atrous feature extraction modules, such as AdaptNet [12]
or AdaptNet++ [13].

Considering upsampling and feature integration, Fully
Convolutional Networks (FCN) [14] and Segnets [15] repre-
sent one of the first effective solutions where fully-connected
layers are substituted with convolutions to preserve spatial
information, paving the way for several subsequent works.
Another well-known example is U-Net [16], a fully con-
volutional network originally developed for medical image
segmentation with few training samples. Its symmetrical
architecture with skip connections allows information to flow
from the encoder to the decoder, which helps to preserve
the spatial resolution and improve the segmentation accuracy.
Several works have improved upon this architecture with
different variants [17], [18], [19], by either including attention
mechanisms [19] or by introducing residual layers for an
even faster convergence [18]. Inspired by the Transformer
architecture and its effectiveness in language processing,
several works proposed effective spatial variants of atten-
tion mechanism, such as Criss-Cross attention [20], or Dual
Attention [21].

The recent breakthrough of Vision Transformers also
allowed for new effective encoder architectures, such as ViT
[22], Swin [23], as well as end-to-end transformer-based seg-
mentation models such as Segmenter [24] or SegFormer [25].
Most of these solutions work with image patches, exploit-
ing spatial attention mechanisms to improve feature maps
with contextual information. Similar updates appear to be
extremely effective for convolutional networks, with com-
pletely revised architectures such as ConvNext [26]. Despite
their effectiveness on large-scale datasets, transformer-based
architectures typically require more information at training
time in order to reach robust performance. This is often not
the case with older, albeit conceptually simpler, architectures.
In this paper, we focus our efforts on more lightweight solu-
tions such as U-Net, exploiting their ability to learn from few
examples [16] to provide a robust feature extraction.

B. OBJECT DETECTION AND INSTANCE SEGMENTATION

The major limitation of semantic segmentation is that it can
not distinguish between different instances as long as they
belong to the same class. To this end, instance segmentation
appears as a more refined option, detecting individual objects
within an image and assigning a unique mask and label to
each of them. Traditional approaches for object detection can
be divided into single-stage or two-stage methods. Among the
former family, we can find YOLO (You Only Look Once)
and its derived approaches [27], [28], [29]. These solutions
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are often optimized for real-time usage and employ a single
neural network to predict the bounding boxes and class prob-
abilities of objects in an image.

Multi-stage approaches divide the extraction of Region of
Interest (Rols) from its analysis: in the first stage, the full
image is processed to understand which areas may contain
objects, while subsequent stages focus on these proposals
to extract relevant information. Region Convolutional Neural
Network (R-CNN) [30] represents one of the first approaches
of this kind. It first generates a set of region proposals,
or candidate objects, using a sliding window approach. Each
region is then processed with a standard CNN classifier. Fast
RCNN [31] tries to improve on the predecessor by extracting
features from the entire image at once, rather than processing
each region separately while maintaining the sliding win-
dow approach for the proposals. A further speed-up to the
process is brought by Faster RCNN [32], which replaces
the slow proposal generation algorithm with a Region Pro-
posal Network (RPN), an additional CNN trained to predict
object regions from the extracted features maps. These three
approaches only provide object detection, that is, a class label
and approximate bounding box for each object. One of the
first instance segmentation proposals is represented by Mask
RCNN [5], which improves on Faster RCNN by means of a
mask prediction branch, which generates a pixel-level mask
of the detected instance, on top of the box regression and
classification.

Driven by the surge of Transformers, recent approaches
are instead steering towards end-to-end architectures, such
as DETR [33] for object detection, or MaskFormer [34] and
Mask2Former [35] for instance segmentation, or even univer-
sal segmentation. Despite their effectiveness, these proposals
suffer from the same problems as their semantic counterparts,
namely the more challenging training setup and the higher
hardware requirements, especially during training.

For what concerns the topic of aerial images, these differ
from natural ground images in several aspects, including scale
and orientation. They usually have a larger field of view
than traditional images, capturing a wide range of scales,
from large forests to smaller objects such as cars. Contrary to
natural images, orientation is not limited to a single direction:
objects in aerial images can appear in different orientations,
without specific priors (e.g., if an object is standing on the
ground, it should appear at the bottom of the image). Algo-
rithms dealing with aerial imagery must be able to recog-
nize objects in all possible orientations, preferring Oriented
Bounding Boxes (OBB) to Axis-Aligned Bounding Boxes
(AABB). Starting from aligned counterparts, several oriented
variants have been proposed for aerial imagery. For instance,
Rotated Faster RCNN [36] is an extension of Faster RCNN
that allows the bounding boxes to be rotated to better align
with the object orientation while maintaining aligned Rols.
To this end, Rol Transformer [37] substitutes the RPN with a
transformer architecture to process the object proposals. The
model handles a rotated Rol and generates a rotation-invariant
feature map that is used to classify and localize the object.
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This method is particularly useful for handling the variability
in object size and orientation that can be common in aerial
images. Similarly, Oriented R-CNN [38] is proposed as a sim-
pler alternative: in the first stage, an oriented Region Proposal
Network (oriented RPN) directly generates high-quality ori-
ented proposals, while the second stage exploits an oriented
R-CNN head to refine oriented Regions of Interest (oriented
ROIs) and recognizing them.

C. DEEP LEARNING FOR PANEL DETECTION

The increasingly large availability of remote sensing
resources in recent years has driven research in several appli-
cation fields, including energy and automated PV panel delin-
eation. To this day, many datasets have been created for
this task, including different areas and sources. However,
the resources with the highest volume in terms of inspected
surface and number of annotations mainly include the USA
territory, with larger scale surveys such as the Californian
dataset [40], or deep learning frameworks like DeepSolar
[42]. Despite the undeniable usefulness of such resources,
different geographical areas may show quite different visual
features, from the landscapes and the vegetation types to
the different building structures. This often undermines the
effectiveness of automatic detection systems. Considering the
European continent, covered areas appear quite limited in
comparison, with different feasibility studies in the Nether-
lands [43], [44] or Switzerland [45], mainly using satellite
data or aerial acquisitions. This is also probably due to the
higher costs of VHR aerial and remote sensing imagery,
which remains crucial for accurate detection and delineation
of PV panels when compared to open data such as Sentinel
feeds. In this work, we attempt to close this gap by creating
a high-quality PV panel dataset, focusing on the study area
of Piedmont. Similar to existing resources [40], this dataset
provides more than a hundred VHR images over two large
provinces of the region, together with several thousands man-
ual annotations, as detailed in Sec. III. Table 1 provides a
non-exhaustive list of similar works, comparing them with
our data sources.

Focusing on the methodology, the vast majority of propos-
als available in literature extract PV panels through semantic
segmentation [42], [46], [47], [48], carrying out a binary
subdivision between background and panel surface. Given
its proven effectiveness in remote sensing and low-resource
datasets, the U-Net architecture [16] remains one of the most
popular choices, even though other models such as DeepLab
[10] have been successfully applied also in this field [48].
The most notable differences among the available approaches
often lie in the input processing phase. For instance, given the
challenges of VHR imagery and its high processing costs,
several works apply a two-step system, where inputs are
first inspected with a more coarse approach through a sim-
pler classifier, processing only those actually containing PV
panels with segmentation algorithms [42], [47], [48]. This can
also be carried out through satellite feeds, such as Sentinel-2,
to detect larger plants [43].
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TABLE 1. Comparison between similar datasets. Our PV panel dataset is comparable with similar resources, such as the Californian set, especially
considering the covered area. For comparison, we also include DOTA, a general-purpose dataset with comparable characteristics, albeit on a much larger

scale.
Dataset #Images Image Size Resolution (cm)  Bands #Instances # Categories Area (Km?)
Vaihingen [39] 33 2,500 x 2,000 9 IRRG None 6 1.33
Potsdam [39] 38 6,000 x 6,000 5 RGBIR  None 6 11.08
California [40] 601 5,000 x 5,000 30 RGB > 19,000 1 1,352
DOTA v1.0 [41] 2,806 4,000 x 4,000 50 RGB 188,282 15 11,224
Ours 105 20,000 x 16,000 30 RGBIR 9,462 <3 3,614

The adoption of object detection and instance segmentation
in this task appears instead quite limited: only a few works
have explored object detection models for PV panels detec-
tion, with a handful of proposals using standard approaches
such as Faster RCNN [49] from aerial photography, or YOLO
[50], using drone feeds.

In summary, related works present some limitations: in
the first place, the lack of openly available data sources
severely hinders the research efforts in this field. Consider-
ing instead the methodologies explored, semantic approaches
exclusively focus on the distinction of PV panels from the
background, without taking into account possible catego-
rizations, such as the installation type or the panel category
(e.g., monocrystalline or polycrystalline). Instance segmen-
tation approaches remain instead almost unexplored, despite
their effectiveness in many similar fields [41]. In this work,
we propose to address these shortcomings by providing a cus-
tom dataset, together with a comprehensive evaluation of seg-
mentation techniques, including more advanced approaches
such as multiscale input [51] or instance delineation with
oriented bounding boxes [36].

Ill. DATASET

The complete pipeline carried out for the construction of
the PV panels dataset is illustrated in Fig. 1. This dataset
focuses on the provinces of Asti and Alessandria in Piedmont,
which is the fourth Italian region in terms of quantity of solar
panels deployed, and the first in terms of energy produc-
tion from photovoltaic in 2022 [52]. Inside this area, these
two provinces present the highest count of plants. Moreover,
it includes both urban and rural regions, with a focus on
areas known to have large-scale industrial PV plants and a
significant number of agricultural and domestic installations.
This approach ensures that the dataset is representative of a
wide range of panel types and locations.

The images used in the dataset were obtained from the
Terraitaly catalogue of Compagnia Generale di Riprese aeree
(GCR) s.p.a, an Italian provider of high-resolution aerial
imagery, from the most recent orthophoto archive dating
2018. Similar to the California dataset [40], the available
images provide a spatial resolution of 30cm per pixel. This
resolution is considered to be high enough to accurately
detect and delineate individual PV panels, while also pro-
viding a sufficient level of detail for smaller domestic instal-
lations. The dataset includes a total of 105 VHR images in
RGBIR format (i.e., visible spectrum with infrared), includ-
ing 60 acquisitions for Asti and 45 for Alessandria. Each
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orthophoto covers on average 20,000 x 16,000 pixels,
roughly translating into a region of 28 square kilometres each.
The images are provided as georeferenced TIFF files, using
the UTM zone 32N coordinate reference system (CRS) to
minimize the distortion from the projection.

The annotation process for the dataset involved not only
identifying and outlining the boundaries of PV panels in the
images but also assigning metadata information to each pro-
cessed instance. The task was carried out by a team of trained
annotators, covering every registered large-scale industrial
plant in the area using their known addresses or approximate
coordinates, while the agricultural and domestic PV installa-
tions were annotated on a random basis by manual lookup,
ensuring a certain degree of uniform spatial distribution of
the samples, in order not to introduce geographical biases in
the set. Together with its geometry, each panel is assigned
several attributes, specifically: a unique identifier for the PV
panel, a unique ID for the plant in case of industrial or agri-
cultural installations, the province it belongs to, its orientation
(e.g., south or south-east), its estimated power, the installation
type (industrial, agricultural, domestic), and the PV category
(monocrystalline, polycrystalline). This last attribute is par-
ticularly important to accurately estimate the energy produc-
tion of a plant, given the characteristics of the two types: while
being less expensive, polycrystalline panels are less effi-
cient and have a shorter lifespan, while monocrystalline have
higher performance in terms of production, duration and also
resistance to high temperature [53]. However, from an object
detection perspective, the latter represents a more difficult
target due to their completely black appearance, extremely
influenced by reflections and the hit angle of the light on the
surface, and lower absolute counts due to the relatively new
technology. On the other hand, polycrystalline installations
typically present the signature blue pattern on a white grid,
much more recognizable from an aerial point of view. The
final dataset includes 9, 462 manual annotations, including
8, 967 polycrystalline and 495 monocrystalline PV panels.
The results were combined and stored in a single shapefile
to provide a georeferenced output, more easily composable
with the available images. A sample of the final dataset is
available in Fig. 2, displaying the major installation types,
namely industrial (left) and domestic plants (right).

IV. METHODOLOGY

In this work, we compare the performance of instance and
semantic segmentation models for the extraction and delin-
eation of PV panels from aerial images, focusing on the
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1. Selection of the study area 2. Image annotation process 3. Output

Available data: For each PV panel: Single shapefile, with more than
- Aerial orthophoto images - Delineate the contours using vector shapes 9,000 PV panels.

- Industrial plant locations - Insert descriptors (category, plant type, production)

Select two large areas based on the available locations Each area comprises many VHR acquisitions, 60 for Asti and 45 for Alessandria. Annotations are compiled into a
of large solar plants: Asti and Alessandria. Every area is annotated depending on the PV panel distribution. single shapefile.

FIGURE 1. Visualization of the dataset construction pipeline: the selected areas are matched against the database of VHR images to construct the
mosaic, then each image is processed individually to manually annotate panels, using approximate locations for industrial plants, and manual lookup
for smaller installations. The final annotation output is stored in a single shapefile.

FIGURE 2. Examples tiles extracted from the dataset, together with their annotations. Starting from the left, the first two images show large industrial
installations, employing both monocrystalline and polycrystalline panels, while the last two illustrate the smaller domestic installations.

FIGURE 3. Examples of tiles obtained from the dataset extension process. The first two images shows the results of superimposing the whole plant
from a labelled tile (semantic-wise mixing), while the last two images illustrate tiles obtained by the random copy-paste of several single panels
(instance-wise) mixing.

classification of each panel into mono- or polycrystalline,
being the most useful for practical applications such as energy
production estimate. The semantic approach consists of a
dense categorization, where each pixel is assigned its own
label independently. Formally, let us define X as the input

47584

space, composed of a set of images x € X with a fixed
amount of pixels /, and C as the set of semantic cate-
gories ¢ € C. The objective of semantic segmentation is
the definition of a parametric model fp, mapping each pixel
in the image to a probability distribution over the classes,

VOLUME 11, 2023



E. Arnaudo et al.: Comparative Evaluation of Deep Learning Techniques for Photovoltaic Panel Detection

IEEE Access

ie fy : X — RIIXICI The ground truth ¥ used in training
also presents a dense categorization, where each image label
y is composed of pixel-wise annotations y;.

Instance segmentation involves instead a more complex
pipeline, where the output is composed of a variable list of
instances, each one associated with its own label, bound-
ing box (either axis-aligned or oriented) and instance mask.
In this case, the objective involves finding a set of object
instances O = o1, 02, ..., o, such that each instance o; is
associated with a unique label /; € C and a corresponding
pixel-wise mask M; C I, i.e. possibly smaller than the
full input image. Similar to the semantic approach, we can
define this task as the problem of finding a function fy
X — (O,L,M), where O is a set of object instances, L =
I, I, ..., I, is aset of labels corresponding to each instance,
and M; is a binary mask indicating the pixels of the image that
belong to the i instance. Our desired output is still repre-
sented by a set of individual panels, including their geometry
and category. While the output of the instance segmentation
pipeline already fits this description, the semantic segmen-
tation approach still requires some effort to process the raw
predictions and obtain a comparable output. The next sec-
tions describe the methodologies devised to reach this goal,
comprising (i) baseline solutions, (ii) ad-hoc modifications to
both versions to improve results, and (iii) the post-processing
refining steps.

A. EXTENDING THE DATASET

One of the main weaknesses of the available data is rep-
resented by the challenging annotation process: delineating
every existing solar panel would in fact require knowing the
position of each instance beforehand, which is not available
for smaller installations. This consequently leaves a good por-
tion of the images effectively unused, since only the portions
of images intersecting at least one panel are selected during
training to provide a fair balance between objects and back-
ground information. Given the extremely wide area analysed
and the relatively limited number of annotated panels, we fur-
ther attempt to artificially extend the available training dataset
with an approach comparable to Copy-Paste augmentations
[54] or ClassMix [55], constructing an alternate, handmade
set of ground truth annotations.

The dataset extension process can be formalized as fol-
lows: given the current set of labelled images x € X and their
respective labels y € Y, we select a fixed number of unla-
belled tiles from the sources images, each one represented
as x, € X,. For each unlabelled image x,, a labelled pair
(x, y) is randomly selected. In order to construct a plausible
result, we carry out the mixing strategy between labelled
and unlabelled images in one of two similar variants, with
a given probability p;, the first at label level (semantic-wise),
while the second at instance level (instance-wise). Starting
from the ground truth, each panel is selected with probability
p, where p is equal to 1 in the first variant. This selection
is further augmented to introduce more variation, and then
a binary mask M is generated from the resulting output so
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that the unlabelled version and the augmented PV panels can
be merged together. Considering the single image x,, the
output of the extension can be expressed as a tuple made
of the selected panels as ground truth, and an input image
Xe = Xy * M 4+ x % (1 — M). In case instead of semantic-wise
extension version, each panel is selected from a randomly
sampled labelled pair (x,y) with a probability p until a given
number of panels N, have been superimposed on the current
unlabelled image x;,.

Simply put, we build the dataset extension in two steps.
First, we exploit the portion of the dataset without panels
by selecting a sample of image content from the training
subset. This selection is carried out by randomly choosing
a fixed amount of tiles during the preprocessing phase with
uniform distribution, with the only requirement that no panel
shall intersect their bounds. This does not guarantee the
absence of panels in the crop, however, the possible presence
of false negatives is heavily mitigated by the subsequent
mixing phase. Second, we mix these empty samples with
the annotated tiles, by selecting a portion of the available
labels, cutting from the latter images along the borders of
the annotation, and pasting on top of the unlabelled variants,
as illustrated in Fig. 3. In one case, we simply copy and
superimpose on the current tile all the panel annotations
found in a training tile, further augmented at the image level
(i.e., applying the transformation to the whole image). This
can be beneficial to both keep a high degree of plausibility
with respect to the source dataset and maintain the regular
appearance of larger plants after the process. In the other
case, we randomly select a predefined number of panels in
the training dataset, and superimpose them on the unlabelled
image in random poses and locations after applying geometri-
cal transformations to each instance. This mixing approach is
introduced to mimic the distribution of smaller installations,
where size and orientation greatly vary among tiles.

Example tiles generated by the extension process are
reported in Fig. 3.

Although these images could appear less realistic to the
human eye, this simple approach may improve the ability
of the model to distinguish panels against several types of
backgrounds. We apply this extension to both semantic and
instance approaches, to assess the performance gains in each
context.

B. INSTANCE SEGMENTATION

In this study, we build upon Rotated Faster RCNN [36],
an extension of Faster RCNN [32] able to detect arbitrarily
oriented objects in aerial images. In this framework, the
input image is first processed by a backbone composed of
a ResNet50 [56] encoder and a Feature Pyramid Network
(FPN) [57], capturing rich image features on five different
scales. A standard Region Proposal Network (RPN) is then
employed to generate potential candidates by applying convo-
lutional filters separately for each level of the output features
map, typically using three aspect ratios of anchors, namely
1:3, 1:1 and 3:1.
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FIGURE 4. Architecture of the custom Rotated Faster RCNN model. An input image is first processed by a feature extraction network that balances
high-level and low-level features. An RPN is then employed to produce axis-aligned region proposals that will be classified by both the OBB head and
the mask head, that compute as output (i) an instance label with confidence in the interval [0, 1], (ii) an oriented bounding box, and (jii) a binary

segmentation map respectively.

The standard Rotated RCNN processes the generated pro-
posals through a bounding box head, in order to output both
an OBB estimate and an instance label. It initially applies
Rol pooling to the feature maps of the full image in order
to extract Rol features related to candidates generated by
RPN, to first map them into a feature vector thanks to two
fully connected layers and then produce the final output as
bounding box parameters and a label with its confidence
score. The OBB, in both the initial ground truth and the final
prediction, is expressed in the form of (x, y, w, i, 8) where
x and y represent coordinates of the box centre, w and # its
width and height, and 6 the rotation angle of the box with
respect to the main axis.

To improve the performance on this particular task, we first
update the anchor aspect ratios for each sampled feature
point, applying anchors with 7 different ratio variants, specif-
ically: 1:10, 1:5, 1:2, 1:1, 2:1, 5:1, 10:1. This modification
is introduced to better cope with the wide variety of shapes
and orientations that PV panels could have. To further adapt
the object detection model to this task, we include a separate
branch to the proposed architecture to generate an instance
mask, named mask head, obtaining three separate outputs,
similar to Mask RCNN [5]. The mask head, just like the ori-
ented bounding box head, applies the Rol pooling process to
the entire image features. Following Mask RCNN [5], we use
RolAlign to perform a more refined interpolation to better
align the cropped proposals. The features, extracted following
the RPN proposals, are subsequently processed in four serial
convolutional layers in order to produce a segmentation map
that separates pixels of the underlying panel from background
ones. Unlike other OBB approaches, such as Oriented RCNN
[38] or Rol Transformer [37], the region proposals are still
axis aligned for both the bounding box regression and the
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mask head. This is however extremely convenient for the
instance-level binary segmentation task, which can receive
a crop containing a good balance between foreground and
background content.

Since PV panels have a regular rectangular shape, the OBB
itself is often enough for precise localization and delineation;
however, using this branch as an auxiliary task during training
can be beneficial for the other object detection tasks as well.
The architecture of our final approach is reported in Fig. 4.

C. SEMANTIC SEGMENTATION

Given the effectiveness in literature [40], [46], we also pro-
vide an assessment using semantic segmentation. In order to
provide an initial benchmark, we evaluate different convo-
lutional architectures to evaluate the performance of various
combinations of encoders. In terms of backbone, we first test
the standard ResNet [56], which represents the baseline in
many computer vision tasks [18], in the variant with 50 layers
(i.e., RN50). Second, given their robust feature extraction
abilities, we include a ConvNext encoder [26], which pro-
vides several macro and micro architectural changes to close
the gap between transformer-based models and convolutional
networks. These include changes such as depth-wise convo-
lutions, larger kernel sizes, and layer normalization, while
also maintaining a throughput higher than Swin transformers
[23], which is a crucial feature in semantic segmentation,
where the encoder only comprises the first part of the whole
architecture.

Among the decoders, we select U-Net [16], which is by far
the most diffused and effective decoder architecture to this
day [58]. This solution provides a reverse pyramid structure,
bringing the computation back to the pixel level through
a series of upscaling and feature concatenations with the
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FIGURE 5. Multi-scale semantic segmentation framework adopted in this work. Each image is processed by two parallel branches, using shared weights.
A contextual branch extracts features from a downscaled version of the full input, while a local branch extracts features from a batch made of four splits
of the original image. A standard semantic loss is computed on both predictions, while a consistency loss is applied between local and global outputs.

corresponding encoder layers in a symmetrical way. This
decoder structure has been applied successfully in countless
applications, especially considering remote sensing and aerial
imagery [18], [45]. For an improved convergence during
training, we adopt the residual U-Net variant (ResUnet) [18],
which includes residual skip connections also at the decoder
layer, similar to the encoder [56].

A recurrent issue with PV panel delineation is the wide
range of scales of the installations, from limited surfaces of
domestic plants to entire fields in industrial contexts. To cope
with this variety, we build upon these baselines by introducing
a multiscale training similar to GLNet [51]. The prohibitive
size of the available images does not allow the application
of a complete global-to-local or local-to-global regulariza-
tion [51], however we introduce a context loss, where a
larger portion of the image is compared with smaller crops,
extracted from the same region. Each tile is subdivided into
four components, by splitting once both vertically and hori-
zontally. The transformed output is processed independently
and then compared with the overall context, represented by
a downscaled version of the image. We can then guide the
model toward multiscale consistency by forcing the local
and contextual features to be as similar as possible. To carry
out this step, we reconstruct the full-size output from the
tiled features, and upscale the contextual features back to the
original dimensions. We then apply a pixel-wise quadratic
penalty, computed as Mean Squared Error (MSE):

1 N
Lo = - D (90 (xt0c) = o (xeue))? ey
1

where xj,. and x.x respectively represent the tiled and down-
scaled inputs, and ¢y the model output before the final Soft-
max operation (i.e., logits). During training, this additional
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contextual loss is added to the standard semantic loss as
a regularizing factor. An illustration of the final semantic
framework is shown in Fig. 5.

D. POLYGONIZATION

In order to provide a more accessible result for further anal-
ysis and use, the raw model output often requires further
processing. In the first place, raster information should be
converted back into polygonal data, in such a way that the
generated vectors maintain a regular shape, without noisy or
overlapping borders. Furthermore, while instance segmenta-
tion already provides panel-level information, semantic seg-
mentation necessitates additional steps to bring the pixel-wise
classifications into a more meaningful list of instances.

Starting from this last point, we extract individual instances
from the semantic predictions using Connected Components
Labelling (CCL) [59]. As the name suggests, this algorithm
separates distinct areas, assigning different numerical iden-
tifiers to each component. Since the prediction is done on a
pixel level, the same panel may contain both monocrystalline
and polycrystalline outputs: to prevent this, we first apply the
CCL pass on a binarized version of the output, so that the
panel category does not interfere with the instance extrac-
tion. Then, we iterate over each component, discarding those
instances whose surface is below a minimum threshold ¢ and
assigning a single class to each panel, selected via majority
voting on the pixels of the component itself.

Once a panel-level delineation is obtained, we convert
the raster outputs into polygons, more useful for practical
use, following a custom procedure adapted from building
extraction [60]. Assuming that PV panels have a rectangular
shape, or at most that the installations are made of rectangular
components, the procedure attempts to regularize the edges
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of each polygon so that its internal angles always measure
90 degrees, while minimizing the changes with respect to
the original shape. First, the raster image is converted into
an actual polygon using the standard Douglas-Peucker algo-
rithm, keeping a low tolerance to avoid oversimplifications.
From the coarse polygon, we extract the oriented Minimum
Bounding Rectangle (MBR), defined as the oriented rectan-
gle (.e., not constrained by the axes) with minimum area, fully
containing the considered shape.

Given the typical shape of PV panels, we assume that the
MBR is the best approximation of its orientation, therefore we
exploit this to further regularize the edges of the underlying,
coarse shape. Once the MBR is computed, we align each
edge of the polygon with the direction of the MBR that is
closer to the current rotation of the segment. This allows for
maintaining the leading orientations of the shape, while at the
same time making sure that every angle becomes a multiple of
90 degrees. Rotating the edges of the polygon independently
generates discontinuities along the perimeter, which can be
fixed by reconnecting adjacent segments. Before the restora-
tion, we further simplify the polygon, removing consecutive
edges that are now parallel (i.e., lie on the same side) and
whose length of the reconnecting segment is below a dynamic
threshold 7', computed as T = «*L, where « is a scalar factor
in the range [0, 1] and L represents the length of the longest
edge in the polygon. In practice, this step removes those edges
that are the least important to define the object boundaries.

From this simplified, discontinuous shape, the final poly-
gon is computed by reconnecting the segments. The recon-
struction is done by computing the intersection points
between the lines defined by the edges, without further pro-
cessing, as shown in Fig. 6. The full procedure is detailed in
Algorithm 1.

V. EXPERIMENTS

In this section, we evaluate the presented models and frame-
works against the constructed PV panel dataset. We first
provide a thorough description of our experimental setup,
including dataset subdivisions, combinations of experiments
and hyperparameters employed in the tests. We then discuss
the obtained results, comparing instance and semantic pre-
dictions down to the computed metrics, and highlighting the
strengths and weaknesses of both techniques.

A. IMPLEMENTATION DETAILS

We assess the performance of the baseline solutions and our
improved approaches on the two variants of the PV panels
dataset: the standard version, where we keep as input image
only those tiles intersecting an annotation, or the extended
version, as described in the previous section. We perform
the tiling offline, using a tile size of 512 x 512 pixels to
ensure a good ratio between visual content and PV panel
size, and using an overlap of 256 pixels to ensure that
border information gets centred in the next tile. To ensure
a fair and robust comparison, we split the two areas into
separate sets, keeping the Alessandria province for training
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Algorithm 1 Polygonization Procedure

Input:
R, raster prediction to be polygonized
t4, minimum area threshold
tpp, tolerance for polygonization
o, length factor for edge filtering
Output:
P,, a set of regularized polygons

Extract polygons from the raster
// binarize the input prediction

B < Binarize(R)
// extract the set of connected components
C < CCL(B)
// Discard components with area <ty
C <« MinSurface(C, ta)
// Apply Douglas-Peucker to each component
P < {}
for c in C do
p < DouglasPeucker(c, tpp)
P <~ PUp
end
end
Regularize the extracted polygons
Pr < {}
for p in P do
// Extract the MBR
mbr < MBR(p)
// Align edges E with MBR directions
E < Align(p, mbr)
// Remove useless edges
E <« Filter(E, )
// Rebuild the final polygon
pr < Link(E)
P, <~ P, Up,

end
end

purposes, and the Asti province for testing. Among those
containing annotations, we further select 20% of the train-
ing orthophoto for validation purposes. In total, we obtain
696 tiles, divided into 404 images in training, 123 for vali-
dation purposes, and 169 for testing, with a number of panels
equal to 12,495, 2,260 and 3, 154 respectively, accounting
for the repeated annotations introduced by the overlapped
preprocessing. To reduce any possible overfitting, we further
apply geometric and photometric augmentations, including
flipping, rotation and scale, as well as random brightness,
contrast or gamma adjustments, and weak Gaussian noise or
blur applications. We test every solution on both the RGB and
RGB-IR variants, leading to a total of four dataset versions,
namely: base RGB, extended RGB, base RGBIR and extended
RGBIR. These combinations contain the same ground truth
annotations, they only differ in the number of channels or the
number of tiles.
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FIGURE 6. Visual representation of the steps of the polygonization algorithm, from left to right: (i) the raster prediction is converted into a coarse polygon
using the standard Douglas-Peucker algorithm, (ii) each edge is aligned with its dominant MBR orientation, (iii) similar parallel edges are further removed
to clean the final shape, (iv) the discontinuous segments are joined back computing the intersection points between the lines passing through the edges.

During the dataset extension process, we exploit an auto-
matically annotated sample of 10, 000 tiles, retrieved from
regions without tiles inside the Alessandria province. We fur-
ther divide 70% of them into panel-wise augmentation,
namely copying the entire label from another annotated tile,
leaving for the remaining 30% to superimpose randomly
chosen panels in random locations (i.e., instance-wise). For
the experiments using the RGB-IR dataset variants, we adapt
each model to support the additional infrared band by simply
copying the weights from the red channel, including its mean
and standard deviation for the input normalization step.

We adopt AdamW as optimizer to update model weights
during training, with an initial learning rate set to 2.5 x 1073,
momentum equals to 0.9 and weight decay of 1 x 104, Fol-
lowing standard practice, every instance segmentation variant
has been trained using a smooth L1 loss for the OBB regres-
sion head, and a cross-entropy loss for the class and mask
heads. Similarly, without considering the additional regular-
izations, semantic segmentation models also adopt a stan-
dard, pixel-wise, cross-entropy loss. Every model has been
trained on a workstation equipped with NVIDIA GeForce
RTX 2080 Ti GPUs, using a batch size of 4 tiles for a total of
80 epochs for the base datasets and 12 epochs for the extended
datasets.

All experiments and data processing have been conducted
using the Python programming language, adopting PyTorch?
as deep learning framework, together with shapely and raste-
rio to handle vector and raster data respectively. Instance seg-
mentation models further exploit the mmrotate framework,’
for training and evaluation purposes.

B. INSTANCE SEGMENTATION RESULTS

We assess the results of instance segmentation using the
mean Average Precision (mAP), computed on the test set.
The metric can be expressed as the average of the class-wise
Average Precision (AP):

N
1
mAP = — Z:AP,' )

2https://pytorch.org
3https://githubAcomlopen—mmlab/mmrotate
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where N is the number of classes in the dataset, equal to
N = 2 in our case, and AP; is the average precision observed
for the class i. The AP of a specific class is evaluated as the
area under the Precision-Recall (PR) curve, in turn obtained
by plotting the values of precision and recall at different IoU
values. We compare our custom architecture against state-
of-the-art OBB detection solutions, namely Oriented RCNN
[38] and Rol Transformer [37]. Since the former also uses a
RPN and a separate head for final output, we evaluate the
impact of the additional mask head, as reported in Fig. 4,
exploiting the feature maps Rol candidates of the RCNN head
to output a segmentation prediction. The same modification
cannot be directly applied without further modifications to
Rol Transformer, given this component directly substitutes
the RPN network, thus completely changing the candidate
extraction mechanism. However, for comparison, we present
the results obtained considering the OBB performance only.

To provide an initial performance evaluation of the pro-
vided architecture against similar architectures, we first train
all three models on the base RGB dataset under the same con-
figuration settings described above. Given the similarity in
terms of downstream task, we also assess the impact of initial-
izing the model using weights pretrained on the DOTA dataset
[41]. Baseline results are shown in Table 2. As expected, start-
ing from a pre-trained model leads to better performances,
regardless of the chosen architecture, also given the relatively
low-resource dataset employed. Furthermore, the use of a
mask head can provide an additional increment to the final
score, albeit contained. The Rotated Mask RCNN reaches
24.64 mAP. with a 42 mAP increment with respect to the
OBB variant.

In order to further assess the impact of pretraining, mask
head and the dataset extension with visible and infrared
bands, we perform a second set of experiments, studying the
performance variations at each addition. Given the compa-
rable performance with other approaches, for simplicity we
only leverage on the custom Rotated RCNN architecture for
this set, who results are detailed in Table 3. These scores high-
light how the use of extended dataset version, regardless of the
input bands, mask head or pretraining, is always beneficial in
this configuration: this is most likely due to the region-based
approach of the chosen architecture, which does not only
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focus on the pixel-level information but mostly learns to
discern instances from the background. At the same time,
the limited resources exploited during the base training may
not be enough to train this more complex architecture, in the
opposite trend with semantic segmentation. Concerning the
addition of the infrared channel, the results highlight a pecu-
liar trend: the only use of the visible spectrum leads to better
performances in the base configuration, while this behaviour
completely reverses when considering the extended dataset,
displaying a minimum of 4+1 mAP increment on each RGBIR
variant with respect to its 3-channel equivalent. Again, this
may be due to the lower amount of training data in the former
case: the base dataset might not be enough for the model
to take advantage of infrared data, especially considering
configurations pretrained on RGB images. On the contrary,
the use of the extended dataset allows the full exploitation
of this modality, allowing the model to adapt and exploit
the additional information over time. Finally, Table 3 again
confirms the importance of the mask head and its contri-
bution to the final results. We observe that such addition
almost consistently outperforms the OBB-only variants in
every scenario, up to obtaining a total 30.73 mAP from the
combination of the extended dataset with RGBIR bands,
DOTA pretraining and auxiliary mask head, surpassing the
other models by at least +2 mAP. However, considering the
class-wise outputs we note that, while polycrystalline PV
panels are often well-defined and delineated, the monocrys-
talline category remains extremely challenging. As we can
see in the qualitative results in Fig. 7, instance segmentation
outputs tend to mistake dark, rectangular shadows and areas
for the monocrystalline panels, placing however proposals in
plausible locations, such as house roofs.

In summary, while instance segmentation may not produce
accurate delineations, their proposal-based approach can be
a good fit for a simpler detection estimate, where the focus
remains on the localization of the installations. If an accurate
segmentation is instead required, semantic approaches pro-
vide an edge over instance solutions, especially with smaller
datasets, as shown in the next section.

C. SEMANTIC SEGMENTATION RESULTS
We evaluate the results obtained from the semantic segmenta-
tion models using the Intersection over Union (IoU) metric,
or Jaccard index, computed as the ratio of overlapping pix-
els between predictions and ground truths and their union.
We maintain the residual UNet (ResUnet) decoder across
every experiment, and we test different combinations of
encoders, bands, and dataset configurations. Given the effec-
tiveness demonstrated in the previous experiments, we adopt
pretrained weights for the backbones in all the semantic tests.
Considering the unbalanced dataset, we compute both the
macro-averaged and micro-averaged IoU to provide a more
comprehensive overview of the performances, respectively
referred to as MIoU and mloU.

The results, detailed in Table 4, highlight in the first place
the challenging detection of the monocrystalline panels. For
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TABLE 2. Results of instance segmentation experimented architectures,
considering RGB base dataset. Combining pretraining and mask head
leads to higher results for the simpler rotated RCNN, when compared to
state-of-the-art solutions.

Model Mask Pretrain mAP
Oriented RCNN 19.15
Oriented RCNN v 21.49
Oriented RCNN v 23.15
Oriented RCNN v v 22.03
ROI Transformer 23.85
ROI Transformer v 24.09
Rotated Faster RCNN 20.81
Rotated Faster RCNN v 22.25
Rotated Faster RCNN v 22.33
Rotated Faster RCNN v v 24.64

TABLE 3. Variation study on the instance segmentation framework,
assessing the contribution of each component to the overall score.

Set | Bands Pretrained Mask Mono Poly | mAP
RGB 7.58 34.04 | 20.81

RGBIR 1.98 37.16 19.57

RGB v 8.09 35.41 21.75

Base RGBIR v 1.21 36.87 19.04
RGB v 9.09 40.20 | 24.64

RGBIR v 4.55 37.93 | 21.24

RGB v v 9.09 35.57 | 22.33

RGBIR v v 0.94 36.44 18.69

RGB 2.31 4747 | 24.89

RGBIR 9.09 48.00 | 28.55

RGB v 242 47.17 | 24.79

Ext RGBIR v 3.03 48.74 | 25.89
: RGB v 2.82 52.33 | 27.58
RGBIR v 4.55 53.44 | 28.99

RGB v v 3.06 53.51 28.29

RGBIR v v 9.19 52.37 | 30.73

comparison, we report in the first row our best instance
segmentation approach rasterizing its output and computing
the same metrics on a pixel level. Considering the base dataset
without additional improvements, i.e. only considering those
training tiles with annotated PV panels, we observe that the
semantic approach is already enough to surpass the delin-
eation capabilities of the instance-based model in two out of
three categories. The amount of input information is in fact
enough to discern between background and polycrystalline
pixels, which represent the vast majority of installations,
while either struggling or completely failing to delineate
monocrystalline plants. Training with the additional infrared
band appears to be extremely beneficial for the latter category,
bringing the class IoU to 45.90, as well as for the remaining
ones, improving by at least one point each. Contrary to the
expectations, the dataset extension is instead detrimental for
the semantic use case, managing good results only on the
easier polycrystalline class and reaching a maximum MloU
of 57.07, which does not improve over the baselines. This
is most likely due to the label contamination [55] gener-
ated by the copy-paste mechanism: while pixels completely
inside or outside correctly represents their respective class,
labels on the decision boundary may contain some noise.
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FIGURE 7. Qualitative results of our best solutions on four different installations, including industrial plants with different scales and domestic PV
panels. From top to bottom: instance segmentation, semantic segmentation, semantic segmentation with post-processing polygonization and

regularization algorithm, initial ground truth. Best viewed on screen.

Moreover, the copy-paste mechanism introduces, on these
borders, a strong discontinuity in the visual patterns, work-
ing against the pixel-wise prediction mechanism of semantic
segmentation approaches.

Our best results with this approach, as well as the best
overall results across all the experiments, were obtained from
the multiscale training, indicated by the ms entries. The intro-
duction of the consistency regularization across scales allows
in fact for a +6.2 macro IoU improvement over the best base-
line, with the strongest contribution given by the monocrys-
talline class, reaching 62.49 without further processing. The
additional infrared band appears once again crucial to cor-
rectly define this last category, while the polycrystalline and
background classes report comparable results. As a final test,
we assess the effectiveness of our post-processing algorithm
by extracting regularized polygons from the raw prediction
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and subsequently revert them back to raster tiles for evalua-
tion. With the only application of this procedure, we obtain
a substantial improvement in the monocrystalline category,
reaching 74.34 IoU with an increment of +11.63 from the
highest raw value obtained. The improvements over the raw
predictions can be observed in Fig. 7, where the regularized
polygons are compared with the raw output, as well as the
predictions from the instance segmentation framework. Con-
cerning large-scale installations (left), we observe that both
semantic and instance approaches provide excellent results.
On smaller industrial and agricultural plants, both approaches
suffer in terms of performance, with instance segmentation
favouring a higher recall, although with misplaced propos-
als, and semantic segmentation providing a more precise
localization, at the cost of losing parts of the PV panel sur-
face. Similar behaviour can also be observed on domestic
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TABLE 4. Semantic segmentation results using ResUnet with various
combinations of encoders, bands, and datasets. The first row provides an
assessment of the best instance segmentation model using semantic
metrics.

Encoder Bands  Dataset | Backgr. Mono Poly | MIoU mloU

resnet50  RGBIR  ext. | 93.23 3.41 56.12 | 50.92 87.38
resnet50  RGB base 94.97 0.00 82.71 | 59.23 91.25
convnext RGB base 95.62 0.00 85.08 | 60.24 92.17
resnet50  RGBIR  base 96.32 36.46  86.01 | 72.93 93.41
convnext RGBIR  base 97.24 4590  86.83 | 76.66 94.37
resnet50  RGB ext. 93.19 0.00 57.59 | 50.26 87.24
convnext RGB ext. 94.12 5.14 58.34 | 52.53 88.76
resnet50  RGBIR  ext. 94.78 0.00 68.74 | 54.51 90.85
convinext RGBIR  ext. 95.21 5.95 70.05 | 57.07 91.05

resnet50 RGB
convnext RGB

base-ms | 97.34 3750 8146 | 5948  93.84
base-ms | 97.32 2474  83.03 | 53.88  94.06

resnet50  RGBIR  base-ms | 98.25 58.88  85.69 | 80.94  96.57
convnext RGBIR  base-ms | 98.17 62.49 85.53 | 82.86 96.53
convnext RGBIR  ms+post | 98.63 74.12 8691 | 86.55 97.34

installations, where the instance-based approach manages to
correctly delineate even non-exposed panels, while semantic
segmentation approaches only provide a partial definition.
We also note that both approaches were able to identify
additional panels whose annotations were not present in the
ground truth, as visible in three out of four images in the last
row of Fig. 7.

VI. CONCLUSION

In this work, we investigated the task of PV panel detection
and delineation from aerial imagery. To this end, we proposed
a novel custom dataset, providing hundreds of VHR images
and more than 9000 annotated panels in the Piedmont region,
in Italy. This dataset not only provides accurate and manu-
ally defined labels but also several additional attributes and
metadata such as their orientation or category, which could be
exploited in a wide range of contexts, from energy production
estimates to monitoring and performance analysis.

To provide an initial benchmark over this dataset, we then
focused on a comparative evaluation of instance and semantic
segmentation methods, aimed at the delineation of PV pan-
els and their classification in monocrystalline and polycrys-
talline installations, considering every available industrial,
agricultural or domestic plant. Furthermore, we provided sev-
eral ad-hoc adjustments to both approaches to improve their
performance, including a simple dataset extension mecha-
nism, very effective for instance segmentation approaches,
a multiscale training for semantic-based training, and a
post-processing algorithm to exploit prior knowledge about
the shape of PV panels and provide a more accurate and clean
vector output.

Despite the promising results, we note a number of limi-
tations that could be addressed in future iterations. First, the
dataset only contains annotations for all the known industrial
plants, but only contains a small percentage of the overall
PV panel coverage in this area, due to both the absence of
a local or national census and the difficulty in manually iden-
tifying such installations from aerial photography. Conse-
quently, this provides further limitations on the effectiveness
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of downstream tasks, especially considering more complex
approaches: this is particularly noticeable in the instance
segmentation variants, where the only addition of a dataset
extension through copy-paste augmentations was enough to
greatly improve the results on this task. Second, despite the
large area with a high number of PV panels and the VHR
imagery, we acknowledge that the covered surface remains
quite limited for applications on a larger scale, due to inherent
differences among geographical areas in terms of both land
cover and land use.

Future works will focus on addressing these limitations,
considering both the underlying data and the methodolo-
gies devised to solve the task at hand. On one hand, the
dataset can be expanded in several ways: in the first place,
by providing manual annotations for every PV panel, also
exploiting the very same models derived from this work
with an iterative, human-in-the-loop (HITL), approach. Addi-
tional option would be adding new VHR imagery to the
set, including new areas, more recent time periods, or even
new modalities such as Digital Surface Maps (DSM). On the
other hand, the proposed methods could be improved to bet-
ter exploit the available information, exploiting for instance
semi-supervised training mechanisms by generating pseudo-
labels [61], or more recent state-of-the-art architectures, such
as Segformer [25].
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