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Abstract. Innovative, automated, and non-invasive techniques have been developed by sci-
entific community to indirectly assess structural conditions and support the decision-making
process for a worthwhile maintenance schedule. Nowadays, machine learning tools are in the
spotlight because of their outstanding capabilities to deal with data coming from even hetero-
geneous sources and their ability to extract information from the structural systems, providing
highly effective, reliable, and efficient damage classification tools. In the current study, a super-
vised multi-level damage classification strategy has been developed regarding Ground Penetrat-
ing Radar (GPR) profiles for the assessment of tunnel lining conditions. In previous research,
the authors firstly considered a convolutional neural network (CNN), adopting the quite popu-
lar ResNet-50, initialized through transfer learning. In the present work, further enhancements
have been attempted by adopting two configurations of the newest state-of-art advanced neural
architectures: the neural transformers. The foremost is the original Vision Transformer (ViT),
whose core is an encoder entirely based on the innovative self-attention mechanism and does
not rely on convolution at all. The second is an improvement of ViT which merges convolution
and self-attention, the Compact Convolution Transformer (CCT). In conclusion, a critical dis-
cussion of the different pros and cons of adopting the above-mentioned different architectures
is finally provided, highlighting the actual powerfulness of these technologies in the future civil
engineering paradigm nevertheless.

1 INTRODUCTION

Nowadays, the existing infrastructure heritage is experiencing a reduction in the safety levels,
especially due to aging and degradation effects [1, 2, 3]. Bridges [4, 5, 6] and tunnels [7, 8]
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represents the most important large civil engineering infrastructure items. They accomplish
strategic functions, permitting the connectivity of communications routes to overcome natural
obstacles. For this reason, in the last decade, a noticeably growing interest has been paid to
the research within the structural health monitoring (SHM) field. In particular, indirect and
non-invasive monitoring techniques gained particular notoriety due to their increased reliability,
less invasive investigations, and reduction of the investigation time, which results in lowering
the global maintenance and rehabilitation costs. Automated procedures have been developed by
researchers both to improve the efficiency and productivity of the surveys and even to increase
the objectivity of the obtained results without requiring procedures strongly affected by the
personnel experience [9, 10]. In the present work, a non-destructive structural testing (NDT)
technique based on ground penetrating radar (GPR) has been explored. The adoption of GPR
relies on the emission of electromagnetic (EM) wave impulses inside the material under study.
A receiver antenna collects the reflected back signals to inspect the material in-depth [11]. The
GPR provides therefore an image as output, evidencing the presence of anomalies, defects,
fractures, etc. overcoming the criticalities of a direct visual inspection. When GPR is adopted
to monitor the health status of a tunnel, the GPR linings require experienced personnel to
identify and classify the presence of any defects. Machine learning (ML) and, especially, deep
learning (DL) methods provide modern and powerful tools for automatic image processing and
classification tasks [12, 13]. Convolutional networks (CNNs) have been demonstrated as effective
tools to accomplish those tasks, and they represent the most nowadays widespread adopted
techniques [14, 15]. In the present work, two other advanced DL methods based on neural
transformers have been tested in the road tunnels SHM paradigm. The main goal is to show
how recent progress in artificial intelligence (AI) may further improve or not the contemporary
CNNs models [16], and if these novel approaches may replace CNNs soon. In next section 2,
the neural vision transformer (ViT) [17] and the compact convolution transformer (CCT) [18]
are briefly described. In section 3, the AI-based GPR defects automatic classification procedure
and the adopted dataset has been described. Eventually, in section 4, the obtained results from
the first 3 classification levels are presented and critically discussed.

2 NEURAL TRANSFORMERS: BRIEF OVERVIEW

Since 2017, the study entitled “Attention is all you need” [19] echoed as a revolution in DL
field. The authors introduced for the first time the novel architecture of neural transformers
for Natural Language Processing (NLP) tasks. This paradigm is based on the self-attention
mechanism which analyses the entire sequence (sequence-to-sequence mechanism) and retrieves
the relationships among the elements, even long-range ones. Transformers’ blocks may be par-
allelized for computational efficiency and may also deal with large-scale datasets. Since these
models are remarkably computational demanding, transfer learning processes has revealed to be
the most promising direction to effectively exploit them [14]. Recently, impactful and fruitful
studies have been conducted such as, e.g., the introduction of BERT model (Bidirectional En-
coder Representations from Transformers) [20], or the adaptation of neural transformers to deal
with images data types, as further illustrated in the next subsections.
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2.1 Vision transformer

Vision Transformer (ViT) is a new state-of-art approach in deep learning for image processing
and image classification. Firstly appearing in October 2020, the ViT sounds to beat the best
CNN models such as Res-Net for image classification for a sufficiently large dataset for pretrain-
ing [21]. ViT is based solely on the encoder network part of the neural transformer architecture,
born for natural language processing [19]. Foremost, the ViT model requires partitioning the in-
put image into n patches of the same shape, which can overlap or not, e.g. produced by a sliding
window that slides on the input images based on a user-defined stride. Each patch in general is
a size 3 tensor of shape d1 × d2 × d3 corresponding to the Red-Green-Blue (RGB) digital image
encoding. A vectorization procedure involves each i-th patch producing a column vector xi,
with i = 1, 2, ..., n, of dimension d1d2d3×1. All the n vectors are then fed into a learnable dense
layer with shared parameters and with a linear activation function to produce an embedding zi

for each xi. The weights parameters are learned from training data during the training phase.
This procedure is acknowledged as flattening using a linear projection matrix [17]. To consider
the actual position of patches with respect to the initial input image, a positional encoding [19]
is applied and summed to the zi. In this way, the new representation of the input information zi

captures both the content and the position of the i-th patch. Furthermore, the [CLASS] token
for classification of BERT model [20] is fed to an embedding layer producing the vector z0 of
the same shape as other embeddings. The sequence of vectors {zi}

n

i=0 are subsequently fed to
the neural transformer encoder block, composed of a stack of a multi-head self-attention and
dense fully-connected layer blocks, actually employing normalization and skip connections. The
output of the neural transformer encoder is a new representation of the input vectors {zi}

n

i=0

mapped to a new representations {ci}
n

i=0 which integrates the scaled dot-product attention (the
self-attention) [19]. In any case, only the c0 is considered for the classification task, and the
others are usually ignored. This vector represents the feature vector from the input image. This
vector is thus fed to a softmax classifier which outputs into a column vector p of size equal to
the number of output classes. Each element of p presents a probability associated with each
output class. In the current study, a pre-trained ViT model has been considered and only a
fine-tuning of the last classification layers has been performed on the GPR profiles, within a
transfer learning approach, likewise in [17].

2.2 Compact convolutional transformer

In [18], the authors proposed a novel variant of the standard ViT model, attempting to provide
a compact version of this model in order to overcome the common problem of transformers
“data-hungry”. Since they have millions of parameters, it appeared impossible to train a ViT
from scratch for most common applications where datasets are usually limited in size [17]. The
Compact Convolution Transformer (CCT) starts from the ViT architecture and provides a few
essential changes. Foremost, the CCT introduced a convolutional tokenization method, with a
customizable number of blocks, each of them based on the conventional convolution blocks:

x0 = MaxPool[ReLU(Conv2d(x))] (1)

where the convolution operation Conv2d is performed by d filters applied to the input image x,
coincident with the embedding dimension of the encoder block. In this way, the CCT bypasses
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the patching problem, which requires an image whose sizes are exactly divisible by the patch
size. Moreover, the convolution, followed by rectified linear unit (ReLU) activation function and
MaxPool pooling operation, provide a more efficient compact image embedding representation
[18]. CNN desirable properties, such as efficiency, learnable weight sharing, local information
preservation, and equivariant representations, have been embedded in this way into the trans-
former paradigm. Furthermore, by exploiting the self-attention mechanism, CTT overcomes the
CNN shortcoming when dealing with long-sequence relationships, besides preserving local infor-
mation among patches. Unlike the ViT model, CCT removes the BERT-based [CLASS] token to
perform the final classification. CTT rather introduces a so-called sequence pooling mechanism,
to compress the information of the output results from the multi-head self-attention blocks,
improving the efficiency of the final multi-layer perceptron (MLP) which actually performs the
classification task [18].

3 GPR FOR ROAD TUNNEL SHM

The adoption of GPR permits indirect NDT for road tunnel health inspections with quite
rapid and highly efficient surveys [22]. Based on a geophysical technique [11], the GPR recon-
structs an image of the internal conditions of the material investigated according to its dielectric
characteristics. A GPR tunnel lining profile image presents the explored depth on the vertical
axis and the longitudinal progressive distance from the beginning of the tunnel until its end on
the abscissa axis. The high-frequency EM impulses (frequency in the range of 10-2600 MHz)
are reflected when the EM waves encounter sudden dielectric feature changes, possibly induced
by anomalies, voids, frontiers with different materials, cracks, etc. In the reconstructed images,
each of these causes provides appreciably characteristic patterns, which can be virtually recon-
ducted to its specific cause. Nowadays, expert and qualified staff provide a manual interpretation
of GPR tunnel linings profiles for SHM purposes, resulting in a labeled image as depicted in
Figure 1. The main goal of the current study is to explore AI and DL-based methods, providing
more reliable, less subjective, and automatic image processing and tunnel defects classification
[12, 13].

3.1 Hierarchical multi-level road tunnels defect classification

The GPR road tunnel linings dataset of the present work refers to a dataset collected by a
GPR testing campaign performed on Italian tunnels dated between the 1960s and 1980s. The
size of the available dataset is depicted in Figure 2. Moreover, two types of GPR have been
adopted for the NDT surveys based on the frequency range, and thus on the type of antenna
[15]. Starting from human experts’ labelled profiles, those images have been cropped with a
constant step of 5.00 m each. These cropped images may contain well recognizable defects,
therefore they represented the actual input data for the DL models. When required, the cutting
step has been manually adjusted to avoid the same defect straddles between two consecutive
cropped samples. In this way, the quality of the samples improved, affecting also the DL learning
performances. In the current work, the classification task is organized as depicted in Figure 2. It
involves a hierarchical multi-level classification procedure to better identify which kind of defect
is observed in the GPR tunnel linings profiles. In general, seven DL classification models should
be trained to accomplish the GPR tunnel defects classification tasks for SHM purposes. In the
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Figure 1: An example of a GPR profile with defect patterns interpretation by human experts.

present work, only the first three models have been analysed, i.e. the level 6, the level 5, and
the level 4 illustrated in Figure 2. On these three analysed levels, the ViT and the CCT have
been trained and tested.

4 RESULTS AND DISCUSSION

In the present work, the first three out of seven DL classification models have been analysed to
accomplish the GPR tunnel defects classification tasks for SHM purposes with state-of-art image-
processing advanced DL approaches. Specifically, referring to Figure 2, the authors focused on
level 6 (1080 images in total), level 5 (2188 images in total), and level 4 (3124 images in total).
On these three analysed levels, the ViT and the CCT have been trained and tested. The dataset
has been split considering 90% of the total images per level to belong to the training set and
the resulting 10% belonging to the test set. For the ViT model, the pre-trained model provided
by [23] has been imported based on available python Keras implementation [24]. Fine-tuning
final blocks have been added to the ViT model, the input images have been resized to 224x224
pixels, batch size has been fixed to 16, a validation set of 10% of the training set has been used
during the training process, the categorical cross-entropy loss [25] has been adopted, and the
model for each level has been trained for 20 epochs. The results obtained on the test set are
illustrated in Table 1 in terms of confusion matrices, precision, recall, f1-score metrics [26]. For
the ViT model, an example of self-attention maps has also been provided in Figure 3.

For the CCT model, model training from scratch has been performed according to [18]. Two
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Figure 2: Hierarchical tree multi-level classification representation.

(a) (b)

Figure 3: ViT processed output: example of attention map visualization. (a) resized image
belonging to C11 class; (b) attention map provided by ViT model.

convolutional layers have been adopted in place of the image patching of ViT, with kernel size
equal to 3 and pooling stride set to 2. The optional positional embedding has been maintained
in the current implementation. The input images have been resized to 224x224 pixels, the
number of encoder layer blocks has been set equal to 2, the batch size has been set to 16, the
categorical cross-entropy loss [25] has been adopted, and each model has been trained for 20
epochs. The results obtained on the test set are illustrated in Table 2 in terms of confusion
matrices, precision, recall, f1-score metrics [26].
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Table 1: Results of ViT model for levels 6, 5 and 4.

Level 6

Predicted Accuracy Tot. images/class Test set support Precision Recall f1-score
True C13 C14

0.99074
C13 408 53 1.000 0.981 0.990

C13 52 1 C14 672 55 0.982 1.000 0.991
C14 0 55 Total 1080 108

Level 5

Predicted Accuracy Tot. images/class Test set support Precision Recall f1-score
True C11 C12

0.99543
C11 1108 115 0.991 1.000 0.996

C11 115 0 C12 1080 104 1.000 0.990 0.995
C12 1 103 Total 2188 219

Level 4

Predicted Accuracy Tot. images/class Test set support Precision Recall f1-score
True C9 C10

0.99042
C9 936 96 0.989 0.979 0.984

C9 94 2 C10 2188 217 0.991 0.995 0.993
C10 1 216 Total 3124 313

Table 2: Results of CCT model for levels 6, 5 and 4.

Level 6

Predicted Accuracy Tot. images/class Test set support Precision Recall f1-score
True C13 C14

0.78704
C13 408 53 0.875 0.660 0.753

C13 35 18 C14 672 55 0.735 0.909 0.813
C14 5 50 Total 1080 108

Level 5

Predicted Accuracy Tot. images/class Test set support Precision Recall f1-score
True C11 C12

0.80365
C11 1108 115 0.821 0.800 0.811

C11 92 23 C12 1080 104 0.785 0.808 0.796
C12 20 84 Total 2188 219

Level 4

Predicted Accuracy Tot. images/class Test set support Precision Recall f1-score
True C9 C10

0.85623
C9 936 96 0.774 0.750 0.762

C9 72 24 C10 2188 217 0.891 0.903 0.897
C10 21 196 Total 3124 313

4.1 Discussion

The advanced DL VIT and CCT models have been trained for automatic defects classification
of road tunnels with NDT based on indirect GPR tunnel linings profiles. Table 1 illustrates the
advantages of adopting a pre-trained model in the spirit of a transfer learning approach. Because
of this approach, even with a reduced number of epochs, the results in terms of accuracy are
noticeably for the so far analyzed levels. The overall accuracy for the three analyzed levels
is obtained by the product of the three level’s accuracy, resulting in about 97.7%. The self-
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attention mechanism provides the ViT of a powerful feature extractor, as depicted in Figure 3.
In this Figure, it is possible to notice how the attention map enhances the characteristic parts
which help the DL model in the classification task, and how the useless parts of the image have
been darkened. Both precision and recall are close to unity, and their harmonic mean, i.e. the f1-
score, demonstrates remarkable high performances for the fine-tuned ViT model for automated
GPR defect classification. On the other hand, despite CCT being declared to be a transformer
compact version able to work with small datasets, the performances obtained in this study are
mildly satisfactory. The accuracy for each level stalled at about 80%, which virtually appears
quite acceptable. However, if the overall accuracy is computed, this results in about 54.2%, thus
quite poor performances. Furthermore, a deeper insight into the confusion matrix evidence how
one class is often better recognized with respect to the other class at each binary classification
level. This fact evidences that the CCT exhibits insufficient classification ability. Moreover,
in this case, the accuracy does not represent the best metric to evaluate CCT performance,
but the f1-score may represent a more reliable metric. Probably, these poor performances are
referred to the fact that training CCT from scratch involves millions of parameters, however, the
dataset is generally small compared to the number of learnable parameters. This produces the
CCT model to be essentially prone behaviour towards overfitting issues. Future improvements
in CCT performances may be related to increase the training epochs to further reduce the loss,
or increase the batch size to 32. This may virtually lead to higher computational efforts, but
it virtually represents the first attempt to improve the performance of the model, always with
special consideration for overfitting issues.

5 CONCLUSIONS

In the present work, two advanced state-of-art DL models for image processing have been
adopted for road tunnels GPR linings for automatic multi-level defects classification for SHM
purposes. Specifically, the neural transformers adapted to deal with image data have been used.
The foremost DL technique is the ViT model adopted with the transfer learning paradigm. The
ViT approach exhibited remarkably interesting results for the analyzed classification levels on
the test set, providing an overall accuracy of around 97.7%. For the sake of comparisons, another
transformer variant, the CCT, has been explored since their interesting compact version which
exploits convolutional layer instead of patching methods as starting embedding and tokenization
procedure. However, the resulting performances in terms of accuracy on the test set appear
mildly satisfactory considering every binary classification level alone (around 80% for every
single level), nevertheless resulting in insufficient overall accuracy performances considering the
three analysed levels (about just 54.2%). In future studies, the authors will extend the present
implementation to the other classification levels and compare the transformer solution with other
more simple and widespread techniques, such as CNN.
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