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Abstract.
Recent progress on the understanding of axisymmetric pertubations in tokamak plasmas is

presented, with particular attention on Vertical Displacement Oscillatory Modes (VDOM) that
can be driven unstable by their resonance with fast ion orbits, and on the impact of divertor
X-points on the stability of vertical displacements.

1. Introduction
Renewed interest in axisymmetric modes has been prompted by the observation of saturated
fluctuations with toroidal mode number n = 0 in ICRH and NBI heated JET plasmas, where
MeV ions are produced [1, 2]. Furthermore, an interesting and until now little studied problem
concerns the singular behavior of divertor X-points to n = 0 perturbations, which is likely to give
rise to axisymmetric current sheets localized in the vicinity of the divertor X-points and along
the magnetic separatrix [3]. This article focuses on recent progress in the understanding of these
two aspects.

Recent progress on the development of analytic theory for n = 0 modes is reviewed. Particular
attention is given to the resonant excitation of VDOM by energetic ions, which requires a fast
ion distribution with a positive slope as a function of energy. As also pointed out by other
authors [2, 4], a positive slope can be produced when the fast ion source is modulated on time
scales that are short compared with the fast ion slowing down time. Here, we show that source
modulation by sawtooth oscillations can lead to the same result. In the final part of this article,
we discuss the effect of the ideal-MHD X-point resonance on n = 0 modes.

This article is organized as follows. The equilibrium scenarios and model equations are
discussed in Sec. 2. A general dispersion relation that includes the effects of a nearby resistive
wall is derived in Sec. 3. Fast ion effects are discussed in Sec. 4. In Sec. 5, we focus on
mechanisms leading to the formation of fast ion distributions with a positive slope as a function
of energy. X-point effects are discussed in Sec. 6. Conclusions are presented in Sec. 7.

2. Equilibrium: limiter and divertor scenarios
Analytic theory is possible if a relatively simple equilibrium configuration is adopted. With
reference to Fig. 1, we assume the plasma current density to be uniform up to a convenient
elliptical flux surface, and zero outside. The analytic solution for the equilibrium flux function
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Figure 1. Equilibrium configuration

in elliptical coordinates (µ, θ) was derived in Ref [5]. We distinguish two scenarios of interest.
In the first scenario, which we call the limiter scenario, the plasma density is also assumed to be
constant and to drop to zero at the convenient elliptical surface, which is then the actual plasma
boundary with µ = µb. The region Ω, displayed in Fig. 1, describes the whole volume occupied
by the plasma including its boundary, i.e. up to µb + ϵ. A nearby wall, not shown in the figure,
modeled as a confocal ellipse surrounds the plasma. The stability of this configuration on the
basis of the ideal MHD energy principle for an ideal wall was studied by Laval et al in classic
paper [6]. Recently [7], we have extended the work of Ref. [6] by assuming a resistive wall and
normal mode analysis, which leads to a cubic dispersion relation for the mode frequency (see Sec.
3). In the second scenario [3, 8], the divertor scenario, the uniform plasma density extends to
the magnetic separatrix, which therefore is the actual plasma boundary. In this case, perturbed
currents can be driven along the separatrix and X-point effects become important. This scenario
is briefly discussed in Sec. 6.

Normal mode analysis is carried out on the basis of the standard reduced ideal MHD model [9].
Fast ion effects are introduced perturbatively according to kinetic-MHD as described in Sec. 4.
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3. Dispersion relation in the limiter scenario
In this section, with the help of quadratic forms, we derive a dispersion relation for n = 0 vertical
modes in the limiter scenario for arbitrary values of the ellipticity parameter

e0 =
b2 − a2

b2 + a2
, (1)

with plasma elliptical boundary minor and major semi-axes a and b. The dispersion relation
depends on geometrical parameters and on a function, Dw(γ), determined by the geometry and
the resistivity of the wall, which becomes independent of γ in the ideal wall limit.

−γ2 =
δWcore(γ) + δWfast(γ)

δI
, (2)

where δI is defined as
∫
Ω ρmξ

2/2, with mass density ρm and plasma displacement ξ. The
δWcore(γ) includes the wall effects and becomes dependent on γ when the wall resistivity is
taken into account. The fast ion contribution, δWfast, is neglected in this section.

The core contribution to δW following the limiter scenario equilibrium described in [7] can
be written as:

δW =
1

2

∫
Ω
d3x

(
ez ×

∇φ̃∗

γ∗

)
· (J̃∇ψeq + Jeq∇ψ̃), (3)

where φ̃∗ is the complex conjugate of the perturbed stream function and ψ̃ is the perturbed
magnetic flux. The stabilizing effects of the passive wall are included in the total plasma
displacement of which both perturbed quantities depend. The eddy currents induced in the
wall generate a contribution to the perturbed flux, which in turn is consistent with part of the
plasma displacement, denoted by ξext, that opposes the vertical plasma displacement. As shown
in [7], the total plasma displacement is the combination of the no-wall displacement and this
external contribution: ξ = ξ∞ − ξext.

From Eq. 3 one can thus obtain:

δWcore = −π
2
Lz

1− a/b

ab

1−Dw(γ)

1− ê0Dw(γ)
ξ2, (4)

where ê0 = e0b/(a+ b). The parameter Dw(γ) takes into account the resistive wall effects and it
is defined as:

Dw =
ξext
ê0ξ∞

= D
γτη

1 + γτη
. (5)

If the wall providing passive feedback stabilization is ideal (resistive wall time τη → ∞), Dw(γ)
reduces to a geometrical factor D, that depends on wall position and geometry. In the no-wall
limit in which the wall distance becomes very large, the external contribution to the plasma
displacement ξext vanishes and D → 0. The maximum value for the parameter D is obtained
when the wall coincides exactly with the plasma boundary. In this limit, D = Dmax = 1/ê0
and the denominator in Eq. (4) vanishes together with the amplitude of the displacement,
ξ = ξ∞ − ξext, as ξext → ξ∞. For an elongation b/a = 1.4, this maximum value is Dmax ≈ 5.3.
For an elliptical wall confocal to the plasma boundary with aw/a ≈ 1.3, then D ≈ 3.5.

Using Eq. 4, the dispersion relation for axisymmetric modes in the limiter scenario can be
written in dimensional form as:

(γτA)
2 =

r40
a2b2

(
1− a

b

) 1−Dw

1− ê0Dw
, (6)
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where r0 = a b/[
(
a 2 + b 2

)
/2]1/2 and τA is the poloidal Alfvén time. This dispersion relation is

“general", in the sense that it can be applied to the three cases of interest, i.e., the no-wall limit,
the ideal wall case, and the resistive wall case, as wall effects are included through the single
stability parameter, Dw.

In the relevant case of nearby resistive wall, the dispersion relation of Eq. 6 becomes a cubic.
The stabilization of the ideal vertical instability requires the geometrical parameter D > 1.
Thus, the solutions of the dispersion relation correspond to a purely growing mode on resistive
wall time scales γ = 1/(D − 1)τη, which is typically suppressed by means of active feedback
stabilization, and two oscillatory roots described by:

ω = ±ω0 − i
1

2τη

D(1− ê0)

(D − 1)(1− ê0D)
. (7)

These two roots corresponds to oscillatory modes in the vertical direction damped on resistive
wall timescales that we will refer as Vertical Displacemens Oscillatory Mode (VDOM). Their
oscillation frequency ω0 is Alfvénic, and defined as:

ω0 =

[
D − 1

1− ê0D
(1− e0)(1 + e0 −

√
1− e20 )

]1/2
τ−1
A (8)

For typical JET parameters this frequency is of the order of hundreds of kHz.

4. Fast-ion resonance
In this section we focus our attention on the oscillatory solutions of the dispersion relation. In the
situation in which the ideal vertical instability is stabilized by a nearby wall, vertical displacement
oscillatory modes (VDOM) are damped by wall resistivity. Their oscillation frequency is slightly
below the poloidal Alfvén frequency, and as such they are not affected by continuum damping.
This opens the possibility of a resonant interaction withMeV fast ions leading to a destabilization
of these modes, as discussed in [10]. The derivation of the dispersion relation in terms of
quadratic forms presented in the previous section allows for a straightforward introduction of fast-
ion resonant effects via a perturbative approach within the hybrid kinetic-MHD model, where
fast ions are described according to drift kinetics. Therefore, in Eq. 2 we consider only the
immaginary contribution to the mode growth rate coming from the fast ions term δWfast. The
dispersion relation for the oscillatory VDOM is then modified by the wave-particle resonance,
and reads:

ω2 = ω2
0 − 2iω0γη + iω2

0λh +O(γ2/ω2
0), (9)

where γη is the inverse resistive wall time. The dimensionless parameter λh = Im(δWh) ≪ 1
depends only on the so called non-adiabatic part of δWfast, which describes the resonance, defined
in Eq. 10:

δWh = ζ
∑
σ

∫
dPϕdEdµ⊥τΩω

∂F

∂E

+∞∑
p=−∞

|Υp|2

ω + pωΩ
. (10)

Here ζ is a normalization constant, the summation is over co- and counter particles and the
integration is performed over the three invariants of the fast ion motion, i.e. canonical toroidal
momentum Pϕ, energy E and magnetic moment µ⊥. The sum over p comes from the fourier
expansion of the fast particle lagrangian over their orbit periodicity, Υp are the Fourier coefficients
and the denominator shows clearly the resonance condition between the mode frequency ω and
the passing/trapped orbit frequency ωΩ = 2πτ−1

Ω . Due to the fact that we are considering n = 0
modes, the sign of δWh, and thus of λh, depends only on the derivative of the fast ion distribution
function with respect to the energy, ∂F/∂E . As shown in details in Ref. [10], the destabilization
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of the VDOM due to wave-particle resonance requires ∂F/∂E > 0. In the next section we focus
our attention on how to obtain a fast ion distribution function with this characteristic.

5. ∂F/∂E > 0: Losses and source modulation
A fast ion distribution function with positive slope, like the one required for the destabilization
of the VDOM, is not the standard slowing distributions function (the standard slowing down
distribution would result in VDOM damping). In this section we focus on two mechanisms that
lead to a fast ion distribution function with positive slope with respect to the energy: fast ion
losses and source modulation. The first mechanism is the one discussed in Ref. [10]. If the fast
ions are lost fast enough with respect to their slowing down time τsd, the usual slowing down
distribution function cannot form, and a situation with ∂F/∂E > 0 can be achieved. Considering
a constant loss term νloss, it is possible to show that the distribution function as a function of
the velocity for a monochromatic source term at v = vfast, reads:

F (v) ∝ H(vfast − v)/(v3 + v3c )
1−α, (11)

where vc is the critical velocity and α = τsdνloss/3. Thus, when α > 1, the resonant interaction
with fast ions can lead to the excitation of fast ion driven vertical modes (in brief, FIDVM).

The second mechanism consists in the modulation of the source of fast ions on a time scale
shorter than τsd. This can be done, for instance, considering the modulation of heating systems,
as discussed in [4]. In the case of fusion-born alphas, a natural modulation is associated with
sawtooth oscillations [2]. In the following, we focus on this second mechanism. The time
evolution of the q and thermal pressure profiles is modeled analytically according to Kadomtsev’s
sawtooth model [11]. Assuming parabolic q and p profiles evolving along the sawtooth ramp,
the reconnected profiles after the sawtooth crash can be determined analitically, as showed for
the pressure profile in Fig. 2. The thermal plasma pressure is redistributed within the sawtooth
mixing radius. Assuming triangular sawtooth traces as funtion of time, the pressure profile
recovers linearly in time along the ramp. On the other hand, in the limit where the fast ion
precession frequncy is large as compared to the sawtooth crash time, high energy alpha particles
are not affected Kadomtsev radial mixing and remain confined in the core, as discussed in [12].

Figure 2. Pressure evolution during a sawtooth cycle

In the Fokker-Plank equation, the source term for fusion alpha particles is proportional to
the square of the thermal plasma pressure. Therefore, the alpha distribution function becomes
periodic in time, with period equal to the sawtooth period, τsaw. After standard manipulations,
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the equation for the tail (v > vc) of the alpha distribution function f(r, v, t) reads:

∂v3f

∂t
− v

τs

∂v3f

∂v
+ ναv

3f = v3S(r, v, t) (12)

Figure 3 shows the solution of Eq. 12 as a function of velocity for a fixed time, with and
without the effect of the source modulation.

Figure 3. Normalized distribution function as a function of energy considering a loss term
α = 0.5 and τsaw/τsd = 1/3

On a timescale shorter than τsd, this effect, together with a loss rate α = 0.5, leads to a
time dependent distribution function with regions of positive slope with respect to the energy.
This mechanism is capable of providing an instability drive for the n = 0 modes observed
in JET experiments [?]. Indeed, in these sawtoothing experiments, the sawtooth period was
τsaw ∼ 100ms, while the slowing down time of τsd ∼ 300ms.

6. The divertor scenario: X-point effects
The impact of divertor X-points on the stability of vertical displacements was studied in detail
in Refs. [3, 8]. The algebra is rather complex. Here, we summarize the main results.

With reference to Fig. 1, in region ∆ and in the vacuum regions V , it is convenient to
introduce flux coordinates:

u = α−2[ψ+
eq(µ, θ)− ψX ], (13)

v = θ − π

2
+
e0
2
cosh[ 2(µ− µb) ] sin(2θ), (14)

where ψ+
eq is the equilibrium magnetic flux beyond region Ω, ψ+

eq = ψX corresponds to the
magnetic separatrix, and µ = µb is the convenient elliptical surface. Magnetic X-points have
coordinates u = 0, v = 0, π. We concentrate on local behavior near the upper X-point at v = 0.
Normal mode analysis, detailed in Refs. [3, 8], reveals the development of a current sheet along
the magnetic separatrix:

jX(v) ∼ −2e0
ab

√
π

2

(p
2
+ q

) ξ

b
|v|1/2δ(u) as v → 0, (15)
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where ξ is the plasma displacement and

p = [(a2 + b2)/πa2]1/2(1− e20)
−1/4e

1/2
0 (16)

is a positive parameter that scales as e1/20 . The second parameter q can be determined considering
the parity of the perturbed flux along the magnetic separatrix as function of v: q = ±p/2 for
even and odd parity respectively. The dispersion relation is

γ2 = −2

√
πa

2b

(
q +

p

2

) (
1− e20

)1/2
e
3/2
0 ω2

A (17)

We find two classes of modes, depending on the parity of the perturbed flux:

• odd solutions, q = −p/2, the current sheet is absent and the growth rate vanishes, γ2 = 0;
• even solution, q = p/2, a current sheet is present and γ2 < 0, only two oscillatory solutions

are found.

For the latter case, the current sheet that develops near the X-point and along the magnetic
separatrix is capable of providing passive feedback stabilization even in the absence of a nearby
wall! Noting that current sheets always form at the plasma boundary, it was argued in Ref. [8]
that the nature of the current sheet changes as the plasma boundary approaches the magnetic
separatrix. A magnetic flux surface u = umarg, with umarg small (u = 0 corresponding to
the separatrix), must exist, such that, when the plasma boundary is at u = umarg, marginal
ideal-MHD stability against vertical perturbations is obtained for the no-wall case. The relevant
analysis is carried out in Ref [8].

Current sheets have been observed in numerical simulations of the vertical instability in
tokamaks, with advanced numerical codes that treat correctly the X-point geometry such as
M3D-C1, NIMROD and JOREK (see, e.g., [13]). However, analytic understanding of why these
current sheets form, and the impact they have on the stability of vertical displacements, was not
clarified in those numerical works.

7. Conclusions
In this article, recent progress on the analytic understanding of n = 0 modes in tokamak plasma
has been discussed. The article reports five main results.

(1) A general dispersion relation for vertical displacement normal modes has been derived
analytically. Vertical displacements cause an up-down motion of the entire plasma column, and
as such are dominated by Fourier components with elliptical mode number m = 1. The method
of quadratic forms, together with the normal-mode solution for the mode structure, are shown to
be an expedient way to obtain the relevant dispersion relation. The latter contains a parameter,
Dw(γ), which is a function of the complex mode eigenvalue, γ = −iω, for the case of plasma
confined by a resistive wall, see Eq. (5). Dw reduces to a constant D parameter in the limit of an
ideal wall, see Eq. (5). When the wall is moved to infinity (the no-wall case), D → 0. It follows
that the relevant dispersion relation is quadratic in γ for the case of an ideal wall (including the
no-wall limit), while it is cubic in γ for the case of a resistive wall. Thus, an additional root
(compared to the ideal wall limit) is found for the resistive wall case. This root corresponds to a
zero frequency, purely growing mode, with a growth time of the order of the resistive wall time.
Active feedback control systems applied to vertical modes in tokamak experiments concentrate
on the suppression of this purely growing mode [14].

(2) The other two roots, that we have dubbed "vertical displacement oscillatory modes", or
VDOM, are purely oscillatory for the case of an ideal wall, provided the parameter D is larger
than unity, which sets a condition on the distance of the ideal wall from the plasma. The
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oscillation frequency is slightly below the poloidal Alfvén frequency, which makes these modes
immune to Alfvén continuum damping and only weakly damped by wall resistivity.

(3) On the other hand, VDOM can interact resonantly with fast ion populations, which are
present in a tokamak plasma due to auxiliary heating and/or as fusion reaction products. Under
special circumstances, this resonant interaction gives rise to a new fast ion instability, dubbed
fast-ion-driven vertical mode, or FIDVM. Indeed, the theory presented in this article is motivated
in part by the observation of saturated n = 0 fluctuations, with a frequency of the order of the
poloidal Alfvén frequency, in recent JET experiments where fast ions are produced by auxiliary
heating, see Refs. [1, 2]. In those articles, the observations were tentatively interpreted in terms
of a saturated n = 0 Global Alfvén Eigenmode (GAE) [15]. It is early for us to conclude whether,
in fact, the mode observed at JET is a VDOM driven unstable by the fast ion resonance, rather
than a GAE. More experiments are required, but also, the theory presented here ought to be
developed further. Nevertheless, we can indicate the main points of distinction between GAE and
VDOM that may facilitate the experimental identification. These are basically three. First, the
GAE mode frequency for n = 0 is given by [15] ωGAE = vA/qR = τ−1

A , where τA is the poloidal
Alfvén time. On the other hand, the VDOM mode frequency is given by Eq. (7), and, taking the
parameter D above unity, but anyway of order unity, it falls below the GAE mode frequency,
since the ellipticity parameter e0 is typically small. Secondly, the VDOM frequency scales as the
square root of e0, while the n = 0 GAE mode frequency is independent of elongation. Indeed,
the GAE would survive in the circular limit, while the VDOM would not. Thirdly, and perhaps
most importantly, the VDOM mode structure is different from that of the GAE. The VDOM
is a vertical mode, corresponding to a vertical oscillation of the plasma cross-section, with the
relevant perturbed flux an odd function of the poloidal angle. This signature would be easily
detected by magnetic perturbation coils placed on top and bottom of the plasma column. The
GAE mode structure favors instead a ballooning type of parity, with the perturbed flux being
an even function of the poloidal angle.

(4) The FIDVM are excited when the fast ion distribution function develops a positive slope
as a function of energy. This may occur in three situations of interest: (i) sources of auxiliary
NBI and/or ICRH, which produce fast ion populations in current experiments, are modulated
on time scales that are short compared with the fast ion slowing down time, τsd; (ii) a natural
modulation occurs due to sawtooth activity, in the regime where τsaw < τsd. This may be
particularly relevant at JET, as well as for ITER and other future fusion experiments; (iii) Fast
particles are not well confined and are lost before they have completely slowed-down. The most
relevant scenario is probably a combination of the three situations described above.

(5) Finally, for the case where a magnetic divertor separatrix limits the plasma, it was
found in Ref. [3, 8] that, even for the no-wall case, axisymmetric current sheets localized in the
vicinity of the magnetic X-point(s) on the divertor separatrix, induced by vertical displacement
perturbations, lead to passive feedback stabilization of vertical modes. The reason is that X-
points are resonant points for ideal-MHD perturbations with toroidal mode number n = 0. As a
result, flux pile-up will occur in the presence of ideal-MHD flows having the vertical symmetry
around the resonant points. Flux pile-up is the reason for the occurrence of current sheets, which
have the appropriate sign and magnitude to "push back" the plasma drifting vertically towards
a magnetic X-point. In this sense, these X-point currents have the same effect on the plasma as
that of image currents induced by vertical displacements on an ideal (or nearly ideal) wall.
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