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Summary

The currently used high-speed interconnect structures consist of distributed compo-
nents such as cables, circuit board strips and package or chip interconnects. Those
structures are combined with connectors, vias, etc., resulting in a complex channel for
which it is challenging to obtain accurate and compact models so that signal and power
integrity (SPI) and electromagnetic interference (EMI) along it can be predicted via sim-
ulations. SPI and EMI simulations are desirable because they are cheaper and faster in
comparison to experimental alternatives, and therefore, they are an invaluable tool in
the early phases of the design of an electronic system.

This thesis discusses techniques suitable for the modeling and simulation of generic
long electric interconnects. When taking into account all the electromagnetic effects
such as propagation delay, losses, reflections, crosstalk, etc. which are present in those
structures, standard models are hard to obtain and/or might have a large complexity
which slows down the simulations that must be carried out with them. Such models
can be achieved in two different ways:

(i)- Via physical-based models: the level of detail required for an accurate model
is not well know. High detailed models are slow to be solved via 3D full-wave simu-
lations, and simplifications might lead to less accurate models, specially when dealing
with high-frequency applications. Furthermore, sometimes the detailed design of a
component of a high speed link is intellectual property of some companies, and there-
fore not readily available for engineers which use those parts in their design;

(ii)- Via data-drivenmodeling approach: in this approach, the use of models without
the explicit representation of the delays present in the interconnect structure might
lead to models which are excessively complex, requiring a very large number of terms
in order to capture the phase variations of systems with delay. On the other hand,
if the delay characteristics of the interconnect are explicitly represented, the accurate
estimation of the delay values that should be used within the model is very difficult.

The first part of this work follows a physical-based approach to produce a model
which predicts the behavior of a complex cable link. It models individually each com-
ponent of such link, and simulates the complete system in order to achieve the response
of the cable link. The modeled system is then validated via experimental data obtained
from scattering parameters measurements of the channel, establishing the level of detail
needed in those models.
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Furthermore, the second part of this work presents a novel approach for the esti-
mation of a surrogate model of a generic long interconnect. The proposed approach
is based on a powerful and flexible machine learning technique called the least-square
support vector machine (LSSVM). The LSSVM regression is used to construct a meta-
model of the transfer function describing a generic linear time-invariant system in a
delayed-rational form, but without a-priori specifying the time-delays which should be
used by the system, side-stepping this critical part of the estimation of delayed rational
models.

By manipulating the estimated metamodel, useful information about it can be ex-
tracted. Specifically, the estimated metamodel leads to the accurate estimation of mul-
tiple time-delays from the frequency response of the original system. The essential
steps and critical criteria for the delay identification procedure are carefully discussed
throughout this thesis. By optimizing the LSSVM model via standard techniques used
for the tuning of machine learning models, the delays can be searched in a small inter-
val rather than in an extended possible space as is necessary in available techniques for
the identification of multiple delays, therefore making this task simpler.

Numerical examples are presented to illustrate the feasibility and performance of
the proposed technique and to compare its performances with what is provided by
state-of-the-art techniques. The results clearly highlight the capability of the proposed
approach to identify the dominant delays in distributed systems, thus allowing to con-
struct compact delayed rational models.
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Chapter 1

Introduction

Modern electronic systems are composed bymanymodules that achieve different goals,
for example, sensors, displays and processing or data storage units. The data generated
by such modules has to be transmitted across them as electric signals. Figure 1.1 ex-
emplifies this transmission. When a signal is transmitted from one device to another,
through an long interconnect, it is distorted by the channel and by interference from
external electromagnetic noise, while also producing electromagnetic fields that may
pose problems to other parts of the system. Therefore, in a good design, the signal and
power integrity (SPI) distortions introduced by those effects to the link should be quan-
tified and mitigated, because signal or power integrity issues may lead to unreliable
systems, or even worse, systems that fail to operate.

Figure 1.1: Illustrative diagram of the interconnection between two circuital compo-
nents.

In the simplest way to connect two devices, electric signals travel via physical inter-
connects. Long electrical interconnects are responsible for a considerable part of signal
degradation in high-speed channels [1]. In these long interconnects, signals are subject
to propagation effects such as attenuation, ringing, delay, dispersion, reflections and
crosstalk, arriving at the receiving end of the channel distorted. However, the length
of the interconnect does not refers to its size, but to its electrical length, which is re-
lated to the frequency at which it operates. If the physical length is longer than 10%
of the wavelength at the highest frequency of interest, this should be treated as a long
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Introduction

interconnect [1]. This effect is highlighted in the case of high-frequency signals. As the
frequency and transmission rate of signals increase, their wavelength become shorter,
making them behave as electrically long channels even if their physical length is small.

A thorough electromagnetic compatibility (EMC) mitigation and SPI plan will sig-
nificantly improve the probability of a successful electronic design [2]. Such plan should
take into account signal integrity and electromagnetic interference (EMI) along the in-
terconnects. The existence of models that allow those analysis to be carried out through
simulations is essential in this regard. With those models, important improvements can
be made through optimizations in the design and/or stochastic analysis, all without the
requirement of expensive prototypes. But in order to achieve these goals, special at-
tention should be paid to the numerical models used in the analysis. Computer-aided
design (CAD)models are logical and accurate, and they can be parametrized by physical
quantities of the design, but their simulation requires the numerical solution of elec-
tromagnetic (EM) equations, which is very computational intensive, and additionally,
theymight require a high level of detail which is not always available for intricate struc-
tures. On the other hand, data-based black box models seek efficient models that are
easily integrated with simulation programs with integrated circuit emphasis (SPICE),
but their parametrization is a challenge and their complexity becomes high in the case
of long interconnects. Therefore, novel approaches for the modeling of interconnects
might present new ways to overcome those issues and should be welcome.

1.1 Modeling of long interconnects
The modeling of long interconnects is an area which has been studied since several
decades. The basic structure that models them is the transmission line (TL) [3]. Basi-
cally, this structure is governed by the so-called Telegrapher’s equations, which are a
pair of coupled differential equations that, in the multiconductor case, relate the array
of voltages V and currents I of the line at any given point 𝑥 along its length and at any
given time instant 𝑡 as

𝜕
𝜕𝑥

V(𝑥, 𝑡) = −L 𝜕
𝜕𝑡
I(𝑥, 𝑡) − R I(𝑥, 𝑡),

𝜕
𝜕𝑥

I(𝑥, 𝑡) = −C 𝜕
𝜕𝑡
V(𝑥, 𝑡) − GV(𝑥, 𝑡).

(1.1)

In this structure, the per-unit-length (PUL) resistance R, capacitance C, inductance L
and conductanceGmatrices of the multiconductor transmission line (MTL) can be used
together with the Telegrapher’s equation to obtain an exact model for the known struc-
ture, assuming that its cross section is much smaller than its wavelength. Such matrices
can be estimated analytically or from numerical simulations accounting for the geom-
etry and material properties of the TL [3].

Circuits composed by structures governed by the equations in (1.1) require their
solution in order to have their response analyzed. These equations can be solved more

2



1.1 – Modeling of long interconnects

easily in the frequency domain. In such domain, mode transformations allow their
quick solution and incorporation of boundary conditions from the remaining parts of
the circuit [3] at any given frequency or set of frequencies. However, most circuits
containing these interconnects are comprised by linear components, i.e., the intercon-
nects, capacitances, resistances and inductances, together with non-linear transceivers,
drivers, transistors, etc. [4], as shown in Fig. 1.2. Such non-linear components are better
simulated in the time domain. This time-domain analysis is achieved via the transient
simulation of the system [5]. Therefore, in order to simulate it, the interconnect should
be modeled via techniques which allow a mixed time- and frequency-domain represen-
tation, since the effects of high-frequency interconnect models are better described in
the frequency-domain, but the non-linear terminations of such interconnects (e.g., the
link transceivers) can only be accounted via time-domain simulations.

Interconnect

(linear)

Transceiver

(non-linear)

Transceiver

(non-linear)

Figure 1.2: Simulation scenario of a system connecting non linear transceivers via a
linear interconnect.

Several techniques have been proposed for the transient simulations of circuits with
TLs [1], [6]. A straightforward way is by performing the discrete-time convolution [4],
where the TL model is appropriately selected so that it can be represented by a causal
inverse Fourier series. Such model is an strict discrete-time function for which the
convolution equations can be established and integrated with the rest of the system.
In a more efficient way, the circuit might be simulated via the waveform relaxation
(WR) method [7]. TheWRmethod partitions the structure into smaller subsystems and
use waveform iterations to represent the coupling between neighboring subsystems. It
allows the solution of each subsystems separately for the entire time-interval, each one
with solution parameters optimized for its characteristics. It is possible to use transverse
partition to decouple the interconnect channels, and longitudinal partition to separate
the channels from the terminations [7]. The longitudinal partitioning can also split the
system along the signal path, dividing the TL into smaller parts [8].

The simulations must always include the interconnect model. The simplest ap-
proach approximates the TL as a cascade of lumped-circuit [9] components blocks, as
shown in Fig. 1.3. The TL is divided in such a way that every block is electrically short
at the frequency of interest, usually in 𝜋 or T-shaped blocks combining the PUL param-
eters corresponding to a TL section with no more than 10% of the signal wavelength in
length [1]. But as the maximum signal frequency increases, the wavelength decreases,
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and therefore more and more blocks are necessary in order to accurately representing
the simulated line.

(a)

(b) (c)

Figure 1.3: Diagram of a transmission line (a) and its lumped segmentation equivalents:
𝜋-shaped approximation (b); and T-shaped approximation (c).

An alternative based on the frequency-domain transmission line equations is the
generalized method of characteristics (MOC) [10], [11]. It uses mode transformations
in order to diagonalize the MTL equations and implement the propagation function
for each of the modes. However, this method often assumes that the PUL matrices
are constant with frequency [3], which is unrealistic, as the resistance of interconnect
increases due to the skin effect, and capacitances and inductances might change due
to the use of materials with frequency-dependent properties. The frequency variation
of the PUL matrices leads to frequency dependent mode transformations, which are
undesirable in time-domain simulations and thus hinders its direct utilization [3], [12].

A model that deserves attention is the asymptotic waveform evaluation (AWE) [13].
This technique uses Padé approximations to match the moments (i.e., the derivatives of
the frequency domain transfer function) of TLmodel matrices. The Padé approximation
is defined as the best approximation provided by a rational function of a given order. It is
possible to directly match 2𝑞 −1 moments and initial condidions of the TL moments via
a rational model with 𝑞 poles [14]. The computational efficiency of this technique can be
improved by using recursive formulas to compute the employed moment matrices and
by expanding the TL matrices as a Taylor series [15]. The same AWE-based approach
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can be employed to the MOC formulation to extend it to model complicated frequency-
dependent PUL matrices in a simple way [16]. The Padé approximations above can also
be used to approximate expressions of exponential matrices describing the solution of
Telegrapher’s equations [17]. The coefficients can be computed analytically from the TL
solution, preserving the passivity of the interconnect link, for constant PUL parameters.
In the case of frequency dependent PUL parameters, they can be modeled via positive
and real functions [18].

The most advanced circuit simulation tools provide the W-element model [19] for
TL simulations. This model uses a frequency-domain approximation method based
on the interpolation of the PUL matrices and a matrix delay separation. For such ap-
proximation, numerical integration formulas are available, simplifying the simulation
procedure. It avoids the use of frequency-dependent modal transformations by com-
puting the matrix delay separately from the propagation functions [19], and is success-
fully employed for the simulation of TLs. A test case in which the W-element model
is employed is presented in chapter 2. However, as it will be presented, the simulated
structures might be complicated, a situation which requires both the knowledge of the
simulated structure and attention to model even apparently insignificant details. Ad-
ditionally, most real systems cannot be approximated by these TL solutions, as they
consist on complex structures that cannot be exactly modeled via homogeneous and
uniform TLs.

Black-box models avoid these issues. They are obtained from data representing the
impulse response of the interconnect, obtained via full-wave simulations, if possible,
or via measurements of the structure. As long as the data is available, the knowledge
of the internal components of the structure is not necessary. A successful approach
models data from a frequency response by using rational approximations [20], which
can then be translated into an equivalent circuit comprised by resistors, capacitors and
inductors [12], [21], [22]. The most successful among these techniques is the so-called
vector fitting (VF) [12], [23], which via an iterative approach estimates an appropriate
set of poles to be used in the approximation, in a very robust way. Based on that, ca-
bles can be modeled as a multiport admittance matrix, with data obtained separately
for high frequency components and DC components [24]. The VF technique can be
used to interpolate the frequency response, and after the passivity of the model is en-
forced, a SPICE equivalent circuit is extracted and used to predict EMI of the cable link.
The complexity of the model can be reduced by using a complex-valued VF in order
to approximate baseband models [25]. This technique preserves the advantages of VF,
while being able to reduce in half the complexity of the estimated models. With those
models, simulators should support complex valued signals and matrices, or in the case
this support is not available, it is possible to process the obtained models and achieve
real valued models compatible with SPICE [25].

Nonetheless, when the propagation delay between ports of the system becomes
large, its frequency response presents a phase that continuously changes and thus it
requires a rational model with many terms in order to achieve a satisfactory accuracy.
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In the case of these long interconnects, a more efficient approach is the use of delayed
rational models (DRMs) [26]–[28]. Such model explicitly represents the delays involved
in the signal propagation in the distributed structures, simplifying the rational part of
the model that then only need to model the signal attenuation. The equivalent circuit
of this model includes also ideal and lossless TLs, which are simple to simulate, and
allow a reduction in the number of required capacitor and inductors, i.e., a reduction in
the number of dynamical elements. Overall, the use of DRMs for the simulation of long
interconnects should lead to faster simulation times and a smaller memory requirement.

The estimation of the time-delays embedded in such models is critical. In intercon-
nects which can be represented via a RC network, the approximate propagation delays
can be estimated analytically from the combination of the network parameters plus the
terminations. The obtained delay is often called Elmore delay, and it can also extended
to the case of interconnects represented via RLC networks [29], [30]. The MTL-based
techniques described above (e.g., the MOC) also have delays embedded into their prop-
agation functions. Such models might be extended to the case where the interconnect
consists of multiple cascaded TLs and discontinuities between them [31]. To arrive at
such model, a DRM is obtained via a matrix pencil technique in which the solution of a
generalized eigenvalue problem is used to estimate the system poles.

In a more generic structure, but for an interconnect with a single time-delay, its
value in the DRM can be directly optimized given that a reasonable search interval
is defined [32]. If we consider a transmission line, this interval can come from the
lossless time-delay in the propagation equation [32], [33] or it can be estimated via the
magnitude of the frequency response, by considering that when its delay is removed,
it should be modeled via a minimum phase shift function [34]. In this way, the phase
angle of the frequency response can be calculated directly from its magnitude [35].
The Hilbert transform provides a systematic way to find the dominant propagation
delay in a frequency response based on its causality property [36]–[38]. This method
is described in section 4.3.1. A similar causality-based approach for delay estimation
is based on singular value decomposition (SVD) of causal Fourier continuations [39],
where a linear-phase due to the time-delay is introduced into the system of equations
which define the Fourier coefficients, from which the delay is extracted. Such delay can
be employed to generate a simple, compact and guaranteed causal DRM adequate for
the simulation of the structure that generated such frequency response.

However, a generic interconnect with unmatched terminations, as is often the case,
will observe multiple delays between their ports due to reflections at the terminations.
One way to account for multiple delays is by considering a single propagation delay,
but inserting also a positive feedback loop which produce multiple periodic reflections
in the system [40], [41]. The multitude of delays present in an interconnect is ampli-
fied in the case where internal discontinuities are present along the interconnect, and
therefore, additional non-periodic reflections and delays are produced also along the
transmission path. In this case, the estimation of multiple delays from frequency do-
main data is a difficult task with the available techniques. Time-domain approaches can
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analyze the system response to an impulse or band limited pulse and identify suitable
partition points corresponding to the system delays [42], but the continuity among the
regions must be carefully checked [43]. In the case of frequency-domain data, the most
solid approach is reliant on time-frequency decompositions based on wavelet trans-
forms such as the Gabor transform [28]. This technique is described in section 4.3.2.
However, the different characteristics of the signal attenuation for each delay term, and
which is naturally dependent on the delay value, are not captured by this transform.
Large delays should observe attenuation at lower frequencies when compared to small
delays, as a longer delay means that the signal traveled for a longer distance within the
interconnect, and thus suffered more attenuation. Another difficulty lies on the defini-
tion of the number of delays that should be included in the DRM [41], which will affect
its accuracy and the convergence of the model estimation techniques.

Once the time-delays are identified, the rational parts of the DRM are easily esti-
mated if the original transfer function can be separated into the sum of delayed transfer
functions. In this ideal scenario, each part can be fitted individually after removing its
individual delay, with any fitting method suitable for lumped structures: the vector fit-
ting [28], the Loewner matrix framework [44], [45], time-domain vector fitting [43] and
Prony’s method [27]. A previous determination of a minimum phase response of the
separated transfer functions using the Hilbert’s transform method can be applied be-
fore the rational approximation is performed [26], [37], in order to estimate the correct
delay that should be used for the respective part of the transfer function.

Green’s functions can be used for the analysis of a MTL, achieving a DRM for its
multiport impedance representation [46]. In this model, the delays are explicitly ex-
tracted, and the computation of poles and residues is done separately for each delay
mode. The above technique can be extended to evaluate EMI arising from the cou-
pling of a plane-wave to the MTL [47]. In a structure more complex than a MTL, EMI
can be predicted via a DRM estimated using the delayed vector fitting (DVF) algorithm
[48], [49]. This algorithm considers a common set of poles for each delay, and through
iterations estimate such poles in a similar way as the VF algorithm.

The DRMs above can be extended to the case where some design parameters are
accounted in the model, producing a parametric model [50]. Additional interconnect
effects such as dispersion and overlapping echoes can be accounted by adding delays
to the denominator of the DRM [51], [52]. When inserted into circuit simulations, the
DRMs will give rise to time-delay systems. Model order reduction (MOR) approaches
can be used to reduce the model complexity and further speed up such simulations [53].
A possible MOR technique suitable for time-delay systems relies on the construction of
a Krylov space and the projection of the system on this space [54], and by approximation
of the time-delays via a recursive relation of Laguerre polynomials [55]. Alternatively,
the time-delayMOR can be constructed by selecting interpolation points with a iterative
greedy algorithm in order to control the target error threshold.

A long list of techniques suitable for the modeling and simulation of long inter-
connects was presented above, each of them with its pros and cons. While TL-based
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techniques usually work well, they are not suitable for systems which cannot be easily
represented by a TL structure. On the other hand, black-box techniques can handle
any kind of system, but they might produce complex systems which are slow to simu-
late, if the do not account for the propagation delay of the structure. When such delay
(or delays) are accounted, the model estimation still poses some challenges, requiring
high precision delay values to produce accurate models. A rather unexplored area is
the use of data-driven machine learning (ML) algorithms for the modeling of electric
interconnects. Such techniques have experienced a significant growth in several areas,
e.g., image recognition and signal processing, with great success. However, their appli-
cation to the modeling of interconnects deserve further investigation, and in order to
do that, the available techniques should be studied.

1.2 Machine Learning Regression Techniques
Machine learning refers to a large group of data-driven modeling techniques which can
be used to obtain surrogate models for black-box systems. Some of the main ones are
briefly described below: the artificial neural networks (ANN), the support vector ma-
chine (SVM) regression, the least-squares support vector machine (LSSVM) regression
and the Gaussian process regression (GPR).

Figure 1.4: Illustrative diagram of the architecture of a two-hidden-layer artificial neural
network.

Artificial neural networks are a model inspired by the human brain, in which simple
elements called neurons operate in parallel, arranged in a layered structure. Each neu-
ron applies an activation function to its input. The output of the model is then given by
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the connections between the neurons. The training of an ANN is given by the estima-
tion of the connection weights between the elements [56]. Figure 1.4 shows an example
of the structure of an ANN. It has an input layer, which receives the input variables of
the system, a number of hidden layers, and an output layer which takes the outputs of
the last hidden layer and produces one or more output variables. The neurons making
up each hidden layer are defined by non-linear activation functions, while the activa-
tion function of the output layer is generally linear. Typically, the training of the ANN
is performed by optimizing the connection weights between the neurons using stan-
dard gradient-based back-propagation techniques. The description of the long list of
“flavors” available for the ANN topology is out of the scope of this thesis. The reader is
referred to [57] for further details.

The SVM and LSSVM regressions provide a simpler input-output relation than the
ANN. Instead of using a deep cascade of activation functions and connection weights
as the ANN, such regressions are formulated as a simple linear combination. However,
instead of performing the regression in the input parameter space, where the linear
input-output relation is not certain, it projects the data into a possibly higher dimen-
sional feature space, where it can become closer to linear [58]. Figure 1.5 tries to exem-
plify such transformation. Additionally, one of the main advantages of the SVM is that
this projection can be performed implicitly, via the use of a kernel function, for which
many successful options are already tested with great success [59].

Figure 1.5: Diagram showing the transformation provided by the kernel function from
a low-dimensional input space to a higher-dimensional feature space.

While the ANN can adjust its objective function to minimize any performance met-
ric, the SVM is formulated with a specific loss function in mind. It uses a so-called
𝜀-intensive zone, shown in green in Fig. 1.6. All the points predicted by the model in-
side this zone with width equal to 2𝜀 do not add any penalty to the loss function. Only
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the terms outside of this zone, which are called support vectors, add a penalty to the loss
function equal to the square of its distance to the 𝜀-intensive zone. This loss function
plus a regularization term used to assign good generalization properties to the model
are minimized via a convex optimization problem. The approximate model is then writ-
ten as a function of such support vectors. The LSSVM can be seen as a simplification of
the SVM, in which the 𝜀-intensive zone is equal to zero [60]. Such simplification leads
to a model which can be estimated via the solution of a linear system, instead of an
optimization problem, and in which all training points are also support vectors. On one
hand, this increases the power of the method in predicting highly non-linear outputs,
but on the other hand, its prediction time might be slower, as the number of support
vectors is larger. Nonetheless, the prediction time of a SVMmodel is usually negligible,
and the LSSVM is successfully applied in many kinds of regression problems [61].

Figure 1.6: Illustration of support vector machine regression, with the indication of the
𝜀-intensive region and the support vectors.

All the techniques above provide as a result a deterministic model, i.e., a surrogate
model for which a deterministic function is able to predict the output variable of interest
as a function of the input parameters. They are limited in the sense that they do not
provide information about the reliability of their prediction. The model error is known
for the available samples, but it is unpredictable for any other generic point in the input
space. The Gaussian process regression (or Kriging model), on the other hand, provides
a probabilistic model [62], which together with a prediction for the desired output,
estimates also useful statistics regarding that prediction. In order to do this, it is defined
via a mean function, providing its expected output, but also a correlation function that
provides the correlation between the output at different points in the input space. Both
of those functions should be specified when training the GPR model.

We can summarize the main points of the techniques above by saying that usually
the ANN provides the biggest potential in modeling a generic function, as additional
layers with distinct shape and functions can be added to its structure. However, it also
has thousands of coefficients that should be estimated, and for such, they require a
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large amount of data reserved for its training. The SVM and LSSVM regressions, on the
other hand, should provide good models with less training data, by implicitly using a
high dimensional feature space with possibly an infinite number of dimensions. The
LSSVM regression is specially useful by having the simpler formulation and solution.
The GPR, on the other hand, has the main advantage of providing a probabilistic model
output. Additional machine learning are available, and the reader is referred to [57] for
additional information about them.

1.3 Goal of this thesis
Considering the literature review from section 1.1 and the machine learning techniques
in section 1.2, this thesis aims at contributing with alternative ways for the modeling
of generic long interconnects. When taking into account all the electromagnetic effects
such as propagation delay, losses, reflections, crosstalk, etc. which are present in those
structures, standard models are hard to obtain and/or might have a large complexity
which slows down the simulations that must be carried out with them. Such models
can be achieved in two different ways:

(i) Via physical-based models: the level of detail required for an accurate model is not
well known. High detailed models are slow to be solved via 3D full-wave simula-
tions, and simplifications might lead less accurate models, specially when dealing
with high-frequency applications. Furthermore, sometimes the detailed design of
a component of a high speed link is intellectual property of some companies, and
therefore not readily available for engineers which use those parts in their design;

(ii) Via data-driven modeling approach: in this approach, the use of models with-
out the explicit representation of the delays present in the interconnect structure
might lead to models which are excessively complex, requiring a very large num-
ber of terms in order to capture the phase variations of systems with delay. On
the other hand, if the delay characteristics of the interconnect are explicitly repre-
sented, the accurate estimation of the delay values that should be used within the
model is very difficult.

This thesis tackles the corresponding issues in two different ways:

(i) By modeling the interconnecting channel piece-by-piece based on its physical di-
mensions and material properties, the necessary details of the channel are added
and the complete model is experimentally validated by comparing its response to
experimental data;

(ii) By building a data-driven metamodel which implicitly takes into account the de-
lay characteristics which are intrinsic of long interconnects, along with the other
effects present in passive and linear electric structures.
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The data-driven metamodel above is based on the least-squares support vector ma-
chine (LSSVM) regression. Specifically, such technique allows the construction of non-
parametricmodels which embed all their complexitywithin its kernel function specified
during the training phase. The appropriate selection of this kernel function leads to ac-
curate models which scale well for predictions in high dimensional parameter spaces
[61], [63]. The technique presented in this thesis builds a DRM without the need of
specifying a finite number of delays, by estimating a model that contains any delay
value within a certain interval, together with other characteristics present in a generic
interconnect, e.g., losses and attenuation along the transmission channel. This is done
via adjusting the kernel function so that it provides all those specified characteristics.
These models can be translated into fast and efficient simulation blocks for large system
simulations, as shown in Fig. 1.2, and/or they could be used to include additional design
parameters into the model, as can be done with CAD models. Above all, the analysis
of the final model provides an insight about the system that originated the data, and
via this analysis this thesis also brings a new way to identify key parameters of the
model, e.g., the multiple delays present in a frequency-domain response of an intercon-
nect. Furthermore, despite being based only on data, the kernel-based techniques have
a dual representation that preserves the knowledge about its model structure. This is an
advantage in contrast to other powerful machine learning (ML) techniques such as the
artificial neural networks [64], for which the final model might become highly complex,
hindering its understanding.

1.4 Organization of the text
The organization of this work goes from this lengthy textual introduction in chapter 1
to a conclusion in chapter 5. Those final remarks summarize what was done and out-
line future steps that should to be performed for further improving the presented tech-
niques, along to new possibilities that might achieve good results using ideas similar to
this work. Along the way, in chapter 2, some of the physical-based alternatives com-
binedwith a black-boxmodel demonstrate the issues of a traditionalmodelingworkflow
for the simulation and experimental validation of a realistic cable link structure. Then,
in chapter 3, a kernel-based black-box model is presented and adapted to be used with
complex-valued data, in order to be used with the target data of this thesis. The core of
this work comes in chapter 4. There, a specific kernel is developed in order to be used
to estimate a surrogate model based on the frequency response of long interconnects.
Such kernel replicates a DRM with an infinite number of delays. The analysis of the
estimated model leads to the identification of the most dominant propagation delays
in that interconnect. Results and comparisons of the proposed techniques are included
along all chapters.
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Chapter 2

Physical-Based Modeling

The first way to deal with the modeling of long interconnects is based on their physical
design. Any proposed structure can be simulated in a EM CAD tool such as CST Studio
Suite, Ansys HFSS, Altair Feko, etc., and integrated with the rest of the circuit in order
to provide the complete system response. However, despite the advancement in elec-
tromagnetic simulation techniques, a full-wave simulation does not have the efficiency
needed for a design space exploration and optimization over a large number of param-
eters. Sometimes, simplifications are possible in order to accelerate the procedure, such
as the separation of individual components and the consideration of TL interconnects
as having an uniform cross-section, but as the example below will show, these simplifi-
cations are not always straightforward in the case of complex interconnect structures.

2.1 The SpaceWire Cable Link
SpaceWire (SPW) technology is a full-duplex data link between two on-board devices
(e.g., an instrument and a router or processor) used in spatial applications, that can
operate up to 400Mbits/s [65]. The SPW standard [66] is a document that sets require-
ments that shall be accomplished with on-board data handling applications in space
projects. It allows high speed links up to 10 m in length to be used in the harsh spatial
conditions, while also creating standard data interfaces that increase the compatibility
among the system components by standardizing the components and the applications
of the physical, encoding, data and network layers. The physical layer of a generic
SPW link is shown in Fig. 2.1, and consists in the interconnection of low-voltage dif-
ferential signaling (LVDS) drivers and receivers with a multi-section channel, made
of printed circuit boards (PCB), cable assemblies and connectors. The standard spec-
ifications [66], meant to guarantee a reliable communication over the SPW channel,
concern characteristic impedances, maximum jitter and skew between the differential
signals, eye-diagrams opening, common-mode voltage range, insertion and return loss,
operating temperature, weight, etc. Thus, particular attention should be payed to the
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differential mode (DM) and common mode (CM) [67] characteristics of this link.
Among the different elements of the link, the SPW cable represents a complex struc-

ture, consisting of 4 twisted pairs, 5 shields and two micro D-type female connectors.
The geometry of the cable cross-section and the material of the cable are not completely
specified by the standard [66] and can vary from one cable producer to another, thus
introducing additional uncertainties in the model of such structure. However, the vali-
dation through measurements of the SPW cable model is challenging, since its termina-
tions are not compatible with standard connectors (e.g., SMA) used by the conventional
measuring instruments, and an ad-hoc setup needs to be adopted, thus posing calibra-
tion problems. This work presents a physical-based modeling strategy in order to es-
tablish a model for the passive part of the physical layer of the SPW link, i.e., excluding
the transceivers, and the validation of such model. Such approach defines CAD models
for the components of the link, one-by-one, and then cascade them in order to achieve
a model for the full link. The description of individual models starts by the shortest
component, the connectors, described in the section below.

Driver PCB

Connectors

SpW Cable

Connectors

PCB 100Ω

Receiver

vd(t)

Figure 2.1: Schematic of a SPW link according to [66].

2.2 Micro D-Type Connector
The appropriate connector to be used with the SPW data link has its physical dimen-
sions and the geometry completely specified [68]. The connector type is named micro-
D, a miniature connector which is shown in Fig. 2.2(a). It consists on 9 pins with an
external metallic shell which provides continuity to the cable shield, thus establishing
a common reference on both ends of the cable.

In the absence of a complete CAD model, the proposed modeling approach relies
on the simplified 3D implementation of the connector in the full-wave EM solver CST
Microwave Studio shown in Fig. 2.2(b). The 3Dmodel is used to accurately characterize
the electromagnetic behavior of each pin of the connector, including their coupling and
their interaction with the connector shell in the frequency-domain up to 1GHz.

For the sake of simplicity only the male micro D-type connector is simulated and
have its response extracted. This means that, implicitly, any possible differences be-
tween the male and the female version of the connector are neglected. The above sim-
plification is motivated by the fact that the only difference between the male and the
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(a) (b)

Figure 2.2: Micro-miniature D-type female connector (a) and its 3D implementation in
CST MICROWAVE STUDIO (b).

female version in our simplified 3D reproduction derived by the geometry specified by
the standard is that the pins in the female version would be 0.33 mm longer with respect
to the male version. The above difference can be considered negligible in the bandwidth
of use of the connector.

The frequency response obtained from the linear CAD models above usually con-
sists on a finite number 𝐾 of tabulated frequency-domain samples defined at the com-
plex frequency points {𝑠1,… , 𝑠𝐾} = {𝑗𝜔1,… , 𝑗𝜔𝐾}. In order to be included in SPICE
simulations, the data should be modeled in a way compatible with such simulations, i.e.,
in terms of standard linear circuit components or, if allowed by the simulation solver,
in terms of a differential-algebraic system of equations (DAE) in the same way as the
modified nodal analysis (MNA) DAE obtained from standard circuit components [12].
The usual way to extract this CADmodel for SPICE simulations is via a rational (or VF)
model [23], written as

F(𝑠𝑘) ≈ 𝐻̃(𝑠𝑘) = R0 +
𝑛𝑝

∑
𝑗=1

R𝑗

𝑠𝑘 − 𝑝𝑗
. (2.1)

The above expansion writes the multiport frequency-response F(𝑠𝑘) in terms of
poles 𝑝𝑗 and residues R𝑗. The latter, which appear linearly in the model, can be easily
estimated via a linear regression [69]. However, the poles, which have a non-linear
relation to the model, cannot be estimated as easily. Nonetheless, the well proven VF
algorithm, described more in depth in section 4.1, has been successfully employed for
this task [23]. It uses a sequence of linear problems to find an appropriate set of poles
through iterations. It has important properties such as high computational efficiency,
good accuracy which can be further improved by adding additional poles, and a sim-
ple formulation [12]. The obtained pole-residue representation can be extracted as a
space-state system of equations, or converted to circuital components [21], [22].
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Regarding the connector described in section 2.2, it has its response extracted via
this algorithm using 𝑛𝑝 =10 poles. This extracted model is validated by its simulation
in HSPICE and posterior comparison of the simulated scattering parameters with their
corresponding curves from the full-wave simulations. The results are shown in Fig. 2.3,
showing a very good agreement between them in the selected bandwidth. The resulting
netlist can then by employed by most commercial SPICE-like simulators. It is ought to
remark that the circuit equivalent, which has been generated by fitting the results of
a 3D full-wave solver, already accounts for the frequency-dependence of materials and
for all interactions among the parts of the connector. After all these steps, the connector
model is set to be used with the other components of the link, e.g., the SPW cable.
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Figure 2.3: Comparison between for S-parameters from the full-wave simulation and
the model used in SPICE simulations: magnitude (a); and phase (b).

2.3 SPW cable model
The longest component of the SPW link is the SPW cable shown in Fig. 2.4-(a). As
such, it has the largest potential to suffer external interference, and thus it is our main
device under test (DUT). Its specification is aimed at a cable well built to support the
harsh EM ambient found in space, with the cross section of the SPW cable specified
in the standard [66] shown in Fig. 2.4-(b). It consists of 13 conductors: 4 twisted pairs
(red circles), each one responsible for transmitting a differential signal via this channel
with differential characteristic impedance of (100 ± 6) Ω; each pair is wrapped by a
shield (blue circles), and an outer shield (external light blue circle) provides additional
electromagnetic protection for the whole bundle of conductors. The twist period (i.e.,
the length of an entire twist) is specified by the standard to be between 12 and 16 times
the outside diameter of two shielded and jacketed wires.

The correspondence between the cable wires and the terminal connector pins is
depicted in Fig. 2.5. In the modeling and measurement bandwidth, which extends up to
1GHz, the cable behaves as a complex distributed structure, since the wavelength at the
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(a) (b)

Figure 2.4: SPW cable used for the measurements (a) and cross-section of the SPW cable
Variant 01 (b).

maximum frequency (i.e., 𝜆𝑀𝐴𝑋 = 15 cm) is two orders of magnitude smaller than the
maximum cable length admitted by the standard (i.e., 10m). As such, it is modeled via
transmission line structures, which can account for different levels of details. Here, it is
proposed three different models: a mostly rough simplified model, called Model Level
0, an intermediate model, called Model Level 1, and a more detailed structure called
Model level 2. They are described in the subsections below.

Figure 2.5: Schematic of the SPW cable structure with the corresponding port numbers.
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2.3.1 Model Level 0
Some approximations are introduced to simplify the modeling procedure. First of all, an
untwisted version of each wire pair is considered: the per-unit-length (PUL) parameters
are estimated as a function of frequency by means of a 2D solver based on the cable
cross section of Fig. 2.4-(b), and are used to build a W-element of the line in HSPICE
[19]. Additionally, all shields of the cable are considered as solid shields. The described
cross section with solid shields is extended uniformly along all length of the the cable
as shown in Fig. 2.6.

Figure 2.6: Simulated structure of the SPW cable Model Level 0.

Despite the previous structural simplifications, the resulting model accounts for
the possible frequency dependence of the materials and for phenomena like proximity
effect, skin effect and shield transfer impedance, since the frequency-dependent p.u.l.
matrices are computed via a 2D electromagnetic solution.

2.3.2 Model Level 1
The previous model can be improved by accounting for the effect of the twists along
each differential pair of wires. To this aim, the cable has been modeled by using the
cascade of 8 cells per twist period; each 8 cells have then an approximate length of
2.5 cm, resulting in 40 twist/m, and each pair of wires inside the cell is still parallel
but its position is shifted 45 ∘ around its center with respect to the previous cell. Such
structure is depicted in Fig. 2.7.

Figure 2.8 provides a comparison between the DM and CM reflection loss at a port
of the system for the twisted and untwisted model of the SPW cable, and also the CM
to DM conversion along the cable. The results show that the considered scattering
parameters are similar for both versions of the cable, making this complexity in the
model unnecessary. However, it could be an important aspect if the model would be
employed in simulations where the effect of an external source of EMI to twisted pair
of wires is analyzed.
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2.3 – SPW cable model

Figure 2.7: Simulated structure of the SPW cable Model Level 1.
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Figure 2.8: Comparison of some mixed-mode scattering parameters generated by the
models of twisted and untwisted SPW cables.

2.3.3 Model Level 2
The concept of a direct and abrupt transition from the uniform SPW cable to the con-
nector is unrealistic. As can be seen in Fig. 2.9, the real transition happens in a more
smooth and less defined way [70]. The differential pairs of wires are separated from its
pair and connected to the appropriate pin in the connector, changing its position along
the way.

Therefore, the SPW cable model can be enhanced by considering the use of two in-
termediate blocks, with the aim of recreating the transition between the cable and the
connector cross-sections, as shown in Fig. 2.10. The transition is estimated visually to
have a total length of 25mm. A simplified model of this transition is schematically il-
lustrated in Fig. 2.11. It is assumed to consist of the cascade of two blocks with constant
cross sections. The transition block no. 1 is 23mm long and is intended to represent the
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Figure 2.9: Internal picture of a Micro D-Type connector attached to the SPW cable [70].

Figure 2.10: At the cable ends, a transition is necessary to fit the cable cross-section (Left
panel) to the D-type connector cross-section (Right panel). In the left panel, the gray
rectangles next to wire represent the shield of each twisted pair reduced to a pigtail;
in the right panel, the smaller dot indicates the position of the two pigtails continuing
through the connector, while the other two pigtails are left in open circuit.

part of the transition closer to the connector, where the wires stick out of the connector
pins; the cross-section is illustrated in the right panel of Fig. 2.10 and is assumed to re-
main constant throughout the block length. The transition block no. 2 is 2mm in length
and is intended to represent the section where the wires are still grouped together and
stick out of the cable; the inner shields are reduced to pigtails and run parallel to the
other wires (left panel of Fig. 2.10).

The two sections corresponding to the cable transitions have been characterized
through their PUL parameters computed by means of a 2D field solver. The resulting
two sets of frequency-dependent PUL matrices are implemented in HSPICE via two
cascadedW-elements in each of the cable extremities, and the cable model level 0 in be-
tween them. The next section aims at validating these models, showing their adequacy
for predicting the measurement of the frequency response of the actual SPW cable link.
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Figure 2.11: Schematic of the cable-connector transition adopted in the simulations.

2.4 Measurement setup
The models presented above have a solid theoretical foundation. However, they can
only be validated once they are compared with experimental data. The measurement
setup used for the experimental validation of the derived models is shown in Fig. 2.12-
(a) [71]. It consists of a 1m long SPW cable connected on both ends to the test fixture
shown in Fig. 2.12-(b), built for compatibility with a Vector Network Analyzer (VNA),
and which correspond to a possible implementation of the PCBs from the setup in the
diagram of Fig. 2.1.

The test fixtures at both ends of the line are equal in order to have a similar effect at
each port of the system. Each fixture consists of a 9-pin male micro D-type connector
soldered on a PCB; the connector shell is referred to the PCB ground plane and each
of the 9 pins are connected to individual traces leading to the VNA cables via SMA
adapters. The test fixture board, built on a FR4 substrate, consists of 9 copper traces of
length 42.6 mm designed in order to have a 50 Ω characteristic impedance in the main
part, closer to where the RF connectors are soldered, and narrower near the micro D-
type connector in order to reach the connector pins with a sufficient clearance between
the paths, as shown in Fig. 2.12-(c). As the distance between the traces is not constant,
the structure cannot be considered as a uniform transmission line structure. Therefore,
the electrical behavior of the PCB has been derived by a 3D electromagnetic simulation,
followed by a rational approximation based on (2.1), producing an equivalent HSPICE
netlist.

The construction of this test fixture directly compatible with the VNA via the SMA
connectors allows the validation of its extracted models via measurements. In order to
do this, the S-parameters of the PCB are measured and compared with the extracted
models, in two different ways: (i), when only the PCB and its SMA connectors are
assembled, without the Micro D connector; and (ii), when the Micro D-type female
connector has also been soldered to the PCB fixture. The first measurement validates
the PCBmodel, while the second also provides an additional validation of the connector
model described in Sec. 2.2 [71]. The results comparing some of these measurements
to simulations of their models are shown in Fig. 2.13. It is interesting to notice that,
as the ends of the connector could not be connected to defined loads, they remained
in open circuit and thus, with the open test fixture most of the signals are reflected at
the connector end, which can be clearly seen in the plot of the 𝑆4,4 parameter in Figs.
2.13(b) and 2.13(d). Figs. 2.13(a) and 2.13(c) compare, for each structure, the measured
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(a)

(b) (c)

Figure 2.12: Panel (a): measurement setup used to validate the proposed physical-based
models of the SPW cable and of the D-type connector; Panel (b): test fixture (i.e., PCB
board) used to connect the SPW cable to the VNA; Panel (c): detail of the PCB center.

amplitude and phase of the measured coupling between SMA ports no. 1 and 2 with
the model prediction. The good agreement between the measured and the simulated
results validate the proposed physical-based models of the fixtures used to interface the
cable.

The full measurement setup turns out to be a 18-port system, which contains all
the linear structures and components of a SPW channel. Even if most of the require-
ments specified by the SPW standard [66] are related to the differential mode (DM) and
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Figure 2.13: Comparison of measurements and models of two fixtures made by the PCB
alone and the PCB with a soldered connector: reflection coefficient of port no. 4 (panel
a) and coupling between the two adjacent lines no. 1 and 2 (panel b).

common mode (CM) signaling along the link, the frequency-domain instruments able
to fully characterize the link are mostly available with single-ended interfaces. Baluns
can be used to make a differential measurement [72], but they do not provide informa-
tion about the CM and also require an additional component, influencing the measured
response. Therefore, single-ended measurements are mandatory if information about
the CM propagation is required. Since it is also possible to convert the single-ended
scattering matrix S(d) of a differential pair from the ports 1 − 1′ to 2 − 2′ to the mixed-
mode [67] scattering parameters matrix S(𝑚𝑚), the DM and CM characterization of the
communication channel can be readily derived from the single-ended data via [73]:

S(𝑚𝑚) = MS(𝑑)M−1, (2.2)

where

S(𝑑) =
⎡
⎢
⎢
⎢
⎣

𝑆11 𝑆11′ 𝑆12 𝑆12′

𝑆1′1 𝑆1′1′ 𝑆1′2 𝑆1′2′

𝑆21 𝑆21′ 𝑆22 𝑆22′

𝑆2′1 𝑆2′1′ 𝑆2′2 𝑆2′2′

⎤
⎥
⎥
⎥
⎦

, (2.3)
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M = 1
√2

⎡
⎢
⎢
⎢
⎣

1 −1 0 0
0 0 1 0
1 1 0 −1
0 0 1 1

⎤
⎥
⎥
⎥
⎦

, (2.4)

and

S(𝑚𝑚) =
⎡
⎢
⎢
⎢
⎣

𝑆𝑑𝑑
11 𝑆𝑑𝑑

12 𝑆𝑑𝑐
11 𝑆𝑑𝑐

12
𝑆𝑑𝑑

21 𝑆𝑑𝑑
22 𝑆𝑑𝑐

21 𝑆𝑑𝑐
22

𝑆𝑐𝑑
11 𝑆𝑐𝑑

12 𝑆𝑐𝑐
11 𝑆𝑐𝑐

12
𝑆𝑐𝑑

21 𝑆𝑐𝑑
22 𝑆𝑐𝑐

21 𝑆𝑐𝑐
22

⎤
⎥
⎥
⎥
⎦

, (2.5)

in which 𝑐 refers to the CM parameters, 𝑑 to the DM parameters, 1 to the port 1 − 1′

and 2 to the port 2 − 2′ (e.g., 𝑆𝑐𝑑
12 represents conversion from the differential mode in

port to into the common mode in port 1, and so on).

Figure 2.14: Vector Network Analyzer used in the validation of the SPW link.

The port numbering of the 18 ports is shown in Fig. 2.5. The full characterization of
a structure with a larger number of ports via a measurement instrument with a smaller
number of available ports should be performed sequentially, in a way that all the param-
eters outside the main diagonal of the scattering matrix are obtained at least once [67],
[74]. By means of this four-port VNA depicted in Fig. 2.14, the 18×18 scattering matrix
is obtained by performing 30 sets of measurements, even if the theoretical minimum
would be 27 sets of measurements. The procedure measures all the off-diagonal ele-
ments of the scattering matrix at least once [74], [75], as shown in Fig. 2.15. The extra
measurements are used to check the repeatability and the reliability of the measure-
ment results. At the same time, the ports not connected to the VNA are terminated
with a matched impedance of 50 Ω. The full frequency-domain characterization of the
18 single-ended ports established in this setup is achieved with this four-port VNA, in
the bandwidth from 300 kHz to 1GHz.
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Figure 2.15: Procedure for measurement of the 18×18 scattering matrix of the SPW link
via 4-port VNA. The tests depicted in the picture are added until the 18×18 matrix is
completely filled after 30 tests.
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Figure 2.16: Measured single-ended insertion loss between any two ports of the setup
and reflection loss on the 18 ports. Panel (a): transmission from one end to the other
end of the conducting wires; Panel (b): reflection observed on all the measured ports.
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2.5 Validation
Some of the single-ended measurements obtained via the procedure described in the
previous section are illustrated in Fig. 2.16. The transmission pattern, plotted in Fig. 2.16-
(a), is similar for all 8 conductors of the 4 twisted pairs of the cable. However, reflection
plots displayed in Fig. 2.16-(b) show three different patterns: the first one, in black, in-
dicates that most of the signal is reflected and refers to ports connected to the inner
shields, which always have one end in open circuit; the other two patterns refer to sig-
nal wires and their difference is caused by the asymmetrical shield connection: the blue
curves refer to pairs whose shields are left open in the section under test, while the red
curves refer to pairs whose shields are left open far from the section under test (this case
presents additional low-frequency resonances determined by longer signal reflections).

The obtained results are then converted into the corresponding mixed-mode repre-
sentation for each differential pair present in the SPW link [73], which is more relevant
to the differential signaling employed in such channel. This conversion transforms the
single-ended scattering parameters to the corresponding DM and CM scattering pa-
rameters 𝑆𝑑𝑑 and 𝑆𝑐𝑐 respectively, and to the mode-conversion parameters: 𝑆𝑐𝑑, that
describes the DM-to-CM conversion, and 𝑆𝑑𝑐, that describes the CM-to-DM conversion.
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Figure 2.17: Comparison of CM reflection coefficients: measurements vs. HSPICE simu-
lations of models with increasing degree of details. Panel (a): CM port defined between
pins 1-2 of Fig. 2.5. Panel (b): CM port defined between pins 10-11 of the same Fig. 2.5.

For the mixed-mode validation, the measurement setup presented in Fig. 2.12 has
been implemented in HSPICE by replacing each component (i.e., the test-fixtures, the
connectors and the SPW cable) with its corresponding equivalent circuit netlist, which
are already validated. The scattering parameters are then calculated from the voltage
and current waveforms resulting from the frequency-domain HSPICE simulation. Both
the measurements and the HSPICE model simulations are converted into mixed-mode
scattering parameters. In addition, two different models of the SPW cable are consid-
ered in the HSPICE simulations: Model Level 0 (i.e., with a direct connection between
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the cable and the connector) andModel Level 2 (i.e., with a smoother transition between
the cable and the connector). Model Level 1 is dropped due to its similarity to Model
Level 1.

106 107 108 109

-50

-40

-30

-20

-10

(a)

106 107 108 109

-50

-40

-30

-20

-10

(b)

Figure 2.18: Comparison of DM reflection coefficients: measurements vs. HSPICE simu-
lations of models with increasing degree of details. Panel (a): DM port defined between
pins 1-2 of Fig. 2.5. Panel (b): DM port defined between pins 10-11 of the same Fig. 2.5.

The frequency response of the CM reflection scattering parameter at the ports of a
twisted pair of conductors is shown in Fig. 2.17. The same two patterns that happen
in the single-ended parameters in Fig. 2.16 appear here, meaning that in Fig. 2.17(a) is
shown the reflection loss at a port where the inner shield of the cable is connected to the
central pin of the connector, and in Fig. 2.17(b) is shown the reflection loss at a port with
the inner shield in open-circuit. It should be noticed that the peaks on the frequency
response achieve a value close to -5 dB, slightly increasing as the frequency increases.
The Model Level 2, introducing a transition between the cable and the connector sig-
nificantly improves the accuracy of the model prediction at higher frequencies, even
though the adopted transition is drastically simplified with respect to reality.

Figure 2.18 shows the frequency response of the DM reflection scattering parameter
at both ends of a twisted pair. Here, the terminations of individual shields (either in
short circuit or in open circuit) do not have a significant impact, as the responses at
both ports are similar. On the other hand, the importance of an adequate model of the
transitions between the cable and the connector is evidenced by the fact that Model
Level 2 better accounts reason for the growing trend of the peaks as the frequency
increases.

The frequency behaviour of other mixed scattering parameters is shown in Fig. 2.19,
where it is confirmed that the Model Level 2, including the transitions from the cable
to the connector, helps better explaining the high-frequency portion of the undesired
mode conversions. It is ought to be noted that the apparent deviation betweenmeasured
and simulated values at low frequencies is due to the limitations imposed by the noise
floor of the measurement equipment, while simulation computations are performed
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with a higher numerical accuracy.
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Figure 2.19: Comparison of some mixed-mode scattering coefficients: measurements
vs. HSPICE simulations of models with increasing degree of details. DM-mode trans-
mission (panel (a)) and mode conversion (panel (b) and (c)) from port 1-2 to port 10-11
of Fig. 2.5.

2.6 Remarks
A physical-based modeling of each of the components of the SPW physical layer was
presented here and validated via experimental measurements. The simulation setup as-
sembled with the individual models of the parts that constitute the SPW link was able
to replicate its actual behaviour. However, we saw that many details have to be consid-
ered, e.g. a small cascade of blocks used to represent the transition between the cable
and the connector (instead of using an abrupt transition) achieve a model with better
accuracy, specially at higher frequencies. It was seen that the Model Level 2 developed
and presented can be used for the reliable prediction of digital signals along the SPW
links, with reliable CM and DM representations of the communication differential pair,
and good results for the mode conversion along the channel. However, such results
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were only obtained after the construction of a measurement setup to characterize the
frequency-domain response of the SPW link and an incremental improvement of the
cable model design. In the next chapter, we start to present data-based black-box mod-
els which do not require knowledge of the structure of the involved components, and
is based only on behavioral data of the DUT obtained from reliable simulations or even
directly from performed measurements. With such approach, much of the uncertainty
on the design of the physical model be avoided, as the models are directly based on data
that is assumed to be reliable and the focus can be placed on the accuracy and target
characteristics of such model.
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Chapter 3

Data-Driven Metamodels via the
Least-Squares Support Vector
Machine Regression

An alternative of the previously described physical-based models is the use of data-
driven metamodels. With such approach, the individual modeling of the system com-
ponents is unnecessary, as a metamodel is estimated only based on data from the system
ports. The data can be obtained via measurements or simulations, and then the most
convenient data acquisition approach can be chosen. A black-box data-driven model
is a system defined in terms of its inputs and outputs characteristics, regardless of the
physics and internal mechanisms that achieve such behavior. Black-box modeling tech-
niques aim to construct a surrogate model which is able to mimic the behavior of a real
system via a black-box model by inferring the unknown model from data representing
the system’s behavior to a certain stimulus. They perform a deterministic procedure,
such as the computation of an analytical formula, which provides an approximate re-
lation ̃y = ̃ℳ(x) ≈ y from a set of input parameters x ∈ ❘

𝑑 to an output y ∈ ❘.
Sometimes, they are also called metamodels, or surrogate models, because they act as
a surrogate for the true system ℳ(x). In this sense, they are indispensable for the ex-
ploration of a large design space with different goals, e.g., design optimization [76],
uncertainty quantification [59], [61], [62], [77]–[80] or sensitivity analysis [81]. Their
fast and readily available mathematical relation provides an easyway to obtain the large
number of data required by the tasks above.

The classical way of estimating a metamodel is via inference of empirical data orig-
inating from the target model, which statistically infers the dependency of the output
with respect to the input [82]. In this regard, metamodels can be split into two groups:

1. Parametric models, which assume a finite set of parameters and basis functions,
and perform an inference particular to these specific parameters in the models.
An effective model is structured over intuition and deep knowledge about the
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problem context [69] or physical laws [82]. The parameters capture all the be-
havior of the data, i.e., the model predictions are independent of the data. Addi-
tionally, its complexity is fixed, no matter the amount of data available;

2. Non-parametricmodels, do not explicitly assume a set of parameters for themodel,
and instead perform a generic inference from the available data. The approximate
function is inferred solely from the empirical data set. The parameters in the
model can be seen as a function of the data, and the amount of information which
they capture grows as the amount of data is increased. This inference does not
require any a priori information about the statistical law underlying the problem
or function [82].

A metric to evaluate the accuracy of such models is via the the use of the mean
squared error (MSE):

MSE = 1
𝐾

𝐾

∑
𝑘=1

‖y𝑘 − ỹ𝑘‖2. (3.1)

The minimization of the metric above for a linear parametric model leads to the least-
squares (LS) regression, one of the simplest modeling implementations. This method
interpolates the observed outputs {y1,… , y𝐾} using a set of basis functions (or features)
{𝜑0(x),… ,𝜑𝑁(x)}. In other words, for the available data, the approximate model is
equivalent to the following linear system [56]

⎡
⎢
⎢
⎣

̃y1
⋮
̃y𝐾

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

𝜑0(x1) 𝜑𝑁(x1)
⋱

𝜑0(x𝐾) 𝜑𝑁(x𝐾)

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

w0
⋮
w𝑁

⎤
⎥
⎥
⎦
, (3.2)

or equivalently, in terms of vectors and matrices:

y = Φw. (3.3)

As an example, for a regression via a quadratic polynomial function, the basis func-
tions are {1, 𝑥, 𝑥2}. The LS model estimation consists on finding the best vector of pa-
rameter weights w = [w0,… ,w𝑁]𝑇 such that the MSE is minimized. This is obtained
via

w = (Φ𝑇Φ)
−1 Φ𝑇y. (3.4)

The resulting approximate model is then written according to

y(x) ≈ ỹ(x) =
𝑁

∑
𝑖=0

w𝑖𝜑𝑖(x). (3.5)

When this method is applied for high dimensional problems, i.e., when 𝑑 is large, it
suffers from the curse of dimensionality, which prevents it from capturing singularities
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in the problem without a prohibitive number of training samples [82]. Additionally,
more and more features can be added to match the training data, but this may lead to a
larger issue called overfitting. Overfitting happens when somemetamodeling technique
learns every sample in a set of data from which it is estimated, but so well that it learns
also the unique noise present in this small set of samples [69]. An example showing
this phenomenon is shown in Fig. 3.1. A set of noisy data samples is extracted from a
smooth system. Then, two wrong models are estimated: a simple linear regression in
blue, which is too is simple to capture the higher order variations of the data, and an
polynomial model withmaximum order equal to 8 in red, which usesmore features than
necessary, and thus overfits the data, and is specially badwhen themodel is extrapolated
outside of the available samples range. In a one dimension space, it is clear to visualize
this phenomenon. However, most modeling problems are in higher dimensional spaces,
where this visualization is not clear, and so more robust techniques are necessary.
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Figure 3.1: Example of a one-dimensional metamodel showing the difficulty in selecting
the adequate level of complexity for the model.

Other common reason why a metamodel fails, besides the above ones, might in-
clude an inadequate pre-processing of the training data, lack of validation and extrap-
olation of the results [69]. Adequate attention should be payed to model selection, as
non-informative features add uncertainty to the model. Compact representations, i.e.,
representations with a minimal number of features, often also have good generalization
properties [58].

A solution for many of those issues is the use of regularization. While it solves the
issue of obtaining a unique solution for the system in (3.2) in the cases where 𝑁 ≥ 𝐾, it
also inserts a bias-variance trade-off on the choice ofwwhich might be used to prevent
overfitting and for feature selection, pursuing less complicated models [56]. Among the
machine learning techniques presented in section 1.2, the least-squares support vector
machine (LSSVM) is a powerful alternative to the modeling of electric interconnects.
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While it does not oversimplifies the resulting model, it also uses the positive features of
regularization in order to obtain a metamodel which generalizes well for data not used
in its training. Therefore, the next sections study the LSSVM in depth in order to apply
it to improve electric interconnect models.

3.1 The Least-Squares Support Vector Machine
The least-squares support vector machine is a black box machine learning technique
that can be applied in classification or regression tasks. The standard LSSVM regression
searches to approximate a set of training data pairs {(x𝑘, y𝑘)} for 𝑘 = 1 … 𝐾, with a
non-linear regression ̃y = ̃ℳ(x) of the input x = [𝑥1,… , 𝑥𝑑]

𝑇 ∈ ❘
𝑑. Let us start

considering the following primal space formulation of the LSSVM regression which
maps y as a function of x according to:

̃y(x) = ⟨w,𝜑(x)⟩ + 𝑏 =
𝑁

∑
𝑖=1

w𝑖𝜑𝑖(x) + 𝑏, (3.6)

which is a parametric model with feature space𝜑(⋅) ∶ ❘𝑑 → ❘
𝑁. In this model, 𝜑0(x) =

1 from (3.2) is explicitly represented via the constant bias term 𝑏. The operator ⟨⋅, ⋅⟩
represents the inner product, and the model output is based in the inner product of
the weights and the basis functions. The LSSVM regression is derived by solving the
following optimization problem [60]:

min
w,𝑒𝑘

𝐽𝑝(w, 𝑒) = 1
2

⟨w,w⟩ +
𝛾
2

𝐾

∑
𝑘=1

|𝑒𝑘|2

𝑠.𝑡. ⟨w,𝜑(x𝑘)⟩ + 𝑏 + 𝑒𝑘 = y𝑘

(3.7)

for 𝑘 = [1,… ,𝐾]. The model error 𝑒𝑘 = y𝑘 − ỹ(x𝑘) is computed as the difference
true data and approximate model. The optimization problem minimizes two terms: the
loss function, which for the LSSVM regression corresponds to the sum of squared error
(SSE); and the ℓ2-norm regularization term ⟨w,w⟩ = ‖w‖2. The proper selection of
𝛾 makes the model both accurate and flat, providing a way to regulate the focus on
those two characteristics: a large value for 𝛾 will lead to a model with smaller error on
the training set, but that may have difficulties in the generalization of its predictions
for x values located far from the training samples. In order to avoid such overfitting,
𝛾 should be regulated so that the model becomes flat and smooth, generalizing better
across all the design space, while also keeping a small error. To find the minimum of
the optimization problem in (3.7), we can use its Lagrangian, which for the problem in
(3.7) writes:

ℒ(w, 𝑏, e;𝛼) = 1
2
w𝑇w + 𝛾

𝐾

∑
𝑘=1

𝑒2
𝑘 −

𝐾

∑
𝑘=1

𝛼𝑘 (w𝑇𝜑(x𝑘) + 𝑏 + 𝑒𝑘 − y𝑘) , (3.8)
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where the coefficients 𝛼𝑘 are composed by the Lagrange multipliers belonging to the
optimization problem, with 𝛼𝑘 ∈ ❘. Computing the derivatives of the Lagrangian and
making them equal to zero results in the definitions below:

w =
𝐾

∑
𝑘=1

𝛼𝑘𝜑(x𝑘), (3.9)

𝐾

∑
𝑘=1

𝛼𝑘 = 0, (3.10)

𝑒𝑘 =
𝛼𝑘
𝛾
, (3.11)

w𝑇𝜑(x𝑘) + 𝑏 + 𝑒𝑘 − y𝑘 = 0. (3.12)

By combining the equations in (3.12) and (3.10), and substituting in (3.12) the value for
w and 𝑒𝑘 in (3.9) and (3.11), we can build the following linear system of equations:

[
Ω + I𝐾/𝛾 1𝐾

1𝑇
𝐾 0 ] [

𝛼
𝑏] = [

y
0] , (3.13)

where y = [y1,… , y𝐾]𝑇, 1𝐾 = [1,… ,1]𝑇 is a vector containing 𝐾 equal elements, I𝐾
is an identity matrix with size (𝐾 × 𝐾), and the (𝐾 × 𝐾) kernel matrix Ω depends on
the kernel function k(⋅, ⋅) ∶ ❘𝑑 ×❘𝑑 → ❘ computed over the available training samples.
This kernel function is a key element for the LSSVM and for this work, and thus, we will
dedicate section 3.3 for its detailed explanation. The element Ω𝑖,𝑗 in the 𝑖-th row and
𝑗-th column of the kernel matrix is defined by applying the kernel function as follows:

k(x𝑖,x𝑗) = ⟨𝜑(x𝑖),𝜑(x𝑗)⟩ . (3.14)

The unknowns 𝛼 = [𝛼1,… , 𝛼𝐾]𝑇 and 𝑏 are computed by solving (3.13). After de-
termining those parameters, the so called dual space model representation is written
as

ỹ(x) =
𝐾

∑
𝑘=1

𝛼𝑘k(x,x𝑘) + 𝑏. (3.15)

This model is equivalent to the primal space model, with the main difference being their
dimension: the primal space model has 𝑁 terms, which is the number of basis of the
primal space, i.e., the dimension of the feature space𝜑(x). Its determination require the
computation of 𝑁 unknowns, i.e., the 𝑁 terms in w. On the other hand, the dual space
model is a nonparametric regression, i.e., it has a number of terms equal to the number
of training samples, 𝐾, and its estimation require the computation of the 𝐾 terms in 𝛼.
Both models also have the same bias term 𝑏.
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3.2 Extension of the Least-Squares SupportVectorMa-
chine for Complex Models

In the LSSVM regression framework described above, both the input and the output
consist on real valued functions, and cannot be directly applied for models involving
complex-valued quantities. The literature present some ways to do it, either by treating
individually the each part of the complex quantity [63], or by adapting the technique
for complex-valued models [83]. The former technique might achieve its goal, however
it loses the intrinsic relation among the real and imaginary parts which their target
quantities might have. Therefore, for the latter category, the literature provide some
references that extend the kernel-based methods to perform regression on complex-
valued functions, such as the support vector machine (SVM) [84], the least-mean-square
(LMS) algorithm [85]–[87] and mixture models [88]. The LSSVM regression can also be
readily extended to a complex framework [83], [89]–[91], where its advantages obtained
from the regularization and its dual formulation are maintained.

In order to arrive at its complex-valued formulation, the LSSVM regression from
Sec. 3.1 is modified to have complex-valued inputs x ∈ ❈

𝑑 and output y ∈ ❈. With
these definitions in mind, the primal space formulation of the LSSVM regression can be
rewritten as

̃y(x) = ⟨w,𝜑∗(x)⟩ + 𝑏, (3.16)

where the regression coefficients w ∈ ❈
𝑁, basis function 𝜑(⋅) ∶ ❈

𝑑 → ❈
𝑁 and bias

term 𝑏 ∈ ❈ are also defined as complex quantities.
The LSSVM regression model is derived by solving the following optimization prob-

lem:

min
w,𝑒

𝐽𝑝(w, 𝑒) = 1
2
w𝐻w +

𝛾
2

𝐾

∑
𝑘=1

𝑒𝑘𝑒∗
𝑘

𝑠.𝑡. ℜ{w𝑇𝜑(x𝑘) + 𝑏 + 𝑒𝑘} = y𝑘,𝑟

ℑ{w𝑇𝜑(x𝑘) + 𝑏 + 𝑒𝑘} = y𝑘,𝑖

(3.17)

for 𝑘 = 1,… ,𝐾. In the above equation, the vector of model error 𝑒 = {𝑒𝑘}𝐾
𝑘=1 which is

observed by the LSSVM model is equal to the true value y𝑘 minus the model output of
(3.16) computed at x𝑘, for all training points. In the same way as the traditional LSSVM
regression, problem (3.17) minimizes the ℓ2-norm of the primal spacemodel coefficients
w plus the sum of squared errors, weighted by the regularization parameter 𝛾. The
optimal solution for this model is found by means of its Lagrangian, which writes:
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ℒ(w, 𝑏, e;𝛼) = 1
2 (w𝑇

𝑟w𝑟 + w𝑇
𝑖 w𝑖) + 𝛾

𝐾

∑
𝑘=1

(𝑒2
𝑘,𝑟 + 𝑒2

𝑘,𝑖)

−
𝐾

∑
𝑘=1

𝛼𝑘,𝑟 (w𝑇
𝑟𝜑𝑟(x𝑘) − w𝑇

𝑖 𝜑𝑖(x𝑘) + 𝑏𝑟 + 𝑒𝑘,𝑟 − y𝑘,𝑟)

−
𝐾

∑
𝑘=1

𝛼𝑘,𝑖 (w𝑇
𝑟𝜑𝑖(x𝑘) + w𝑇

𝑖 𝜑𝑟(x𝑘) + 𝑏𝑖 + 𝑒𝑘,𝑖 − y𝑘,𝑖) ,

(3.18)

where most quantities from Sec. 3.1 were split into their real and imaginary parts in
order to facilitate the computations, e.g., 𝛼𝑘 = 𝛼𝑘,𝑟 + 𝑗 𝛼𝑘,𝑖, w = w𝑟 + 𝑗w𝑖, 𝑒𝑘 = 𝑒𝑘,𝑟 +
𝑗 𝑒𝑘,𝑖, y𝑘 = y𝑘,𝑟+𝑗 y𝑘,𝑖 and𝜑(x𝑘) = 𝜑𝑟(x𝑘)+𝑗𝜑𝑖(x𝑘). The derivatives of this Lagrangian
are equal to:

𝜕ℒ
𝜕w𝑟

= 1
2

(2w𝑟) −
𝐾

∑
𝑘=1

𝛼𝑘,𝑟𝜑𝑟(x𝑘) −
𝐾

∑
𝑘=1

𝛼𝑘,𝑖𝜑𝑖(x𝑘), (3.19a)

𝜕ℒ
𝜕w𝑖

= 1
2

(2w𝑖) +
𝐾

∑
𝑘=1

𝛼𝑘,𝑟𝜑𝑖(x𝑘) −
𝐾

∑
𝑘=1

𝛼𝑘,𝑖𝜑𝑟(x𝑘), (3.19b)

𝜕ℒ
𝜕𝑏𝑟

= −
𝐾

∑
𝑘=1

𝛼𝑘,𝑟, (3.19c)

𝜕ℒ
𝜕𝑏𝑖

= −
𝐾

∑
𝑘=1

𝛼𝑘,𝑖, (3.19d)

𝜕ℒ
𝜕𝑒𝑘,𝑟

= −𝛼𝑘,𝑟 + 2
𝛾
2

𝑒𝑘,𝑟, (3.19e)

𝜕ℒ
𝜕𝑒𝑘,𝑖

= −𝛼𝑘,𝑖 + 2
𝛾
2

𝑒𝑘,𝑖, (3.19f)

𝜕ℒ
𝜕𝛼𝑘,𝑟

= −(w𝑇
𝑟𝜑𝑟(x𝑘) − w𝑇

𝑖 𝜑𝑖(x𝑘) + 𝑏𝑟 + 𝑒𝑘,𝑟 − y𝑘,𝑟), (3.19g)

𝜕ℒ
𝜕𝛼𝑘,𝑖

= −(w𝑇
𝑟𝜑𝑖(x𝑘) + w𝑇

𝑖 𝜑𝑟(x𝑘) + 𝑏𝑖 + 𝑒𝑘,𝑖 − y𝑘,𝑖). (3.19h)

Making these derivatives equal to zero results in the definitions below:

w =
𝐾

∑
𝑘=1

𝛼𝑘𝜑∗(x𝑘), (3.20)

𝐾

∑
𝑘=1

𝛼𝑘 = 0, (3.21)
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𝑒𝑘 =
𝛼𝑘
𝛾
, (3.22)

w𝑇𝜑(x𝑘) + 𝑏 + 𝑒𝑘 − y𝑘 = 0. (3.23)

Similarly to the previous section, by combining the equations in (3.23) and (3.21),
separating its real and imaginary parts, and substituting in (3.23) the value for w and
𝑒𝑘 in (3.20) and (3.22), one can build the following linear system of equations:

⎡
⎢
⎢
⎢
⎣

Ω + I2𝐾/𝛾 1𝐾 0𝐾
0𝐾 1𝐾

1𝑇
𝐾 0𝑇

𝐾
0𝑇

𝐾 1𝑇
𝐾

0 0
0 0

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝛼𝑟
𝛼𝑖
𝑏𝑟
𝑏𝑖

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

y𝑟
y𝑖
0
0

⎤
⎥
⎥
⎥
⎦

. (3.24)

The 2𝐾 × 2𝐾 kernel matrix Ω is defined as

Ω = [
Ω(1,1) Ω(1,2)

Ω(2,1) Ω(2,2)] . (3.25)

In the 𝐾 × 𝐾 square submatrices that compose Ω, an element Ω(.,.)
𝑖,𝑗 in the 𝑖-th row

and 𝑗-th column is defined as follows:

Ω(1,1)
𝑖,𝑗 = ℜ{k(x𝑖,x𝑗)}, (3.26a)

Ω(1,2)
𝑖,𝑗 = −ℑ{k(x𝑖,x𝑗)}, (3.26b)

Ω(2,1)
𝑖,𝑗 = ℑ{k(x𝑖,x𝑗)}, (3.26c)

Ω(2,2)
𝑖,𝑗 = ℜ{k(x𝑖,x𝑗)}, (3.26d)

and complex Gram matrix
Ω❈ = Ω(1,1) + 𝑗Ω(2,1), (3.27)

for 𝑖, 𝑗 = 1,… ,𝐾.
The kernel function now is a complex function k(⋅, ⋅) ∶ ❈𝑑 × ❈

𝑑 → ❈, defined as:

k(x𝑖,x𝑗) = ⟨𝜑(x𝑖),𝜑(x𝑗)⟩ . (3.28)

The complex-valued kernel is even more essential for the model estimation than its
real-valued counterpart, as it will carry the relation between real and imaginary parts
of the data. This kernel trick that replaces the feature space by its corresponding repro-
ducing kernel Hilbert space (RKHS) allows the computation of the LSSVM based on the
dual space formulation, without the specific knowledge about its feature space. The un-
knowns 𝛼 = 𝛼𝑟+𝑗𝛼𝑖 = [𝛼1,𝑟+𝑗 𝛼1,𝑖,… , 𝛼𝐾,𝑟+𝑗 𝛼𝐾,𝑖]𝑇 and 𝑏 = 𝑏𝑟+𝑗 𝑏𝑖 are computed by
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solving (3.24). Similarly to the real-valued LSSVM regression, the determination of the
previous parameters leads to the dual space representation of the regression, written as

ỹ(x) =
𝐾

∑
𝑘=1

𝛼𝑘k(x,x𝑘) + 𝑏. (3.29)

Once the dual space model is determined for known basis, any of its primal space
coefficients can be obtained from (3.20), and thus also its equivalent primal space model.
For a single coefficient w𝑖 that weights the basis 𝜑𝑖(x) in the primal space model in
(3.16), this computation writes:

w𝑖 =
𝐾

∑
𝑘=1

𝛼𝑘𝜑𝑖
∗(x𝑘), (3.30)

and thus

w =
𝐾

∑
𝑘=1

𝛼𝑘𝜑∗(x𝑘). (3.31)

Figure 3.2: Diagram showing the duality of the LSSVM regression model.

With this coefficient computation and the kernel trick, the duality of the LSSVM
can be optimally exploited. A LSSVM regression model based on a feature space with
a very large (or even infinte) number of basis 𝑁 can be computed in its dual space
formulation in (3.29), via a predefined or ad-hoc kernel estimated via the kernel trick in
(3.28), by estimating the 𝐾 parameters 𝛼. This nonparametric dual space formulation is
equivalent to the parametric model in (3.16), which can be computed via the knowledge
of the feature space and the trick in (3.30). Figure 3.2 shows a diagram exemplifying
this duality.

3.3 The Kernel Function
The previous sections developed a LSSVM regressionmodel, where two representations
were available: the primal and the dual space models. The primal space formulation
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in (3.16) expressed the model based on a feature space 𝜑(x), while the dual space for-
mulation is a model that relies on the kernel function k(x,x𝑖). The name kernel comes
from the field of integral operator theory, which supports much of the theory about the
relation between kernels and their feature spaces. Indeed, this kernel-based represen-
tation projects data into a high dimensional space, increasing the computational power
of linear regression models [58]. By using an adequate kernel, it is possible to make
implicitly a non-linear map into a high dimensional feature space.

The parametric learning procedure selects appropriate features based on empiri-
cal knowledge to represent data and estimate a linear model. Feature selection is an
essential part of that procedure, and one kind of feature selection is the principal com-
ponent analysis (PCA), which computes features as a linear combination of original at-
tributes and sort them by the amount of variance that the data exhibits in each direction.
Kernel-based techniques are an alternative feature selection procedure, by performing
a non-linear map that is implicitly based on a set of features. With the use of these
kernel techniques, the non-parametric learning algorithm and theory can be decoupled
from the specific application. The details of the application are encoded in the choice
or design of an appropriate kernel function [58].

The kernel function directly computes the inner product of features as a function
of a pair of input points, as stated in (3.28). The dimension of the feature space does
not need to affect the computational time, and thus, the kernel function may be used as
a tool to avoid the computational issues inherent to the evaluation of the feature map.
The only information needed by kernel-based learning algorithms is the kernel matrix
Ω, also called Gram matrix [58].

It is not required to know the feature space that corresponds to a certain kernel
function, as long as we know that it has a reproducing kernel Hilbert space (RKHS) of
functions for which it corresponds to the kernel. The next subsection describes some
techniques and characteristics required to ensure that a predefined function is indeed
a kernel function.

3.3.1 Using Predefined Kernels
The use of predefined kernels avoids the definition of the feature space. This can be
seen as a more natural way to deal with the model, as the focus can be shifted to the
learning algorithm. Indeed, if a computationally efficient kernel function is defined, the
learning algorithm will be more easily extended to larger data sets, as a large part of
the computational cost consists on the computation of the kernel matrix.

The characteristics that a kernel should possess can start to be derived from the
Cauchy-Schwarz inequality [58]:

⟨𝜑(x𝑖),𝜑(x𝑗)⟩
2 ≤ ⟨𝜑(x𝑖),𝜑(x𝑖)⟩ ⟨𝜑(x𝑗),𝜑(x𝑗)⟩ . (3.32)
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valid for a real-valued feature space. In the case of complex-valued functions, the mag-
nitude of this inner product should be considered instead:

|⟨𝜑(x𝑖),𝜑(x𝑗)⟩|
2 ≤ ⟨𝜑(x𝑖),𝜑(x𝑖)⟩ ⟨𝜑(x𝑗),𝜑(x𝑗)⟩ . (3.33)

From the above inequality, an upper bound for the magnitude is defined:

|k(x𝑖,x𝑗)|2 ≤ k(x𝑖,x𝑖) k(x𝑗,x𝑗). (3.34)

It is possible also to easily define a symmetry that should be observed by the kernel
function [92]:

k(x𝑖,x𝑗) = ⟨𝜑(x𝑖),𝜑(x𝑗)⟩ = ⟨𝜑(x𝑗),𝜑(x𝑖)⟩
∗ = k(x𝑗,x𝑖)∗, (3.35)

and a positive value for the kernel computed for a given input pair {x𝑖,x𝑖}:

k(x𝑖,x𝑖) = ⟨𝜑(x𝑖),𝜑(x𝑖)⟩ = ‖𝜑(x𝑖)‖2 ≥ 0. (3.36)

The conditions above are useful, but not sufficient to guarantee that a given function
has a corresponding feature space. A stronger test comes from Mercer’s condition,
which writes [60], [93]:

∬𝒳×𝒳
k(x,x′)𝑔(x)𝑔(x′)∗𝑑x𝑑x′ ≥ 0, (3.37)

computed over the input domain 𝒳 for any square integrable function 𝑔(x). In practical
terms, this means that the kernel function should have a Gram matrix which is positive
semi-definite, i.e.,Ω, for the real-valued case, or its Hermitian partΩ𝐻 = (Ω❈+Ω𝐻

❈
)/2,

for the complex-valued case, have all eigenvalues non-negative. When computed over
the training samples and for any vector 𝜆 = [𝜆1,… , 𝜆𝐾]𝑇 ∈ ❘

𝐾, Mercer’s condition is
given by:

𝜆𝑇Ω𝐻𝜆 ≥ 0. (3.38)

When the kernel satisfies (3.37), it is called aMercer kernel. For every Mercer kernel
k(x𝑖,x𝑗), there is a RKHS of functions defined over the domain of k(x𝑖,x𝑗) for which
k(⋅, ⋅) is the reproducing kernel [58].

The above condition presents a large similarity to the correlation functions used
in the Gaussian process regression (GPR) [62] and similar stochastic models. Indeed,
correlation functions are also Mercer kernels. The covariance matrices are positive
definite for all finite sets of input points, which is precisely the defining property of the
Mercer condition. The definition of the GPR with a given correlation function avoids
defining explicitly the function class and prior distribution over those functions [58].
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3.3.2 Making a kernel
The converse of the conclusions above is also true: for any Hilbert space of functions
in which the evaluated functionals are bounded and linear, there exists a reproducing
kernel function [58]. Therefore, another approach in choosing the appropriate kernel
for the kernel-based model is to derive said kernel from the inner product of the desired
feature space 𝜑(x) = [𝜑1(x),… ,𝜑𝑁(x)]𝑇. This is a powerful approach in special sit-
uations, e.g., for working in non-euclidean spaces such as sets of finite strings. When
this route is taken, there is no need to verify Mercer’s condition, as the feature space
corresponding to the kernel exists and is known.

Given the above set of desirable features, their RKHS can be simply computed by
expanding the inner product [60]

k(x𝑖,x𝑗) =
𝑁

∑
𝑛=1

𝜆𝑛𝜑𝑛(x𝑖)𝜑∗
𝑛(x𝑗), (3.39)

in which the positive constants {𝜆𝑛}𝑁
𝑛=1 were added for weighting individual features.

This kernel is valid also for 𝑁 → ∞, if the resulting k(x𝑖,x𝑗) is bounded.
This reasoning can be expanded to the case where 𝜑(x) is defined as the set of

functions 𝜑(x; 𝜗) with 𝜗 ∈ Θ. If Θ is defined as a continuous space, its RHKS is given
by [82]

k(x𝑖,x𝑗) = ∫Θ
𝜑(x𝑖; 𝜗)𝜑∗(x𝑗; 𝜗)𝑑𝜗. (3.40)

A simpler way to make a kernel is by combining other known kernels. Assuming
that 𝑘𝑎(x𝑖,x𝑗) and 𝑘𝑏(x𝑖,x𝑗) are kernels, the following properties hold true in making
a new kernel 𝑘′(x𝑖,x𝑗) [60]:

𝑘′(x𝑖,x𝑗) = 𝑎𝑘𝑎(x𝑖,x𝑗), (3.41a)

𝑘′(x𝑖,x𝑗) = 𝑘𝑎(x𝑖,x𝑗) + 𝑏, (3.41b)

𝑘′(x𝑖,x𝑗) = x𝑇
𝑖 Px∗

𝑗 , (3.41c)

𝑘′(x𝑖,x𝑗) = 𝑘𝑎(x𝑖,x𝑗) + 𝑘𝑏(x𝑖,x𝑗), (3.41d)

𝑘′(x𝑖,x𝑗) = 𝑘𝑎(x𝑖,x𝑗)𝑘𝑏(x𝑖,x𝑗), (3.41e)

𝑘′(x𝑖,x𝑗) = 𝑘𝑎(𝜑(x𝑖),𝜑(x𝑗)), (3.41f)

𝑘′(x𝑖,x𝑗) = 𝑝+(𝑘𝑎(x𝑖,x𝑗)), (3.41g)

𝑘′(x𝑖,x𝑗) = exp(𝑘𝑎(x𝑖,x𝑗)), (3.41h)

where 𝑎, 𝑏 > 0, 𝑃 = 𝑃 𝐻 > 0, and 𝑝+(⋅) is a polynomial with positive coefficients.
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Another operation that can be performed on kernels are their normalization:

k′(x𝑖,x𝑗) =
k𝑎(x𝑖,x𝑗)

√k𝑎(x𝑖,x𝑖) √k𝑎(x𝑗,x𝑗)
. (3.42)

The above normalization is equivalent to computing the cosine of the angle between
𝜑(x𝑖) and 𝜑(x𝑗) in the feature space. It can be seen as a special case of the conformal
transformation of the kernel with factor 𝑐(x) [60]:

k′(x𝑖,x𝑗) = 𝑐(x𝑖)k𝑎(x𝑖,x𝑗)𝑐(x𝑗). (3.43)

By combining all the above properties with known predefined kernels, one should
be able to find a suitable kernel for the desired application.

3.3.3 Commonly used kernel functions
Since the introduction and popularization of the SVM framework [82], several kernel
functions have been proposed. This section lists some of them below. Each kernel func-
tion depends on a pair of inputs (x𝑖,x𝑗), and possibly on other additional parameters
used to adjust them. Those are called hyperparameters, which will be described better
in the next section.

The three most common kernel functions are the linear, polynomial and Gaussian,
or radial basis functions (RBF) kernels. Standard LSSVM implementations will use one
of these three functions [60]. They are written by:

Linear

k(x𝑖,x𝑗) = x𝑇
𝑗 x𝑖 (3.44)

Polynomial

k(x𝑖,x𝑗) = (𝑐 + x𝑇
𝑗 x𝑖)

𝑑
(3.45)

Gaussian

k(x𝑖,x𝑗) = exp
(

−
‖x𝑖 − x𝑗‖2

2𝜎2 )
(3.46)

Nonetheless, many other Mercer kernels can be used. Some other alternatives pre-
sented in the literature [94] are listed below:

Exponential:

k(x𝑖,x𝑗) = exp(−
‖x𝑖 − x𝑗‖

2𝜎2 ) (3.47)
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ANOVA

k(x𝑖,x𝑗) =
𝑁

∑
𝑛=1

exp(−𝜎 (x
𝑛
𝑖 − x𝑛

𝑗 )
2

)

𝑑
(3.48)

Rational Quadratic

k(x𝑖,x𝑗) = 1 −
‖x𝑖 − x𝑗‖2

‖x𝑖 − x𝑗‖2 + 𝑐
(3.49)

Inverse Multiquadric

k(x𝑖,x𝑗) = 1

√‖x𝑖 − x𝑗‖2 + 𝑐2
(3.50)

Bessel

k(x𝑖,x𝑗) =
𝐽𝜈+1(𝜎‖x𝑖 − x𝑗‖)
‖x𝑖 − x𝑗‖−𝑛(𝜈+1) (3.51)

Cauchy

k(x𝑖,x𝑗) = 1

1 + ‖x𝑖−x𝑗‖2

𝜎2

(3.52)

Many of the above kernels depend only on the distance (x𝑖 − x𝑗). Such kernels are
said to be stationary, and particularly, isomorphic stationary if they depend only on the
magnitude of this distance. Many fields assume stationary problems, and thus, might
benefit from this sort of kernel [95].

Another class of kernels are the conditionally positive definite kernels. Such kernels
are positive definite only if the set constants 𝜆 in (3.38) is chosen such that ∑𝐾

𝑖=1 𝜆𝑖 = 0.
They are of particular interest because a Mercer kernel k(x𝑖,x𝑗) is associated to any
conditionally positive definite kernel k′(x𝑖,x𝑗) via [96]

k(x𝑖,x𝑗) = 1
2 [k′(x𝑖,x𝑗) − k′(x𝑖,x0) − k′(x𝑗,x0) + k′(x0,x0)] , (3.53)

for any x0 in the input space. Given the property in (3.53), most kernel-based modeling
techniques can be applied also with conditionally positive kernels. Some examples of
this class of kernel are given by [94]:

Sigmoid

k′(x𝑖,x𝑗) = tanh (𝛼x𝑇
𝑖 x𝑗 + 𝑐) (3.54)

Multiquadratic

k′(x𝑖,x𝑗) = √‖x𝑖 − x𝑗‖2 + 𝑐2 (3.55)
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Wave

k′(x𝑖,x𝑗) = 𝜃
‖x𝑖 − x𝑗‖

sin(
𝜃

‖x𝑖 − x𝑗‖) (3.56)

Power

k′(x𝑖,x𝑗) = −‖x𝑖 − x𝑗‖𝑑 (3.57)

Log

k′(x𝑖,x𝑗) = − log (‖x𝑖 − x𝑗‖𝑑 + 1) (3.58)

A less explored field concerns the category of complex-valued kernels. The most
simple kernel of this category is the basic complex kernel [92], [97]:

k(x𝑖,x𝑗) = cos (c𝑇 (x𝑖 − x𝑗)) + 𝑗 sin (c𝑇 (x𝑖 − x𝑗)) , (3.59)

in which the vector of hyperparameters c can be simplified to c = 𝜔01𝑑 to reduce
the quantity of hyperparameters. Such simplistic kernel can be expanded to a more
elaborate structure by the use of the properties from Section 3.3.2, specially (3.41e).
Another way to build a complex-valued kernel from a real-valued one k𝑅(x′

𝑖 ,x
′
𝑗) is by

separating the real and imaginary parts of the input as x𝑘 = x′
𝑘 + 𝑗x″

𝑘 ∀ 𝑘 and building
an independent kernel from them [86]:

k(x𝑖,x𝑗) = k𝑅(x′
𝑖 ,x

′
𝑗) + k𝑅(x″

𝑖 ,x
″
𝑗 ) + 𝑗 (k𝑅(x′

𝑖 ,x
″
𝑗 ) − k𝑅(x″

𝑖 ,x
′
𝑗)) . (3.60)

Additionally, a complex kernel can be built from a certain feature space using the
inner product expansions in (3.39) and (3.40). Nonetheless, the go-to Gaussian kernel
is also available in a complex-valued form [84]:

k(x𝑖,x𝑗) = exp(− (x𝑖 − x∗
𝑗 )

𝑇
(x𝑖 − x∗

𝑗 ) /𝜎2
) . (3.61)

Some other classes of kernels might be useful for their specific applications. Two of
them are briefly discussed below [95]:

• When dealing with large data sets, compactly supported kernels offer a good ad-
vantage, as their output is zero when ‖x𝑖 − x𝑗‖ > Δ𝑥, i.e., the distance between
the input points is larger than a threshold Δ𝑥, and thus they produce a sparse
Gram matrix.

• Also useful for computations over large data sets are separable nonstationary ker-
nels, in which the kernel function can be separate into a product of functions
which depend on only one input variable as k(x𝑖,x𝑗) = k𝑎(x𝑖)k𝑏(x𝑗). For such
kernels, the Gram matrix can be computed through a Kronecker product, reduc-
ing the computational time.
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3.4 Tuning of the Model Hyperparametters
Most of the kernel functions described above have one or more parameters that tune
their shape and which cannot be directly estimated by the regression problem, also
called hyperparameters. The Gaussian kernel, for example, has the parameter 𝜎 which
controls the width of its Gaussian: when 𝜎 is large, the kernel produces a significant
output at the coordinates x distant from x𝑘, while if 𝜎 is small, the kernel output in
negligible far from the training point x𝑘. This kind of balance provided by the kernel
function must be tuned, together with other parameters from the kernel-based method
in use, e.g., the regularizer 𝛾 in the LSSVM regression from Section 3.1. The parameters
that need to be tuned can be grouped in a generic vector of hyperparameters 𝜆. The
accuracy of the modeling scheme unavoidably depends on the tuning of 𝜆, which is
given by 𝜆 = [𝛾, 𝜎]𝑇 in the case of a LSSVM model with a Gaussian kernel.

Above all, it is desirable to perform the tuning of those hyperparameters in an auto-
matic procedure, in a way applicable for any model. A procedure for this tuning can be
described by the diagram in Fig. 3.3, and it starts by defining a candidate value for the
hyperparameters 𝜆𝑐. With this value, a ML model is estimated and its performance is
assessed via a predefined performance metric. This is done in a cyclic and algorithmic
way, updating the value of the candidate parameters at each step of the cycle, with the
goal of finding the optimal tuning parameters 𝜆⋆. Proven approaches used for this are
grid and simplex searches [98], genetic algorithms [69] or Bayesian optimization [99].

Figure 3.3: Cycle for the optimization of hyperparameters and definition of model.

The use of Bayesian optimization in order to find 𝜆⋆ which produces the best model
performance is widely used with ML techniques. This algorithm specifically selects
the next candidate configuration of the hyperparameters 𝜆𝑐 in order to maximize the
reward towards finding the global optimum of a non-convex function [100]. By using
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this sampling scheme, the search converges to the optimum solution in fewer iterations
than with standard search schemes (e.g., grid search), while keeping the capacity to
avoid local minima. An open-source implementation of this optimization scheme is
available in the scikit-optimize Python library [98].

Nonetheless, the optimality of the estimated model relies heavily on the perfor-
mance estimation technique which is applied. The estimation via the aparent model
error computed over the training samples is often too optimistic [69], i.e., they might
provide a model error estimation smaller than it should be due to the model overfitting
the training data. A better approach is to test the model and assess its performance
on samples not used for training it, by dividing the available data into a training and a
validation data set. Then, the training data is used to estimate the model, and the vali-
dation data assess its performance in order to tune 𝜆 and arrive at the optimized value
𝜆⋆. However, the size of this validation set might need to be large for a precise perfor-
mance estimation, which is not appropriate, since samples might be costly and needed
for model building. A technique known as 𝑘-fold CV [101] can be seen as promising
candidates to overcome the above issues.

In the 𝑘-fold cross-validation (CV), the training set is split into 𝑘 smaller sets, called
folds. Then, for each of the 𝑘 folds, the model is trained using 𝑘 − 1 folds as training
data and by using a given configuration of the hyperparameters 𝜆, while the remaining
fold is kept as a validation set used to evaluate the model accuracy on data which were
not used during the training. The above scheme is iterated for all the 𝑘-folds. Then, for
each analyzed combination of the hyperparameters 𝜆, the overall model performance
is assessed by the 𝑘-fold CV error 𝐶𝑉 (𝜆)

error, which is the average of the values computed
during the 𝑘 iterations, according to

𝐶𝑉 (𝜆)
error = 1

𝑘

𝑘

∑
𝑛=1

𝐶𝑉 (𝜆)
error,𝑛, (3.62)

where 𝐶𝑉 (𝜆)
error,𝑛 is the MSE of the model on the 𝑛-th test fold, or any other metric ap-

propriate for the studied problem. The common choice for 𝑘 is usually 5 or 10, as these
values have been shown empirically to yield test error rate estimates that suffer neither
from excessively high bias nor from very high variance. When 𝑘 = 1 the k-fold vali-
dation is called leave-one-out cross-validation. An illustration of the 𝑘-fold CV for the
case with 𝐾 = 21 training samples and 3 folds (i.e., 𝑘 = 3) is shown in Fig. 3.4.

The optimum value of the hyperparameters 𝜆⋆ is selected as the one that minimizes
the corresponding overall CV error 𝐶𝑉 (𝜆)

error, i.e.,

𝜆⋆ = argmin
𝜆

𝐶𝑉 (𝜆)
error. (3.63)

After that, as indicate in the bottom block of Fig. 3.3, the optimal hyperparameters are
used to train a model where all training data is used as training set, with no validation
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Figure 3.4: Example: a 𝑘-fold cross-validation with 𝑘 = 3 and 𝐾 = 21 training samples.

set. However, a small external test data set might still be used to better prove the accu-
racy of the model. When these steps are finished, this model can be used robustly in its
target application.

3.5 Modeling Examples
The kernel-based techniques presented above are widely used by the scientific com-
munity, and examples can be found in the literature [61], [91], [102]. On the other
hand, the use of a custom kernel and the duality from Fig. 3.2 is less exploited. This
trick is the main tool for the development of the next chapter, and therefore, in or-
der to introduce said technique, two examples on a familiar framework are presented
in this section, namely, the fast Fourier transform (FFT) and the discrete-time Fourier
Transform (DTFT). Kernel-based models which are equivalent to those transform are
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built and used to compute their coefficients in an alternative way to their standard for-
mulation. These are just toy examples, without a solid advantage over their well-tested
alternatives, but they provide the foundation of the techniques used in the next chapter.

3.5.1 Kernel-Based Fast Fourier Transform
The discrete Fourier transform, also known as FFT due to the most famous algorithm
employed for its computation, is a transform that computes the frequency spectrum of
a periodic and discrete time signal. In this transform, the coefficients 𝑌 (𝑘) at discrete
frequency 𝑘 are computed from the 𝑁𝑠 samples of the signal 𝑦(𝑛) according to [103]:

𝑌 (𝑘) =
𝑁𝑠−1

∑
𝑛=0

𝑦(𝑛)𝑒−𝑗2𝜋𝑘𝑛/𝑁𝑠. (3.64)

Its inverse writes the original signal at the discrete time values 𝑛 as a function of
the frequency spectrum as:

𝑦(𝑛) = 1
𝑁𝑠

𝑁𝑠−1

∑
𝑘=0

𝑌 (𝑘)𝑒 𝑗2𝜋𝑘𝑛/𝑁𝑠. (3.65)

By analyzing (3.65), it is evident that 𝑦(𝑛) is a linear expansion of complex-exponential
basis functions given by:

𝜑𝑘(𝑛) = 𝑒𝑗2𝜋𝑘𝑛/𝑁𝑠, (3.66)

for 𝑘 = [0,… ,𝑁𝑠 − 1]. The use of such bases allow (3.65) to be rewritten as:

𝑦(𝑛) =
𝑁𝑠−1

∑
𝑘=0

w𝑘𝜑𝑘(𝑛) =
𝑁𝑠−1

∑
𝑘=0

𝑌 (𝑘)
𝑁𝑠

𝑒𝑗2𝜋𝑘𝑛/𝑁𝑠. (3.67)

A parallel can be made to the primal formulation of the LSSVM regression in (3.16):
if the vector of basis functions is given by the basis defined in (3.66), the weightsw𝑘 are
also equal to 𝑌 (𝑘)/𝑁𝑠 (the coefficient 𝑏 acts as a constant basis which is also present
in 𝜑). However, the LSSVM model has an equivalent dual space model given by (3.29),

which is estimated via the kernel function from the features𝜑(𝑛) = [𝜑0(𝑛),… ,𝜑𝑁𝑠−1(𝑛)]
𝑇

according to (3.39):

𝑘(𝑛𝑖, 𝑛𝑗) = 𝜑(𝑛𝑖)𝑇𝜑∗(𝑛𝑗) (3.68)

=
𝑁𝑠−1

∑
𝑘=0

(𝑒 𝑗2𝜋𝑘𝑛𝑖/𝑁𝑠) (𝑒−𝑗2𝜋𝑘𝑛𝑗/𝑁𝑠) (3.69)

=
𝑁𝑠−1

∑
𝑘=0

𝑒 𝑗2𝜋𝑘(𝑛𝑖−𝑛𝑗)/𝑁𝑠. (3.70)
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Figure 3.5: Comparison between the time-domain waveform and its LSSVM approxi-
mation (a), and comparison of the spectrum compute via the FFT and its LSSVM-based
alternative (b), for a square wave.

With the above kernel, it is possible to estimate a non-parametric dual-space LSSVM
regressionmodel by using (3.13). The comparison between this estimatedmodel and the
original data for one period of a square wave is shown in Fig. 3.5(a). Additionally, the
model can be used to compute the weights w𝑘 corresponding to its parametric primal
space formulation via (3.20), which by definition, would be proportional to the FFT
frequency domain coefficients 𝑌 (𝑘). It is possible to see how this holds by comparing
them. Figure 3.5(b) shows the comparison of the magnitude spectrum produced by
analyzing the primal space model of the LSSVM regression and by directly applying
the FFT to the waveform, showing a remarkable similarity.

An additional example can be produced by applying the same methodology to the
sumof a sinusoidal wavewith two combined frequencies defined as 𝑦(𝑛) = cos(2𝜋𝑛/𝑁𝑠)+
5 cos(6𝜋𝑛/𝑁𝑠). The corresponding spectrum should have peaks at the discrete frequen-
cies 𝑘 = 1,3, with different amplitudes. And this is exactly what is observed in Fig. 3.6,
confirming both the accuracy of the model and the spectrum estimated via the LSSVM
duality.

3.5.2 Kernel-Based Discrete-Time Fourier Transform
The FFT above computes the spectrum of a periodic waveform. Its equivalent when
dealing with non-periodic waveforms is the DTFT, which, by considering that the pe-
riod of the waveform tends to infinity, produces a continuum spectrum valid for any
angular frequency 𝜔. Indeed, like for the FFT, this spectrum is periodic due to the
waveform being discrete. From this periodic spectrum 𝑌 (𝜔), the waveform 𝑦(𝑛) can be
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Figure 3.6: Comparison between the time-domain waveform and its LSSVM approxi-
mation (a), and comparison of the spectrum compute via the FFT and its LSSVM-based
alternative (b), for a two-tone sinusoidal waveform.

written as [103]:

𝑦(𝑛) = 1
2𝜋 ∫2𝜋

𝑌 (𝜔)𝑒 𝑗𝜔𝑛𝑑𝜔, (3.71)

which is a linear expansion w.r.t. the basis functions

𝜑(𝑛; 𝜔) = 𝑒 𝑗𝜔𝑛. (3.72)

Similar to the FFT, we could model 𝑦(𝑛) via a dual space kernel-based LSSVM re-
gression model in (3.29). In order to do this, the appropriate kernel function for the
features in (3.72) should be computed through (3.40). Such kernel function writes:

𝑘(𝑛𝑖, 𝑛𝑗) = ∫
2𝜋

0
𝜑(𝑛𝑖; 𝜔)𝜑∗(𝑛𝑗; 𝜔)𝑑𝜔 (3.73)

= ∫
2𝜋

0
𝑒 𝑗𝜔𝑛𝑖𝑒−𝑗𝜔𝑛𝑗𝑑𝜔 (3.74)

= ∫
2𝜋

0
𝑒 𝑗𝜔(𝑛𝑖−𝑛𝑗)𝑑𝜔, (3.75)

which is evaluated to
𝑘(𝑛𝑖, 𝑛𝑗) = 2𝜋 sinc(𝑛𝜋). (3.76)

The non-parametric dual-space LSSVM model is obtained by solving (3.13). The
model primal space weights in (3.16) can be computed for the continuous interval 𝜔 ∈
[0,2𝜋] used when making the kernel function. In doing this estimation, a weight w
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would be computed for each value of 𝜔, i.e., the function w(𝜔) would be computed.
By comparing the model (3.16) and the DTFT formulation in (3.71), it is evident that
w(𝜔) = 𝑌 (𝜔)/2𝜋, and thus proportional to the spectrum of the the modeled waveform.

-150 -100 -50 0 50 100 150
Sample [n]

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

y[
n]

Time-domain waveform

Original
LSSVM approx.

(a)

-4 -3 -2 -1 0 1 2 3 4
Frequency [rad/s]

0

10

20

30

40

50

60

70

80

M
ag

ni
tu

de

Magnitude Spectrum

Theoretical
FFT
LSSVM DTFT

(b)

Figure 3.7: Comparison between the time-domain waveform and its LSSVM approxima-
tion (a), and comparison of the DTFT spectrum computed analytically, via the LSSVM-
based alternative and via the FFT approximation (b), for a square pulse.

The described methodology is demonstrated in three examples: first, at a time lim-
ited pulse function defined as:

𝑦(𝑛) = Π (
2𝑛
𝑀) =

⎧⎪
⎨
⎪⎩

1, |𝑛| < 𝑀/2,
1/2, |𝑛| = 𝑀/2,
0, |𝑛| > 𝑀/2.

, (3.77)

with width 𝑀 = 80. The above waveform is shown in Fig. 3.7(a). The spectrum of this
pulse can be computed analytically and is given by:

𝑌 (𝜔) = sin(𝑀𝜔/2)
sin(𝜔/2)

. (3.78)

The curve in Fig. 3.7-(a) shows that the LSSVM approximate model is accurate, and
the magnitude spectrum in Fig. 3.7-(b), computed by multiplying w(𝜔) by 2𝜋, is accu-
rate in comparison to the expected analytical spectrum and to the output of the FFT
on the waveform (which is inaccurate due to considering the waveform periodic, but
appropriate as a rough approximation).

Then, the procedure is repeated for a time domain waveform given by 𝑦(𝑛) =
sinc(𝑀 𝑛). The above waveform is shown in Fig. 3.7(a). This waveform tends to zero,
but differently from the previous example, is not compactly supported, and its analyti-
cal DTFT is equal to a square pulse. In this example, a certain advantage is seen in the
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Figure 3.8: Comparison between the time-domain waveform and its LSSVM approxima-
tion (a), and comparison of the DTFT spectrum computed analytically, via the LSSVM-
based alternative and via the FFT approximation (b), for a sinc(𝑀 𝑛) signal.

LSSVM DTFT method plotted in Fig. 3.7(b): while the FFT presents significant oscilla-
tions near the edges due to the Gibbs phenomenon [103], the LSSVM DTFT produces a
spectrum very similar to the analytical solution.

-4 -3 -2 -1 0 1 2 3 4
Frequency [rad/s]

M
ag

ni
tu

de

Magnitude Spectrum

Theoretical
FFT
LSSVM DTFT

(a)

-4 -3 -2 -1 0 1 2 3 4
Frequency [rad/s]

M
ag

ni
tu

de

Magnitude Spectrum

Theoretical
FFT
LSSVM DTFT

(b)

Figure 3.9: Comparison between the DTFT spectrum computed analytically, via the
LSSVM-based alternative and via the FFT approximation, for a sinusoidal signal with
one frequency (a), and two frequency components (b).

As a final example, the same methodology is applied to pure sinusoidal waveforms.
Their corresponding spectrum is equal to the pair of Dirac’s delta functions 𝛿(𝜔−𝜔0)+
𝛿(𝜔 + 𝜔0) with infinite amplitude at the frequency 𝜔 = 𝜔0 and 𝜔 = −𝜔0 for each
sinusoidal component of frequency 𝜔0 present in the waveform. Despite the LSSVM-
based DTFT being unable to produce such sharp peak at the desired frequency, Fig.
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3.9(a) shows that it produces peaks at the desired frequencies, with a small accuracy
gain over the FFT. This holds true also when thewaveform hasmore than one sinusoidal
component, e.g., in Fig. 3.9(b), where theDTFT of a two-tone sinusoidal signal is plotted.
The LSSVM-based DTFT was also able to match the sharp impulses in the spectrum of
a waveform with sinusoidal components at two different frequencies.

The examples above demonstrate the power of the duality in extracting useful infor-
mation (the spectrum) from a LSSVM regressionmodel. The next chapter takes this idea
further and uses the same concepts in order to identify the time-delays that produced
a certain frequency-response.
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Chapter 4

Time-delay identification in
frequency responses

Given the challenges in modeling long electrical interconnects described in chapters 1
and 2, and the LSSVM regression technique presented in chapter 3, this chapter merges
them by applying the LSSVM regression to the modeling of a long electrical intercon-
nect. Along with the resulting LSSVM model, an alternative scheme for the estimation
of the dominant propagation delays within a delayed rational model (DRM) based on
the duality of the LSSVM regression is obtained. The LSSVM regression with an ad-hoc
kernel is adopted for these models. The proposed kernel has been built by considering
an infinite dimensional feature space formed by an infinite number of delay-rational
basis, which accounts for a continuous set of delay values within a certain interval.
Thanks to the above features, the proposed method is able to identify the dominant
propagation delays of the original system.

4.1 Rational models
The frequency response obtained from the linear CAD models, such as the models pre-
sented in section 2.2, usually consists on a finite number 𝐾 of tabulated frequency-
domain samples defined at the complex frequency points {𝑠1,… , 𝑠𝐾} = {𝑗𝜔1,… , 𝑗𝜔𝐾}.
In order to be included on SPICE simulations, the data should be modeled in a way com-
patible with such simulations, i.e., in terms of standard linear circuit components or, if
allowed by the simulation solver, in terms of a differential-algebraic system of equa-
tions (DAE) in the same way as the modified nodal analysis (MNA) DAE obtained from
standard circuit components [12]. The usual way to extract this CAD model for SPICE
simulations is via a rational (or VF) model [23], written as

𝐻(𝑠𝑘) ≈ 𝐻̃(𝑠𝑘) = 𝑟0 +
𝑛𝑝

∑
𝑗=1

𝑟𝑗

𝑠𝑘 − 𝑝𝑗
, (4.1)
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where the approximate model 𝐻̃(𝑠𝑘) approximates the tabular samples 𝐻(𝑠𝑘) via a
linear expansion of rational basis 𝜑𝑝(𝑠; 𝑝):

𝐻̃(𝑠𝑘) = 𝑟0 +
𝑛𝑝

∑
𝑗=1

𝑟𝑗𝜑𝑝(𝑠; 𝑝𝑗), (4.2)

with the basis functions given by

𝜑𝑝(𝑠; 𝑝) = 1
𝑠 − 𝑝

. (4.3)

The rational basis above has a predefined parameter 𝑝. Each of the 𝑛𝑝 basis in the
expansion of (4.1) should have its pole 𝑝𝑗 determined, along with its corresponding
residue 𝑟𝑗 and constant term 𝑟0. The later, which have a linear appearance in the model,
can be easily estimated via a linear regression [69]. However, the poles, which have a
non-linear relation to the model, cannot be estimated as easily. Nonetheless, the well
proven VF algorithm has been successfully employed for this task [23]. It uses a se-
quence of linear problems to find an appropriate set of poles through iterations. It has
important properties such as high computational efficiency, good accuracy which can
be further improved by adding additional poles, and a simple formulation [12]. The
obtained pole-residue representation can be extracted as a space-state system of equa-
tions, or converted to circuital components [21], [22].

4.2 Delayed-Rational Models
In a DRM, the same model structure from the rational models is present, with the addi-
tion of an exponential term that explicitly represents the effects of time-delays in a fre-
quency response of a system. Given a set of samples of the transfer function 𝐻(𝑠𝑘) ∈ ❈

with 𝑘 = 1 … 𝐾 of a long distributed structure at the complex frequencies 𝑠𝑘 ∈ ❈, the
DRM has the following form:

𝐻(𝑠𝑘) ≈ 𝐻̃(𝑠𝑘) = 𝑟0 +
𝑛𝜏

∑
𝑖=1

𝐻̃𝑖(𝑠𝑘)𝑒−𝑠𝜏𝑖, (4.4)

with,

𝐻̃𝑖(𝑠) =
𝑛𝑝,𝑖

∑
𝑗=1

𝑟𝑖𝑗

𝑠 − 𝑝𝑖𝑗
. (4.5)

where each of the 𝑛𝜏 terms 𝐻̃𝑖(𝑠) corresponds to a rational model as the one in (4.1)
with 𝑛𝑝,𝑖 poles 𝑝𝑖𝑗 = 𝑝′

𝑖𝑗 + 𝑗𝑝″
𝑖𝑗 ∈ ❈, residues 𝑟𝑖𝑗 = 𝑟′

𝑖𝑗 + 𝑗𝑟″
𝑖𝑗 ∈ ❈ and a constant term

𝑟0 ∈ ❘. Each of the rational terms is associated to its corresponding time-delay term
𝜏𝑖 ∈ ❘

+, with only positive delay values considered in order to guarantee the causality
of the modeled system.
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TheDRM requires the estimation of three categories of parameters: poles and residues
for its rational terms, and the time-delays. The direct estimation of all those parameters
at the same time is impractical, as suitable values are needed for the time-delays in the
exponential term and for residues and poles in the numerator and denominator of the
rational term. The identification of the dominant propagation delays from frequency
response samples is an essential aspect for the achievement of a low-order DRM, since
suitable approaches for the estimation of the rational part are available [44], [48]. Sev-
eral of the methods available in the literature must also perform an optimization on
the first identified set of delays in order to achieve the optimal model [33], [34], [42],
[44]. If we are considering multiple delays, the optimization should be carried out in
a high-dimensional space subject to local minima, making it a difficult task. There-
fore, a precise estimation of the involved delays can provide an easier way to achieve a
compact DRM.

After the time-delays are extracted, the rational parts of the DRM are easily esti-
mated if the target transfer function can be split into the sum of delayed transfer func-
tions. However, the separation of the transfer function into the parts associated to each
delay is a challenging task, often based on the Gabor transform [26], [28], [44] or in
time-domain segmentation [27], [43]. This complicate step can be avoided by assum-
ing that each delay term is associated to the same set of poles. With this assumption,
the DRM model 𝐻̃(𝑠) of (4.4) can be simplified as follows

𝐻̃(𝑠; r,p, 𝜏) = 𝑟0 +
𝑛𝜏

∑
𝑖=1

𝑛𝑝

∑
𝑗=1

𝑟𝑖𝑗

𝑠 − 𝑝𝑗
𝑒−𝑠𝜏𝑖. (4.6)

The model parameters to be estimated by this new regression problem (i.e., to fit
the data) are: the residues r = [𝑟0, 𝑟11,… , 𝑟𝑛𝜏𝑛𝑝

]𝑇, the poles p = [𝑝1,… , 𝑝𝑛𝑝
]𝑇 and the

delays 𝜏 = [𝜏1,… , 𝜏𝑛𝜏
]𝑇, for an overall number of 𝑛𝑝𝑛𝜏 + 𝑛𝑝 + 𝑛𝜏 + 1 unknowns.

The DRM is linear with respect to the residuals r, but it is nonlinear with respect
to the poles p and the delays 𝜏. Unfortunately, it is still unfeasible to estimate all the
parameters (i.e., the poles, the delays and the residuals) at the same time. A wise strat-
egy is to rely on a two-step identification algorithm, where the delays are identified
independently and afterwards the poles are estimated by considering such delays. Two
methods that assume know delays and perform the estimation of poles are described be-
low. The passivity of the resulting models is not guaranteed by the methods. However,
it can be checked and enforced afterwards by using methods available in the literature
[42].

4.2.1 Delayed Vector Fitting
A natural method to estimate a DRM is the so called delayed vector fitting (DVF) [42],
[48], [49]. This is a modified version of the VF algorithm that uses delayed basis func-
tions and through iterations identify a common set of poles for all the delays. Starting

57



Time-delay identification in frequency responses

from (4.4), the number of time-delays should be truncated to a small number 𝑛𝜏, and
a common rational approximation is considered for all coefficients 𝐻̃𝑖(𝑠) [48], i.e., this
rational function is the same for all time-delay 𝜏𝑖 as elicited in (4.6). However, such
rational function is rewritten in an alternative way expressed by:

𝐻̃(𝑠) =
𝑛𝜏

∑
𝑖=1

∑
𝑛𝑝
𝑗=0 𝑅𝑖𝑗𝜙𝑗(𝑠)

∑
𝑛𝑝
𝑗=0 𝑟𝑗𝜙𝑗(𝑠)

𝑒−𝑠𝜏𝑖, (4.7)

where each basis

𝜙𝑗(𝑠) =
{

1, 𝑗 = 0;
1

𝑠−𝑎𝑗
, 𝑗 = 1,… , 𝑛𝑝. (4.8)

is associated to its own predefined “basis pole” 𝑎𝑗, which is different from the actual
“model poles” 𝑝𝑗 in (4.6).

Considering the above model, the approximation error at a single frequency point
is expressed by

𝑒𝑘 = 𝐻(𝑠𝑘) −
∑

𝑛𝑝
𝑗=0 𝑅𝑖𝑗𝜙𝑗(𝑠𝑘)

∑
𝑛𝑝
𝑗=0 𝑟𝑗𝜙𝑗(𝑠𝑘)

𝑒−𝑠𝑘𝜏𝑖. (4.9)

The computation of the SSE or other objective metric from the above expression
leads to a complex nonlinear function of the model coefficients 𝑅𝑖𝑗 and 𝑟𝑗, mostly due to
the presence of the terms 𝑟𝑗 in the denominator of the expression. In order to overcome
this issue, an iterative weighting is applied to (4.9). This iterative process, known as
Sanathanan–Koerner (SK) iteration, the error is weighted by multiplying (4.9) by the
frequency-dependent weight 𝒲 (𝑚)

𝑘 :

𝒲 (𝑚)
𝑘 =

∑
𝑛𝑝
𝑗=0 𝑟(𝑚)

𝑗 𝜙𝑗(𝑠𝑘)

∑
𝑛𝑝
𝑗=0 𝑟(𝑚−1)

𝑗 𝜙𝑗(𝑠𝑘)
. (4.10)

The weighted error 𝜀(𝑚)
𝑘 = 𝒲 (𝑚)

𝑘 𝑒𝑘 is thus given by

𝜀(𝑚)
𝑘 =

𝐻(𝑠𝑘) ∑
𝑛𝑝
𝑗=0 𝑟(𝑚)

𝑗 𝜙𝑗(𝑠𝑘) − ∑𝑛𝜏
𝑖=1 ∑

𝑛𝑝
𝑗=0 𝑅(𝑚)

𝑖𝑗 𝜙𝑗(𝑠𝑘)𝑒−𝑠𝑘𝜏𝑖

∑
𝑛𝑝
𝑗=0 𝑟(𝑚−1)

𝑗 𝜙𝑗(𝑠𝑘)
. (4.11)

At the beginning of this iteration, with 𝑚 = 0, the coefficients are set such that 𝑟(0)
𝑗 =

1 for 𝑗 = 0 and 0 otherwise. Then, with known parameters 𝑟(𝑚−1)
𝑗 , the weighted error

becomes linear with respect to 𝑅(𝑚)
𝑖𝑗 and 𝑟(𝑚)

𝑗 , which can be computed via the addition of
a non-triviality constraint and the solution of a standard least-squares system with the
goal of minimizing such error [48]. This process is repeated for some iterations, in the
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same way as the VF algorithm [23], by updating the coefficients 𝑟(𝑚)
𝑗 and the basis poles

𝑎𝑗 in (4.8) until they converge to a fixed value in the iteration 𝑚̄. At that point, the final

coefficients 𝑅(𝑚̄)
𝑖𝑗 and 𝑟(𝑚̄)

𝑗 can be used to estimate the final model. The DVF method
provide excellent results when an accurate estimate for the dominant time-delays is
provided and the assumption of common poles is valid. Otherwise, an optimization
over a small interval can be performed to tune the initial set of time-delay values [48]
and improve the model accuracy.

4.2.2 Incremental Delayed Rational Fitting
The limitation of a common set of poles can be relaxed by the empirical algorithm that
progressively builds the DRM in (4.4), by estimating the rational parts corresponding
to the delay terms one at a time, and adding them to the overall model [83]. The DRM
model 𝐻̌ is built in 𝑛𝜏 steps, being 𝑛𝜏 the number of identified delays, by considering a
different set of poles for each delay term, i.e.,

𝐻(𝑠𝑘) ≈ 𝐻̃(𝑠𝑘) = 𝑟0 +
𝑛𝜏

∑
𝑖=1

𝐻̃𝑖(𝑠𝑘)𝑒−𝑠𝑘𝜏𝑖, (4.12)

for 𝑘 = 1,… ,𝐾, where, similar to (4.4), 𝐻̃𝑖 indicates the approximated rational terms
associated to the delay 𝜏𝑖.

The proposed procedure progressively identified the terms 𝐻̃𝑖 of the DRM in (4.12)
by adding a new rational term at each iteration. Specifically, at a generic step 𝑙 of the
procedure, a standard rational fitting algorithm [23] is applied to get an approximated
version 𝐻̃𝑙(𝑠𝑘) of the rational term associated to the 𝑙-th delay 𝜏𝑙.

The target approximation of each rational term 𝐻̌𝑙(𝑠𝑘) is computed as the difference
between the target transfer function 𝐻 and the DRM approximation at the current iter-
ation 𝐻̃ (𝑙), compensated for the time-delay associated to the current step 𝜏𝑙, and writes:

𝐻̌𝑙(𝑠𝑘) = [𝐻(𝑠𝑘) − 𝐻̃ (𝑙−1)(𝑠𝑘)] 𝑒𝑠𝑘𝜏𝑙 (4.13)

for 𝑙 = 1,… , 𝑛𝜏. At each step 𝑙, a rational approximation 𝐻̃𝑙(𝑠𝑘) for 𝐻̌𝑙(𝑠𝑘) is estimated
via the VF algorithm described in section 4.1.

Whilst, the overall DRM approximation 𝐻̃ (𝑙) at this generic iteration 𝑙 writes

𝐻̃ (𝑙)(𝑠𝑘) =
𝑙

∑
𝑖=1

𝐻̃𝑖(𝑠𝑘) exp(−𝑠𝑘𝜏𝑖). (4.14)

At the fist step, the procedure is initialized as 𝐻̃ (0)(𝑠𝑘) = 0. After 𝑛𝜏 steps, the
algorithm ends and provides as a results the DRM 𝐻̃(𝑠𝑘) = 𝐻̃ (𝑛𝜏)(𝑠𝑘).

The rational fitting adopted at each iteration considers a different number of poles
for each of rational term 𝐻̃𝑖 of the DRM. For the rational term, the number of poles is
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selected by looking at the marginal improvement of the model error (i.e., we check if
the model MSE decreases significantly when the number of poles is increased by one).
The above procedure is summarized in Alg. 1.

The procedure does not lead to the optimal selection of the poles and residuals for
the DRM, but it is simple and effective in providing a DRMwith a small number of poles,
which are different for each delay term. The DVF presented in the previous section is a
more robust and automated method for a delayed rational fitting using the same poles
for all delay terms [48].

Algorithm 1 Incremental rational fitting algorithm

1: Group the target frequency response sample pairs in the sets
{(𝑠1,𝐻(𝑠1)),…, (𝑠𝐾,𝐻(𝑠𝐾))} and initialize the algorithm with the time-delay
vector 𝜏 = [𝜏1,… , 𝜏𝑛𝜏

], and the approximate model 𝐻̃ (0)(𝑗𝑠) = 0;
2: for 𝑙 = 1,… , 𝑛𝜏 do
3: Compute 𝐻̌𝑙(𝑠) by using (4.13);
4: Use VF as described in section 4.1 to get an approximate rational model 𝐻̃𝑙(𝑠) for

𝐻̌𝑙(𝑠) with a maximum number of poles from 1 to a small 𝑛𝑝,max;
5: Select the appropriate number of poles as explained in 4.2.2;
6: Use (4.14) to update the partial DRM 𝐻̃ (𝑙)(𝑠);
7: end for
8: 𝐻̃(𝑠) = 𝐻̃ (𝑛𝜏)(𝑠) is the final model containing all delays.

4.3 Time-delay estimation fromFrequency-domain im-
pulse response

The techniques presented above assumed that the time-delays were already known,
and estimate the poles required for the rational part of the model. Naturally, once the
delays 𝜏𝑖 and the poles 𝑝𝑗 of the models are known, the residues can be easily estimated
by solving a simple linear regression. However, how can we find an accurate estimation
of the delays knowing only the samples 𝐻(𝑠𝑘)? Two available schemes are briefly
described below, based on the Hilbert transform and the Gabor transform, respectively.

4.3.1 Hilbert Transform Method
The physical systems which represent electric interconnects posses three important
properties: they should stable, causal and passive [104]. Passivity was briefly com-
mented in section 4.2, and will not be further discussed within the thesis, as it can be
enforced after the models are obtained. Stability in a DRM is guaranteed by having all
poles with a negative real part. However, such transfer function 𝐻(𝑠) = 𝑈(𝑠) + 𝑗 𝑉 (𝑠)
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is causal only if its real part 𝑈(𝑗𝜔) and imaginary part 𝑉 (𝑗𝜔) computed at the angular
frequency 𝑠 = 𝑗𝜔 respect the Kramers–Kronig relations [35], [104], written as:

𝑈(𝑗𝜔) = 1
𝜋 ⨍

∞

−∞

𝑉 (𝑗𝜔′)
𝜔′ − 𝜔

𝑑𝜔′, (4.15)

and

𝑉 (𝑗𝜔) = − 1
𝜋 ⨍

∞

−∞

𝑈(𝑗𝜔′)
𝜔′ − 𝜔

𝑑𝜔′, (4.16)

where ⨍ represents the computation of the Cauchy principal value of the improper
integral, which has a singularity at 𝜔 = 𝜔′.

However, any system can be decomposed into the product of a stable minimum-
phase component 𝐻𝑚𝑖𝑛(𝑗𝜔) and an all-pass function that accounts for the propagation
delay 𝜏 [103]:

𝐻(𝑗𝜔) = 𝐻𝑚𝑖𝑛(𝑗𝜔)𝑒−𝑗𝜔𝜏. (4.17)

The Hilbert transform method for delay identification finds the dominant propaga-
tion delay of the causal transfer function at 𝑗𝜔 = 𝑗𝜔𝑘 by computing which delay 𝜏 can
be removed from the transfer function which would allow it to remain causal. It is based
on the Hilbert transform, which establishes an unique relation between the magnitude
and phase of minimum-phase systems such that [36]:

arg (𝐻𝑚𝑖𝑛(𝑗𝜔)) = − 1
2𝜋 ⨍

𝜋

−𝜋
log |𝐻𝑚𝑖𝑛(𝑗𝜃)| cot(

𝜔 − 𝜃
2 ) 𝑑𝜃. (4.18)

From (4.17), it is evident that the magnitude of 𝐻𝑚𝑖𝑛(𝑗𝜔) can be easily determined
as:

|𝐻𝑚𝑖𝑛(𝑗𝜔)| = |𝐻(𝑗𝜔)|. (4.19)

The relation in (4.18) can therefore be applied to estimate the phase of 𝐻𝑚𝑖𝑛(𝑗𝜔).
After obtaining the complex value of 𝐻𝑚𝑖𝑛(𝑗𝜔), the delay 𝜏 is estimated as [36], [37]

𝜏 = −
arg (𝑒−𝑗𝜔𝜏)

𝜔
= −

arg (𝐻(𝑗𝜔)/𝐻𝑚𝑖𝑛(𝑗𝜔))
𝜔

, (4.20)

computed as the average over all available frequency points. The Hilbert transform
method has good performance for systemswith a single delay in the frequency response
[37]. When multiple delays are present, the system delays can be identified by using
the Gabor transform.

4.3.2 Gabor Transform Method
The short-time Fourier transform (STFT) is a technique to perform the time-frequency
analysis of a signal, which can provide information on the time instant when certain
frequencies occur, or the contrary, can indicate the frequencies present at a certain time
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interval of such signal [105]. The tool used for this analysis is the spectrogram, a plot
in a time-frequency axis where the energy decomposition of the signal is depicted [28].

The coefficients used to build the spectrogram are obtained by performing a win-
dowed Fourier transform on the signal, with the window shifted in the time-axis by
𝜏. When the window used in this transform is the Gabor wavelet, it is known as Ga-
bor transform. The Gabor wavelet is the window which minimizes the uncertainty of
this transform in both the time and frequency domain. It is defined as the Gaussian
modulated by a complex exponential below:

𝑓(𝑡) = 𝑒(𝑡−𝑡0)2/𝑎2
𝑒−𝑗 𝜔0(𝑡−𝑡0). (4.21)

Interestingly, its Fourier transform is also a Gabor wavelet:

𝐹 (𝜔) = 𝑒(𝜔−𝜔0)2𝑎2
𝑒−𝑗 𝑡0(𝜔−𝜔0). (4.22)

Based on this and on the STFT, the normalized frequency domain Gabor transform
is defined as follows [28]:

𝒢 (𝜔, 𝜏) = ∫
+∞

−∞
𝐻(𝜉)𝑊 ∗

𝜔,𝜏(𝜉)𝑑𝜉, (4.23)

where,
𝑊𝜔,𝜏(𝜉) = 𝑊 (𝜉 − 𝜔)𝑒−𝑗𝜉𝜏, (4.24)

is the frequency-shifted window function modulated by the complex exponential 𝑒−𝑗𝜉𝜏,
with the number of oscillations proportional to 𝜏. The Gabor transform employed here
uses a normalized Gaussian window [105], defined as:

𝑊 (𝜉) = (𝑎2𝜋)−1/4𝑒− 𝜉2

2𝑎2 , (4.25)

such that ‖𝑊 ‖2 = 1.
The shape of the window 𝑊 (𝜉) depends on the parameter 𝑎. Such parameter pro-

vides a trade-off between the time and frequency domain resolution of the transform.
A small value for 𝑎 produces a narrow window, for which the resolution of transform
𝒢 (𝜔, 𝜏) is high in frequency-domain (i.e., for the variable 𝜔) and poor in time-domain
(i.e., for the variable 𝜏). Contrarily, with a large 𝑎, the transform resolution is poor in
frequency-domain and high in time-domain.

The spectrogram is computed as |𝒢 (𝜔, 𝜏)|2 and represents the time-frequency en-
ergy decomposition of 𝐻(𝜉) [28]. The propagation delays 𝜏𝑖 can be obtained from this
energy distribution by averaging the energy decomposition over 𝜔 via:

𝐺(𝜏) = 1
2𝜋 ∫

+∞

−∞
|𝒢 (𝜔, 𝜏)|2𝑑𝜔. (4.26)
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Once computed, the maxima of 𝐺(𝜏) provide a good estimate for the system delays
𝜏𝑖 [28], [48]. If 𝐺(𝜏) has multiple local maxima, this method is able to approximate
multiple time-delays, thus overcoming the limitations of the Hilbert transform method.
However, the time-frequency trade-off given by the window width still exists, and so
the necessity of tuning such width.

4.4 Kernel-Based Delay Rational Model
Delay rational models are a natural choice to represent distributed systems [42], [48].
However, the previous sections illustrated some of the issues and limitations in their
estimation. The kernel-based techniques presented in chapter 3 are a powerful tool
that can be employed to sidestep some of the issues. But in order to introduce them
smoothly, let us start by thinking on the simplest way that a DRM can be estimated.

4.4.1 Simple Grid Search
A grid search approach can be envisaged as the simplest way to estimate the delays
and the poles of the DRM in (4.6). Such straightforward approach represents the key
element of the generic algorithm for the delay identification presented in section 4.5.

Without loss of generality, the following synthetic transfer function with a single
real pole at −3 rad/s and single delay at 3 s, is considered:

𝐻(𝑠) = 1
𝑠 + 3

𝑒−3𝑠, (4.27)

in the bandwidth 𝑠 = 𝑗𝜔 with 𝜔 ∈ [0,5] rad/s. The above function will be used
hereafter to explain step-by-step the underlying idea behind grid search and to highlight
the pros and cons of such approach.

Contrary to the optimization approach, the grid search a priori assumes the value of
poles and delays by exploration of a mutidimensional grid. In the considered example,
a reasonable guess for poles and delays in a 2D grid is defined. The poles are restricted
to real values to avoid using a 3D grid, which hinders the desired visualization, but
the generalization to complex poles follows easily from the presented ideas. We set
the number of poles 𝑛𝑝 and of delay terms 𝑛𝜏 along with their range of variation 𝑝𝑗 ∈
[𝑝𝑚, 𝑝𝑀] and 𝜏𝑖 ∈ [𝜏𝑚, 𝜏𝑀] in terms of their minimum and maximum values, such that
the poles and delays in (4.6) take the following values:

𝑝𝑗 = 𝑝𝑚 + (𝑗 − 1)Δ𝑝, (4.28)

and

𝜏𝑖 = 𝜏𝑚 + (𝑖 − 1)Δ𝜏, (4.29)
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where

Δ𝑝 = (𝑝𝑀 − 𝑝𝑚)/𝑛𝑝, (4.30)

and

Δ𝜏 = (𝜏𝑀 − 𝜏𝑚)/𝑛𝜏. (4.31)

By knowing the values of the poles and delays, the non-linear regression problem
in (4.4), can be recasted in terms of the following linear combination of basis functions:

𝐻(𝑗𝜔) ≈
𝑛𝑝,𝑛𝜏

∑
𝑖=1,𝑗=1

𝑟𝑖𝑗𝜑̂𝑖𝑗(𝜔; 𝑝𝑗, 𝜏𝑖) + 𝑟0 (4.32)

where

𝜑̂𝑖𝑗(𝜔; 𝑝𝑗, 𝜏𝑖) = 1
𝑗𝜔 − 𝑝𝑗

𝑒−𝑗𝜔𝜏𝑖 (4.33)

and 𝑟𝑖𝑗 are the unknowns of the linear regression problem representing the residues of
the DRM, which can be readily estimated after the grid is established by solving a linear
least squares regression.

The above scheme is now applied to the synthetic transfer function of (4.27) by using
a 3 × 3 (i.e., 𝑛𝑝 = 3 and 𝑛𝜏 = 3) discretization grid for the pole and delay. The three
scenarios depicted in Fig. 4.1 have been considered in order to stress the performances
and drawbacks of the proposed approach. Specifically, the scenarios can be divided as
such:

• Case a: the discretization is such that the pole and delay values of the original
system in (4.27) happen to exactly coincide with a grid node (Fig. 4.1, left panel);

• Case b: the discretization is such that the original delay value happen to lay on a
discretization trace, but the pole is off any grid traces (Fig. 4.1, right panel);

• Case c: the discretization is such that the original pole value happen to lay on a
discretization trace, but the delay is off any grid traces (Fig. 4.1, bottom panel).

The above three discretization scenarios have been used to construct three versions
of the DRM model of (4.32), in which the basis functions 𝜑̂𝑖𝑗 are built using the blue,
red and green dots of the 2D grid in Fig. 4.1, respectively. The corresponding residues
are finally calculated via a LS minimization.

Fig. 4.2 shows howwell the threemodels fit the original transfer function. It is ought
to remark that the models corresponding to the discretized space for case a and b turn
out to be very accurate. On the other hand, the model corresponding to case c, in which
the value of the delay falls in between the grid points, is far from being acceptable. In
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Figure 4.1: Discretization of a 𝑝 − 𝜏 plane of the three considered cases; the position of
the original system pole and delay in (4.27) is indicated for reference.

fact, even for this very simple transfer function in (4.27) that was considered in this
illustrative example, the results show that the DRM is extremely sensitive to the delay
terms, and an error in the delay estimation can heavily affect the model accuracy.

Oneway to overcome this inaccuracy issue is to increase the number of points in the
2D grid on the 𝜏-axis (i.e., by increasing 𝑛𝜏 and thus decreasing the discretization term
Δ𝜏), which can be done with the help of the LSSVM and the kernel trick, as illustrated
in the next section.

4.4.2 Estimating a Delayed Rational Kernel-Based Model
The class of kernel-based ML techniques presented in chapter 3 can be applied to fit the
data of a transfer function via a DRM [89]. For that regression, the input is the complex
frequecy 𝑠 ∈ ❈ and the output is the transfer function 𝐻̃(𝑠) ∈ ❈.

The discussion starts by recasting the DRM in (4.32) in terms of the primal-space
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Figure 4.2: Original frequency response of the system (black solid line) and approxima-
tions using the three considered discretization cases (blue, red and green lines, accord-
ing to the dots color in Fig. 4.1).

LSSVM regression in (3.16) which writes:

𝐻̃(𝑠) = ⟨w,𝜑∗(𝑠;p, 𝜏)⟩ + 𝑏 (4.34)

=
𝑛𝑝,𝑛𝜏

∑
𝑖=1,𝑗=1

w𝑖𝑗𝜑𝑖𝑗(𝑠; 𝑝𝑗, 𝜏𝑖) + 𝑏, (4.35)

where w = [w11,… ,w𝑛𝜏𝑛𝑝
]𝑇 ∈ ❈

(𝑛𝜏𝑛𝑝) is a vector collecting the regression unknowns,
the generic parameter x in (3.6) has been replaced by 𝑠 (i.e., 𝑑 = 1) and 𝜑(𝑠;p, 𝜏) ∈
❈

(𝑛𝜏𝑛𝑝) is a vector collecting the basis functions

𝜑(𝑠;p, 𝜏) = [𝜑11(𝑠; 𝑝1, 𝜏1),… ,𝜑𝑛𝜏𝑛𝑝
(𝑠; 𝑝𝑛𝑝

, 𝜏𝑛𝜏
)]

𝑇
, (4.36)

which depend on a vector of poles p = [𝑝1,… , 𝑝𝑛𝑝
]𝑇 and delays 𝜏 = [𝜏1,… , 𝜏𝑛𝜏

]𝑇.
This formulation can be seen as a discretization in the 𝑝-𝜏 space from which each node
{𝜏𝑖, 𝑝𝑗} leads to a basis of the DRM, and in which all poles are paired with the same
combination of delays, in the same manner which was described in section 4.4.1, or in
other words, each delay term takes a common set of poles.

Comparing (4.35) and (4.32), the basis functions 𝜑𝑖𝑗(𝑠; 𝑝𝑗, 𝜏𝑖) can be defined by the
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following expression:

𝜑𝑖𝑗(𝑠; 𝑝𝑗, 𝜏𝑖) =
𝑐𝑖𝑗

𝑠 − 𝑝𝑗
𝑒−𝑠𝜏𝑖 (4.37)

= 𝑐𝜏𝑖
𝑒−𝑠𝜏𝑖 ⋅

𝑐𝑝𝑗

𝑠 − 𝑝𝑗
(4.38)

= 𝜑𝜏
𝑖 (𝑠; 𝜏𝑖) ⋅ 𝜑𝑝

𝑗 (𝑠; 𝑝𝑗), (4.39)

where the effects of poles and time delays where separated into the product of two in-
dividual basis functions which depend on only one of those parameters, and 𝑐𝑖𝑗 = 𝑐𝜏𝑖

𝑐𝑝𝑗
is a constant introduced to increase the model flexibility without changing the model
structure. The overall number of features (or bases) is 𝑁 = 𝑛𝑝𝑛𝜏, which is equivalent
to the number of nodes in the aforementioned discretization.

Form the latter development, it is evident that the regression unknowns w𝑖𝑗 are
proportional to the corresponding residue 𝑟𝑖𝑗 by the scalar constant 𝑐𝑖𝑗 ∈ ❘:

𝑟𝑖𝑗 = 𝑐𝑖𝑗w𝑖𝑗. (4.40)

It is also clear that the bias term 𝑏 is equal to the constant term 𝑟0 of the DRM. The use
of a finer discretization in the grid of poles and delay will increase the dimensions of
the feature space provided by the transformation function 𝜑 (i.e., the number of basis
𝜑𝑖𝑗 included in the model will be larger), complicating the estimation of this regression.

However, the model in (4.35) is depicted via the primal space LSSVM formulation,
which is equivalent to the original one in (4.32). The LSSVM framework has an equiv-
alent dual space formulation based on a kernel function and its RKHS, as described in
chapter 3. Therefore, aside from the above expansion, a parallel dual space formulation
for the LSSVM problem, defined by (3.29), takes the form

𝐻̃(𝑠) =
𝐾

∑
𝑘=1

𝛼𝑘k(𝑠, 𝑠𝑘;p, 𝜏) + 𝑏, (4.41)

where the kernel k(⋅, ⋅) ∶ ❈×❈ → ❈ is defined according to the basis functions collected
in 𝜑 as:

k(𝑠𝑘, 𝑠𝑙;p, 𝜏) = ⟨𝜑(𝑠𝑘;p, 𝜏),𝜑(𝑠𝑙;p, 𝜏)⟩ (4.42)

=
𝑛𝜏

∑
𝑖=1

𝑛𝑝

∑
𝑗=1

𝑐𝑖𝑗𝑒
−𝑠∗

𝑘𝜏𝑖

(𝑠∗
𝑘 − 𝑝∗

𝑗 )
𝑐𝑖𝑗𝑒−𝑠𝑙𝜏𝑖

(𝑠𝑘 − 𝑝𝑗)
. (4.43)
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In the above expression, the effects of p and 𝜏 can be further split by applying the basis
separation shown in (4.39) to the above expression:

k(𝑠𝑘, 𝑠𝑙;p, 𝜏) =
𝑛𝜏

∑
𝑖=1

𝑐2
𝜏𝑖𝑒

−(𝑠𝑙+𝑠∗
𝑘)𝜏𝑖

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
k𝜏(𝑠𝑘,𝑠𝑙;𝜏)

𝑛𝑝

∑
𝑗=1

𝑐2
𝑝𝑗

(𝑠∗
𝑘 − 𝑝∗

𝑗 )(𝑠𝑙 − 𝑝𝑗)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
kp(𝑠𝑘,𝑠𝑙;p)

(4.44)

= ⟨𝜑𝜏(𝑠𝑘; 𝜏),𝜑𝜏(𝑠𝑙; 𝜏)⟩ ⟨𝜑𝑝(𝑠𝑘;p),𝜑𝑝(𝑠𝑙;p)⟩ . (4.45)

where 𝑝𝑗 and 𝜏𝑖 span all the poles and delays values considered in their discretization.
The resulting kernel can be interpreted as the product of two kernels according to the
property in (3.41e), one generated by the chosen delays and the other by the chosen
poles. Such two terms, k𝜏(𝑠𝑘, 𝑠𝑙; 𝜏) and k𝑝(𝑠𝑘, 𝑠𝑙;p), are then named the delay and the
rational kernels, respectively. Each of them, interestingly, can be seen as the sum of
several kernel function with a single basis 𝜑𝑖𝑗 via the property in (3.41d).

The model in (4.41) is a non-parametric model where the number of estimated coef-
ficients is always equal to 𝐾 +1 (the number of training samples plus one), independent
of the number and shape of the basis functions that compose the RKHS. On the other
hand, the model in (4.32) requires the estimation of 𝑛𝑝𝑛𝜏 + 1 coefficients, a number that
changes according to the number of basis functions accounted by the model.

Considering the LSSVM framework, the dual formulation model in (4.41) can be
suitably estimated by solving the system of linear equations in (3.24). The above kernel
depends on the definition of the 𝑛𝑝 poles 𝑝𝑗 = 𝑝′

𝑗 + 𝑗𝑝″
𝑗 and the 𝑛𝜏 delays 𝜏𝑖. Once

defined, such kernel represents a space formed by bases in the following form:

𝜑𝑖𝑗(𝑠; 𝑝𝑗, 𝜏𝑖) =
𝑐𝑖𝑗

𝑠 − 𝑝𝑗
𝑒−𝑠𝜏𝑖, (4.46)

which is equivalent to the basis of the DRM in (4.32) multiplied by the constant 𝑐𝑖𝑗.
However, let’s recall that (4.41) is a non-parametric model, and nomatter how finely

the 𝑝 − 𝜏 grid is discretized, it can always be determined by means of the solution of
the linear system in (3.24). Indeed, this discretization is embedded within the kernel
function. The key advantage of working with this dual space model is that the dual
space formulation does not require an explicit definition of the basis functions 𝜑 and
its formulation can even be applied to the extreme case in which the dimension of 𝜑
grows to infinity.

According to this fact, let us consider the case in which the 𝜏−axis is infinitely dis-
cretized and any 𝜏 value between 𝜏𝑚 and 𝜏𝑀 is included in the kernel. This discretization
is achieved by defining the constant 𝑐𝜏𝑖

in (4.38) as:

𝑐2
𝜏𝑖

= 𝑐2
𝜏 = Δ𝜏 =

(𝜏𝑀 − 𝜏𝑚)
𝑛𝜏

, (4.47)
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and the value for 𝜏𝑖 such that:

𝜏𝑖 = 𝜏𝑚 + (𝑖 − 1)Δ𝜏 = 𝜏𝑚 + (𝑖 − 1)
(𝜏𝑀 − 𝜏𝑚)

𝑛𝜏
. (4.48)

When 𝑛𝜏 → ∞, the delayed kernel k𝜏 in (4.42) can only be computed through the
limit written below:

k𝜏(𝑠𝑘, 𝑠𝑙) = lim
𝑛𝜏→∞

𝑛𝜏

∑
𝑖=1

𝑐2
𝜏𝑖

𝑒−(𝑠𝑘+𝑠∗
𝑙 )𝜏𝑖 (4.49)

=
𝑛𝜏

∑
𝑖=1

(𝜏𝑀 − 𝜏𝑚)
𝑛𝜏

𝑒−(𝑠𝑘+𝑠∗
𝑙 )(𝜏𝑚+(𝑖−1)(𝜏𝑀−𝜏𝑚)/𝑛𝜏) (4.50)

which is equivalent to a Riemann sum [106], or in other words, a definite integral.
Hence, the computation of the inner product ⟨𝜑𝜏(𝑠𝑘; 𝜏),𝜑𝜏(𝑠𝑙; 𝜏)⟩ in (4.45) should

be performed over the continuous parameter 𝜏. This is analog to making a kernel via
(3.40) where 𝜗 = 𝜏 and the region Θ is defined as the interval [𝜏𝑚, 𝜏𝑀]. Taking into
account these definitions, the delayed kernel is computed according to:

k𝜏(𝑠𝑘, 𝑠𝑙; 𝜏𝑚, 𝜏𝑀) = ∫
𝜏𝑀

𝜏𝑚

𝑒−(𝑠∗
𝑙 +𝑠𝑘)𝜏𝑑𝜏. (4.51)

The above delay kernel represents a space with an infinite dimension due to the con-
tinuous 𝜏−axis. The discretization along the 𝑝−axis is given by the other part of the
kernel, k𝑝(𝑠𝑘, 𝑠𝑙), which might remain discrete.

The integral in (4.51) can be evaluated to a closed-form expression, which writes:

k𝜏(𝑠𝑘, 𝑠𝑙; 𝜏𝑚, 𝜏𝑀) =
⎧⎪
⎨
⎪⎩

−(𝑒−𝜏𝑀(𝑠∗
𝑙 +𝑠𝑘)−𝑒−𝜏𝑚(𝑠∗

𝑙 +𝑠𝑘)
)

(𝑠∗
𝑙 +𝑠𝑘) , 𝑠𝑘 + 𝑠∗

𝑙 ≠ 0;

𝜏𝑀 − 𝜏𝑚, 𝑠𝑘 + 𝑠∗
𝑙 = 0.

(4.52)

On the other hand, the rational kernel in (4.42) remains a finite sum over a limited
set of poles p. This set of poles will provide the general trend that must be followed
by the rational part of the model. As seen in section 4.4.1, the exact delay is the most
important part of the model, and thus the rational kernel does not need to contain the
exact poles of the system. Meanwhile, 𝑘𝜏(𝑠, 𝑠𝑘) accounts for all possible delay terms
between 𝜏𝑚 and 𝜏𝑀. As a matter of fact, the use of such kernel provides a feature space
with an infinite number of dimensions, i.e., an infinite number of basis. This feature
space guarantees that the exact delays from the modeled system are replicated in the
LSSVM model given by:

𝐻̃(𝑠) =
𝐾

∑
𝑘=1

𝛼𝑘k(𝑠, 𝑠𝑘;p, 𝜏𝑚, 𝜏𝑀) + 𝑏, (4.53)
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An approach including an infinite number of poles as done for the delay kernel
could also be possible, and will be considered in future works. However, the resulting
integration leads to complicated equations, which makes the subsequent evaluation of
the kernel slow, limiting the benefits that it could bring.

The constants 𝑐𝑝𝑗
in (4.38) are set to 𝑐𝑝𝑗

= |𝑝′
𝑗|

1/2. In this way, all the terms 𝜑𝑝
𝑗 (𝑠; 𝑝𝑗)

at 𝑠 = 𝑗𝜔 have the same ℓ2-norm for any value of 𝑝𝑗 for which 𝑝′
𝑗 ≠ 0. Considering

this definition, the ℓ2-norm of each of the 𝜑𝑝
𝑗 (𝜔; 𝑝𝑗) basis amounts to:

⟨𝜑𝑝
𝑗 (𝜔; 𝑝𝑗),𝜑𝑝

𝑗 (𝜔; 𝑝𝑗)⟩ = ∫
∞

−∞

|𝑝′
𝑗|

(𝑗𝜔 − 𝑝𝑗)(−𝑗𝜔 − 𝑝∗
𝑗 )

𝑑𝜔 = 𝜋. (4.54)

This definition of 𝑐𝑝𝑗
amplifies the LSSVM weights w𝑖𝑗 associated with the dominant

poles of the system (i.e., the poles with a smaller real part). A smaller value for 𝑐𝑖𝑗
produced by the proposed 𝑐𝑝𝑗

means that the weight w𝑖𝑗 should increase, aaccording to
(4.40), in order to achieve the same residue, and thus the same model.

Separating the rational part of (4.42), and with the considerations stated above, the
rational kernel k𝑝(𝑠𝑘, 𝑠𝑙) writes:

k𝑝(𝑠𝑘, 𝑠𝑙) =
𝑛𝑝

∑
𝑗=1

|𝑝′
𝑗|

(𝑠𝑘 − 𝑝𝑗) (𝑠∗
𝑙 − 𝑝∗

𝑗 )
. (4.55)

According to (4.45), the delayed rational kernel results from themultiplication of the
delayed kernel in (4.52) by the rational kernel in (4.55). It contains the delayed rational
basis of (4.37) with the set of poles 𝒫 = {𝑝1,… , 𝑝𝑛𝑝

}, each of them containing the same
infinite number of delays in the range [𝜏𝑚, 𝜏𝑀].

4.4.3 Delay Extraction via LSSVM Regression
The previous section described the application of the dual space formulation of the
LSSVM on the estimation of a kernel-based DRM. While the dual space LSSVM model
in (4.53) with the aforementioned kernel is non-parametric, it can still be linked to an
infinite dimensional parametric model expressed by (4.34):

𝐻̃(𝑠) = ⟨w,𝜑∗(𝑠;p, 𝜏)⟩ + 𝑏

=
𝑛𝑝

∑
𝑗=1

𝑛𝜏

∑
𝑖=1

w𝑖𝑗𝑒−𝑠𝜏
𝑐𝜏𝑐𝑝𝑗

𝑠 − 𝑝𝑗
+ 𝑏. (4.56)

The value of w𝑖𝑗 is defined via the LSSVM framework, and can be computed by
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(3.20):

w𝑖𝑗 =
𝐾

∑
𝑘=1

𝛼𝑘𝜑∗
𝑖𝑗(𝑠𝑘), (4.57)

=
𝐾

∑
𝑘=1

𝛼𝑘

𝑐𝜏𝑐𝑝𝑗

𝑠∗
𝑘 − 𝑝∗

𝑗
𝑒−𝑠∗

𝑘𝜏𝑖. (4.58)

Since 𝑐𝜏 → 0 and 𝑛𝜏 → ∞ were used in the kernel definition, the expression in (4.56)
can be further expanded to:

𝐻̃(𝑠) =
𝑛𝑝

∑
𝑗=1

∫
𝜏𝑀

𝜏𝑚

w′
𝑗(𝜏)𝑒−𝑠𝜏

𝑐𝑝𝑗

𝑠 − 𝑝𝑗
𝑑𝜏 + 𝑏, (4.59)

where the weights w′
𝑗(𝜏) refer to the continuous parameter 𝜏 and exist for any pole 𝑝𝑗.

They take the following form:

w′
𝑗(𝜏) = lim

𝑐𝜏→0

w𝑖𝑗

𝑐𝜏
, (4.60)

= lim
𝑐𝜏→0

1
𝑐𝜏

𝐾

∑
𝑘=1

𝛼𝑘

𝑐𝜏𝑐𝑝𝑗

𝑠∗
𝑘 − 𝑝∗

𝑗
𝑒−𝑠∗

𝑘𝜏, (4.61)

=
𝐾

∑
𝑘=1

𝛼𝑘

𝑐𝑝𝑗

𝑠∗
𝑘 − 𝑝∗

𝑗
𝑒−𝑠∗

𝑘𝜏. (4.62)

These weights w′
𝑗(𝜏) are proportional to the residue in the DRM, thus providing

information on the most relevant terms for the model construction, i.e., on the values
of 𝑝𝑗 and specially, 𝜏, that have a larger influence in the model; in fact, a large residue is
associated to the delay that is most significant for the part of themodel corresponding to
the pole 𝑝𝑗. Furthermore, a combined weight 𝑊 (𝜏) that which sums the contributions
of all the poles in the final model, leading to a 𝜏-dependency only, can be defined as:

𝑊 (𝜏) =
(

𝑛𝑝

∑
𝑗=1

|w′
𝑗(𝜏)|2

)

1/2

=
(

𝑛𝑝

∑
𝑗=1 (

𝐾

∑
𝑘=1

𝛼𝑘𝑐𝑝

𝑠∗
𝑘 − 𝑝∗

𝑗
𝑒−𝑠∗

𝑘𝜏
) (

𝐾

∑
𝑘=1

𝛼𝑘𝑐𝑝

𝑠∗
𝑘 − 𝑝∗

𝑗
𝑒−𝑠∗

𝑘𝜏
)

∗

)

1/2

. (4.63)

The plot and analysis of the weight 𝑊 (𝜏) provides information about the system
delays, with peaks indicating higher “energy” content and corresponding to the domi-
nant delays of the original system. The representativeness of these peaks to identify the
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system delays is assured by the fact that one of the conditions of the LSSVM problem is
the minimization of ⟨w,w⟩ = ∑ |w|2 (see (3.17)). Hence, it is unlikely the occurrence
of unnecessary high values for w′

𝑗(𝜏).

4.4.4 Illustrative Example
As an illustrative example, we recall the synthetic transfer function with a single real
pole at −3 rad/s and a single delay at 3 s from section 4.4.1.

The LSSVMmodel from (4.53)with 𝜏𝑚 = 0 , 𝜏𝑀 = 5 s and the poles𝒫 = {−2,−4,−6}
rad/s can be easily estimated by computing the kernel and the coefficients𝛼. It is impor-
tant to remark that the above set of poles does not match the exact pole in the transfer
function, but are within the same region of space. The plot of the magnitude of w′

𝑗(𝜏)
as a function of 𝜏 gives us an interesting insight. Figure 4.3 shows these curves for each
of the poles included in the kernel. The curves clearly have their peak near the true
delay of the original system, 𝜏 = 3 s. However, if the weights are observed for one
individual pole, the peak is not exactly at the expected value: in fact, it is at 𝜏 = 3.09 s
for 𝑝𝑗 = −6 rad/s, 𝜏 = 3.05 s for 𝑝𝑗 = −4 rad/s and 𝜏 = 2.95 s for 𝑝𝑗 = −2 rad/s.
Nonetheless, by looking at the combined weight 𝑊 (𝜏), the peak appears at 𝜏 = 3.00 s,
showing that the use of a higher number of poles compensate the fact that the exact
pole of the system is unknown. The delay is shown to be the most important element
for obtaining an accurate model, and the use of infinite possible delays by means of
the kernel function guarantees that its correct value is considered. In the next section,
this procedure for delay identification is described for a more generic case, when the
original system is unknown.

4.5 Practical Procedure for delayed rationalmodel Es-
timation and delay identification

This section generalizes the procedure illustrated in the previous section to the case of
a systemwith multiple delays and reflections like, for example, an electric interconnect.
The target model to approximate this system is the DRM in (4.12), with complex and
unknown poles.

4.5.1 Time-Delay Intervals in the Delay Kernel
The delay extraction approach outlined in Sec. 4.4 and better detailed in this section
requires a delay-rational kernel function containing all delays within a certain interval.
However, the span of this interval was not discussed yet. For causal systems, the time-
delay has to be positive, and therefore, 𝜏𝑚 ≥ 0. The determination of the maximum
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Figure 4.3: Magnitude of the LSSVM weights as a function of 𝜏 for each pole included
in the kernel.

delay 𝜏𝑀 can rely on the frequency discretization of input data:

⎡
⎢
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⋮
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⎤
⎥
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⎢
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⋮
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⎤
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⎦
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⎡
⎢
⎢
⎣

𝑓1
⋮

𝑓𝐾

⎤
⎥
⎥
⎦

. (4.64)

In fact, assuming that the original frequency response of the system has equally-
spaced frequency points, with Δ𝑓 being the separation between two consecutive sam-
ples (e.g., the difference between 𝑓1 and 𝑓2), the following empirical relationship holds:

𝜏𝑀 − 𝜏𝑚 < 1
Δ𝑓

. (4.65)

With 𝜏𝑚 = 0, the maximum time-delay then becomes

𝜏𝑀 < 1
Δ𝑓

, (4.66)

which is the value we use for our examples presented in section 4.6.

4.5.2 The Rational Kernel
The example in section 4.4.4 showed that the delays can be identified without knowing
the exact poles that compose the rational part of the system. A sufficiently large number
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of poles was able to replace the effect of the exact pole in the estimation of the LSSVM
model. Hence, the set 𝒫 = {𝑝1,… , 𝑝𝑛𝑝

} is empirically defined as an appropriate choice
for the kernel poles. The poles {𝑝1,… , 𝑝𝑛𝑝

} are randomly chosen with independent real
and imaginary parts, both from a Gaussian distribution with mean zero and standard
deviation equal to 𝜔𝐾, i.e., the maximum frequency among the available samples. The
real part of the poles is forced to be negative by flipping its sign if 𝑝′ is positive, in
order to ensure that the obtained system is stable. Although this is not the optimal
set of poles for the rational kernel, this choice is adopted because it provides a good
delay estimation using a relatively small number of poles. Since the rational part of the
system (with its corresponding delay removed) should be very simple, usually no more
than 10 poles, a 𝑛𝑝 on the order of 20 to 30 poles is sufficient to identify the delay values.

4.5.3 Delay Identification Algorithm
After considering the details of the previous subsections, we can devise a procedure to
identify the relevant delays of a generic distributed system based on the weights esti-
mated by a LSSVMmodel. The procedure is simply an extension of what was described
at the end of Sec. 4.4 and illustrated by the black line of Fig. 4.3. The complete proce-
dure for time-delay identification can be summarized by Algorithm 2. Once identified
by the peak positions, the delays can be used to build a DRM of little complexity.

Algorithm 2 Delay identification algorithm

1: Group the frequency response sample pairs in the sets
{(𝑠1,𝐻(𝑠1)),…, (𝑠𝐾,𝐻(𝑠𝐾))}, with 𝐻(𝑠) = 𝐻𝑟(𝑠) + 𝑗𝐻𝑖(𝑠) and 𝑠 = 𝑗𝜔;

2: Draw a random set of complex poles 𝒫 ∈ ❈
𝑛𝑝 in a reasonable region of the complex

plane as discussed in section 4.5.2;
3: Define the minimum and maximum considered delays 𝜏𝑚 and 𝜏𝑀 as stated in sec-

tion 4.5.1;
4: Compute the kernel for all frequency pairs {𝑠𝑖, 𝑠𝑗}𝐾

𝑖,𝑗=1 using (4.42), and assembly
the linear system in (3.24);

5: Tune the hyperparameter 𝛾 such that the model error is acceptable and solve (3.24);
6: Compute 𝑊 (𝜏) according to (4.63);
7: Find the peaks in 𝑊 (𝜏), which are the set of relevant delays 𝜏 = {𝜏1,… , 𝜏𝑛𝜏

} for
the modeled system.

Admittedly, the peaks still need to be found visually, and some discernment is re-
quired to distinguish the delay peaks from the side lobes that appear in the plot, as
observed in Fig. 4.3. Nonetheless, the main delay peak is more pronounced than its
corresponding side lobes, and hence the delay peaks are identified as being higher than
its near surroundings. Those few identified delays can be used to estimate compact
delay rational models with a small number of poles via one of the techniques described
in section 4.2.
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4.6 Application examples
In order to exemplify the use of the advocated procedure, four examples are presented
in this section. Throughout the examples, comparisons with the state-of-the-art VF
technique for the estimation of rational models [23], Hilbert transform [36] approach
and Gabor transform [28] method for delay identification are presented.

4.6.1 Example 1: Synthetic transfer functions
The proposed model is first investigated on a synthetic example with known poles and
delays [83]. Initially, the following transfer function sampled at 1001 evenly spaced
points from 𝜔 = 0 to 𝜔 = 2000 rad/s is considered:

𝐻1(𝑠) = 20𝜋
𝑠 + 20𝜋

𝑒−0.15𝑠. (4.67)

For the delay identification, we adopted a kernel with the 20 random poles shown
in Fig. 4.4-(a), and a maximum delay value 𝜏𝑀 = 1 s determined according to sub-
section 4.5.1. Then, Algorithm 2 is used to compute the weight 𝑊 (𝜏). Such weight
is normalized by its maximum value and displayed in Fig. 4.4-(b). The peak identifies
exactly the delay of our synthetic transfer function, i.e. 𝜏 = 0.15 s. The figure also
compares the results of the present method with the time-delays obtained by means of
two other methods: the Hilbert transform (gray line) and the Gabor transform (dashed
lines). The former method identifies by design only one delay value, at 𝜏 = 0.1494 s,
which is slightly to the left of the actual delay value. On the other hand, the Gabor
transform, after the tuning of the window width provides a pattern which is similar to
the one provided by the proposed method. However, the peak in the Gabor transform
plot is shifted slightly to the right of the LSSVM peak, and it can be pushed further if
smaller values for the window width 𝑎 are chosen.

As a further comparison among the three methods, and to stress their performances
for a system with multiple delays, let us consider a second synthetic transfer function:

𝐻2(𝑠) =
(

20√10𝜋
𝑠 + 20𝜋 + 60𝜋𝑗

+
20√10𝜋

𝑠 + 20𝜋 − 60𝜋𝑗)
𝑒−0.15𝑠 + 4𝜋

𝑠 + 20𝜋
𝑒−0.3𝑠 (4.68)

sampled at the same frequency points as 𝐻1(𝑠). There are two main differences from
the previous example: 𝐻2(𝑠) is composed by terms with two different delays 𝜏 =
{0.15, 0.3} s, and one of this terms is an underdamped system. The normalized 𝑊 (𝜏)
computed via the procedure described in section 4.5 is displayed in Fig. 4.5, together
with the Hilbert and Gabor transform curves. The main LSSVM weight peak identifies
exactly the delays of our synthetic transfer function, i.e. 𝜏 = 0.15 s, and a smaller peak
is present at the second transfer function delay at 𝜏 = 0.3 s. The Hilbert transform also
identifies exactly the first and most important delay peak, but misses the second one.
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Figure 4.4: First synthetic example: Panel (a) shows the 20 random poles usedwithin the
LSSVM kernel. Panel (b) plots 𝑊 (𝜏) for delay identification; comparison with Hilbert
and Gabor transforms is also displayed.

The Gabor transform peaks are again shifted slightly to the right, but this time addi-
tional side peaks appear when the frequency domain window is wide. They disappear
by using a narrower window, as shown in the green curve, but these leads to a worse
time-domain resolution of the transform, which makes both the first and second peaks
appear in more inaccurate values of 𝜏.
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Figure 4.5: Plots of the normalized weight used for delay identification; comparison
with Hilbert and Gabor transforms is also displayed, for the second synthetic example.

The computational cost of the LSSVM method might be worrisome, as it depends
on the inversion of matrices, which might be computationally when their size becomes
large. However, Table 4.1 shows that the impact on the performance was not so large
in these examples. Using those 𝐾 = 1001 frequency response samples, the LSSVM
required a computational time of 17.57 and 16.45 s, compared to 12.96 and 9.88 s for
the Gabor transform. For smaller number of samples, the difference is reduced, up
to a point where the LSSVM may be faster than the Gabor transform, e.g., with 334
samples. The Hilbert transform always required a larger computational time than both
other methods. Nonetheless, the computational time for LSSVM is an active research
area, and such time can be further reduced in the future via alternative methods for the
estimation of the dual-spacemodel parameters𝛼 such as the gradient descent algorithm
[107].

As can be inferred from Table 4.1, the proposedmethod presents a trade-off between
the maximum frequency of the system (or, in other words, the considered bandwidth),
the maximum identifiable delay (which is related to the length of the cable: longer
cables will require larger maximum delays) and its computational performance (which
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Table 4.1: Comparison of the computational time between the three applied delay iden-
tification methods for different number of frequency response samples, for the two ex-
amples of synthetic transfer functions.

Delay identification method: LSSVM
Gabor

transform
Hilbert

transform
𝐻1(𝑗𝜔) ∶ 1001 samples 17.57 12.96 276.47

Computational 501 samples 7.00 6.47 113.06
time [s] 334 samples 4.15 5.24 71.62

𝐻2(𝑗𝜔) ∶ 1001 samples 16.45 9.88 220.83
Computational 501 samples 7.35 7.52 110.94

time [s] 334 samples 4.50 5.65 82.65

declineswhen the number of frequency samples is increased). For a fixed computational
time, if the maximum frequency is increased, Δ𝑓 increases, and therefore the maximum
identifiable delay 𝜏𝑀 is smaller. On the other hand, channels that operate at higher
frequencies would be naturally shorter, thus the delays that need to be identified in
such channels are smaller, compensating the shrink of 𝜏𝑀.

4.6.2 Example 2: Distributed circuit
As a second example, the high-speed link circuit in Fig. 4.6 is considered [90]. The
link consists of three transmission lines based on microstrips, together with lumped
elements that represent the parasitic effects of the link, in order to approximate the
structure of a realistic interconnect. The desired model targets the following transfer
function:

𝐻(𝑠) = 𝑉𝑜𝑢𝑡(𝑠)/𝐸(𝑠) (4.69)

for 𝑠 = 𝑗𝜔 = 𝑗2𝜋𝑓. This structure has been implemented and simulated in HSPICE
in an AC simulation, with results consisting on 𝐾 = 1001 frequency points with a
frequency spacing Δ𝑓 = 20MHz, resulting in a bandwidth from 0 to 20GHz. A subset
containing 101 samples, randomly selected among the available data, has been used as
a test dataset, whilst the remaining 900 samples are used as training set to construct
the LSSVM model.

A DRM based on the modeling approach presented in section 4.5 is constructed to
approximate 𝐻(𝑠). The set of poles 𝑝 is defined by drawing its real and imaginary parts
randomly and independently from a normal distribution 𝒩 (0,16𝜋2 × 1018) with zero
mean and standard deviation of 4𝜋 × 109 rad/s. In the cases where the real part of the
pole was positive, corresponding to an unstable pole, it was forced to be negative by
flipping its sign. However, for this example, the procedure from section 3.4 is applied
to tune the other hyperparameters, i.e., the vector of hyperparameters 𝜆 = [𝛾, 𝜏𝑚, 𝜏𝑀].
This is very handy, e.g., if a small value for the hyperparmeter 𝜏𝑀 is used, the model
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may be unable to follow the dynamic phase variations produced by the system. On the
other hand, if a more conservative strategy is considered, as an example by using the
largest delay interval allowed by the frequency sampling (i.e., 𝜏𝑚 = 0 s and 𝜏𝑀 = 1/Δ𝑓),
the delay identification procedure can be rather cumbersome, since the values of 𝑊 (𝜏)
must be analyzed in a large interval.
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Figure 4.6: Schematic of the circuit modeled in the example 2.

During the model training, the optimum set of hyperparameters 𝛾, 𝜏𝑚 and 𝜏𝑀 is
selected via the CV-based Bayesian optimization scheme presented in Sec. 3.4 using 5
folds and 50 iterations. The parameters search space is restricted to the intervals 𝛾 ∈
[103,1025] and 𝜏𝑚, 𝜏𝑀 ∈ [0,50] ns. The constraint 𝜏𝑀 > 𝜏𝑚 is not enforced, however it
is expected as the logical outcome of the optimization. After the 50 cycles, the obtained
optimized parameters are 𝛾⋆ = 6.56×1021, 𝜏⋆

𝑚 = 5.68×10−8 and 𝜏⋆
𝑀 = 7.39 ns. Figures

4.7 and 4.8 show that these parameters provide a very accurate model when applying
it to the validation data, where the model output almost perfectly matches the original
points of 𝐻(𝑠).

Additionally, the proposed LSSVM model of 𝐻(𝑠) is used to identify the dominat-
ing propagation delays of the system of Fig. 4.6. These delays should be searched only
within the optimized delay interval 𝜏⋆

𝑚 to 𝜏⋆
𝑀, making it possible to perform a more fine

discretization without incurring into an unreasonable computational time. The delays
are identified from 𝑊 (𝜏), which is computed according to (4.63). All this computational
procedure took only 940.7 s, of which 937.2 s were used for the estimation of the opti-
mized model and 3.5 s for the delay identification. The plot of 𝑊 (𝜏) is shown in Fig. 4.9.
In this figure, the black curve provided by the optimized model is compared with the
blue one obtained by means of a basic tuning of the parameters, where 𝜏𝑚 is set to its
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Figure 4.7: Magnitude comparison of the LSSVMmodel output and the original transfer
function 𝐻(𝑠).
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Figure 4.8: Phase comparison of the LSSVM model output and the original transfer
function 𝐻(𝑠).

minimum and 𝜏𝑀 and 𝛾 are set to their maximum possible values. It is observed that
the peaks of the black curve are much more identifiable than in the blue curve, while
it is also less noisy. Moreover, 𝜏𝑀 in the blue curve goes up to 50 ns, which results
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in a worse resolution of the 𝜏-axis if a fixed number of points is considered in the dis-
cretization. The peaks of such plot correspond to the propagation delays produced by
the original transfer function. For example, the first marked peak occurs at 0.76 ns,
while the two transmission lines in the main signal path have a total length of 13 cm.
Neglecting the delays introduced by the lumped components of the circuit in Fig 4.6,
such values would represent a propagation speed of 1.71×108 m/s, compatible with the
real speed in such structures. The additional peaks are also clear in the plot, together
with smaller peaks that can be identified if necessary.
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Figure 4.9: Plot of 𝑊 (𝜏) obtained from the LSSVM model of 𝐻(𝑠) indicating the domi-
nating propagation delays of the system of Fig. 4.6. The detail amplifies it in the interval
from 𝜏⋆

𝑚 to 𝜏⋆
𝑀.

4.6.3 Example 3: Circuit with multiple transmission line paths
For the next example, an extra complexity is added when comparing to example 2: the
circuit now has more lumped components and more transmission lines in its constitu-
tion [83], as shown in Fig. 4.10. The considered transfer function writes:

𝐻(𝑗𝜔) = 𝑉𝑜(𝑗𝜔)/𝑉𝑖(𝑗𝜔). (4.70)

By inspecting the circuit, it can be seen that 𝐻(𝑗𝜔) should present a larger number
of delays, due to multiple propagation paths with distinct lengths between 𝑉𝑖 and 𝑉𝑜.
This circuit is composed by 5 transmission lines with different lengths (TL1: 0.47 m;
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TL2: 1.38 m; TL3: 0.31 m; TL4: 1.19 m; TL5: 0.28 m), resulting in 3 different paths from
the input to the output, and additional paths generated by reflections at the various
splitting points of the circuit. In addition to the transmission lines, the lumped resistors
and capacitors create line mismatches and add corrugations to the voltage and current
waveforms.

Figure 4.10: Schematic of the circuit used in example 3.

The above circuit is simulated in SPICE, and 𝐻(𝑗𝜔) is obtained at 1229 equally-
spaced frequency points between 0 and 2 GHz. The proposed method is applied in the
same sequence as described in example 1, but this time 25 kernel poles are adopted,
due to the higher complexity of the transfer function. The obtained time-delay curve is
shown in Fig. 4.11. In the same figure, the delays from the Hilbert and Gabor transform
methods are also shown, for comparison. The detail of the first peak (shown in an inset
of Fig. 4.11) is interesting: it reveals that the peak shape is almost coincident with the
Gabor transform curve, but identifies a delay slightly higher than the Hilbert transform.
Also for the additional peaks, the time-delay curve computed via the proposed approach
presents a remarkable resemblance to the one obtained through the Gabor transform,
although all peaks are slightly to the left of the Gabor transform ones.

The curves on the previous figure require the discretization of the 𝜏-axis. Together
with the number of frequency samples, this discretization affect the computational time
of the curves. Table 4.2 shows how this time changes according to the number of 𝜏
points considered, in this example. It is seem that, for a small number of points, the
Gabor transform performs better, but as the number of points increases, the LSSVM
becomes more efficient. The model estimation does not depend on the 𝜏-axis discretiza-
tion, and thus, it is computationally easy to compute the weights at a new point, with
(4.63). The computational time of the Hilbert transform is higher, and it does not require
any discretization.
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Figure 4.11: Example 3: plots ofw𝑝(𝜏) for delay identification; comparison with Hilbert
(green line) and Gabor (dashed blue curve) transforms is also displayed.

Table 4.2: Computational time required for delay identification in example 3 as a func-
tion of the number of considered points in the 𝜏-axis.

Number
of points

in the 𝜏-axis

Computational time [s]

LSSVM
Gabor

transform
Hilbert

transform
1,000 27.0 5.36

261.8
3,333 65.3 55.8
5,000 89.0 135.2
10,000 165.9 566.0

Five significant delays are identify from the curve of Fig. 4.11: 𝜏1 = 10.199 ns,
𝜏2 = 24.453 ns, 𝜏3 = 26.941 ns, 𝜏4 = 30.443 ns, 𝜏5 = 32.931 ns. Smaller peaks or peaks
very close to larger ones are ignored. Those peaks are used now for building a DRM
with a finite number of delays, i.e., the kernel-based DRM is used as a replacement for
the Gabor transform on the delay identification step of estimating the DRM in (4.12). By
using the five identified delays with Algorithm 1, the original transfer function 𝐻(𝑗𝜔)
is fitted using 12 poles in total. This approximation is shown in Fig. 4.12, indicating an
excellent phase reconstruction over the entire bandwidth (lower panel).
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Figure 4.12: Magnitude and phase plots of the reconstructed transfer function of exam-
ple 3.

In table 4.3, we compare the DRMs obtained using Algorithm 1 and the delays ob-
tained through the proposed LSSVM method, with three alternatives: a DRM obtained
considering the delays from the Gabor transform and Algorithm 1; a single delay DRM
that uses the Hilbert transform delay and VF to obtain the rational part; and a direct
VF approximation. It is shown that a VF approximation with similar accuracy would
require at least 40 poles, if the model accounts for the Hilbert transform delay, or 52
poles, if no delay is considered. This is more than three times the number of poles
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adopted by the proposed model. Moreover, with a very small change in the delays
to the ones identified via the Gabor transform, i.e., 𝜏1 = 10.260 ns, 𝜏2 = 24.514 ns,
𝜏3 = 27.002 ns, 𝜏4 = 30.566 ns, 𝜏5 = 33.023 ns, the model obtained using such de-
lays does not achieve a good accuracy. In other words, the Gabor transform method
would not be able to achieve the low order model presented in this example, unless it
performed an optimization of the obtained delays. The issue seems to rest on 𝜏1: by
replacing it with the LSSVM value, which is only 0.061 ns smaller, a good accuracy is
restored. It is believed that 𝐻̌1(𝑗𝜔𝑘) in (4.13) might become non-causal when 𝐻(𝑗𝜔𝑘)
is compensated by a delay larger than its intrinsic delay (i.e., if 𝜏1 is larger than the true
delay in 𝐻(𝑗𝜔𝑘)). This issue might hinder the rational approximation. Overall, the ob-
tained results demonstrates that the identified delays help reducing the complexity of
the model.

Table 4.3: Summary of the error between system response 𝐻(𝑗𝜔) in example 3 and
models 𝐻̃(𝑗𝜔) used to approximate it.

LSSVM +
Alg. 1

Gabor tr. +
Alg. 1

Hilbert tr.
+ VF

VF

Error - 𝐿2−norm 0.462 1.940 0.457 0.587
Error - 𝐿∞-norm 0.040 0.138 0.033 0.037

Total poles 12 13 40 52

As a final comparison, we can look at the total computational time required to obtain
these DRM or VF models, which is presented in Table 4.4. That data corresponds to the
cases where 10,000 𝜏-values were evaluated to obtain the plot in Fig. 4.11. It is shown
that VF is faster, but this was also the method with the highest number of poles. The
proposed method took around five times longer than VF, but it requires around 4 times
less poles, and had a better performance than the other DRM alternatives.

Table 4.4: Comparison of the computational time required for delay identification and
rational fitting through the analyzed methods in example 3.

Method
Computational time [s]

Delay id. Rational fit. Total
LSSVM + Alg. 2 165.9 0.898 166.8
Gabor tr. + Alg. 2 566.0 0.719 566.7
Hilbert tr. + VF 261.8 0.283 262.1

VF - 32.31 32.31

4.6.4 Example 4: SpaceWire Cable
Simulated data of the SpaceWire link described in chapter 2, containing a 10 m long
SpaceWire cable with compatible connectors and PCB adapters [71] is considered as
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a final application example of the presented method. The SpaceWire cable structure
is rather complicated (4 twisted-shielded pairs surrounded by an external shield), thus
requiring an 18 x 18 scattering matrix to fully describe the electromagnetic behaviour
of the link. The simulation accounted for the entire structure of the SpaceWire cable
(full details are given in Chapter 2), but, for simplicity, only the scattering parameters
of a single wire, from end to end, are modeled here. The 1-wire link is then represented
by the following scattering matrix S(𝑗𝜔):

𝑆(𝑗𝜔) = [
𝑆1,1(𝑗𝜔) 𝑆1,2(𝑗𝜔)
𝑆2,1(𝑗𝜔) 𝑆2,2(𝑗𝜔)] , (4.71)

where 𝑆1,2(𝑗𝜔) and 𝑆2,1(𝑗𝜔) are equal due to the reciprocity of the passive link. The
frequency response of this link is sampled at 𝑘 = 1,… ,2000 equally-spaced points
between 0 and 1 GHz.
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Figure 4.13: Example 4: plots of 𝑊 (𝜏) for delay identification; comparison with Hilbert
(green line) and Gabor (dashed blue curve) transforms is also displayed.
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The proposed method is applied to each of the elements of the matrix individually,
and then a multiport model is achieved by combining the individual results [48]. A
remarkable simplification when dealing with multiport systems comes from the fact
that the kernel matrix Ω depends only on the set of poles 𝒫, 𝜏𝑚, 𝜏𝑀 and the sampled
frequency points 𝜔𝑘, which are the same for all elements of the scattering matrix. The
kernel does not depend on the frequency response itself. Therefore, the kernel matrix
used to solve (3.24) can be computed only once, simplifying the computational process.
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Figure 4.14: Example 4: (a) – Plot of 𝑊 (𝜏) of 𝑆1,1 for delay identification. (b) and (c) –
Comparison of the model with original data for the magnitude and phase of 𝑆1,1(𝑗𝜔).

The proposed method is applied to 𝑆1,1(𝑗𝜔), 𝑆1,2(𝑗𝜔) and 𝑆2,2(𝑗𝜔) in the same
manner as in previous example, with 25 kernel poles, 𝜏𝑚 = 0 and 𝜏𝑀 = 1/Δ𝑓 = 2 𝜇s.
In parallel, and for the sake of comparison, the Hilbert and Gabor transform methods
are applied to the scattering matrix of the SPW link. The window considered for the
Gabor transform considers 𝑎 = 1. Figure 4.13 shows the results of the three methods,
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normalized so that their highest peak has the same value for all three plots. The plots
document a very good agreement of the three techniques.
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Figure 4.15: Example 4: (a) – Plot of 𝑊 (𝜏) of 𝑆1,2 for delay identification. (b) and (c) –
Comparison of the model with original data for the magnitude and phase of 𝑆1,2(𝑗𝜔).

For 𝑆1,1(𝑗𝜔), Fig. 4.14-(a) shows the identified delays, of which the first one hap-
pens at 𝜏 = 0.5 ns and represents a reflection occurring a few centimeters into the
propagation path, where the PCB and connector transitions into the SpaceWire cable.
Another 6 delay terms were identified with order of magnitude in the hundreds of ns.
Furthermore, 𝜏 = 0 is a candidate delay, representing the port reflection, due to a possi-
ble mismatches between the port and the input impedance of the structure; however, its
identification is compromised by the very close first peak. Figures 4.14-(b) and 4.14-(c)
show the magnitude and phase of the 𝑆1,1 approximation, performed with 8 delays and
19 total poles.
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Figure 4.16: Example 4: (a) – Plot of 𝑊 (𝜏) of 𝑆2,2 for delay identification. (b) and (c) –
Comparison of the model with original data for the magnitude and phase of 𝑆2,2(𝑗𝜔).

For 𝑆1,2(𝑗𝜔), Fig. 4.15-(a) shows the identified delays. Since 𝑆1,2 represents the
end-to-end transmission of the link, the first peak appears after a considerable delay,
contrary to the reflection term 𝑆1,1. In total, 6 main delays were identified. Figures
4.15-(b) and 4.15-(c) show the approximation of the 𝑆1,2 transfer function performed
with the identified 6 delays and 19 total poles: the good quality of this approximation
is evident.

The time-delays of 𝑆2,2 are identified from the curve displayed in Fig. 4.16-(a). They
are similar to the ones of 𝑆1,1, although not exactly the same, because the link is non-
symmetrical. In total, 7 delays terms, including 𝜏 = 0 due to direct reflection, are
identified. In addition, 26 poles in total are needed for a good quality approximation, as
shown in Figs. 4.16-(b) and 4.16-(c).

The three alternativemodels presented in 4.6.3 are built for comparison. A summary
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of the 𝐿2 and 𝐿∞-norm error between the original data and the constructed models
is shown in Table 4.5. It is evident that the proposed DRM model presents a much
lower complexity when compared with the mere rational VF model. In this example, it
achieved a similar performance than the model that uses the Gabor transform delays.
The Hilbert transform delay also led to an accurate and low order model, but only
for the transmission scattering parameter 𝑆1,2. For the reflections, this method is not
applicable, and thus it would require the high order VF models to build the complete
multiport system.

Table 4.5: Summary of the error between available data for the link in Example 4 and
models used to approximate it.

LSSVM +
Alg. 1

Gabor tr. +
Alg. 1

Hilbert tr.
+ VF

VF

𝑆1,1 error - 𝐿2 0.841 1.052 - 0.894
𝑆1,1 error - 𝐿∞ 0.098 0.070 - 0.090

𝑆1,1 order 19 24 - 159
𝑆1,2 error - 𝐿2 0.907 0.905 0.871 0.735
𝑆1,2 error - 𝐿∞ 0.052 0.052 0.132 0.152

𝑆1,2 - order 19 20 35 122
𝑆2,2 error - 𝐿2 0.849 1.122 - 0.823
𝑆2,2 error - 𝐿∞ 0.074 0.074 - 0.083

𝑆2,2 - order 26 26 - 162

Table 4.6: Computational time required for delay identification and rational fitting of
the multiport system from example 4.

Cumputational
time [s]

LSSVM
+ Alg. 1

Gabor tr.
+ Alg. 1

Hilbert tr.
+ VF

VF

D
el
ay

es
tim

at
io
n Kernel

computation
43.9 - - -

𝑆1,1 103.1 126.3 - -
𝑆1,2 106.0 123.4 443.1 -
𝑆2,2 104.4 123.6 - -

Ra
t.

fit
tin

g 𝑆1,1 1.86 1.99 44.06 44.06
𝑆1,2 1.63 1.56 0.16 53.58
𝑆2,2 1.67 2.30 44.06 53.76

Total: 362.6 379.2 531.4 151.4

The total computational time required to build the four aforementioned models is
also relevant. It is compared in Table 4.6, for both the delay identification and the ratio-
nal fitting. We see that the faster complete procedure is VF (which could be even faster
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using techniques specific for multiport systems [12]). Nonetheless, the total time spent
by the DRM techniques is reasonable, given the remarkable reduction in the number of
required poles. Moreover, the fact of computing the kernel matrix only once provides
an advantage for the LSSVM in terms of delay estimation time.

4.7 Recapitulation
DRM models are one of the best alternatives to reduce the complexity in models of
distributed systems. However, the extended use of such a clever implementation is
hindered by the difficulty in estimating accurately both the poles and delays needed
for their representation. A new method to assist on the construction of a DRM was
presented here. The approach consists in approximating the frequency response of the
system by means of the dual space formulation of the LSSVM with an ad-hoc kernel
based on an infinite number of delayed-rational basis; and the analysis of the weights
of this approximation which allows us to identify the dominant time-delays present in
the distributed system, that represent the most critical elements of the model.

Comparing the results of this work with similar existing delay-identification meth-
ods, it can be readily observed that the present technique, like the Gabor transform, has
the ability to identify multiple propagation delays. However, the Gabor transform suf-
fers from the necessity of tunning the width of its window function, which can push the
identified delays to values larger than the actual value. Meanwhile the Hilbert trans-
form is limited to a single delay. The distinctive feature of the discussed approach is
its DRM structure, inspired by the physical structure of electronic systems of large di-
mensions, where the signal propagation is subject to time-delays, losses, attenuation,
etc. The inclusion of all these features during the delay-estimation phase leads to delay-
values which are more appropriate to the estimation of a low-order DRM.

Moreover, the kernel-basedmodel is obtained via a non-parametric approach, which
allows the inclusion of more delay terms than what is feasible via parametric models.
Such approach also allows the further optimization via traditional ML techniques which
lead to good generalization properties in the obtained model.
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Chapter 5

Conclusion

This thesis discussed techniques suitable for the modeling and simulation of electric
interconnects. It presented a physical-based approach for the modeling of a SPW cable
link, where each component of the link is modeled individually and then their corre-
sponding blocks are cascaded together. Models with different levels of detail are pre-
sented, and the modeling approach is validated via experimental measurements of the
link’s scattering parameters. The comparison between model and measurements show
that a high level of detail is necessary in order to obtain a highly accurate model.

On the other hand, this thesis also developed kernel-based black-box models suit-
able for the modeling of systems with delays such as cables and long interconnects.
Kernel-based techniques are a very flexible tool to deal with those systems. Their struc-
ture can consider all the effects present in them such as propagation delay, reflections,
attenuation, losses, crosstalk, etc. Indeed, they provide a way to model the data using a
very large or infinite number of bases. This fact makes it possible to ensure that the true
propagation delays of the distributed system are accounted in the estimated model, by
establishing the kernel model based on a RKHS which accounts for an infinite number
of delayed rational basis functions.

The appropriate kernel described above was designed and applied in the modeling
of distributed systems. A machine learning technique called LSSVM is extended to
complex-valued data, and used to model the frequency responses of long interconnect
structures with the designed kernel. The advantage of such model is that it is a non-
parametric model in which the number of parameters that should be estimated is always
equal to the number of training samples plus one, and therefore its estimation remains
simple even though an infinite number of basis functions is used. The resulting model
provides an accurate characterization of the target structures.

When the model is estimated, its parametric equivalent explained in chapter 3 is
used to identify the dominant propagation delays of the system. Those delays appears as
maxima in a function which depends on the time-delay parameter, and provide accurate
results when comparing to the previous available technique for this task which is based
on the Gabor transform.
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The added flexibility of the machine learning model enables also the tuning of some
extra parameters, or hyperparameters. These parameters can be tuned via a 𝑘-fold
cross validation and a Bayesian optimization, ensuring that the model provides good
generalization properties for data not used during the training phase. Such optimization
provided an accurate kernel-based model after few iterations. The optimized model
provides also an easier way to identify the system dominant propagation delays, where
the delays should be searched in a small interval given by the optimized parameters,
making it a simpler task than if the whole possible interval would be considered.

Once the delay terms are identified, only the rational part of a DRM needs to be
estimated in case a DRM with a finite number of delays is desirable. This can be done
through conventional procedures shown in section 4.2, and results inmodels withmuch
less poles than with conventional techniques. The lower complexity of the resulting
DRM implies that an equivalent circuit for the distributed system would require less
dynamic components, and thus would be processed more efficiently by time-domain
simulators. A clear task that can benefit from this speed-up is the assessment of the
integrity of signal propagating in a system with electric interconnects. The DRM has
also the advantage of being causal, as positive delays are used in the transfer function;
furthermore, its phase is very accurate at all frequencies, while alternative models could
lose accuracy for the parts of the transfer function with smaller amplitudes.

5.1 Future Work
The flexibility provided by the infinite dimensional feature space of kernel-based mod-
els presented in this work is unique; in fact, the considered poles and time-delay interval
can be adapted according to the knowledge about the system, e.g., a model can be es-
timated first and its parameters can be used to provide information necessary to refine
such model. For example, a strategy of handling multiple time-delay intervals centered
on the identified delay peaks deserves future investigations. Further studies might also
establish ideal poles to be used in the estimation of the DRM.

The integration of the estimatedDRM into transient simulations is also an additional
necessity for the advance of this technique. A first option is based on the estimation of a
DRM with a finite number of delays, such as the SPW link model presented in Example
4 of section 4.6.4, and its synthesis via standard circuit components [48]. An alternative
for a direct conversion of a kernel-based model to a SPICE compatible structure could
use the capabilities of Verilog-A [108], the numerical inverse Laplace transform (NILT)
[109], or a combination of both. In this regard, another useful development might come
from the use of kernel-based models known to produce sparse solutions, such as the
standard support vector machine (SVM) [58] or the relevance vector machine (RVM)
[110]. Such sparse models contain most of the coefficients 𝛼𝑘 equal to zero, and thus
should gain efficiency if the model is directly employed in a SPICE simulation.

The extension of the proposed models to a large number of parameters should be
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straightforward. From the properties in 3.3, a way to enrich the model with additional
design parameters is by multiplying the delayed rational kernel by another kernel ac-
counting for the design parameters of the structure according to (3.41e). The Gaussian
kernel has already shown good capabilities in modeling systems with a high number of
parameters [61], and therefore might be appropriate for this task. However, the dimen-
sion of the kernel matrix will grow if additional parameters are added, as the amount
of training data will be given by multiplying the size of the frequency response by the
amount of parametric training samples. This will require better numerical techniques
for data compression and model estimation, as the size of the kernel matrix will be mul-
tiplied when the number of parameters increase, and its inversion to solve the system
of equations in (3.24) should become impractical. Luckily, there are optimization tech-
niques commonly used on other classes of machine learning problems, but which can
be applied directly to optimize the model parameters 𝛼 in the LSSVM, e.g., the gradi-
ent descent algorithm [107]. The implementation of this technique should mitigate the
issue of applying the LSSVM on large datasets.

The application of the LSSVM framework as a simple regularized parametric regres-
sion might be useful for the iterative algorithms presented in sections 4.1 and 4.2, and
therefore deserve some investigation. Specifically, for algorithms that tend to overfit
noisy data or in situations where the involved hyperparameters are not estimated yet,
the addition of a regularizer might lead to more stable solutions, improving the method
in those specific cases.

The kernel-based models presented in this work can be imagined also for systems
without the explicit representation of delays. The use of standard kernels presented
in section 3.3.3 can already achieve accurate models via the compression of the target
frequency response [91]. Nonetheless, the rational models in section 4.1 have been
traditionally used to model structures with delay, and it would be natural to propose
a kernel based on the RKHS generated by rational basis functions with 𝑝 = 𝑝′ + 𝑗 𝑝″,
according to

k(𝑠, 𝑠𝑘) = ∫
𝑝″

𝑚𝑎𝑥

𝑝″
𝑚𝑖𝑛

∫
𝑝′

𝑚𝑎𝑥

𝑝′
𝑚𝑖𝑛

1
𝑠 − 𝑝

1
𝑠∗

𝑘 − 𝑝∗ 𝑑𝑝′𝑑𝑝″. (5.1)

Such approach would lead to rational models with infinite poles, where it would not be
required to explicitly define the number and value of such poles. However, the evalua-
tion of such kernel is not simple, and therefore its use in kernel-based models still needs
some effort. However, the above kernel-based interpretation can be seen as a promising
approach to the application of kernel-based formulations in the modeling of electrical
interconnects.
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Nomenclature

Acronyms / Abbreviations

ANN Artificial neural network

AWE Asymptotic waveform evaluation

CAD Computer-aided design

CM Common-mode

CV Cross validation

DAE Differential algebraic equations

DM Differential-mode

DRM Delayed-rational model

DTFT Discrete-time Fourier transform

DUT Device under test

DVF Delayed vector fitting

EM Electromagnetic

EMC Electromagnetic compatibility

EMI Electromagnetic interference

FFT Fast-Fourier transform

GPR Gaussian process regression

LS Least-squares

LSSVM Least-squares support vector machine

LVDS Low-voltage digital signaling
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Nomenclature

ML Machine learning

MNA Modified nodal analysis

MOC Method of characteristics

MOR Model order reduction

MSE Mean-squared error

MTL Multiconductor transmission line

NILT Numerical inverse Laplace transform

PCA Principal component analysis

PCB Printed circuit board

PUL Per-unit-length

RBF Radial basis functions

RKHS Reproducing kernel Hilbert Space

RVM Relevance vector machine

SK Sanathanan-Koerner

SPI Signal and power integrity

SPICE Simulation program with integrated circuit emphasis

SPW SpaceWire

SSE Sum of squared error

STFT Short-time Fourier transform

SVD Singular value decomposition

SVM Support vector machine

TL Transmission line

VF Vector fitting

VNA Vector network analyzer

WR Waveform relaxation
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