
03 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Feature Selection for Cost Reduction in MCU Performance Screening / Bellarmino, Nicolo'; Cantoro, Riccardo; Huch,
Martin; Kilian, Tobias; Schlichtmann, Ulf; Squillero, Giovanni. - (2023), pp. 1-6. (Intervento presentato al convegno 24th
IEEE Latin-American Test Symposium (LATS) tenutosi a Veracruz (MEX) nel 21-24 Marzo 2023)
[10.1109/LATS58125.2023.10154495].

Original

Feature Selection for Cost Reduction in MCU Performance Screening

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/LATS58125.2023.10154495

Terms of use:

Publisher copyright

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2976251 since: 2023-02-21T16:28:29Z

IEEE

Feature Selection for Cost Reduction in MCU
Performance Screening

Nicolò Bellarmino∗, Riccardo Cantoro∗, Martin Huch†, Tobias Kilian†‡,
Ulf Schlichtmann‡ and Giovanni Squillero∗

∗Politecnico di Torino
Torino, Italy

†Infineon Technologies AG
Munich, Germany

‡Technical University of Munich
Munich, Germany

Abstract—In safety-critical applications, microcontrollers must
satisfy strict quality constraints and performances in terms of
Fmax, that is, the maximum operating frequency. It has been
demonstrated that data extracted from on-chip ring oscillators,
the so-called speed monitors, can model the Fmax of integrated
circuits using machine learning models. Those models are suitable
for the performance screening process, and they use speed
monitors are features, while the target is the Fmax. But if the
number of features used for building a machine learning model
is huge, the risk of over-fitting or curse of dimensionality is
high, leading to a high generalization error. Also, devices with
a high number of ring-oscillator are costly to be produced. This
paper copes with supervised feature selection in microcontroller
performance screening during the early phase of prototyping and
presents methodologies to reduce the number of monitors needed
to build efficient machine learning models without losing in
accuracy. We propose a methodology to rank features according
to their importance in the performance prediction, able to extract
a subset of them drastically reduced in size, but still able to well
solve the underlying task. Experiments showed that the chosen
subset of features leads to simpler ML models that can achieve
lower prediction error, reducing overfitting. This permits avoiding
inserting the full set of sensors in the final product, with a huge
saving of money and physical space in the silicon.

Index Terms—Fmax, Speed Monitors, Ring Oscillators, Speed
Binning, Machine Learning, Device Testing, Manufacturing

I. INTRODUCTION

The purpose of Microcontroller (MCU) performance screen-
ing is to detect underperforming devices that do not fully
meet the characteristics described in the datasheet in terms
of maximum operating frequency Fmax. Literature has proven
that machine learning (ML) models trained on data that can be
correlated with the device’s Fmax can be used to predict the
operating frequency of the device with good results [1]–[3].
The accuracy of supervised ML models depends on the
quality and the quantity of labeled data. Previous works have
proposed the usage of Speed Monitors (SMONs) to predict
Fmax values derived from the execution of functional patterns
on single devices [2], [4]–[6]. In this context, unlabeled
data are relatively inexpensive to acquire, and the number
of sensors deployed may be huge (hundreds or thousands),
thus leading to an extremely high number of features for the
ML models. This may lead to over-fitting problems or the
curse of dimensionality: when the dimensionality increases,

Authors are listed in alphabetical order.

also the volume of the space increases, and data become
sparse. In this context, in order to obtain reliable ML models,
it would be necessary to have an amount of data that grows
exponentially with the dimensionality of the space. But since
the process of acquiring the labels is costly in terms of time
needed, also the amount of labeled data available is limited
(often only hundreds of samples). In this paper, we focus
on feature selection on an MCU test chip, with the goal of
reducing the features needed to build machine learning models
and thus decreasing the number of sensors to be placed on
board. We rank the feature on the basis of their importance
in the supervised performance prediction task by means of
repeated features-selection steps. These techniques allowed us
to drastically reduce the feature space dimension without a
noticeable loss in prediction performances and thus save area
on the silicon. The methodology also gives test engineers
useful information on the correlation between sensors and
Fmax, for diagnosing purposes. Experiments showed that this
approach can lead to an acceptable prediction error even with
a fraction of the original features (only 15% of the original
features).

The rest of the paper is organized as follows. Section II
presents related works on the topic. Section III describes
theory and concept useful for understanding successive ex-
periments; in particular, Section III-A describes the character-
ization process used to derive the dataset for ML algorithms;
Section III-B describes the SMONs used as features, while
Section III-C introduces the concepts of ML and Feature
Selection. In Section IV, the motivations why we need feature
selection are given. In Section V, details on the proposed
approach are given. Section VI presents the experimental
evaluation. Finally, Section VII draws the conclusions.

II. RELATED WORK

Several approaches to performance prediction have been
proposed in the past [7]–[10]. The use of ML models to relate
structural and functional Fmax was first introduced in [4].

Using indirect measures to predict circuit parameters is
called in literature ‘alternate test’, and has been widely studied
for analog circuits [11]–[14]. The core idea is to learn a map-
ping between indirect measurements and circuit parameters
and to use only the indirect low-cost measurements to predict
device parameters during production testing.

The authors of [1]–[3] worked on building an ML model for
Fmax prediction, to be used in MCU performance screening.
In [2], they correlated the values of 27 speed monitors to
functional Fmax measured on more than 4,000 packaged
devices extracted from 26 corner-lot wafers. In [3], Active
Learning metrics were used in order to consider the effects
of process variations during training. In [1], they evaluated
the effectiveness of several outlier detection techniques in
identifying anomalous, noisy data, and outliers. Feature reduc-
tion is a very well topic in ML community [15]. There exist
two main techniques for dimensionality reduction: feature
selections selects a subset of features from the original ones
on the basis of some criteria (for example, the effectiveness in
predicting the target label). In feature extractions, we build a
new and smaller set of features as a combination of the original
ones, compacting the information on the dataset. Principal
Component Analysis (PCA), a feature extraction technique
invented in the early 1900s by Karl Pearson [16], has been
effectively used in related works on SMONs [17].

III. BACKGROUND

A. Microcontroller Characterization Process

In the context of alternate tests, an ML model is trained
on data that can be correlated to certain circuit parameters
or characteristics. In our case, the output characteristic is
the device’s performance Fmax (labels), and the alternative
test input parameters are the SMON frequencies (features).
The features used are the SMONs, or on-chip ring oscillators
(ROs), and their frequencies are measured during production
with high accuracy in a stable, fast, and easy process. Mea-
suring SMONs’ frequencies is part of the regular production
test, and thus the features are potentially available for every
produced MCU. However, training the ML models requires
the acquisition of an adequately labeled dataset and, thus,
the MCU characterization. The labeling process is a time-
consuming procedure performed mostly manually, in which
each MCU is measured individually with functional test pat-
terns [2]. Therefore, due to the high effort, the process is
performed on a small subset of the manufactured devices. The
labeling involves precise steps: each MCU is mechanically
mounted on a board that mimics the in-field application. Then,
the MCU starts executing a certain functional pattern (e.g., a
test program) with low frequency, which is slowly stepped
up until a functional failure happens [18] (e.g., a crash in
the application, an erroneous response, etc.); the last working
frequency Fmax is then stored. The procedure is typically
repeated using various functional test patterns, thus leading
to a multi-label dataset. For each MCU, the Fmax values
collected with the various patterns can have a particular spread,
due to devices’ process variation which usually follows a
Gaussian distribution [19], or bias in the label measurements.
The bias could be either a defective device or a measurement
affected by uncertainty due, for example, to minor changes
in voltage or temperature condition, mechanical vibration of
the board, or white noise. In order to guarantee robustness in
the measurement process and to avoid including outliers in

the training procedure, those devices that present at least one
functional pattern in which the Fmax deviates for more than 2.5
standard deviations from the wafer median are eliminated. The
desired outcome is a high-quality set of labeled devices that
are used for ML training. At the end of the labeling process,
each labeled device has multiple labels for different functional
patterns.

B. The SMONs

As already stated - the SMONs are on-chip ROs and are
used as features to predict the performance of the MCU.
Thus, the SMONs structure and sensitivity also significantly
impact the performance model. Therefore, the aim is to place
a large variety of different types of SMONs in the MCU. In
addition, the SMONs have to be spatially distributed to cover
the Within-die (WID) process variation that is increasingly
emerging in shrinking technologies [20].

In order to handle such requirements, a SMON module is
developed such as it contains a heterogeneous set of different
SMONs. Different SMON modules are placed in multiple
locations on the MCU to ensure spatial coverage.

A SMON module consists of different generic and design-
dependent ROs. The generic ROs consists of inverter gates,
NAND gates, and NOR gates from different cell libraries, re-
spectively. The design-dependent ROs are replicated functional
paths from the design. Several equal SMONs modules were
placed in different locations of the MCU under test.

In addition to the SMON modules, the MCU contains
several functional paths RO introduces in [21]. Such functional
path ROs (fpath) uses functional paths in the design and use
them as ROs and do not add dedicated ROs to silicon.

The used feature set of SMONs from multiple SMON
modules and functional path ROs gives us a solid foundation
for the chip behavior in every corner and enormous benefit for
data processing. In the end, thousands of sensors are placed
on board, divided into several identical SMON modules.

C. Machine Learning

Training an ML model means finding an input-output re-
lation on the basis of the available data. The model analyzes
some features and produces an output on the basis of these
values. Simple linear regression algorithms, for example, per-
form a linear combination of the input features on the basis
of some weights, assigned to each feature during the training
process. But if the number of observation samples is lower
than the number of features, there exists the risk of massively
overfitting our model, which would be not able to generalize
on new data, unseen at training time. The number of samples
needed to estimate an arbitrary function with a given level of
accuracy grows exponentially with respect to the number of
input variables (i.e., the dimensionality of our data) [22]. This
situation is called the curse of dimensionality (COD). In simple
words, the more features we have and the more data we need to
build robust ML models. Dimensionality reduction techniques
can be used to deal with COD. Recursive Feature Elimination
(RFE) [23] is a popular feature selection algorithm. RFE is

effective at selecting the features the more related to predicting
the target variable on the basis of an underlying ML model.
The hyperparameters to be chosen are the number of features
to select and the ML model to solve the underlying supervised
problem. Given an external estimator that assigns weights to
features (for example the coefficients of a linear model), RFE
selects features by recursively considering smaller and smaller
sets of these. First, the estimator is trained on the whole set
of features and the importance of each feature is obtained.
Then, the least important features are pruned. That procedure
is recursively repeated on the pruned set until the desired
number of features to select is eventually reached. RFE with
Cross Validation (CV) performs RFE in a cross-validation loop
to find the optimal number of features.

IV. MOTIVATIONS

As indicated in Section III-B, placing more SMONs on
board (and in different locations) could help to better deal with
the WID process variation, and thus give us more information
about the performances of the MCU. So, to have excellent
performance predictions, it might make sense to have as many
SMONs as possible. But this cannot be feasible for two main
reasons:

1) Each SMON that is added to the design occupies a
physical area on the chip. Adding hundreds of SMONs
causes a non-negligible area overhead and contributes to
current leakages. Moreover, the SMONs are for testing
purposes only and have no functional value for the
customers. Therefore, the occupied area should be kept
as small as possible.

2) From an ML perspective, the more SMONs we have, the
more features our ML models will use. Nevertheless,
when the feature space dimensions increase, the risk
of the curse of dimensionality becomes high, and the
ML models can become significantly inaccurate on new
samples because of overfitting. This circumstance is
also amplified by the limited amount of labeled data
available.

The motivations for reducing the features are thus clear: from
a technological point of view, a reduced number of features
allows the production costs of each device to be reduced,
as only the most informative sensors are incorporated into
future products. A feature ranking is obtained as an additional
outcome of the feature reduction proposed technique. Such
feature ranking is also helpful for diagnostic purposes, as it
provides test engineers with relevant information about the
correlation between individual SMONs and patterns. It also
indicates the SMONs modules with which we can achieve
optimal performance prediction, and thus where to place the
SMONs on board. Since the SMONs in the SMONs modules
are the same at each location, the different contribution of the
SMONs modules is only related to the spatial positioning on
the chip.

Also, a reduced feature set permits an ideal increase in the
generalization performances of the ML models and permits
achieving simpler models that work on fewer inputs.

V. PROPOSED APPROACH

The approach followed in this work aims to extract the most
relevant feature set for each pattern by means of a classical
feature extraction method (RFE). Applying directly the RFE
or RFECV is not possible, because these methods are based
on estimating the importance of each feature by means of
the coefficients of an ML model. If we use some feature
transformations (for example, the polynomial features), the
coefficients of the ML model are no more directly linked to
each original input feature, but to the artificial features created
after the transformation. Thus, we need to develop a method
that permits us to rank the original features, selecting the most
informative ones. The developed approach can be resumed in
5 steps, explained in detail in this section:

1) Identify a good baseline with which to compare the
successive models.

2) Identify the best subset of location in which place the
SMONs by brute force approach.

3) Identify a reasonable number of features.
4) Obtain a ranking for the SMONs, both for ML and

diagnosis purposes.
5) Train the models with the best SMONs of the best

location(s).
We first trained our machine learning models on all the
features available, measuring the baseline performances. To
reduce the dimensionality, it is possible to use PCA as a
preprocessing step. The PCA extracts a reduced features-
set by computing the principal components, performing a
change of basis on the data. The new components are linear
combinations of the ones in the original space that maximize
variance and that are uncorrelated with each other. Results by
including PCA are satisfactory. This means that it is possible
to successfully compact information in our dataset since many
independent variables are highly correlated. We can collect
99% of the variance of a single SMON module with only 10%
of the features and 99.99% with 15% of the features, meaning
we have a high redundancy in the input space. If we consider
all the SMONs modules (in general, n), these numbers drop,
respectively, to 10%

n and 15%
n (and this is absolutely reasonable,

since the different SMONs modules have the same SMONs,
and the only difference is the spatial positioning on the
chip). However, the PCA approach would reduce only the
input of the ML models, but not the monitors mounted on
board. We still need all the monitors to compute the principal
components. So PCA is used to obtain a baseline to compare
the results of subsequent experiments. PCA will be dropped
after finding the best features set, and will not be inserted in
the final models. Thus, we need a feature selection algorithm
rather than feature extraction. We are interested in selecting
the best feature from the original feature set, with negligible
(or no) loss in prediction error with respect to the feature
extraction method. Since monitors are placed in more than one
location, we first need to find the best possible combination of
the locations or check if only one of them is enough to reach
satisfactory performances. We used a combinatorial brute force

approach to compute all the possible location subsets, and
for each of them, we computed the performance by using
the chosen model. We then ranked the sets on the basis of
the prediction error obtained for each pattern. We sorted, for
each pattern, the prediction error obtained with a certain set
(Fig. 1), and we gave each set a score inversely proportional
to the position on the rank (the first set, the one with the
lowest prediction error, have a score equal to n, with n the
number of sets. The second one have a score of n−1 and the
latest have a score of 0). This rank permits test engineers to
have a clear idea of the importance of each location for each
pattern, and if it is the case to place monitors in more than
one location. Summing up the importance of each location in
all the patterns, we obtain the final ranking (Fig. 2), which
informs us about the mean performance of locations set on
the different patterns/tasks. However, due to technological
constraints, we decide to keep only one location and thus
the best set is for us the one with a single location that
appears first in the rank. To find a good number of features to
select for every location, we used the RFECV, which performs
RFE in a cross-validation loop to find the optimal number of
features. We used three different simple linear algorithms with
regularization as base estimators (Ridge, Lasso, ElasticNet),
with no feature transformation. These algorithms associate a
weight to each feature, and thus it is possible to extract the
importance of the features by looking at these weights (Fig. 3).
The lack of feature transformation leads to higher prediction
error, but this phase is only intended to select the SMONs
the most related to the performance prediction task. The
selected SMONs will be used as features for the final models,
with non-linear feature transformation. Once the optimal or
a reasonable number of features is found, we can proceed to
rank the SMONs: to do this we run several steps of RFE with
the selected number of features, with different training sets
(in a CV fashion), with many different base estimators and
for all the patterns and different locations. The repeated run
permits the validation of the results, avoiding that these have
happened by chance. At the end we obtain a ranking of all the
SMONs, counting how many times each SMON was selected
by the algorithm (Fig. 4). The rank permits to test engineer
to have a clear idea of the contribution of each SMON in the
performance prediction task. It is also possible to check the
importance of each SMON for each different pattern, finding
that there are some SMONs that contribute more to one pattern
rather than another (Fig. 4). We compared the results obtained
with the reduced features set on a single location, finding
that we were able to have effectively increased the prediction
performance of our model (Table I). We were able to reduce
the number of features-set size to only 15%

n of the original one
(by considering all the SMONs in all the n SMONs modules).
In the case in which we selected more than one location, or if
we have an already developed product in which SMONs were
placed in more locations, it is possible to compact information
by using aggregating functions for the SMONs values: for
each SMON in the different modules, we extract a single
value (for example, averaging them). This strategy, called

Fig. 1. Location ranking for a pattern (example showing 12 different location
sets).

Fig. 2. Location Ranking (toy example). On the x-axis is the set of locations
used for training the model and on the y-axis is the correspondence importance
(20 sets are shown).

”Virtual Module (VM)”, permits both the reduction of the
number of SMONs that the ML analyzes and the exploitation
of the correlation and SMONs variations among the different
locations. This approach permits keeping the ML algorithm
as simple as possible even in the case of multiple SMONs
modules, and with this technique we are able to reach the
best performance. In general, the developed techniques permits
both to 1) find the best combination of features/modules, that
lead to the lowest prediction error, if we are interested in
reducing the error as much as possible and 2) find a good
subset of features, that lead to a little drop in performances
but with a great save of money/space in the chip, since we
will place fewer sensors on the final product.

VI. EXPERIMENTAL EVALUATION

A. Experimental Setup

The proposed methodology has been validated on a dataset
composed of few thousand samples with about a thousand
of features (SMONs), divided into several SMONs modules
plus tens of independent features (fpath). The evaluation of the
model was performed with a 5-folds CV stratified per wafer.

Fig. 3. RFECV algorithm run on a SMONs location with fpath. On the x-
axes the number of features, on the y-axes the R2 score. Going over 15%
of SMONs, linear methods do not have any great advantages in terms of
reducing the prediction error.

TABLE I
POLY RIDGE PREDICTION ERROR WITH DIFFERENT FEATURES SETS

Method Used
SMONs (%)

Input
Features (%) nRMSE

n modules (no PCA) 100% 100% 2.02%
n modules (PCA) 100% 15%/n 1.42%
1 module (no PCA) 100% 100% 1.92%
1 module (PCA) 100% 15% 1.40%
1 module (best SMONs) 15% 15% 1.37%
VM (median) 100% 15%/n 1.28%
VM (mean) 100% 15%/n 1.25%

All experiments were performed in Python. Experiments run
on a server equipped with an AMD ®EPYC 7301 16-Core
CPU @ 3.20GHz × 16, 128GB of RAM.

The model chosen is a Ridge Regressor (Linear Regression
with L2 regularization). Each column of the dataset was
scaled by subtracting the mean and dividing it by the variance
(Standard Scaler). Literature suggests the use of polynomial
features, to project the data into a higher-dimensional space.
This transformation enables non-linear interactions among
features, and thus permits the use of simple linear regressions
to solve the performance prediction task [1], [3]. In some
of the experiments, PCA was inserted before the polynomial
transformation as a feature reduction step (highlighted in the
tables). We will call the pipeline composed by the Standard
Scaler, the eventual PCA, the polynomial transformation, and
the Ridge Regressor the Polynomial (or Poly) Ridge.

Results are presented in terms of normalized Root Mean
Square Error (nRMSE) and R2 score. RMSE is a popular
regression performance index [24] but in this context we
normalized it by the mean value of Fmax in the test set, i.e.
nRMSE = RMSE(ytrue, ypred)/mean(ytrue) to obtain a
percentage of the error with respect to the mean frequency
of the samples. The coefficient of determination R2 is the
proportion of the variation in the dependent variable that is
predictable from the independent variable(s) [25]. A regressor
that perfectly fits the data would have an R2 score of 1.

B. Results

Baseline performances were computed by mean of 5-folds
CV by using the Polynomial Ridge described in the previ-
ous section. The best subsets of location were computed as
described in section Section V, by extracting all the possible
combinations of location. The best set is the one that appears
first in the rank. However, we are interested in reducing
as much as possible the number of locations, and thus we
can take as the best location the first one that appears as a
single location in the rank. With the best single location, we
can obtain a mean error of 1.92%, with a negligible loss in
prediction performance with respect to taking more than one
SMONs module. To find a good number of features to select,
we run the RFECV algorithm (5-fold CV and 3 linear base-
regressors). Experiments showed that approximately 15% of
the features of a single SMON module is a good number of
features to extract since we have no evident advantages by
using more features (Fig. 3). The reached R2 score with simple
linear algorithms becomes quite steady (≈ 0.8) with that
number of features, and we have no advantages by increasing
them. This result is supported both by RFECV algorithm and
by PCA (Section V).

To select the best feature set in all the locations, repeated
runs of RFE were performed by considering different settings:
5 different regressors were used in a 6-folds CV, for every
pattern and for each of the locations, resulting in about 2
thousand runs. The regressors used were 3 linear regressors
with L1-L2 regularization and 5-folds CV to hyper-parameter
tuning (i.e. Lasso, Ridge, ElasticNet) and 2 tree-based regres-
sors (i.e. Random Forest, Decision Tree). For each run, 15% of
the features were select, and we increased a counter for each
SMON every time this was selected. We build the rank on the
basis of this score. We can compute the score of the SMONs
grouping by patterns, obtaining the importance of SMONs
for each pattern Fig. 4 or we can group by location, or, to
compute a general score, we can sum up all the results. This
gives us a general view of the importance of each SMON,
and we can select the best subsets of SMONs that should
work well on average for each pattern Section VI-B. The
first 15% of the SMONs were selected, and the results were
validated on a proper test set. The ”Virtual Module” was
created by aggregating the SMONs value by means of different
functions (mean and median values of the same SMONs in
the different locations). Results showed that this solution is
the most effective one in terms of prediction error Table I.
Also, using some aggregation function permits making the
SMONs measurements robust to possible noise, missing value,
or faults (while this would not be possible with a single SMON
measurement). With this approach. we were able to reach an
R2 score R2 ≈ 0.93

VII. CONCLUSIONS

We presented a feature reduction framework to be used
in MCU performance screening. SMONs values are good
alternate measures for performance prediction, and indus-
tries/test engineers may use a high number of SMONs to

Fig. 4. Toy example of the SMONs ranking one should obtain. On the y-axis,
the number of times the SMON was chosen by the repeated RFE run. On the
top, is the final ranking by summing up all the results. On the bottom, the
ranking considering the same SMONs on two patterns. The value of some
SMONs may be more important for a patterns rather than others (see SMON
4, 12).

catch performance variation. However, if this number is huge,
the ML models may be prone to overfitting, and a high
number of labeled devices would be necessary to train the
models and achieve good generalization performances. Our
framework permits the selection of the best features, the ones
that contribute the most to the performance prediction task.
The experiments showed that this approach reveals the optimal
number of features for each location, and the best location(s)
in which place the SMONs in the early stage of product
development, to reduce as much as possible the cost of the
final product. It can be applied also in already developed
products, by aggregating information using the mean or the
median value of each SMONs in a different location, creating
a ”Virtual Module” that compacts information and make the
SMONs measurements more robust to possible noise or faults.
Our experiments showed that the use of a reduced features
set permits the achievement of lower prediction error (from
2.02% to 1.25% of nRMSE), and thus, higher generalization
capabilities. This approach is in general employable in the
context of MCU (of any type) performance prediction by
measuring the Fmax using functional testing benchmarks,
and by means of alternative measurements for performance

(SMONs, in our case).

REFERENCES

[1] N. Bellarmino et al., “Microcontroller Performance Screening: Opti-
mizing the Characterization in the Presence of Anomalous and Noisy
Data,” in IEEE International Symposium on On-Line Testing and
Robust System (IOLTS), 2022.

[2] R. Cantoro et al., “Machine Learning based Performance Prediction
of Microcontrollers using Speed Monitors,” in 2020 ITC, 2020.

[3] N. Bellarmino et al., “Exploiting active learning for microcontroller
performance prediction,” in 2021 IEEE European Test Symposium
(ETS), 2021.

[4] J. Chen et al., “Data learning techniques and methodology for Fmax
prediction,” in 2009 ITC, 2009.

[5] J. Chen et al., “Selecting the most relevant structural Fmax for system
Fmax correlation,” in 2010 VTS, 2010.

[6] M. Sadi et al., “SoC Speed Binning Using Machine Learning and On-
Chip Slack Sensors,” IEEE TCAD, 2017.

[7] K. von Arnim et al., “An effective switching current methodology to
predict the performance of complex digital circuits,” in 2007 IEEE
International Electron Devices Meeting, 2007.

[8] D. Blaauw et al., “Razor II: In situ error detection and correction
for PVT and SER tolerance,” in 2008 IEEE International Solid-State
Circuits Conference - Digest of Technical Papers, 2008.

[9] G. Sannena et al., “Low overhead warning flip-flop based on charge
sharing for timing slack monitoring,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 2018.

[10] T. B. Chan et al., “DDRO: A novel performance monitoring method-
ology based on design-dependent ring oscillators,” May 2012.

[11] H. Ayari et al., “Making predictive analog/rf alternate test strategy
independent of training set size,” in 2012 IEEE International Test
Conference, 2012.

[12] P. Variyam et al., “Prediction of analog performance parameters using
fast transient testing,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 2002.

[13] H.-G. Stratigopoulos et al., “Error moderation in low-cost machine-
learning-based analog/rf testing,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 2008.

[14] J. Brockman et al., “Predictive subset testing: Optimizing ic parametric
performance testing for quality, cost, and yield,” IEEE Transactions on
Semiconductor Manufacturing, 1989.

[15] W. Jia et al., Feature dimensionality reduction: A review, en, Jan. 2022.
[16] I. T. Jolliffe et al., “Principal component analysis: A review and recent

developments,” Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences, Apr. 2016.

[17] C. Chang et al., “Accurate performance evaluation of vlsi designs
with selected cmos process parameters,” IET Circuits, Devices Systems,
2018.

[18] R. McLaughlin et al., “Automated Debug of Speed Path Failures Using
Functional Tests,” in 2009 27th IEEE VLSI Test Symposium, 2009.

[19] K. Maragos et al., “In-the-Field Mitigation of Process Variability
for Improved FPGA Performance,” IEEE Transactions on Computers,
2019.

[20] S. Asai, Ed., VLSI Design and Test for Systems Dependability. Springer
Japan, 2019.

[21] T. Kilian et al., “A scalable design flow for performance monitors
using functional path ring oscillators,” in 2021 IEEE International Test
Conference (ITC), 2021.

[22] R. E. Bellman, A Guided Tour. Princeton: Princeton University Press,
1961.

[23] A. A. Megantara et al., “Feature importance ranking for increasing
performance of intrusion detection system,” in 2020 3rd International
Conference on Computer and Informatics Engineering (IC2IE), 2020.

[24] T. Chai et al., “Root mean square error (rmse) or mean absolute
error (mae)?– arguments against avoiding rmse in the literature,”
Geoscientific Model Development, Jun. 2014.

[25] D. Chicco et al., The coefficient of determination r-squared is more
informative than smape, mae, mape, mse and rmse in regression
analysis evaluation, en, Jul. 2021.

