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Summary

This research is focused on the development of new methods and algorithms
for solving polynomial optimization problems arising in the framework of robust
control. More specifically, the main objective of the research is to exploit power-
ful tools and recent mathematical results in polynomial optimization to effectively
address some problems widely recognized to be complex ones and/or partially ad-
dressed in the past by means of other less effective tools, with particular reference
to the problem of fixed-order/fixed-structure (FOFS) robust controller design. The
thesis is divided into three parts: the first two parts focus on model-based and
direct data-driven design of the FOFS robust controller, which is the main topic
of this thesis. Part III is focused on the application of convex relaxation technique
for the computation of frequency response envelope for linear-time-invariant (LTI)
single-input single-output (SISO) plants affected by parametric uncertainty. The
results provided in part III are useful in the context of frequency domain robust
controller design. Although the last part of the thesis is not directly focused on
the design of FOFS controller, but it represents another interesting application of
convex-relaxation techniques in the context of robust frequency domain control.

• Design of model-based FOFS mixed sensitivity H∞ controllers for
LTI SISO plants.
Several methods are available in the literature for designing full-order H∞
controllers (e.g., Riccati equations approach and linear matrix inequalities
approach). The main limitation of such methods is that the obtained con-
trollers often have high order that is challenging to implement in typical
industrial settings. To overcome such limitations, many authors in the past
have proposed the mixed-sensitivity H∞ FOFS control design. The main sci-
entific challenge posed by the formulation of the FOFS H∞ control problem is
the non-convexity of the optimization problem required to be solved to design
the controller. Existing techniques essentially rely on local optimization al-
gorithms that can typically trap in local minima of the underlying nonconvex
optimization problem, possibly leading to control systems that do not satisfy
all the assigned requirements.
In this dissertation, we propose the design of FOFS robust H∞ controllers,
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both for continuous-time (CT) and discrete-time (DT) systems, by using
convex relaxation algorithms assuming that the model of the given plant
is known. First, we define the feasible controller parameter set, which is the
set of the controller parameters that guarantee robust stability of the closed-
loop system and the achievement of the nominal performance requirements.
Then, we compute a convex relaxation of the nonconvex feasible controller
parameter set and formulate the original H∞ controller design problem as the
non-emptiness test of the feasible controller parameter set.
We present three algorithms for the convex relaxation of the feasible controller
parameter set. The first algorithm exploits the celebrated Putinar’s posi-
tivstellensatz, the second algorithm uses a generalization of the S-procedure,
and the third algorithm employs a moment relaxation-based exchange method
for the convex relaxation of the feasible controller parameter set.

• Direct data-driven FOFS mixed-sensitivity H∞ control design for
LTI SISO plants using frequency domain experimental data.
In industrial settings, low order/fixed structure controllers are typically pre-
ferred to meet stringent constraints in terms of computational resources. Fur-
thermore, in many cases, an accurate mathematical model of the plant to be
controlled is either not available or difficult to derive through a simple (not ex-
pensive) procedure. This limitation motivates the development of data-driven
controller design methodologies that allows the user to design controllers di-
rectly from a set of input-output data experimentally collected from the plant.
In the context of data-driven design, parametric uncertainties and unmodeled
dynamics (for LTI systems) do not come into play since a mathematical model
of the plant is not required. Therefore, the only source of uncertainty comes
from the measurement process. This fact suggests that the controller design
problem can suitably be reformulated in terms of system identification prob-
lem by directly identifying the controller from the available input-output data.
Although several contributions are proposed in recent years about direct data-
driven controller design based on time-domain data, only a few authors have
considered the case of frequency domain data. Most of the existing frequency-
domain methods use local optimization algorithms for designing FOFS direct
data-driven controllers. However, these algorithms can typically trap in local
minima.
This dissertation proposes the convex relaxation-based algorithms for design-
ing the robust direct data-driven mixed-sensitivity H∞ FOFS controllers. For
a given controller structure and/or order and a set of frequency-domain input-
output data, we first define a feasible controller parameter set which is the
set of controller parameters that guarantee closed-loop stability and satisfy
the H∞-norm of performance constraints. Then we reformulate the original
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problem as a polynomial optimization problem and compute the controller pa-
rameters by relaxing the non-convex feasible controller parameter set through
convex relaxation methods. We also derive the necessary and sufficient con-
ditions for closed stability in the direct data-driven framework. Finally, we
extend this methodology to systems subjected to frequency-domain uncer-
tainties. Two types are uncertainties are considered in this work (i) unstruc-
tured uncertainty described by the frequency domain transfer function and
(ii) unknown but bounded uncertainty affecting the experimentally collected
input-output data.

• Computation of Bode envelope bounds for LTI SISO systems af-
fected by parametric uncertainty.
When a plant’s model is developed from the first principles of physics or iden-
tified from the input-output data, uncertainty in each parameter is provided
typically as an interval, and correlation between the parameters is either im-
plicitly ignored or described in terms of linear or multilinear relationships
only. Several techniques for computing the Bode envelope bounds of an un-
certain system have been proposed in the past. These methods typically rely
on an interval, linear, or multilinear description of the parametric uncertainty
and, as a result, produce conservative Bode envelope bounds.
In this dissertation, we propose a new approach for computing the Bode
envelopes bounds that can account for possible nonlinear correlations be-
tween different uncertain parameters. In the proposed method, based on the
description of the parametric uncertainty implicitly provided by the feasi-
ble parameter set, a suitable polynomial optimization problem is formulated
whose global optima can be approximated arbitrarily well using the convex
semi-definite program (SDP) relaxation.
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Chapter 1

Introduction

1.1 General introduction to the control systems
design

The control system is an integral part of our modern society. It has numerous
applications ranging from simple household washing machines to complex systems
like aircraft and modern rockets. In fact, control system theory can be applied
to electrical, mechanical, chemical, social, financial, and biological systems. To
provide a general overview of the control system, consider the following control
scheme where rt is the reference signal, et is the error signal, ut is the control
signal, dit is the input disturbance, dot is the output disturbance and yt is the
output.

Controller Plant

Sensor

utrt + et yt

−

dit

+
dot

Figure 1.1: A basic control system

In control system design, the plant is represented by its mathematical model.
The mathematical model of a real system is developed by two methods. The first
method relies on physical laws to construct the mathematical models whereas the
second method uses experimental data to develop mathematical models. Sensors
are the measuring devices used in the feedback loop to monitor the value of the
output variable. The feedback control system uses various types of sensors for
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Introduction

different applications. Some examples of sensors include potentiometers, current
sensors, motion sensors, temperature sensors, and flow sensors. The objective of
the control system is to track the reference and reject the disturbance while keeping
the closed-loop system stable.

In the classical control system, a mathematical model of the plant is represented
in the frequency domain. Classical controllers are then designed by using graphical
tools such as bode plots and Nyquist plots. Modern control design methods utilize
the state-space representation of the plant model. By optimizing the specified ob-
jective function, these approaches can efficiently solve complex control problems.
Modern control systems are very attractive due to their ability to design for both
performance and cost. The major drawback of these methods is the assumption
that the plant’s model is known to be exact. The real-world systems are sub-
jected to uncertainties, and controllers designed using classical and modern control
approaches may not provide optimal performance in the presence of uncertainty.

Robust control is the branch of the control system that explicitly deals with
uncertainties. Some of the popular examples of robust control methods are loop
shaping, H∞ control, parametric robust control, quantitative feedback theory, and
sliding mode control. H∞ control is one of the first methods proposed for solving
the problem of robustness. This elegant approach is highly developed and many
control system problems can be formulated in H∞ framework. Here, we provide a
basic review of mixed sensitivity H∞ control.

1.2 Mixed sensitivity H∞ control
In this section, we provide a review of some of the basics of H∞ mixed sensitivity

control theory. Consider a transfer function C(ϵ) defined in a generic variable ϵ.
For CT systems, ϵ = s and for DT systems ϵ = z. For CT systems, the frequency
response is obtained by replacing ϵ = jω. Similarly, frequency response of a DT
system is computed by substituting ϵ = ejωTs , where Ts is the sampling time.

Now consider the feedback control system shown in Figure 1.2, where Gn(ϵ) is
the nominal plant, K(ϵ) is the controller, rt ∈ R is the reference signal, ut ∈ R is
the control input, yt ∈ R is the measured output and z1 ∈ Rn1 and z2 ∈ Rn2 are
the controlled outputs associated to the assigned performance requirements.

2



1.2 – Mixed sensitivity H∞ control

K(ϵ)

W1(ϵ)

W2(ϵ)

Gn(ϵ)

∆(ϵ)
rt + ut

+

+yt

−

z1

z2

Figure 1.2: Block diagram of feedback system.

The uncertain model of the plant G(ϵ) is described by

G(ϵ) = Gn(ϵ)(1 + ∆(ϵ)) (1.1)

where ∆(ϵ) ∈ C is unstructured multiplicative uncertainty, which is bounded by a
frequency domain weighting filter Wu(ϵ), i.e.,

|∆(ϵ)| ≤ |Wu(ϵ)|, ∀ω ∈ Ω (1.2)

such that Ω = [0, +∞) for CT systems and Ω =
[︂
0, π

Ts

]︂
for DT systems.

For a given nominal plant Gn(ϵ) and a controller K(ϵ), the nominal loop transfer
function is defined as

Ln(ϵ) = K(ϵ)Gn(ϵ). (1.3)

Similarly, the nominal sensitivity function Sn(ϵ) and complementary sensitivity
function Tn(ϵ) are defined as

Sn(ϵ) = (1 + Ln(ϵ))−1 (1.4)

and
Tn(ϵ) = Ln(ϵ)(1 + Ln(ϵ))−1. (1.5)

In figure 1.2, W1(ϵ) and W2(ϵ) are suitable weighting filters that are designed ac-
cording to both time-domain and frequency-domain performance requirements (for
details, see e.g., [92]). The closed-loop system achieves the nominal performances
if

∥Sn(ϵ)W1(ϵ)∥∞ ≤ 1
∥Tn(ϵ)W2(ϵ)∥∞ ≤ 1

(1.6)

where ∥ · ∥∞ is the H∞ norm of a dynamical system, which, for a generic SISO
system H(ϵ), is
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∥H(ϵ)∥∞ = sup
ω∈Ω

|H(jω)|. (1.7)

Now, we review some definitions and results about feedback systems properties.

Definition 1. A feedback system is said to be well-posed if all closed-loop transfer
functions, defined from any exogenous input to all internal signals, are well-defined
and proper (see, e.g.,[85]).

Result 1. A necessary and sufficient condition for well-posedness is that Sn(ϵ)
exists and is proper, i.e., 1 + K(ϵ)Gn(ϵ) is not strictly proper. A stronger condition
for well-posedness is that either K(ϵ) or Gn(ϵ) be strictly proper transfer functions
(see, e.g., [95]).

Definition 2. A well-posed feedback system is internally stable if, and only if, all
the transfer functions from any input to any output are BIBO stable (see, e.g.,
[85]).

Result 2. The feedback system is internally stable if and only if: (i) the nominal
sensitivity function Sn(ϵ) is BIBO stable (ii) there are no zero/pole cancellations in
ℜ[s] ≥ 0 for CT systems and on or outside unit circle in DT systems while forming
the loop transfer functions [85], where ℜ[.] stands for real of [.].

Definition 3. A feedback system is robustly stable if the controller K(ϵ) makes the
system internally stable for all possible uncertain plants.

Result 3. By applying the small gain theorem (see, e.g., [85]), the system shown
in Figure 1.2 is robustly stable if the nominal sensitivity function Sn(ϵ) is stable
and

∥Tn(ϵ)Wu(ϵ)∥∞ ≤ 1. (1.8)

For further details on robust stability, please see [95].

1.3 Parametric robust control
H∞ control theory is deficient in addressing some issues when parametric un-

certainty is considered. Parametric robust control theory efficiently deals with the
systems subjected to parametric uncertainty. This branch of the robust control is
highly developed and some of its contributions are:

(1) the determination of the stability and stability margins under parametric
uncertainty,

(2) the evaluation of H∞ control performance for the parametric uncertainty set,
and
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(3) extension of the classical control methods to design controllers for systems
that have many uncertain real parameters.

For further details on the parametric robust control, the interested readers are
referred to [146] and the references therein.

1.4 Direct data driven control
As discussed earlier, robust control theory emerged to account for uncertainties

in the plant’s model. However, finding an accurate model which is simple enough
for the control system design and finding appropriate bounds for the associated
uncertainties can be complex, time-consuming, or costly for many applications.
Thus, in such applications, direct data-driven control should be considered where
instead of identifying the model of the plant, the controller is directly synthesized
from the input-output data. Direct data-driven control theory is maturing very fast
and many techniques such as model reference adaptive control, predictive data-
driven control, and robust data-driven control are available for solving different
control problems.

1.5 Dissertation topics
This dissertation aims to provide the convex relaxation algorithms for different

polynomial optimization problems that arise in solving robust control problems.
More specifically, we present the convex relaxation algorithms for (i) model-based
mixed-sensitivity H∞ fixed-order/fixed-structure (FOFS) control design for LTI
SISO plants, (ii) direct data-driven mixed-sensitivity H∞ FOFS control design for
LTI SISO plants and, (iii) computation of frequency response bounds for LTI SISO
systems affected by parametric uncertainty.

This thesis is organized as follows. In Chapter 2, convex relaxation techniques
originally proposed for relaxing the nonconvex polynomial optimization problems
to convex optimization problems are reviewed. Then, the dissertation is divided
into three parts and each part contains its own introduction and conclusion.

Part-I presents the design of robust FOFS H∞ mixed sensitivity control for LTI
SISO plants assuming that the plant model is already available. The problem is
formulated as a nonconvex polynomial optimization problem which is then relaxed
by three convex relaxation algorithms.

Part II of the thesis provides the design of robust FOFS H∞ mixed sensitivity
control, using data experimentally collected from the LTI SISO plant. The control
design problem is formulated as a polynomial optimization problem, which is then
relaxed via moment relaxation.
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Part-III deals with the computation of the Bode envelopes for the uncertain
LTI systems subjected to parametric uncertainty. The problem is formulated as
a polynomial optimization problem, which is then relaxed to an SDP via convex
relaxation.
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Chapter 2

Positive polynomials and convex
relaxation of polynomial
optimization problems

In this chapter, we review some of the elementary results on the sum-of-squares
(SOS) representation of positive polynomials and moment relaxation of polynomial
optimization problems. These results are used throughout the thesis for designing
FOFS H∞ controllers and computation of Bode envelopes for parametric uncertain
plants. A detail discussion on the SOS decomposition and moment relaxation can
be found in [27], [104] and [111].

2.1 SOS representation of positive polynomials
Testing the positivity of a polynomial is a common problem in control system

theory. However, checking the non-negativity of a polynomial is generally NP-hard,
especially when the degree of the polynomial is higher than four (see e. g., [89]).
On the other hand, testing whether a polynomial is an SOS can be formulated as
an SDP, which can be solved in polynomial time. We will show in this section that
if a non-negative polynomial has an SOS representation, it can be computed by
solving an SDP.

Suppose R[x] denotes the ring of polynomials in x = (x1, x2, . . . , xn). A poly-
nomial f(x) ∈ R[x] is said to be positive if f(x) > 0 for every x ∈ Rn. On the
other hand, f(x) ∈ R[x] is said to be SOS, if there exist g1(x), . . . , gk(x) ∈ R[x],
such that:

f(x) =
k∑︂

i=1
g2

i (x). (2.1)

If a polynomial f(x) is SOS then it is always positive. However, the converse
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of this is not always true, that is, a positive polynomial does not always have an
SOS decomposition. For univariate polynomials, the relationship between non-
negativity and the SOS decomposition is provided by the following result.
Result 4. An even degree polynomial in a single variable is non-negative, if and
only if, it can be represented as an SOS of other polynomials.

The proof of result 4 can be found in [104].
By the end of 19th century, it was known that all the one variable positive

polynomials and two variables, degree two positive polynomials have the SOS de-
composition. In 1900, Hilbert hypothesized that every positive polynomial could
be written as an SOS of rational functions. This was later proved by E. Artin in
1926.
Result 5. (Artin’s Theorem)
Suppose, R[x] denote the ring of real polynomials R[x1, x2, x3, . . . , xn]. Suppose
f(x) ∈ R[x] is non-negative, then there exist a non-zero h(x) ∈ R[x] such that
h2(x)f(x) is SOS.

The proof can be found in [35].
It is important to note that the certificate of non-negativity provided by the

Artin always exists if we relax the condition that the certificate must be in the
polynomial ring R[x], that is, we must allow denominators.

2.1.1 SOS decomposition and semi-definite optimization
Consider an even degree polynomial g(x) ∈ R[x]2d. Suppose vd(x) is the vector

of all the monomials of degree less than or equal to d, given by

vd(x) =
(︂
1, x1, . . . , xn, x2

1, x1x2, . . . , xn−1xn, x2
n . . . , xd

1, . . . , xd
n

)︂T
∈ Rℓd (2.2)

where ℓd =
(︂

n+d
d

)︂
. The polynomial f(x) can be expressed as a quadratic form in

the monomial vector vd(x) thanks to the following result.
Result 6. A polynomial f(x) ∈ R[x]2d has a SOS decomposition if, and only if,
there exists a real symmetric and positive semi-definite matrix Q ∈ Rℓd×ℓd, such
that f(x) = vd(x)T Qvd(x), for all x ∈ Rn (see [104] for a detailed proof).

Thus, the problem of checking whether a polynomial f(x) is SOS is equivalent
to the problem of finding a symmetric positive definite matrix Q ∈ Rℓd×ℓd .

Construction of an equivalent SDP for computing the SOS decomposition of
f(x) in result 6 is difficult when the degree of f(x) is high. However, some MAT-
LAB tools such as YALMIP [78] and SOSTOOLS [131] are available that can
automatically compute the SOS decomposition of polynomials that have a large
degree. These tools use SeDumi [153] and Mosek [115] SDP solver for computing
the SOS decomposition.
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Example 1. Consider the following polynomial in two variables x1 and x2.

f(x1, x2) = x4
1 + 2x4

2 − 2x1x
3
2. (2.3)

we want to check whether f(x1, x2) has SOS decomposition using result 6. For this
purpose, we write f(x1, x2) in the following form.

f(x1, x2) =

⎡⎢⎣ x2
1

x2
2

x1x2

⎤⎥⎦
T ⎡⎢⎣q11 q12 q13

q12 q22 q23
q13 q23 q33

⎤⎥⎦
⎡⎢⎣ x2

1
x2

2
x1x2

⎤⎥⎦
= q11x

4
1 + q22x

4
2 + (q33 + 2q12)x2

1x
2
2 + 2q13x

3
1x2 + 2q23x1x

3
2

(2.4)

From equations (2.3)-(2.4), we can write the following inequalities.

q11 = 1, q22 = 2, q33 + 2q12 = 0, q13 = 0, q23 = −1 (2.5)

By using semidefinite programming, a positive semidefinite matrix Q that fulfills
the above linear equalities can be found. One such solution is given by:

Q = HT H =

⎡⎢⎣ 1 −1 0
−1 2 −1

0 −1 2

⎤⎥⎦ (2.6)

where,

H =

⎡⎢⎣1 −1 0
0 1 −1
0 0 1

⎤⎥⎦ .

Thus, SOS decomposition of f(x1, x2) is given by:

f(x1, x2) = (x2
1 − x2

2)2 + (x2
2 − x1x2)2 + (x1x2)2. (2.7)

2.2 Positive polynomials over a compact semi-
algebraic set

In this section, we provide results for the positivity of a polynomial f(x) ∈ R[x]
over a semialgebraic set

Φ = {x ∈ Rn : q1(x) ≥ 0, q2(x) ≥ 0, . . . , qm(x) ≥ 0} (2.8)

where, q1(x), q2(x), . . . , qm(x) ∈ R[x].
The preordering generated by the set Φ is:
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PO(Φ) =

⎧⎨⎩ ∑︂
J⊆{1,...,m}

σJqJ : σJ ∈ Σ[x]

⎫⎬⎭ (2.9)

where qJ = ∏︁
ν∈J qν(x) and Σ[x] is the set of SOS polynomials. The quadratic

module generated by the set Φ is given by:

Q(Φ) =
{︄

σ0 +
m∑︂

ν=1
σνqν : σν ∈ Σ[x]

}︄
. (2.10)

It is worth mentioning that both PO(Φ) and Q(Φ) are convex cones.
One of the important theorem for the positivity of f(x) over a semialgebraic set

Φ is Schmüdgen’s positivstellensatz.

Result 7. (Schmüdgen’s positivstellensatz [104])
Suppose the set Φ in equation (2.8) is a compact set. If f > 0 on Φ then f ∈ PO(Φ),
that is,

f(x) =
∑︂

J⊆{1,...,m}
σJqJ (2.11)

Although Schmüdgen’s positivstellensatz is a powerful result, the number of
terms in equation (2.11) is exponential in the number of polynomials in set (2.8).
In contrast to Schmüdgen’s theorem, Putinar’s positivstellensatz, stated below,
provides the positivity of a polynomial over a semialgebraic set with a considerable
computational improvement under the assumption that the the semialgebraic set
is compact and archimedean.

Result 8. (Putinar’s positivstellensatz [114]) Consider a compact semi-algebraic
set given in equation (2.8). It is also assumed that the set Φ is archimedean. For
f ∈ R[x], a sufficient condition for f > 0 on Φ is f ∈ Q(Φ), that is,

f(x) = σ0(x) +
m∑︂

ν=1
σν(x)qν(x),

for some σν(x) ∈ Σ[x].
(2.12)

The compact set Φ is archimedean if all the inequalities in the set Φ are linear
or

qk = M − ||x||2 ≥ 0 (2.13)

where qk is one of the polynomial constraints in Φ and M is a large positive
number.
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In equation (2.12), by putting a-priori bound on the degree of SOS polynomials,
the positivity of f(x) on Φ can be solved by an SDP.

Suppose f ∈ R[x]d where R[x]d denotes the vector space of polynomials up to
degree d. Suppose, r ≥ d then the truncated quadratic module associated with the
set Φ is given by:

Q(Φ)d,r ={σ0(x) +
m∑︂

ν=1
σν(x)qν(x), deg(σ0(x)), deg(σν(x)qν(x)) ≤ r} (2.14)

where, deg(.) stands for degree of (.).

Result 9. (Putinar’s positivstellensatz with a priori degree bound [104]) Suppose
the semi-algebraic set given in equation (2.8) is compact and archimedean. For
f ∈ R[x]d, if f > 0 on Φ then f ∈ Q(Φ)d,r, that is,

f(x) = σ0(x) +
m∑︂

ν=1
σν(x)qν(x),

deg(σ0(x)), deg(σν(x)qν(x)) ≤ r

(2.15)

where, r ≥ d is the relaxation order.
Putinar’s positivstellensatz, stated above, enjoys the following properties:

(i) The result 9 have a degree bound on the SOS polynomials. Therefore, testing
whether f(x) is strictly positive on Φ for some SOS polynomial with a degree
bound r is equivalent to solving an SDP (see e.g., [104] for details).

(ii) In (2.15), for each ν = { 0,1,. . . , m }, the maximum degree of σν(x)qν(x) is
higher than d. However, for SOS decomposition, terms of degree greater than
d will cancel out such that the maximum degree of f(x) is d.

(iii) The quality of the estimate by SOS relaxation increases with increasing the
degree of the SOS polynomials. However, computational cost increases with
the increase in the degree of SOS polynomials.

Although Putinar’s positivstellensatz provides a significant reduction in com-
putational complexity compared to the Schmüdgen’s positivstellensatz, it may still
require SOS polynomials of higher degrees. For example, if the degree of f(x) is 10
and degree of qν(x) is 2 then the minimum degree of σν(x) must be equal to 8. The
computational complexity of the positivity test on a semialgebraic set can further
be reduced by using the generalized S-procedure which is stated below:
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Result 10. (The generalized S-procedure [157])
Suppose Σt[x] is the set of SOS polynomials of given degree t. If there exist SOS

polynomials σ1(x), σ2(x), . . . , σv(x) ∈ Σt[x] such that

f(x) −
m∑︂

ν=1
σν(x)qν(x) is SOS (2.16)

then f(x) ≥ 0 ∀x ∈ Φ = {x ∈ Rn : q1(x) ≥ 0, q2(x) ≥ 0, . . . , qm(x) ≥ 0}.

Proof. f(x) is positive over the semialgebraic set Φ if:

f(x) ≥ 0 (2.17)
for all x satisfying

q1(x) ≥ 0, q2(x) ≥ 0, . . . , qm(x) ≥ 0. (2.18)

Equation (2.17) and equation (2.18) can be equivalently written as the following
set containment constraint.

{x ∈ Rn : q1(x) ≥ 0, q2(x) ≥ 0, . . . , qm(x) ≥ 0} ⊆ {x ∈ Rn : f(x) ≥ 0} (2.19)

A sufficient condition for the constraints in the equation (2.19) to hold is the
existence of SOS polynomials σ1(x), σ2(x), . . . , σv(x) ∈ Σt[x] such that

f(x) −
m∑︂

ν=1
σν(x)qν(x) is SOS. (2.20)

To verify that the condition in the equation (2.20) implies that the constraints
in the equation (2.17) and equation (2.18) hold, take an arbitrary point x such
that:

q1(x) ≥ 0, q2(x) ≥ 0, . . . , qm(x) ≥ 0. (2.21)

Since, σν(x) are the SOS polynomials therefore,

m∑︂
ν=1

σν(x)qν(x) ≥ 0. (2.22)

Hence, f(x) ≥ 0 according to (2.20) and the constraints in (2.17) and equation
(2.18) hold.

By putting a priori bound on the degree t, we can construct an SDP for comput-
ing the SOS decomposition of the polynomial f(x) − ∑︁m

ν=1 σν(x)qν(x). It is impor-
tant to note that in the generalized S-procedure, Φ is not necessarily archimedean.
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2.3 Convex relaxation of polynomial optimiza-
tion problems

A polynomial optimization problem can be defined as:

f ∗ = inf
x∈Φ

f(x), (2.23)

where Φ is a basic closed semi-algebraic set, that is,

Φ = {x ∈ Rn | q1(x) ≥ 0, ..., qm(x) ≥ 0}, (2.24)

The optimization problem in (2.23) is in general can be very challenging as:

• f(x) can be nonconvex.

• Φ can be nonconvex and/or disconnected and/or discrete.

In past few decades, many efficient SDP solvers such as SeDumi [153], Mosek
[115] and SDPA [88] has been developed. Thus, several efforts have been devoted
to relaxing the polynomial optimization problems by a sequence of SDP relaxed
problems. In [83], Lasserre proposed moment-SOS convex relaxation of polynomial
optimization problems. A MATLAB implementation of moment-SOS relaxation is
provided in Yalmip [78]. In this thesis, moment-SOS hierarchy is used to solve the
polynomial optimization problems originating from FOFS H∞ mixed sensitivity
control design.

2.3.1 Moment, Riesz functional, moment and localizing ma-
trices

Suppose
(︂
hα(x)

)︂
α∈Nn

d

denotes a basis vector space of n−variate polynomial of

degree at most d of dimension
(︂

n+d
d

)︂
indexed in

Nn
d := {α ∈ Nn :

n∑︂
k=1

αk ≤ d}. (2.25)

The polynomial p(x) in terms of monomial xα, α ∈ Nn
d , can be written as:

p(x) =
∑︂

α∈Nn
d

pαxα

(2.26)

where, pα are the coefficients of the polynomial p(x).
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Definition 4. (Moment)
Given a real sequence y = (yα), α ∈ Nn

d , if there exists a Borel measure µ supported
on Φ then the α moment of the measure µ is given by:

yα =
∫︂

Φ
xα1

1 xα2
2 . . . xαn

n dµ(x) ∀α ∈ Nn
d . (2.27)

Definition 5. (Riesz functional ([27], [104]))
Given a sequence y = (yα), a Riesz functional is a linear functional Ly : R[x] → R
such that

Ly(p) =
∑︂

α∈Nn
d

pαyα (2.28)

Example 2. Consider the following polynomial

p(x) = 1 + 5x1 + 7x2
2 + 9x1x2, (2.29)

the Riesz functional corresponding to f(x) is given by:

Ly(p) = y00 + 5y10 + 7y20 + 9y11. (2.30)

Definition 6 (Moment Matrix ([27], [104])). For polynomial p(x) of n variables
and degree d, the moment matrix Md(y) is the Gram matrix associated with the
quadratic form Ly(p2(x)), that is,

Md(y) =
∫︂

hdhT
d µ(dx) (2.31)

The dimension of is Md(y) is s(n, d) =
(︂

n+d
d

)︂
.

Example 3. If n=2 then M2(y) is given by:

M2(y) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

y00 y10 y01 y20 y11 y02
y10 y20 y11 y30 y21 y12
y01 y11 y02 y21 y12 y03
y20 y30 y21 y40 y31 y22
y11 y21 y12 y31 y22 y13
y02 y12 y03 y22 y13 y04

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.32)

Definition 7. (Localizing Moment Matrix)
Consider a polynomial q(x) = ∑︁

α∈Nn
d

qαxα and polynomial p(x) of degree d given
in equation (2.26). Then the localizing moment matrix Md(qy) is the gram ma-
trix associated with Ly(q(x)p2(x)). The localizing matrix can be interpreted as a
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linear combination of moment matrices. Suppose, yα(i,j) be the entry (i, j) of the
matrix Md(y) then localizing moment matrix associated with the polynomial q(x)
and moment sequence y is given by:

Md(qy)(i, j) =
∑︂

β∈Nn
d

qβy{α(i,j)+β}, for i, j = 1, . . . , s(n, d) (2.33)

Example 4. Consider a polynomial p(x) = 20 + x2
1 − x2

2. The associated moment
matrix and localizing moment matrix of order 1 are given by:

M1(y) =

⎡⎢⎣ 1 y10 y01
y10 y20 y11
y01 y11 y02

⎤⎥⎦ (2.34)

M1(qy) =

⎡⎢⎣ 20 + y20 − y02 20y10 + y30 − y12 20y01 + y21 − y03
20y10 + y30 − y12 20y20 + y40 − y22 20y11 + y31 − y13
20y01 + y21 − y03 20y11 + y31 − y13 20y02 + y22 − y04

⎤⎥⎦ (2.35)

The condition for the existence of measure µ supported on Φ is provided by the
following result.

Result 11. (Riesz-Haviland Theorem)
For a given real sequence y = (yα), α ∈ Nn

d and the closed set Φ, there exists a
finite Borel measure µ supported on Φ such that

yα =
∫︂

Φ
xα dµ∀α ∈ Nn

d , (2.36)

if and only if

Ly(p) ≥ 0 (2.37)

for all polynomials p(x) ∈ R[x]d non-negative on Φ.

2.3.2 Lasserre Moment-SOS hierarchy
The optimization problem in the equation (2.23) can be replaced by the following

primal and dual linear programs [104].

Primal : f ∗
M = inf

µ

∫︂
Φ

f(x) dµ

s.t.
∫︂

Φ
dµ = 1, µ ∈ C(Φ)′

+

(2.38)
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Dual : f ∗
d = sup

λ∈R
λ

s.t. f(x) − λ ∈ C(Φ)+

(2.39)

In equation (2.39), C(Φ)+ is an infinite-dimensional convex cone defined by the
set of positive polynomials on Φ. In equation (2.38), C(Φ)′

+ is the cone of Borel
positive measures on Φ and, by Riesz-Haviland theorem, it is topologically dual to
C(Φ)+.

Suppose, f(x) is an n-variate polynomial of at most degree d. Then, f(x) in
terms of monomial xα, α ∈ Nn

d , can be written as:

f(x) =
∑︂

α∈Nn
d

fαxα

(2.40)

where, fα are the coefficients of the polynomial f(x).
Given a real sequence y = (yα), α ∈ Nn

d , problems in equations ((2.38)-(2.39))
can be rewritten as ( see e. g., [27] and [104]):

f ∗
M = min

y

∑︂
α∈Nn

d

fαyα

s.t. y0 = 1, y ∈ P (Φ)′

d

(2.41)

and
f ∗

d = sup
λ∈R

λ

s.t. f(x) − λ ∈ P (Φ)d

(2.42)

where, P (Φ)d finite-dimensional convex cone of positive polynomials, that is,

P (Φ)d = {p(x) ∈ R[x]d : p(x) =
∑︂

α

pαxα ≥ 0 ∀ x ∈ Φ} ⊂ R(n+d
d ). (2.43)

By the Riesz-Haviland theorem, its dual is the cone of moments of degree at most
d, that is,

P (Φ)′

d = {y ∈ R(n+d
d ) : yα =

∫︂
Φ

xα dµ, µ ∈ C(Φ)′

+}. (2.44)

The convex cone P (Φ)d is generally intractable. By using Putinar’s positivstel-
lensatz, we approximate it with the truncated quadratic module Q(Φ)d,r given in
equation (2.14). It is important to note that the Q(Φ)d,r ⊂ P (Φ)d. Thus, this
approximation is an inner approximation.

The dual of the quadratic module is given by:

Q(Φ)′

d,r ={y : Ly(p) ≥ 0 ∀p ∈ Q(Φ)d,r} (2.45)
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Q(Φ)′

d,r ={y : Ly(
m∑︂

ν=0
σν(x)qν(x)) ≥ 0, ∀σν ∈ Σr[x], ν = 1, . . . , m}

={y : Ly(qνg2) ≥ 0, ∀g ∈ R[x], ν = 1, . . . , m}
={y : Mr(qνy) ≥ 0, ν = 1, . . . , m}

(2.46)

The matrix Mr(qνy) is called localizing matrix. When ν = 0 and q0 = 1, it is
called moment matrix. It is important to note that the Q(Φ)′

d,r ⊃ P
′(Φ)d. Thus,

this is an outer approximation.

Result 12. (Dual side of the Putinar’s Theorem)
Suppose rν is the smallest integer which is greater than or equal to the half the
degree of the polynomial qν, ν = 0,1, . . . , m. Suppose, d̃ = max{1, r1, . . . , rm} and
δ ≥ d̃ and Mδ(y) and Mδ−rν (qνy) are the corresponding truncated moments. Then
the relaxed version of the problem in (2.41) is given by:

f ∗
δ = min

y

∑︂
α∈Nn

2δ

fαyα

s.t y0 = 1
Mδ(y) ≥ 0, Mδ−rν (qνy) ≥ 0, ν = 1, . . . , m.

(2.47)

Result 13. (Global convergence)
For any δ ∈ N: f ∗

δ ≤ f ∗
δ+1 ≤ f ∗and limδ→∞ f ∗

δ = f ∗.

Result 14. (Certificate of global Convergence)
For a given relaxation order δ ≥ d̃, if

rank Mδ(y) = rank Mδ−rν (qνy) (2.48)

then f ∗
δ = f ∗.

2.3.3 Convex relaxation of sparse polynomial optimization
problems

In this subsection, we provide a brief overview of the convex relaxation of sparse
polynomial optimization problems proposed by Lasserre in [103]. A MATLAB im-
plementation of sparse SDP is available in the software, sparsePOP [67]. Further
details on the sparse SDP is available in [68] and [66]. In this thesis, convex relax-
ation of sparse polynomial optimization problems is used to solve the polynomial
optimization problems originating from the computation of bode envelopes of un-
certain plants subjected to parametric uncertainty.

For the optimization problem given in (2.23), consider an index set {1,2, . . . , n}
which is the union of S, Is sets.

{1,2, . . . , n} =
S⋃︂

s=1
Is (2.49)
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Suppose ns be the number of elements of the set Is and hs
d be the canonical basis

of polynomials that have degree d and depend only on the variables x(Is), where

x(Is) = {xi|i ∈ Is} (2.50)

The moment matrix Md(y, Is) associated with the real sequence y = (yα), α ∈ Nn
d

is given by:

Md(y, Is) =
∫︂

hs
d(Is)(hs

d(Is))T µ(dx) (2.51)

The dimension of is Md(y, Is) is s(ns, d) =
(︂

ns+d
d

)︂
.

Consider a polynomial q(x) obtained through the basis hs
d. Suppose, yα(i,j) be

the entry (i, j) of the matrix Md(y, Is) then localizing moment matrix associated
with the polynomial q(x) and moment sequence y is given by:

Md(qy, Is)(i, j) =
∑︂

β∈Nns
d

qβy{α(i,j)(Is)+β}, for i, j = 1, . . . , s(ns, d) (2.52)

Suppose, sup(α) be the support vector α defined as:

sup(α) = {i = 1, . . . , n : αi /= 0} (2.53)

Thus, the moment matrix Md(y, Is) and the localizing moment matrix Md(qy, Is)
contains the moments yα such that sup(α) ∈ Is.

The semialgebraic set Φ is archimedean if the condition in equation (2.13) is
satisfied. In the case of the variables x(Is), the archimedean condition is provided
by the following equation.

||x(Is)||2 ≤ nsM (2.54)

Thus, for the sparse polynomial optimization problem, we add the following redun-
dant constraints to the semialgebraic set Φ.

qm+s(x) = nsM − ||x(Is)||2 ≥ 0, s = 1, . . . , S. (2.55)

Now, the optimization problem (2.23) can be rewritten as:

f ∗ = inf
x∈Φ′

f(x), (2.56)

where,

Φ′ = {x ∈ Rn | qℓ(x), ℓ = 1,2, . . . , m + S}. (2.57)
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2.3 – Convex relaxation of polynomial optimization problems

Suppose, Φ0 be the index set of the Φ′ . Now, we partition the set Φ0 into S
disjoint sets Sr.

Φ0 =
S⋃︂

s=1
Sr. (2.58)

We, further assume that for all s = 1, . . . , S and for all ℓ ∈ Sr, each constraint
qℓ ≥ 0 in Φ′ depends only on the variables x(Is). Thus, the objective function f(x)
for a sparse polynomial optimization problem can be written as:

f(x) =
S∑︂

s=1
fs(x) (2.59)

where, each fs(x) is obtained through canonical basis hns
d .

Now, we assume, for all s = 1, . . . , S − 1, the set IS+1 follows the equation
(2.60).

IS+1 ∩
S⋃︂

k=1
Ik ⊆ Ip for some p ≤ s. (2.60)

Under the above assumptions, the convex relaxation of the sparse polynomial
optimization is given by:

f r
sp = min

y

∑︂
α∈Nn

2δ

fαyα

s.t

Mδ(y, Is) ≥ 0, Mδ−rν (qνy, Is) ≥ 0, ν ∈ Sr and s = 1, . . . , S.

(2.61)

Result 15. (Global convergence of sparse Polynomial optimization problem)
For any δ ∈ N: f δ

sp ≤ f δ+1
sp ≤ f ∗and limδ→∞ f δ

sp = f ∗.
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Part I

Model based FOFS H∞ mixed
sensitivity control design
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Chapter 3

Introduction

Robust control of linear systems is a subject of great interest in the control
community since the 1980s. The use of H∞-norm in the robust control theory has
proven critical to progress in this field. H∞ theory was first introduced by Zames in
[54]. Mixed-sensitivity approach was introduced in [62, 112] where constraints on
the sensitivity and complementary sensitivity function are defined through the H∞
norm by selecting suitable frequency domain filters. A deep discussion about the
mixed-sensitivity control theory and the selection of appropriate weighting filters
can be found in[95, 21] and [61].

Two types of algorithms are commonly used for solving the H∞ control prob-
lem: linear matrix inequalities based algorithms (LMI) (see, e.g., [124, 123]) and
algebraic-Riccati equation based algorithms (see, e.g., [94, 76]). Controllers ob-
tained by applying these methods to solve the H∞ control problem usually have
high order. In fact, the controller’s order is determined by the plant’s order used
in the H∞ control synthesis. Furthermore, these controllers do not have any spe-
cific structure. Unfortunately, this is a serious problem as low order-fixed structured
controllers are extensively used in numerous industrial applications. This is because
the low-order controllers are easy to implement in industrial settings. Moreover,
the parameters in the fixed-structured controllers can be linked to the specific per-
formances of the system. For example, integral action provides good disturbance
rejection at lower frequencies and zero steady-state error. Similarly, a lead filter
can improve the phase of the system in a specific frequency range thus reducing the
overshoot. On the other hand, any constraint on the order or structure of the con-
troller makes the H∞ control design problem non-convex as it introduces bi-linear
matrix inequalities (BMIs) instead of LMIs (see, e.g., [12],[107]). Many methods
exist in the literature for the design of low-order and/or fixed-structure controllers
that are briefly discussed below.
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Introduction

3.1 Existing Methods for design of FOFS con-
trollers

3.1.1 BMIs based algorithms
FOFS controllers can be obtained by solving the BMIs through local and global

optimization techniques. Commonly used global algorithms that translate BMIs to
LMIs are variable change methods (see, e.g., [23]) and inner convex approximations
methods (see, e.g., [132]). The major problem with these algorithms is that they
are successful only for specific structures of the controller and thus can not be
generalized.

BMIs can be solved locally by many algorithms. Some of most important local
algorithms are proposed in ([40, 4, 105, 142]). However, convergence to the global
optimal solution is never guaranteed through a local algorithm.

3.1.2 Order reduction methods
Fixed-order controllers can be designed by reducing the order of the plant or

the controller (see, e.g., [15, 30, 125]). Reducing the model order results in a
conservative uncertainty model. On the other hand, reducing the order of the
controller may degrade performance. Furthermore, the order reduction methods
can not enforce a specific controller structure.

3.1.3 Interval arithmetic based methods
The commonly used interval arithmetic-based methods are based on quantifier

elimination techniques (see, e.g., [56]). Another important contribution is presented
in [143] where a branch-and-bound based algorithm is used to compute the inner
and outer approximations of the controller parameter set. The main limitation of
the interval arithmetic-based methods is that they can only be applied to parametric
uncertain plants.

3.1.4 Convex approximation methods for PID controllers
The H∞ mixed-sensitivity design of PID controllers is well investigated in the

literature. Convex optimization techniques have been proposed in [14, 36, 42].

3.1.5 HIFOO and Hinfstruct
HIFOO [82] and Hinfstruct [121] are perhaps the most important methods for

the design of FOFS H∞ controllers. HIFOO is based on a gradient sampling algo-
rithm and can only be used for the design of fixed-order controllers. A MATLAB
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toolbox for the HIFOO is also available ([75]). Hinfstruct is based on the Clarke
sub-differential approach presented in [45]. Both fixed-order and fixed-structured
controllers can be designed through Hinfstruct technique. A MATLAB toolbox for
Hinfstruct technique is also available. Both HIFOO and Hinfstruct are based on
local optimization techniques. Thus, with these methods, there is no guarantee
that the obtained solution is an optimal solution.

3.2 Research Objective
The objective of this research is to provide a global optimization algorithm for

solving the model-based FOFS H∞ mixed sensitivity control problem. Both local
and global optimization-based algorithms are available in the literature for solving
the FOFS H∞ mixed sensitivity control problem. The existing global optimization
algorithms for solving the FOFS H∞ control problem are applicable only for specific
representations of plants or controllers. On the other hand, local optimization
algorithms can trap in a local optimum and may return either a locally infeasible
solution or a local solution that violates the constraints. In this part of the thesis,
we propose three convex relaxation-based algorithms to solve the FOFS H∞ mixed
sensitivity control problem.

3.2.1 Contribution
The major highlights of this work are:

• The FOFS H∞ mixed-sensitivity control design problem is formulated as non-
convex polynomial feasibility problem in terms of feasible controller parameter
set.

• Two single-shot and one iterative convex relaxation-based algorithms are pro-
posed to relax the nonconvex feasible controller parameter set into an SDP.
The controller parameters are then computed by solving the SDP using read-
ily available softwares.

• The proposed algorithms doesn’t require linear parameterization of the con-
trollers or parametric representation of the uncertain plant.

• The proposed algorithms can be used to design FOFS H∞ mixed-sensitivity
controllers both for CT and DT systems.

The results presented in this section of the thesis are partially published in [164].
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Chapter 4

POP formulation of H∞ mixed
sensitivity control

In this chapter, we first present all the necessary class of models and controllers
for the design of model based FOFS H∞ mixed sensitivity controllers. We, then
construct the feasible controller parameter set which is the set of controller param-
eters that guarantees the robust stability and nominal performances. Finally, a
polynomial description of the feasible controller parameter set is provided.

4.1 System and controller description
Consider the feedback control system shown in Figure 1.2. We assume that the

nominal model of the LTI SISO plant Gn is known and is defined as

Gn = Ng(ϵ)
Dg(ϵ) (4.1)

where Ng(ϵ) and Dg(ϵ) are polynomial functions in ϵ. It is important to note that
Ng(ϵ) does not have any root at s = 0 for CT systems and z = 1 for DT systems.
The frequency domain weighting filters W1(ϵ) and W2(ϵ) are designed according
to the time domain performance specifications such as rise time, overshoot, band-
width etc. It is further assumed that the weighting filter for the unstructured
multiplicative uncertainty Wu(ϵ) is also known.

We assume that the FOFS controller belongs to a class Kc defined by a nk-th
order transfer function.

K(ϵ, p) = Nk(ϵ, p)
Dk(ϵ, p) =

∑︁nk
i=0 βi(p) ϵi

ϵnk + ∑︁nk−1
j=0 αj(p) ϵj

(4.2)

where, αj(p) ∈ R and βi(p) ∈ R, are linear functions in unknown parameter
vector p ∈ Rnp .
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POP formulation of H∞ mixed sensitivity control

Remark 1. In equation (4.2), we assume that αj(p) and βi(p) are linear functions
in unknown parameter vector p. However, without any modification, the results
proposed in this part of the thesis can be applied for αj(p) and βi(p) as polynomial
functions. However, since we are designing the LTI controller, there is no reason
for making the controller structure overly complicated as there will be no effect on
the quality of control by considering αj(p) and βi(p) linear in unknown parameter
vector p.

For unknown parameter vector p and generic variable ϵ, loop-gain, sensitivity
and complementary sensitivity functions can be rewritten as given by.

Ln(ϵ, p) = K(ϵ, p)Gn(ϵ), (4.3)

Sn(ϵ, p) = (1 + Ln(ϵ, p))−1 (4.4)

and

Tn(ϵ, p) = Ln(ϵ, p)(1 + Ln(ϵ, p))−1 (4.5)

4.2 Feasible controller parameter set
In this section, we provide the formal definition of the feasible controller param-

eter set for achieving robust stability and nominal performance.
From result 3, the feedback system in figure 1.2 is robustly stable if the following

two conditions are satisfied.

• The controller K(ϵ, p) internally stabilizes the nominal plant Gn(ϵ).

• ∥Tn(ϵ, p)Wu(ϵ)∥∞ ≤ 1.

For internal stability, we define the following set.

Definition 8. The stabilizing controller parameter set

Sp = {p ∈ Rnp|K(ϵ, p) internally stabilizes Gn(ϵ)} (4.6)

is the set of all the controller parameters that guarantee the internal stability of the
feedback control system shown in Figure 1.2.

The emptiness of the set Sp indicates that the chosen controller class structure
Kc is not adequate to ensure the stability of the nominal plant Gn(ϵ).

The robust stability set is defined as follows.
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Definition 9. The robust stabilizing controller parameter set

DR = {p ∈ Sp|∥Tn(ϵ, p)Wu(ϵ)∥∞ ≤ 1} (4.7)

is the set of all the controller parameters which guarantees the internal robust sta-
bility of the uncertain plant G(ϵ).

The emptiness of the set DR indicates that the chosen controller structure Kc

is not suitable to provide robust stability of the uncertain plant G(ϵ).

The closed-loop system achieves nominal performance if

∥Sn(ϵ, p)W1(ϵ)∥∞ ≤ 1
∥Tn(ϵ, p)W2(ϵ)∥∞ ≤ 1

(4.8)

Now, we introduce the feasible controller parameter set.

Definition 10. The feasible controller parameter set

DF = {p ∈ DR|∥Sn(ϵ, p)W1(ϵ)∥∞ ≤ 1,

∥Tn(ϵ, p)W2(ϵ)∥∞ ≤ 1}
(4.9)

is the set of controller’s parameter p that guarantees robust stability for the plant
Gn(ϵ) subjected to unstructured multiplicative uncertainty bounded by transfer func-
tion Wu(ϵ) and the achievement of the nominal performances defined by the weight-
ing filters W1(ϵ) and W2(ϵ).

Through (4.8) and (4.9), the set DF can be re-written as

DF = {p ∈ Sp|∥Sn(ϵ, p)W1(ϵ)∥∞ ≤ 1,

∥Tn(ϵ, p)Ŵ 2(ϵ)∥∞ ≤ 1
}︂ (4.10)

where
|Ŵ 2(jω)| = max {|W2(jω)|, |Wu(jω)|}, ∀ ω ∈ Ω. (4.11)

The fact that the set DF is empty suggests that the selected controller class
structure Kc is not adequate for achieving closed-loop robust stability and desirable
closed-loop performance. On the other hand, a large or unbounded set DF indicates
that the controller structure is capable of meeting more stringent requirements.

For polynomial representation, we represent set DF as the intersection of two
sets, i.e.,

DF = Sp ∩ Ps (4.12)
where

Ps = {p ∈ Rnp |∥Sn(ϵ, p)W1(ϵ)∥∞ ≤ 1,

∥Tn(ϵ, p)Ŵ 2(ϵ)∥∞ ≤ 1
}︂ (4.13)
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4.3 Polynomial description of the set Sp

From result 2, we know that the closed-loop system is internally stable if nominal
sensitivity function Sn(ϵ, p) is stable and there is no unstable poles-zero cancellation
between the plant and the controller while forming the loop transfer function. First
of all, we look at the stability of the Sn(ϵ, p) which is achieved if the numerator of
1 + Ln(ϵ, p) have all roots with negative real part (for CT systems) or inside the
unit circle (for DT systems). We use Routh’s criteria (CT systems) and Jury’s test
(DT systems) for evaluation of roots of numerator of 1 + Ln(ϵ, p).

4.3.1 Routh’s stability criterion
Consider the following CT polynomial function.

Ap(s) = ansn + an−1s
n−1 + . . . + a1s + a0 (4.14)

Routh’s Table for the polynomial Ap(s) is provided in Table 4.1 (for details, see
e.g.,[120]) .

Table 4.1: Routh’s coefficients table.

an an−2 an−4 . . .
an−1 an−3 an−5 . . .
b1 b2 b3 . . .
c1 c2 c3 . . .
d1 d2 d3 . . .
...

...
...

. . .

Coefficients in the Routh’s Table are given by

b1 =an−1an−2 − anan−3

an−1

b2 =an−1an−4 − anan−5

an−1

b3 =an−1an−6 − anan−7

an−1
...

(4.15)
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c1 =b1an−3 − an−1b2

b1

c2 =b1an−5 − an−1b3

b1

c3 =b1an−7 − an−1b4

b1
...

(4.16)

d1 =c1b2 − b1c2

c1

d2 =c1b3 − b1c3

c1

d3 =c1b4 − b1c4

c1
...

(4.17)

We stop if we achieve the coefficients for s0.

Result 16. The polynomial function Ap(s) is stable if, and only if, all the coeffi-
cients in the first column of the Routh’s table have the same sign, that is,

an > 0
an−1 > 0
b1 > 0
c1 > 0

...

(4.18)

Result 17. The Routh’s stability test can be reformulated into the positivity test of
the following polynomials constraints:

g1(p) = an > 0
g2(p) = an−1 > 0
g3(p) = b1an−1 > 0
g4(p) = c1b1 > 0

...

(4.19)
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4.3.2 Jury’s stability criterion
For DT systems, consider the following DT polynomial.

Ap(z) = anzn + an−1z
n−1 + . . . + a1z + a0 (4.20)

For polynomial Ap(z), jury’s co-efficient are given in table 4.2 (for detrails, see
e.g., [86]).

Table 4.2: Jury’s coefficients table.

Row z0 z1 z2 z3 . . . zn−1 zn

1 a0 a1 a2 a3 . . . an−1 an

2 an an−1 an−2 an−3 . . . a1 a0
3 b0 b1 b2 b3 . . . bn−1
4 bn−1 bn−2 bn−3 bn−4 . . . b0
5 c0 c1 c2 c3 . . .
6 cn−2 cn−3 cn−4 cn−5 . . .
...

...
...

...
... . . .

2n − 3 q0 q1 q2

In Table 4.2, the elements of the odd numbered rows are computed as follows.

bk =
⃓⃓⃓⃓
⃓ a0 an−k

an ak

⃓⃓⃓⃓
⃓

ck =
⃓⃓⃓⃓
⃓ b0 bn−k−1

bn−1 bk

⃓⃓⃓⃓
⃓

dk =
⃓⃓⃓⃓
⃓ c0 cn−k−2

cn−2 ck

⃓⃓⃓⃓
⃓

...

(4.21)

The even numbered rows contain the elements of the previous row written in
reverse order.

Result 18. The polynomial (4.20) is stable if, and only if all of its roots lie inside
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the unit circle, that is, all of the following conditions are satisfied.
Ap(1) > 0
(−1)nAp(−1) > 0
|an| > |a0|
|b0| > |bn−1|
|c0| > |cn−2|
|d0| > |dn−3|

...

(4.22)

Result 19. The polynomial (4.20) is stable if and only if all the following polyno-
mial positivity constraints are satisfied.

g1(p) = Ap(1) > 0
g2(p) = (−1)nAp(−1) > 0
g3(p) = |an|2 − |a0|2 > 0
g4(p) = |b0|2 − |bn−1|2 > 0
g5(p) = |c0|2 − |cn−2|2 > 0
g6(p) = |d0|2 − |dn−3|2 > 0

...

(4.23)

In case of the CT systems, BIBO stability of Sn(s, p) is ensured by applying
the result 17 to the numerator of the 1 + Ln(s), which is

Ap(s, p) = Nk(s, p)Ng(s) + Dk(s, p)Dg(s). (4.24)

For CT systems, nominal closed-loop stability is achieved if the second condition
in result 2 is also satisfied. If Gn(s) does not have any poles and zeros in the right-
half plan, there will be no unstable pole-zero cancellation while forming the loop
function. On the other hand, if Gn(s) does have any unstable pole then unstable
pole-zero cancellation between the plant and the controller is avoided by considering
Nk(s, p) to be a stable polynomial which is achieved by applying Routh’s criterion
to Nk(s, p). Similarly, if Gn(s) have any unstable zero then the unstable pole-zero
cancellation is avoided by applying Routh’s criterion to Dk(s, p).

In case of DT systems, BIBO stability of Sn(z, p) is obtained by applying result
19 to the numerator of 1 + Ln(z).

Ap(z, p) = Nk(z, p)Ng(z) + Dk(z, p)Dg(z). (4.25)

If Gn(z) does not have any poles and zeros outside the unitary circle, condition
two in result 2 is automatically satisfied. However, DT systems that have unstable
poles and/or zeros, the unstable pole-zero cancellation is enforced by applying
Jury’s stability test to Nk(z, p) and/or to Dk(z, p).
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Remark 2. By restricting Dk(ϵ, p) to have only stable roots, the controller cannot
have poles at s = 0 or z = 1. However, an integrator is required to guarantee
zero steady-state error for reference tracking and high disturbance rejection at low
frequencies. In order to allow poles at s = 0 or z = 1, we consider the following
representation of the Dk(ϵ, p).

Dk(ϵ, p) = Zk(ϵ)D′

k(ϵ, p) (4.26)

where Zk(ϵ) = sµ for CT systems, Zk(ϵ) = (z − 1)µ for DT systems and µ is the
multiplicity of the roots at s = 0 or z = 1 of Dk(ϵ, p). As a result, instead of
enforcing the stability of Dk, we impose stability requirements on D

′
k. Since it is

already assumed that the plant has no zeros at s = 0 or z = 1. Therefore, pole-zero
cancellation between the Zk and Ng(ϵ), can not occur.

Based on the results 17 and result 19, it is evident that the stability set Sp is a
semi-algebraic set that contains polynomial inequalities gi(p) > 0.

4.4 Polynomial description of the set Ps

A polynomial description of the set Ps is obtained by the following result.

Result 20. For suitable variables ϕ and a set Φ, the inequalities in (4.13) can be
equivalently written as

hi(ϕ, p) > 0, i = 1, 2, ∀ϕ ∈ Φ (4.27)

where hi(ϕ, p) are polynomial functions of both p and ϕ

Proof. Consider the following rational transfer functions

Hi(ϵ, p) = Ni(ϵ, p)
Di(ϵ, p) , i = 1,2 (4.28)

where
H1(ϵ, p) = Sn(ϵ, p)W1(ϵ) (4.29)

and
H2(ϵ, p) = Tn(ϵ, p)Ŵ 2(ϵ) (4.30)

CT systems
In case of CT systems, ϵ = s and we replace s = jω. Now, by using the H∞ norm
definition provided in equation (1.7), we rewrite conditions (4.13) as

hi(ω, p) = |Di(jω, p)|2 − |Ni(jω, p)|2 ≥ 0, i = 1,2, ∀ω ∈ Ω. (4.31)
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By setting ϕ = ω that belongs to the given compact set Φ = Ω, constraints in
equation (4.31) can be rewritten as polynomial inequalities

hi(ϕ, p) > 0, i = 1, 2, ∀ϕ ∈ Φ. (4.32)

DT systems
In case of DT systems, ϵ = z where z = ejωTs . Therefore, we rewrite conditions
(4.13) as

hi(ω, p) = |Di(ejωTs , p)|2 − |Ni(jejωTs , p)|2 ≥ 0, i = 1,2, ∀ω ∈ Ω. (4.33)

By Euler’s formula,
ejωTs = cos(ωTs) + j sin(ωTs). (4.34)

Suppose, a = cos(ωTs) and b = sin(ωTs). Since, for DT system: ω ∈ Ω = [0 π
Ts

],
therefore,

z = a + jb, a ∈ [−1,1] ⊂ R, a2 + b2 = 1, b ≥ 0. (4.35)

Now, we define ϕ = [a b]T and Φ = {ϕ ∈ R2 : −1 ≤ a ≤ 1, a2 + b2 = 1, b ≥ 0}.
Though these definitions of ϕ and Φ, inequalities in equation (4.33) can be rewritten
as:

hi(ϕ, p) > 0, i = 1, 2, ∀ϕ ∈ Φ (4.36)

4.5 Polynomial description of the set DF

Based on the results 17, result 19 and result 20, the polynomial representation
of the feasible controller parameter set DF is given by:

DF = {p ∈ Rnp| hi(ϕ, p) > 0, i = 1,2, ∀ϕ ∈ Φ
gk(p) > 0, k = 1,2,3, . . . }

(4.37)

where, gk are the stability constraints for the numerator of 1 + Gn(ϵ)K(ϵ, p) in
case when Gn(ϵ) has no unstable poles/zeros. However, if Gn(ϵ) has unstable poles,
stability constraints for Nk(ϵ, p) are also included. Similarly, if Gn(ϵ) has unstable
zeros, we add stability constraints of D

′
k(ϵ, p). Thus the index k depends on the

order of Nk(ϵ, p), Dk(ϵ, p), Ng(ϵ) and Dg(ϵ).

35



36



Chapter 5

Model based FOFS H∞ mixed
sensitivity control design

In this chapter, we provide three algorithms for solving the FOFS H∞ mixed
sensitivity control design problem by relaxing the feasible controller parameter set
DF in equation (4.37). Two of these algorithms are based on the SOS approximation
of the set DF whereas the third algorithm is a recursive algorithm based on the
exchange methods.

5.1 SOS approach to FOFS H∞ mixed sensitivity
design

5.1.1 Archimedean property of the set Φ
In case of CT systems: Φ = Ω = [0, +∞). To be able to solve the given problem,

we consider Φ = Ω = [0, M ], where M is a constant positive number significantly
larger than the bandwidth of the closed-loop system. Consequently, the set Φ can
be represented as:

Φ = {ϕ ≥ 0, M − ϕ ≥ 0} (5.1)

Although, (5.1) is an approximation of the Φ = Ω = [0, +∞). However, if M is
significantly larger than the closed-loop bandwidth, the impact of this approxima-
tion on the performance of the closed-loop system is expected to be limited. The
set Φ is compact and archimedean as it is closed, bounded and contains only the
linear constraints.

In the case of discrete systems:

Φ =
{︂
ϕ ∈ R2 : −1 ≤ a ≤ 1, a2 + b2 = 1, b ≥ 0

}︂
(5.2)

where, ϕ = [a b]T , a = cos(ωTs) and b = sin(ωTs).
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The set Φ in (5.2) is compact and have bounded ∞-norm, therefore it is
archimedean by construction.

5.1.2 SOS relaxation of Ps by Putinar’s positivstellensatz
Based on the result 9, the inequalities in the set Ps can be represented as SOS

constraints according to the following result.

Result 21. Suppose, Φ = {q1(ϕ) ≥ 0, . . . , qm(ϕ) ≥ 0}. Suppose, d1 is the degree of
h1(ϕ, p), r1 ∈ N and r1 ≥ d1 then h1 > 0 on the set Φ if

h1(ϕ, p) −
m∑︂

ν=1
σν(ϕ)qν(ϕ) is SOS

for some σν(ϕ) ∈ Σr1(ϕ)
(5.3)

where, Σr1(ϕ) is the set of SOS polynomials and degree of each σν(ϕ) is r1 −
degree(qν(ϕ)).

Similarly, suppose, d2 is the degree of h2(ϕ, p), r2 ∈ N and r2 ≥ d2 then h2 > 0
on the set Φ if:

h2(ϕ, p) −
2m∑︂

µ=m+1
σµ(ϕ)qµ−m(ϕ) is SOS

for some σµ(ϕ) ∈ Σr2(ϕ)
(5.4)

where, Σr2(ϕ) is the set of SOS polynomials and degree of each σµ(ϕ) is r2 −
degree(qµ(ϕ)).

5.1.3 SOS relaxation of Ps by generalized S-procedure
By exploiting the result 10, the inequalities in the set Ps can be represented as

SOS constraints according to the following result.

Result 22. Suppose, Φ = {q1(ϕ) ≥ 0, . . . , qm(ϕ) ≥ 0}. Suppose, d1 is the degree of
h1(ϕ, p) then h1 ≥ 0 if

h1(ϕ, p) −
m∑︂

ν=1
σν(ϕ)qν(ϕ) is SOS

for some σν(ϕ) ∈ Σt1(ϕ)
(5.5)

where, Σt1(ϕ) is the set of SOS polynomials of degree t1 and t1 is a non-negative
integer.
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Similarly, suppose, d2 is the degree of h2(ϕ, p) then h2 ≥ 0 if

h2(ϕ, p) −
m∑︂

ν=1
σν(ϕ)qν(ϕ) is SOS

for some σν(ϕ) ∈ Σt2(ϕ)
(5.6)

where, Σt2(ϕ) is the set of SOS polynomials of degree t2 and t2 is a non-negative
integer.

5.1.4 Construction of SDP for DF

It is clear from the results (17-19) that stability set Sp is a set of positive
polynomials both for CT and DT systems. Thus the positive polynomials in the set
Sp are replaced by SOS polynomials. Since, the coefficients of the hi(ϕ, p), i = 1,2
are polynomial functions of unknown controller parameters p, therefore, the Gram
matrices corresponding to h1 and h2 have the elements that are nonconvex in p.
Thus, the polynomial constraints in the Gram matrices are relaxed by using moment
relaxation given in [83].

5.2 Exchange algorithm based SDP relaxation for
FOFS H∞ mixed sensitivity design

Since Φ is an infinite set, thus the set DF in equation (4.37) contains semi-
infinite polynomials. Therefore, we can compute the unknown controller parameters
by solving a semi-infinite polynomial program (SIPP). SIPP are commonly solved
by three methods, namely, the discretization methods, methods based on local
reduction and exchange methods ( see, e.g., [81], [71], [133], [77], [53] and [168]).
In this section, we will use the exchange algorithm for computing the unknown
controller parameters that belong to the set DF .

A general SIPP has the following form:

min
x∈X

f(x)

s.t. g(x, y) ≥ 0, ∀y ∈ Y
(5.7)

where, X and Y are compact semialgebraic sets, and f(x) and g(x, y) are polyno-
mials. Typically, the exchange algorithm consists of the following four steps.

(a) Initialization: Suppose Yk ⊂ Y . set k = 0 and choose some random y0 ∈ Y
and select Y0 = {y0}.
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(b) Upper level Program: For kth iteration, compute xk ∈ X by solving the
following optimization problem.

min
x∈X

f(x)

s.t. g(x, y) ≥ 0, ∀y ∈ Yk

(c) Lower level Program: For kth iteration, compute yk ∈ Y by solving the fol-
lowing optimization problem.

min
y∈Y

g(xk, y)

(c) Stopping criteria: if g(xk, yk) ≥ 0, stop. Else, Yk+1 = Yk ∪ yk and go to step
2.

Most of the exchange algorithms for solving semi-infinite polynomial programs
converge locally. On the other hand, algorithms with guaranteed global convergence
require strong assumptions such as convexity or linearity (see, e.g., [134],[101]). Two
exchange algorithms based on semi-definite relaxations for solving the SIPP prob-
lem are proposed in [101]. In this section, we will compute the unknown controller
parameters by using the algorithm 1, which is based on the results presented in
[101]. As discussed earlier, the set Φ is a compact set for CT and DT systems.
The compactness of Sp, can be achieved by restricting the controller variables to a
Euclidean ball by adding a redundant constraint similar to equation (2.13).
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5.3 – Comparison of the proposed algorithms

Algorithm 1 An SDP exchange algorithm for model based FOFS H∞ controller
design

1: Suppose, Φk ∈ Φ. Set k = 0 and choose some random ϕ0 ∈ Φ and select
Φ0 = {ϕ0}.

2: For kth iteration, apply moment relaxation given in [83] to solve

(Qk) :
{︄

hi(ϕ, p) > 0, i = 1,2, ∀ϕ ∈ Φk

gk(p) > 0, k = 1,2,3, . . .

The global optimal solutions are extracted by extraction algorithm given in [28].
Suppose, Sk = {pk

1, ..., pk
ℓ } be the set of the global minimizers of problem (Qk).

3: Set Φk+1 = Φk. For i = 1, ..., ℓ, do the following
a) Use moment relaxation given in [83] to solve

(Ok
i ) : Fk

i := [min
ϕ∈Φ

h1(pk
i , ϕ), h2(pk

i , ϕ)]T .

b) If all the elements of Fk
i (pk

i , ϕk
i )) are positive then stop. Otherwise select

only those elements of Fk
i which are negative and choose corresponding global

minimizers.
c) Let T k

i = {Φk
i,j, j = 1, ..., tik} be the set of global minimizers of (Ok

i ) for
which elements of Fk

i are negative. Update Φk+1 = Φk+1
⋃︁

T k
i

4: If k > kmax, stop. Otherwise k = k + 1 and go to step 2.

Result 23. Suppose that Sp is compact. If at each step k,
(a) sub-problems (Qk) and (Ok

i ) are solved globally,
(b) intermediate results Sk and at least one T k

i are nonempty, then either Algorithm
1 stops with solutions in a finite number of iterations or for any sequence {pk} with
pk ∈ Sk, there exists at least one limit point as k increases and each of them solves
the SIPP.

The proof of the result 23 can be found in [101].

5.3 Comparison of the proposed algorithms
In the previous section, three methods are presented for computing the unknown

controller parameters p by using convex relaxation. We call Putinar’s positivstel-
lensatz based SOS relaxation of the set DF as method 1, the generalized S-procedure
based SOS relaxation of the set DF as method 2 and algorithm 1 as method 3. In
this section, we provide a comparison of these methods.
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5.3.1 CT systems
Method 1 provides the necessary and sufficient conditions for the positivity of h1

and h2 over the set Φ. However, this method requires high order SOS polynomials
for SOS relaxation of the set Ps and therefore it is computationally expensive,
especially for high order plants with complex structure controllers .

Method 2 provides only the sufficient conditions for the positivity of h1 and h2
over the set Φ. This method is computationally efficient compared to the method
1 as it requires low order SOS polynomials for SOS relaxation of the set Ps.

The computational complexity of method 3 can be higher than method 1 and
method 2 for lower order plants with simpler controllers. Since, method 3 is a
recursive algorithm based on the exchange algorithm therefore it can solve the
mixed sensitivity control design problem more efficiently for higher order plants
with complex structure controllers.

5.3.2 DT systems
For DT systems, method 1 has the highest computational complexity among

the three methods proposed in this section. This is because it requires to solve
high dimension Gram matrices associated with the set Ps. The dimension of Gram
matrices corresponding to polynomials h1(ϕ, p) − ∑︁m

ν=1 σν(ϕ)qν(ϕ) and h2(ϕ, p) −∑︁2m
µ=m+1 σµ(ϕ)qµ−m(ϕ) in equations((5.5) and (5.6)), respectively, increases due to

the following reasons.

• In DT systems, the set ϕ contains two elements and replacing zn = (a + jb)n

result in increased number of terms in the polynomials h1(ϕ, p) and h2(ϕ, p),
compared to CT systems.

• Requirement of high order SOS polynomials in method 1 increases the number
of terms in polynomials ∑︁m

ν=1 σν(ϕ)qν(ϕ) and ∑︁2m
µ=m+1 σµ(ϕ)qµ−m(ϕ).

For DT systems, the computational complexity of method 2 is lower than
method 1, but it is still high. The reduction in the computational complexity
is due to the requirement of low order SOS polynomials for SOS relaxation of the
set Ps.

For DT systems, method 3 has the lowest computational complexity compared
to other methods, as it solves the SIPP iteratively using the exchange algorithm.
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Chapter 6

Simulation examples and
experimental results

6.1 Simulation example1: CT controller design
Consider the following CT LTI SISO system.

Gn(s) = 1000
s2 + 70s + 1000 (6.1)

The system is subjected to the multiplicative uncertainty described by the following
frequency domain filter.

Wu(s) = 0.5(s + 52)
s + 98 (6.2)

The goal is to design a PID controller

K(s, p) = c1s + c2

s
(6.3)

such that

∥Sn(s)W1(s)∥∞ ≤ 1
∥Tn(s)Ŵ 2(s)∥∞ ≤ 1

(6.4)

where,

W1(s) = 0.03341s2 + 0.852s + 7.518
0.06667s2 + s

, (6.5)

W2(s) = 0.00353s2 + 0.09002s + 0.7943 (6.6)
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Simulation examples and experimental results

and p = [c1, c2]T . Wu(s) and W2(s) are plotted in the figure 6.1. It is clear from
the figure 6.1 that |W2(jω)| is greater than |Wu(jω)| for all frequencies, thus we
select

Ŵ 2(s) = W2(s). (6.7)

10
-1

10
0

10
1

10
2

10
3

-20

-10

0

10

20

30

40

50

60

70

Bode Diagram

Figure 6.1: Comparison between |W2
−1(jω)| (solid) and |Wu(jω)| (dashed)

Now, we compute p = [c1, c2]T by all the three methods proposed in the chapter
5. We have chosen Ω = [0,104]T . The constraints in the stability set are obtained by
using Routh’s Hurwitz criteria. The highest degree of the polynomial h1(ω, p) with
respect to ω is 8 and the highest degree of the polynomial h2(ω, p) with respect to
ω is 6. For method 1, we choose r1 = r2 = 9 such that the degree of each SOS
polynomial in equation (5.3) and equation (5.4) is 8. For method 2, we choose
SOS polynomials of degree 1, that is, t1 = t2 = 1. For method 1 and method 2,
non-convex polynomial constraints in the Gram matrices are relaxed by moment
relaxation of order 1. For method 3, we use moment relaxation of order 3 for the
sub-problem (Qk) and moment relaxation of order 6 for the sub-problem (Ok

i ). It
is worth mentioning that, for method 3, a redundant constraint 10000 − c2

1 − c2
2 ≥ 0

is also added to the stability set for compactness.
For all three methods, we solve the controller design problem by using YALMIP

([78]) and MOSEK ([115]). We perform all the simulations on a PC running on
64 bit Windows 10 platform, equipped with Intel core i7 − 7500 CPU and 8 GB
RAM. For each method, simulation time, the controller parameters extracted from
the feasible controller parameter set and the corresponding ∥Sn(s)W1(s)∥∞ and
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6.2 – Simulation example2: DT controller design

∥Tn(s)Ŵ 2(s)∥∞ are reported in the table 6.1. For method 3, algorithm 1 converges
in 2 iterations.

It can be seen from the table 6.1 that in all cases at all frequencies (i) |Sn(jω)|
is smaller than |W −1

1 (jω)| , and (ii) |Tn(jω)| is smaller than |W −1
2 (jω)|. Thus for

all three methods, the closed-loop system is robustly stable while achieving the
nominal performance.

Table 6.1: Simulation results for model-based CT control design

Parameters Time (s) H∞ mixed sensitivity norms
Method 1 c1 = 0.1043,

c2 = 7.5236
2.94 ∥Sn(s)W1(s)∥∞ = 0.9992,

∥Tn(s)Ŵ 2(s)∥∞ = 0.7943
Method 2 c1 = 0.1038,

c2 = 7.5235
0.70 ∥Sn(s)W1(s)∥∞ = 0.9992,

∥Tn(s)Ŵ 2(s)∥∞ = 0.7943
Method 3 c1 = 0.0896,

c2 = 7.5178
7.00 ∥Sn(s)W1(s)∥∞ = 0.9995,

∥Tn(s)Ŵ 2(s)∥∞ = 0.7943

6.2 Simulation example2: DT controller design
Consider the following DT LTI SISO system

Gn(z) = 3z + 2.25
4z2 − 2.8z + 1 (6.8)

which is subjected to multiplicative uncertainty characterized by the following fre-
quency domain transfer function.

Wu(z) = 0.3944z2 − 0.143z − 0.05305
z2 + 0.5162z − 0.3177 (6.9)

The aim is to design a DT robust PI controller

K(z, p) = kp + ki

z − 1 , (6.10)

such that ∥Sn(z)W1(z)∥∞ ≤ 1 and ∥Tn(z)Ŵ 2(z)∥∞ ≤ 1, where

W1(z) = 0.606z2 − 0.96z + 0.3875
(z − 0.7787)(z − 1) , (6.11)

W2(z) = z2 − 1.254z + 0.4595
0.1636z + 0.1261 . (6.12)
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Simulation examples and experimental results

The unknown controller parameter vector is p = [kp, ki]T ∈ R2. From Figure
6.2, we see that |W2(z)| is greater than |Wu(z)| for all the frequencies, thus we
choose

Ŵ 2(z) = W2(z). (6.13)
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Figure 6.2: Comparison between |Wu(ejω)| (dotted) and |W2(ejω)| (solid).

We will design the PI controller by method 2 and method 3 described in the
chapter 5.

6.2.1 Controller design by Method 2
We choose t1 = t2 = 1 for SOS relaxation of the set Ps. The constraints in the

stability set are obtained by the Jury’s method. The positivity test of each non-
convex polynomial constraint in the stability set is replaced by SOS constraints.
Non-convex polynomial constraints in the Gram matrices are relaxed by moment re-
laxation of order 2. The controller design problem is solved by using YALMIP ([78])
and MOSEK ([115]). The simulation is performed on the HPC@polito, equipped
with 128GB RAM. HPC@polito is a project of Academic Computing within the De-
partment of Control and Computer Engineering at the Politecnico di Torino. The
simulation took approximately 4 hours and the optimization problem converged
with kp = 0.1480 and ki = 0.1266. The graphical comparisons between |Sn(z)|
and |W1(z)| is reported in figure 6.3. Similarly, the graphical comparisons between
|Tn(z)| and |W2(z)| is reported in figure 6.4. It is clear from Figures 6.3 and 6.4 that
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6.2 – Simulation example2: DT controller design

the closed-loop system is robustly stable while achieving the desired performance
specifications. Numerically, ∥Sn(z)W1(z)∥∞ = 0.8725 and ∥Tn(z)Ŵ 2(z)∥∞ = 0.99.
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Figure 6.3: Comparison between |W −1
1 (ejω)| (solid) and |Sn(ejω)| (dotted).
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Figure 6.4: Comparison between |Ŵ
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2 (ejω)| (solid) and |Tn(ejω)| (dotted).
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6.2.2 Controller design by Method 3
The constraints in the stability set are obtained by the Jury’s method. A redun-

dant constraint 10000 − (k2
p + k2

i ) ≥ 0 is added to the stability set for compactness.
We use moment relaxation of order 5 for both sub-problems (Qk) and (Ok

i ). The
controller design problem is solved by using YALMIP ([78]) and MOSEK ([115]).
The simulation is performed on a PC running on 64 bit Windows 10 platform,
equipped with Intel core i7−7500 CPU and 8 GB RAM. The optimization problem
converged in 50 seconds in 4 iterations. The controller parameters extracted from
the feasible controller parameter set are kp = 0.0182 and ki = 0.0934. Sensitivity
and complementary sensitivity functions along-with their corresponding frequency
domain weighting filters are plotted in figures ( 6.5 and 6.6). It is clear from these
figures that at all frequencies |Sn(z)| < |W −1

1 (z)| and |Tn(z)| < |W −1
2 (z)|. Thus,

the closed-loop system is robustly stable and the controller achieves desired perfor-
mance specifications. Numerically, ∥Sn(z)W1(z)∥∞ = 0.8831 and∥Tn(z)Ŵ 2(z)∥∞ =
0.7096.
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6.3 Experimental example
In this section, we use method 2 to design FOFS H∞ mixed sensitivity controller

for the magnetic levitation system shown in the figure 6.7.

Figure 6.7: Magnetic levitation system.
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The control loop of the magnetic levitation system is shown in figure 6.8, where
ω(t) is the reference signal in volts, K(s) is the controller, KT is the transconduc-
tance amplifier that transforms the voltage signal into the current signal and u(t)
is the current through an electromagnet coil. The magnetic field generated by the
current exerts a force on the ball to balance the gravity force. An optical transducer
measures the ball position and produced the output voltage signal y(t). Further
details on the considered system can be found in the book book [22].

K(s) KT Electromagnet

Ball

Position Sensor

ω(t)(V )+ u(t)(A)

y(t)(V )

−

Figure 6.8: Control of Magnetic Levitation System
Magnetic levitation systems are highly non-linear unstable systems. In order

to design a low-order fixed structure controller, a linearized model of the magnetic
levitation system in 6.7 is obtained around a suitable equilibrium point and is given
by

Gn(s) = Y (s)
U(s) = −7044

(s − 29.68)(s + 29.68) (6.14)

where U(s) and Y (s) are the Laplace transform of the input and output voltage
signals, respectively. The nominal plant in the equation (6.14) is subjected to
multiplicative uncertainty bounded by the following frequency domain weighting
filter

Wu(s) = 0.1993s2 + 6.852s + 55.96
s2 + 46.15s + 429.5 . (6.15)

The goal is to design a FOFS controller

K(s, p) = c1s
2 + c2s + c3

c4s2 + s
, (6.16)

where p = [c1, c2, c3, c4]T ∈ R4 is the vector of unknown parameters. Moreover, for
a square wave reference signal w(t) with period 2 s, duty-cycle 50% and amplitude
0.1 V, the closed-loop system must satisfy the following nominal specifications: (i)
rise time tr ≤ 0.015 s, (ii) overshoot ŝ ≤ 25%, and (iii) zero steady-state tracking
error for a step command. Since the controller has an integrator, therefore zero
steady-state error for the step reference is implicitly achieved. The above-mentioned
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time domain specifications are translated to the frequency domain weighting filters
W1(s) and W2(s) through the methodology provided in [95].

W1(s) = 0.004206s2 + 1.073s + 94.64
s(0.006667s + 1) (6.17)

W2(s) = 2.524e−06s2 + 0.002145s + 0.631 (6.18)

The constraints in the set Sp are obtained by applying Routh’s stability criterion
to the numerator of 1 + G(s)K(s, p). To avoid unstable pole-zero cancellation
between the plant and the controller, we consider stable Nk(s, p) and D

′
k(s, p),

where
Nk(s, p) = c1s

2 + c2s + c3 (6.19)

and
D

′

k(s, p) = c4s + 1 (6.20)

Stability constraints for Nk(s, p) and D
′
k(s, p) are obtained according to Ruth

Hurwitz criterion. It is worth mentioning that these constraints will be added to
the set Sp.

The graphical comparison between W2(s) and Wu(s) is provided in the figure 6.9.
It can be clearly seen from the figure 6.9 that for all frequencies |W2(s)| > |Wu(s)|,
therefore, we select

W2ˆ (s) = W2(s). (6.21)
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Figure 6.9: Comparison between |Wu(jω)|(dotted) and |W2(jω)| (solid).
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We also choose t1 = t2 = 0 for SOS relaxation of the set Ps. The positivity
test of each nonconvex polynomial constraint in the stability set is replaced by SOS
constraints. Non-convex polynomial constraints in the Gram matrices are relaxed
by moment relaxation of order 2. The controller design problem is solved by using
YALMIP ([78]) and MOSEK ([115]). The simulation is performed on a PC running
on 64 bit Windows 10 platform, equipped with Intel core i7 − 7500 CPU and 8 GB
RAM. The optimization problem is converged in approximately 3 minutes. The
controller extracted from the feasible controller parameters set is

K(s) = −0.0205s2 − 1.20232s − 12.0
0.0011s2 + s

. (6.22)

The controller achieves the nominal performances as, for all frequencies, (i) |Sn(jω)|
is smaller than |W −1

1 (jω)| (see Figure 6.10), and (ii) |Tn(jω)| is smaller than
|W −1

2 (jω)| (see Figure 6.11). Numerically,

∥Sn(jω)W1(jω)∥∞ = 0.99 (6.23)

and

∥Tn(jω)W2(jω)∥∞ = 0.8750. (6.24)
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Figure 6.10: Comparison between |W −1
1 (jω)| (solid) and |Sn(jω)| (dotted).

In figure 6.12, we provide the comparison of closed-loop time-domain responses
between the linearized system Gn(s) and the real plant. As pointed out earlier,
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reference w(t) is a square with amplitude 0.1V and frequency 0.5 Hz. The linear
system Gn(s) achieves the time domain requirements as both the rise time tr ≈
0.00928 s and the overshoot ŝ ≈ 23.02%. However, with the designed controller
the overshoot on the actual plant is ŝ ≈ 35%. The large overshoot is due to
the modeling error resulting from the linearization of the actual nonlinear plant.
However, despite this modeling error, the designed controller is able to stabilize the
unstable nonlinear plant and is also able to achieve the desired rise time tr ≈ 0.011 s.
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Figure 6.11: Comparison between |W −1
2 (jω)| (solid) and |Tn(jω)| (dotted).
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Figure 6.12: Magnetic levitation system response to square wave reference signal:
reference w(t) (solid square-wave), magnetic levitation system output y(t) (solid)
and linearized Gn(s) system output (dashed) responses.
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Chapter 7

Conclusions

In this section, we have proposed convex relaxation algorithms for designing
model-based FOFS H∞ mixed sensitivity controllers both for CT and DT systems.
First, we define the feasible controller parameter set as a semi-algebraic set of all
the controller parameters that guarantee robust stability and fulfillment of nominal
performance. We then translate the constraints in the feasible controller parameter
set to polynomials in unknown controller parameters and frequency. The problem
of designing the FOFS H∞ mixed sensitivity controllers is then reformulated as the
non-emptiness test of the feasible controller parameter set. It is worth mentioning
that the feasible controller parameter set is a non-convex set and thus the FOFS
H∞ control design problem is NP-hard to be solved. To compute the parameters of
the FOFS controller, the feasible controller parameter set is relaxed by using recent
results from the field of polynomial optimization, reviewed in Chapter 2.

We have provided three algorithms for the convex relaxation of the feasible
controller parameter set. The first algorithm uses Putinar’s positivstellensatz for
relaxing the feasible controller parameter set. This algorithm is a single-shot al-
gorithm based on SOS relaxation and it provides the inner approximation of the
feasible controller parameter set. The computational complexity of this algorithm
is low only for low-order CT systems with lower-order controllers. In the second
algorithm, SOS relaxation of the feasible controller parameter set is achieved by
exploiting the generalized S-procedure. This algorithm also solves the FOFS H∞
mixed sensitivity control problem in a single shot and provides the inner approxi-
mation of the feasible controller parameter set. The computational complexity of
this method is high for DT systems. The third algorithm is based on the exchange
method and solves the optimization problems iteratively using moment relaxation.
This method provides the outer approximation of the feasible controller parame-
ter set. In comparison to the other two methods, this method is computationally
efficient for DT systems and high-order CT systems with higher-order controllers.

The main advantages of the proposed algorithms compared to existing methods
are:
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Conclusions

(i) The BMI-based local algorithms, HIFOO and Hinfstruct provide only local
solutions and thus can typically trap in local minima, whereas the proposed
algorithms look for controller parameters in a relaxed convex set.

(ii) In contrast to the BMI-based global algorithms, the interval arithmetic-based
algorithms, and the convex algorithms for special structure controllers such
as PI and PID controllers, the proposed algorithms do not require any special
structure of the plant and/ or controller for computing the parameters of the
FOFS mixed sensitivity H∞ controller that belong to a relaxed convex set.

Finally, we provide two simulation examples and one experimental application
to show the efficiency and comparison of the proposed algorithms on both CT and
DT systems.
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Direct data-driven FOFS H∞
mixed sensitivity control design
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Chapter 8

Introduction

The control system for a plant can be designed in two ways, namely, model-
based control and direct data-driven control. In model-based control, a model of
the plant is typically developed by using system identification methods. This model
is then used for controller design. In direct data-driven control, the controller is
directly designed from the experimental data.

In model-based control, the model of a dynamic system plays a pivotal role
in the overall performance of the feedback control system. The complexity of the
model obtained from system identification is crucial as for simpler models, model
estimation and controller synthesis are easier. On the other hand, building higher-
order complex models may require large experimental data and computational ef-
fort. Moreover, system analysis and control system design and implementation
tend to be complex for higher-order models. Thus in industry, low-order models
are preferred. However, approximation of plant dynamics with a lower-order model
leads to model uncertainty which can degrade the performance of the control loop.
Control synthesis by using process data eliminates the issues associated with the
modeling of a dynamic process. A survey on the difference between model-based
control and direct data-driven control is presented in [171], where the authors state
that building a model for a dynamic system is an approximation of the true sys-
tem and unmodeled dynamics always exist in model-based control. As a result,
model-based control methods are inherently less robust and unsafe for practical
applications. On the contrary, for linear time-invariant systems, the parametric
uncertainties and the unmodeled dynamics are irrelevant in direct data-driven con-
trol where the only source of uncertainty comes from the measurement process.
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8.1 Overview of existing direct data-driven con-
trol techniques

This section provides an overview of existing direct data-driven control design
techniques. Data-driven control synthesis techniques are broadly categories as: (i)
model-reference control, (ii) predictive control and (iii) robust control. Here we
provide only a brief description of each method.

8.1.1 Model Reference Control
Model-reference Adaptive Control (MRAC)

MRAC [72] is one of the first approaches to designing direct data-driven con-
trollers. It is an online method that adjusts the controller parameters by minimizing
the error between the reference signal and the actual output. Further details on
MRAC can be found in [73].

Virtual Reference Feedback Tuning (VRFT)

The VRFT approach was originally proposed for SISO systems in [113]. This
technique requires the time-domain input-output data experimentally collected
from the plant. It is an offline method that can compute the direct data-driven
controller in a single shot. Closed-loop stability for VRFT is addressed in [90] and
[3]. The extension of VRFT to MIMO systems is provided in [137] and for linear
time-varying systems in [136]. The issue of performance robustness is addressed
in [52] and [139] by applying scenario optimization tools. Automatic tuning of the
direct data-driven controller in the VRFT framework is developed in [44]. In the
VRFT approach, the optimal choice of the reference model and select controller
class without prior knowledge of the plant is not trivial. The papers [31] and [165]
provide methods for the selection of reference models. The paper [138] addresses
the selection of the controller class.

Iterative Correlation-based Tuning (ICbT)

ICbT [9] is an offline iterative approach for direct data-driven control synthesis.
This method is based on the correlation approach and implements the concepts
of system identification. A non-iterative version of this method is presented in
[91] where sufficient conditions for closed-loop stability are also developed. The
extension of ICbT to MIMO systems is provided in [100].
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Iterative Feedback Tuning (IFT)

IFT is an offline method first introduced in 1994 by Hjalmarsson et al. in [59].
A detailed discussion on IFT and its applications is provided in papers [60] and [58],
and the references therein. IFT has two main drawbacks, one is the requirements
of multiple experiments, and the other is that stability is not guaranteed. The
papers,[144] and [65] provide some results on robust stability conditions.

Unfalsified Control (UC)

UC [108] is an online direct data-driven control synthesis method that identi-
fies a controller belonging to a set of candidate controllers known as an unfalsified
controller set. A controller is said to be falsified by the measurements if it violates
the desired performance specification when inserted in the closed loop. Otherwise,
the controller is unfalsified. A virtual reference for the falsification procedure is
obtained by inverting the controller at the current iteration. A controller from the
unfalsified set that satisfies the desired performance is selected at each iteration.
Various switching methods are available in the literature to select a controller from
the unfalsified controller set (see, e.g., [163], [110]). A new direct data-driven tech-
nique based on the unfalsified control is presented in [46]. This approach requires
only one experiment and two reference models. The stability of unfalsified adaptive
switching control in noisy environments is studied in [47].

All model-reference based schemes require special care as minimization based
on desired reference model can lead to poor stability and robustness.

8.1.2 Predictive data-driven control
Model-Free Adaptive Control (MFAC)

MFAC, introduced in [169], is an online direct data-driven control method for a
class of unknown non-affine nonlinear systems. It does not require any explicit phys-
ical model of the plant or any stability analysis used in the control system design.
MFAC implements a linearization data modeling method through a pseudo-partial
derivative or pseudo-gradient vector. Therefore stability analysis only depends on
the measured input-output data of the controlled plants. Further details on MFAC
can be found in [170].

Data Driven Model Predictive Control

Classical model predictive control (MPC) is a prediction-based control that
relies on the dynamic model of the plant. Direct data-driven MPC uses input-
output data instead of a model of the process. A subspace approach based on
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direct data-driven MPC is presented in [16] whereas data-driven MPC that uses
implicit model description based on behavioral systems theory and past measured
trajectories is proposed in [20].

8.1.3 Robust data-driven control
Model-based robust control is a popular method that deals with uncertainties,

noise and disturbances. Mostly robust control problem is solved through H∞ frame-
work where desired performance specifications and uncertainty are formulated as
weighting norms on the mixed sensitivity functions. In classical H∞ control, the
optimization problem is solved through linear matrix inequalities (LMI) (see, e.g.,
[124, 123]) or on the algebraic Riccati equation (see, e.g., [94, 76]). However, con-
trollers obtained through these methods have higher order and may be impossible
to implement. Any additional constraint on the order or structure of the controller
makes the optimization problem non-convex and thus difficult to solve. Many tech-
niques are available in the literature to solve this nonconvex problem ([75], [121]
and [164], just to cite a few).

Many frequency domain direct data-driven techniques are also available in the
literature to design FOFS controllers that guarantee closed-loop stability and per-
formance. Some of these techniques provide global optimal solutions while others
can solve optimization problems locally.

Global frequency domain methods for FOFS direct data-driven control
design

One of the earlier frequency domain direct data-driven techniques is [98] where a
complete set of stabilizing PID controllers are obtained directly from the frequency
response of the plant without the need for any identified model. For closed-loop sta-
bility, the relative degree of the plant and its number of right-half plane (RHP) zeros
and poles are estimated from the frequency response. The resulting optimization
problem for computing the controller’s parameters is convex as PID controllers are
linear in unknown parameters. This approach also ensures performance measures
such as gain margin, phase margin, and H∞ performance specifications. Based on
this method, the design of fixed-order controllers is proposed in [63] whereas the
design of fixed structure robust controllers is presented in [64]. In [63] and [64],
convexity of H∞ optimization is achieved by fixing the poles of the controller a
priori.

A data-driven approach for designing fixed-order controllers in a mixed-sensitivity
loop-shaping framework is proposed in [135]. It is a convex optimization technique,
where the Youla–Kučera parameter is first derived directly from a set of input-
output data. A fixed-order controller is then identified from the same input-output
data. However, this technique is limited only to stable LTI plants and can not
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ensure a specific controller structure.
Design of robust fixed-order H∞ controller for LTI SISO plants through convex

optimization is proposed in [8]. This method translates stability conditions and
performance requirements to a set of linear constraints on the Nyquist diagram of
the loop function by considering a linearly parameterized controller. However, the
approximation of nonconvex robust performance constraints by linear constraints
introduces conservatism that depends on the desired open-loop transfer function
choice. This method treats low-order and high-order controllers differently. Higher-
order controllers are linearly parameterized using orthogonal basis functions. On
the other hand, linear parameterization of low-order controllers is achieved by fixing
the poles of the controller before design. For implementation purposes, high-order
controllers are approximated by low-order controllers by model order reduction
methods. However, this may cause degradation of the performance and even insta-
bility in some cases.

Design of robust fixed order H∞ controllers for LTI SISO systems via convex
optimization is proposed in [6]. This approach requires the collection of frequency
domain data from the coprime factors of the plant. Moreover, necessary and suf-
ficient conditions for closed-loop stability are derived through Nyquist stability
criteria. Convexity of the stability constraints is achieved through linear parame-
terization of the coprime factors of the controller. A linear approximation of the
performance constraints is achieved through a stable transfer function that keeps
the Nyquist plot of the weighted sensitivity function in the RHP. It is important to
note that the optimization problem converges to a globally optimal solution only
for high-order controllers. In the case of low order controllers, the choice of basis
significantly affects the convergence of the optimization problem. Although a prac-
tical procedure for choosing the basis functions is proposed in the paper, optimal
selection still remains an open problem.

A method based on the loop-shaping for designing fixed structure H∞ con-
trollers both for SISO and MIMO systems is presented in [38]. This approach uses
multiple line constraints in the Nyquist diagram to achieve closed-loop stability and
performance. The resulting feasible controller constraints are multilinear for lin-
early parameterized controllers. However, for special controllers, these constraints
become linear.

In [32], a new direct data-driven approach based on convex optimization to de-
sign two degree of freedom robust fixed-order H∞ controller is proposed. In this
approach, the convexity of stability constraints is obtained through linear parame-
terization of the controller using orthonormal basis functions. On the other hand,
the convexity of the objective function is achieved through desired loop gain, which
is a function of the desired complementary sensitivity function. One major draw-
back of the proposed approach is that the resulting control problem is sub-optimal.
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Local frequency domain methods to design FOFS direct data-driven con-
trollers

In [13], a method to design low order fixed structure direct data-driven con-
trollers is proposed. This approach is an extension of the work presented in [6]. In
this approach, nonconvex optimization problem is solved by a new particle swarm
optimization (PSO) algorithm for unknown controller parameters and optimal se-
lection of the basis functions parameters.

An alternative formulation of the problem of fixed-order H∞ controllers is pro-
posed in [5] where, by exploiting the Youla parameterization of the set of stabilizing
controllers, the controller is designed by solving a nonconvex optimization prob-
lem. Although approaches based on nonconvex optimization may work adequately
in general, convergence of a noncovex optimization problem to a global optimal
solution is not always guaranteed.

Uncertainty modeling in robust data-driven control

In direct data-driven control, frequency-domain uncertainty is modeled by prob-
abilistic ( see, e.g., [8] and [6]), or deterministic methods (see, e.g., [32]). In [6],
uncertainty weighting filters for coprime factors of an uncertain plant subjected to
additive uncertainty, are computed from the co-variance of the estimates for given
confidence of interval. This method requires a large set of frequency-domain data
to be collected from the plant at each frequency. In [32], the optimal uncertainty
model for multiplicative unstructured uncertainty is computed based on the con-
cept of the Chebyshev center of a set of points. This method also requires a large
frequency-domain data set to be collected from the plant at each frequency.

8.2 Research Objective
The objective of this research is to provide a method for designing FOFS direct

data-driven controllers such that the global optimal solution to H∞ mixed sensitiv-
ity control problem is obtained. The existing convex methods for FOFS direct data
driven H∞ control, use linearly parameterized controllers to get the convex con-
straints for stability. Linear parameterization is achieved either by fixing the poles
of the controller a priori or by using orthonormal basis functions. Furthermore, con-
vexity on H∞ constraints is obtained through some approximations. The methods
that use the orthonormal basis for linear parameterization of the controller, do not
converge to the global optimal solution for low order fixed structure controllers. In
this research, instead of introducing such limitations/approximations, we propose
a convex relaxation method to solve the H∞ control problem such that global op-
timal solution is achieved. To apply convex relaxation, FOFS H∞ control problem
is formulated as a polynomial optimization problem. Convex relaxation methods
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relax the polynomial optimization problem into an SDP which can be solved by the
readily available softwares.

8.2.1 Contribution
The major highlights of this research are given below.

• FOFS H∞ mixed sensitivity direct data-driven controllers are designed such
that neither the controller transfer function nor its coprime factors are linearly
parameterized. In fact user can select any controller, non linear in unknown
parameters such that the numerator and the denominator are linear functions
of the controller parameters to be designed.

• Necessary and sufficient conditions for closed-loop stability are derived in the
direct data-driven framework. These conditions are developed based on the
concepts of positive real functions and Nyquist stability.

• A one-shot convex relaxation-based algorithm for robust FOFS H∞ mixed
sensitivity direct data-driven control design is provided. This algorithm is
based on assumptions that the weighting filter for the unstructured multi-
plicative uncertainty and frequency response samples for the nominal plant
are available.

• An iterative convex relaxation-based algorithm for robust FOFS H∞ mixed
sensitivity direct data-driven control design is provided. In this algorithm,
the control design problem is formulated as a SIPP in uncertainty under the
assumption that uncertainty is additive, unknown, bounded, and belongs to
a given semi-algebraic set. The SIPP is then solved iteratively through the
exchange method by using semidefinite relaxations. Typically, in direct data-
driven control the estimation of the frequency domain bound for unstructured
uncertainty requires many frequency response samples to be collected from
the plant at each frequency. Because of the SIPP formulation, this algorithm
require only one frequency response sample for each frequency to design direct
data-driven robust controllers.

The results presented in this section of the thesis will be the subject of a journal
paper currently in preparation.
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Chapter 9

Description of the plant and the
controller

In this chapter, we first provide some elementary results on coprime factoriza-
tion. Interested readers can find further details on the coprime factorization in the
book [85]. We then present all the necessary class of models and controllers for
the design of FOFS H∞ mixed sensitivity direct data-driven controllers. The linear
plant is represented in the coprime form which is needed to develop some important
theoretical results that will be presented in the subsequent chapters. The controller
to be designed is assumed to belong to a given class such that the numerator and
the denominator of the controller are linear in unknown parameters. Two types of
uncertainties are presented in this chapter. In the first type, a frequency domain
bounding function is used for describing unstructured uncertainty. The second
type of uncertainty is assumed to be unknown, bounded and belongs to a given
semi-algebraic set.

9.1 Coprime factorization
Consider a rational transfer function G(s) such that

G(s) = N (s)D−1(s). (9.1)

Suppose dn is the degree of the numerator and dm is the degree of the denominator.

Definition 11 (Proper transfer function). The transfer function G(s) is said
to be proper if and only if dm ≥ dn.

Definition 12 (Improper transfer function). The transfer function G(s) is said
to be improper if and only if dm ≤ dn.

Definition 13 (Strictly proper transfer function). The transfer function G(s)
is said to be strictly proper if and only if dm > dn.
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Definition 14 (biproper transfer function). The transfer function G(s) is said
to be biproper if and only if dm = dn.
Definition 15 (Relative degree). The relative degree rG of the transfer function
G(s) is defined as:

rG = dm − dn. (9.2)

9.1.1 Coprime factors
Suppose, X (s) and Y(s) are the coprime factors of a rational transfer function

G(s). Thus, G(s) can be written as:

G(s) = X (s)Y−1(s). (9.3)
The coprime factors X (s) and Y(s) have the following properties (see, e. g.,

[85]):
1. both X (s) and Y(s) are stable and proper transfer functions.

2. they must follow the Bezout’s identity which is satisfied if X (s) and Y(s)
have no common zero in ℜ[s] ≥ 0 and at s = ∞.

We provide the following result based on the above mentioned properties of the
coprime factors.
Result 24 (Condition for coprimeness). If X (s) and Y(s) are the coprime
factors of a rational transfer function G(s) then either X (s) or Y(s) must be a
bi-proper transfer function.

9.2 Plant representation
Suppose Xn(s) and Yn(s) be the coprime factors of a CT LTI SISO plant Gn(s).

The representation of Gn(s) in terms of coprime factorization is given by:
Gn(s) = Xn(s)Y −1

n (s). (9.4)
The coprime representation in terms of the frequency response of the CT plant is
obtained by replacing s = jω.

Gn(jω) = Xn(jω)Y −1
n (jω). (9.5)

Similarly, a DT LTI SISO plant Gn(z) in terms of its coprime factors Xn(z) and
Yn(z), is represented as follows.

Gn(z) = Xn(z)Y −1
n (z). (9.6)

For DT systems, coprime factorization in terms of the frequency response of the
plant is obtained by replacing z = ejω.

Gn(ejω) = Xn(ejω)Y −1
n (ejω). (9.7)
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9.2.1 Formulation of coprime factors
In case of stable CT systems, we choose Xn(jω) = Gn(jω) and Yn(jω) = 1

and frequency response samples are directly obtained by performing an open-loop
experiment on the plant.

In case of an unstable CT plant, a stabilizing controller is needed to properly
formulate Xn(jω) and Yn(jω). In this work, set of closed loop frequency domain
data is acquired according to scheme shown in figure 9.1, where Gn(s) is an unstable
plant, Ks(s) is an initial stabilizing controller, r1 is the reference signal, u1 is the
control input, m1(jω) and m2(jω) are the measurements. Co-prime factors Xn(jω)
and Yn(jω) are computed as follows:

Xn(jω) = m1(jω)m−1
2 (jω)

= Gn(jω)
1 + Gn(jω)Ks(jω) ∀ω

(9.8)

Yn(jω) = u1(jω)m−1
2 (jω)

= (1 + Gn(jω)Ks(jω))−1 ∀ω
(9.9)

Ks(s) Gn(s)

Ks(s)

r1 u1 m1(jω)

−

+

+m2(jω)

Figure 9.1: Data acquisition for coprime factors

From equations (9.8) and (9.9), it is evident that:

1. Xn(s) and Yn(s) are stable transfer functions as Ks(s) is a stabilizing con-
troller.

2. Xn(s) is a proper transfer function as degree of 1+Gn(s)Ks(s) is greater than
or equal to the degree of Gn(s).

3. Yn(s) is a biproper transfer function under the assumption that the Ks(s) and
Gn(s) are the proper transfer functions.

4. Gn(jω) = Xn(jω)Y −1
n (jω)
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Thus, Xn(s) and Yn(s) are coprime factors of Gn(s).
If Ks(s) is known to be a bi-proper transfer function then frequency response of

the coprime factors can also be obtained according to figure 9.2, where Gn(s) is an
unstable plant, Ks(s) is an initial stabilizing controller, r1 is the reference signal,
m1(jω) and m2(jω) are the measurements.

Xn(jω) = m1(jω)r−1
1 (jω)

= Gn(jω)Ks(jω)
1 + Gn(jω)Ks(jω) ∀ω

(9.10)

and
Yn(jω) = m2(jω)r−1

1 (jω)

= Ks(jω)
1 + Gn(jω)Ks(jω) ∀ω

(9.11)

Ks(s) Gn(s)
r1 m1(jω)

−

m2(jω)

Figure 9.2: Data acquisition for coprime factors when Ks(s) is a bi-proper

For DT systems, coprime factors can be formulated in the same way as discussed
above.

9.3 Acquisition of the data
In data-driven settings, we assume that the transfer function of the plant is not

available and that the controller is designed by only relying on a set of input-output
frequency domain data collected experimentally from the stable plant or coprime
factors of an unstable plant. The most commonly used method for the frequency
domain data acquisition is the frequency sweep method. Two types of frequency
domain data can be obtained from the plant (or coprime factors of the plant) by
frequency sweep method.

• Gain-Phase data

• Real-Imaginary data
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Gain-Phase data can be measured by using simple equipment such as an oscil-
loscope. Once available, Gain-Phase data are translated to Real-Imaginary data
using Euler’s formula. Real-Imaginary data can directly be measured from the
open loop (stable plants) or closed loop experiment (unstable plants). One popular
method of measuring Real-Imaginary data is so-called dual-phase demodulation
method. In this method, a reference signal is generated by the internal oscillator
is applied to the device under test and the output of the device is measured. By
using the frequency domain mixer, two signals are generated. The first signal is
obtained by multiplying the measured signal with a reference signal whereas the
second signal is produced by multiplying 90◦ phase-shifted reference signal with
the measured signal. The outputs of the mixer are passed through low-pass filters
to reject 2ω component and the noise. The effect of the residual noise (unknown
but bounded) as uncertainty is discussed in the section 9.6 . The filtered signals
are the real and imaginary parts of the input signal. In this way, by changing the
frequency of the reference signal, frequency response of the plant can be measured
over desired frequency set Ωd.The number of frequency points in Ωd is selected in
order to trade off between the accuracy of the frequency response description and
the practical feasibility of the experiment. Although selecting an appropriate set of
frequency points is still an open problem. However, for practical applications, fre-
quency points can be chosen logarithmically, equally spaced, sets of equally spaced
frequencies with different increments or on the basis of available information about
the plant such as resonance frequencies and desired closed loop bandwidth, etc.

For the purpose of completeness, we present general guidelines for collecting the
data from the plant or its coprime factors.

i Select Ωd = {ω1, ω2, . . . , ωn} such that Ωd contains sets of equally spaced
frequencies with different increments, ω1 is a reasonably small frequency and
ωn is a sufficiently large frequency.

ii Measure the data at the starting frequency.

iii Go to next frequency and again measure the data.

iv Repeat step(iii) until no further information can be gathered at high frequen-
cies.

v Check for data points where there is a significant change in the data (reso-
nance points). Collect more data near those frequencies.

vi Update Ωd based on step (iv) and step (v).

The major advantage of the above-mentioned frequency sweep method is the
higher signal-to-noise ratios (SNR) since the energy of the signal is concentrated at
a single frequency for any given time instant. The drawback of this method is the
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longer measurement time which can be crucial for some applications. Therefore in
such applications, frequency response function (FRF), which is the transfer function
measurement on a discrete frequency grid Ωd, can be computed using periodic or
random excitations (see e. g., [130] and [147]). For the computation of the FRF,
the measurements can be given in the time domain data set: {u(tk), y(tk), tk =
1,2, . . . , Ns} where, u(tk) is the input, y(tk) is the output and Ns is the total number
of samples. A discrete fourier transform of the input and output signals is then used
to estimate the FRF. It is important to point out that periodic or random signal
excitations can excite multiple frequencies at the same time, therefore reducing the
measurement time significantly compared to the frequency sweep method. However,
frequency resolution depends on the number of data samples acquired from the
experiment. For the estimation of the FRF, the effect of the noise as uncertainty
is discussed in the section 9.6.

9.4 Class of controllers
Assume that KCf is the class of FOFS stabilizing CT LTI controllers described

by the transfer function

K(s, ρ) = N(s, ρ)
D(s, ρ) =

∑︁dn
i=0 βi(ρ) si

sdm + ∑︁dm−1
j=0 αj(ρ)sj

. (9.12)

Similarly, for DT systems, KDf (z, ρ) is the class of LTI controllers described by
the following transfer function.

K(z, ρ) = N(z, ρ)
D(z, ρ) =

∑︁dn
i=0 βi(ρ) zi

zdm + ∑︁dm−1
j=0 αj(ρ)zj

(9.13)

For equations ((9.12) - (9.13)):

• we denote the unknown vector of controller parameters by ρ ∈ Rnp such that
np = dn + dm + 1.

• The coefficients, αj(ρ) and βi(ρ), are linear in ρ.

• The controller is a proper transfer function.

• Numerator and the denominator of the controller are stable polynomials of
degree dn and dm respectively.

It’s worth mentioning that the chosen controller class is very general and flexible.
As a matter of fact, one can select any LTI controller with FOFS by setting some
of the controller’s parameters to zero. Furthermore, because the numerator and
denominator coefficients depend linearly on ρ, the controller can be nonlinear in ρ.
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Remark 3. At a given frequency ω, both Gn(jω) and Gn(ejω) are just complex
numbers. Thus, in direct data-driven framework where frequency domain data ac-
quired from the plant is used to synthesize controllers, difference in the CT and
DT is trivial. Therefore,in the rest of this section, we present results only for CT
systems which are equally valid for DT systems.

9.5 Sensitivity functions
For unity feedback control structure, expressions for sensitivity and complemen-

tary sensitivity functions are given by:

S(jω) = (1 + Gn(jω)K(jω))−1

= D(jω)Yn(jω)
N(jω)Xn(jω) + D(jω)Yn(jω) ,

(9.14)

T (jω) = Gn(jω)K(jω)(1 + Gn(jω)K(jω))−1

= N(jω)Xn(jω)
N(jω)Xn(jω) + D(jω)Yn(jω)

(9.15)

9.6 Class of uncertainties

9.6.1 Frequency domain weighting bound representation of
unstructured uncertainty

Consider the feedback control system shown in the figure 9.3, where Gn(s) is
the nominal plant, K(s) is the controller, r is the reference signal, u is the control
input, y is the measured output and z1 and z2 are the controlled outputs associated
to the assigned performance requirements.

Suppose Gp(s) is an uncertain plant, then the set of perturbed plants are rep-
resented as follows.

Π : Gp(s) = Gn(s)(1 + Wu(s)∆(s)) (9.16)

where Wu(s) is an uncertainty weight with bounded infinity norm and ∆(jω) is an
unknown stable transfer function that satisfies |∆|≤ 1.

Multiplicative uncertainty weight Wu(s) can be computed according to the fol-
lowing equation.

Wu(jω) ≥ max
Gp∈Π

⃓⃓⃓⃓
Gp(jω)
Gn(jω) − 1

⃓⃓⃓⃓
∀ω (9.17)
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W1(s)
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Figure 9.3: Block diagram of feedback system

Computation of Multiplicative uncertainty weight

Suppose, the perturbed plant Gp(s) is represented in terms of the coprime fac-
tors Xp(s) and Yp(s) such that Gp(s) = Xp(s)Y −1

p (s). Then equation (9.17) can be
rewritten as follows:

Wu(jω) ≥ max
Gp∈Π

⃓⃓⃓⃓
Xp(jω)Yn(jω)
Yp(jω)Xn(jω) − 1

⃓⃓⃓⃓
∀ω (9.18)

For frequency sweep method, we collect Nu frequency response samples from the
plant (or its coprime factors) for each ω ∈ Ωd. In case of FRF method, data from
the plant is collected by performing Nu independent experiments and estimation of
FRF corresponding to each experiment is carried out with same frequency grid Ωd.

The nominal coprime factors can be computed by taking the average of the
experimental data for each ω ∈ Ωd, that is,

Xn(jω) = 1
Nu

Nu∑︂
i=1

Xpi(jω)

Yn(jω) = 1
Nu

Nu∑︂
i=1

Ypi(jω)
(9.19)

Finally, at each ω ∈ Ωd, compute

ℓi(ω) =
⃓⃓⃓⃓
Gpi(jω)
Gn(jω) − 1

⃓⃓⃓⃓
, i = 1,2, . . . , Nu. (9.20)

and
L(ω) = max ℓi(ω), i = 1,2, . . . , Nu. (9.21)

A rational transfer function Wu(jω) is obtained by fitting a curve to L(ω) in
the frequency domain. By using the same procedure, a frequency domain weighting
filter for unstructured additive uncertainty can also be computed.
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9.6 – Class of uncertainties

Remark 4. In this subsection, the nominal frequency response is computed as an
average of the obtained frequency responses for the computation of the multiplicative
uncertainty weight. In principle, the nominal frequency response should be computed
such that the size of the uncertainty for the given data set is minimized. However,
computation of the optimal nominal frequency response would require a solution of
a complex problem. On the contrary, although not optimal, one way of computing
the nominal frequency response is to take the average of the obtained frequency
responses at each frequency.

Remark 5. For the FRF, the uncertainty weight can be computed as a stochastic
bound. The use of stochastic uncertainty weights is not new in direct data-driven
control (see e.g., [6]). However, stochastic uncertainty weights can guarantee the
robustness and performance only within a given probability level.

9.6.2 Unknown and bounded uncertainty
One drawback of the method presented above, for computing a frequency do-

main bound for unstructured uncertainty is that it requires collection of many fre-
quency response sample from the plant at each frequency (or performing multiple
experiments in case of FRF estimation), which may not be trivial in some appli-
cations. On the other hand, robust direct data-driven controllers can be designed
by collecting only one frequency response sample from the plant at each frequency
under the assumption that the uncertainty is unknown and bounded (UB) and
belongs to a given semi algebraic set.

Assume that UB additive uncertainty, that belongs to a given semi-algebraic
set, corrupts the frequency response samples gathered from the coprime factors of
the plant.

X̃(jω) = Xn(jω) + ηα1 + jηβ1 ∀ω ∈ Ωc

Ỹ (jω) = Yn(jω) + ηα2 + jηβ2 ∀ω ∈ Ωc

(9.22)

where,

1. ηα1 and ηβ1 are the uncertainties in the real and imaginary parts of the coprime
factor Xn(jω).

2. ηα2 and ηβ2 are the uncertainties in the real and imaginary parts of the coprime
factor Yn(jω).

We assume that

[ηα1, ηβ1] ∈ Dη1, (9.23)
[ηα2, ηβ2] ∈ Dη2 (9.24)

and Dη1 and Dη2 are given semi-algebraic set which are defined below.
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Dη1 =
{︂
ϕ1 ∈ R2 : ϕ1 = [ηα1, ηβ1]T ; ηα1 ∈ [η

α1 ηα1],
ηβ1 ∈ [η

β1 ηβ1], L1i(ηα1, ηβ1) ≥ 0

i = 1,2, ..r1
}︂ (9.25)

Dη2 =
{︂
ϕ2 ∈ R2 : ϕ2 = [ηα2, ηβ2]T ; ηα2 ∈ [η

α2 ηα2],
ηβ2 ∈ [η

β2 ηβ2], L2i(ηα2, ηβ2) ≥ 0,

i = 1,2, ..r2
}︂ (9.26)

where,

1. each L1i(ηα1, ηβ1) is a polynomial function of ηα1 and ηβ1.

2. each L2i(ηα2, ηβ2) is a polynomial function of ηα2 and ηβ2.

For a unified representation of the uncertainty, we assume that Φ = [ϕ1, ϕ2]T
and U = Dη1

⋃︁ Dη2.

Remark 6. This study considers a semi-algebraic set representation of additive un-
certainty. In cases when Real-Imaginary frequency domain data is collected directly
from the plant, the corresponding uncertainty is more likely to be interval. However,
when Gain-Phase data with interval uncertainty is collected from the plant and then
translated to Real-Imaginary data, uncertainty will be semi-algebraic.
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Chapter 10

Stability and performance in
direct data-driven framework

In this chapter we first provide some basic results on positive real systems. These
results will then be used in driving the stability conditions in direct data-driven
control framework. A comprehensive discussion on positive real systems is provided
in [79], [69] and [109]. In this chapter we also provide controller parameter sets
for nominal stability and nominal performance in direct data-driven framework.
In the end, we provide controller parameter sets for robust stability and robust
performance; both for unstructured multiplicative uncertainty and UB uncertainty.

10.1 Positive real functions
Consider a rational transfer function G(s).

Definition 16 (Positive real functions). A rational transfer function G(s) is
positive real (PR) if and only if ℜ[G(s)] ≥ 0 for all ℜ[s] ≥ 0, where ℜ[.] stands for
real of [.].

Result 25 (Conditions for PR). A rational transfer function G(s) is PR if and
only if

1. G(s) is marginally stable, that is, it has no poles in the right half plane.

2. any pure imaginary pole of G(s) is a non-repetitive pole and the associated
residual is non-negative. The residual for a finite pole s = jω is calculated as
follows:

lim
s→jω

(s − jω)G(s).

3. ℜ[G(jω)] > 0 ∀ real ω.
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Definition 17 (Strictly positive real functions). A transfer function G(s) is
strictly positive real (SPR) if it is PR and there exist ϵR > 0 such that

ℜ[G(s − ϵR)] > 0. (10.1)

Result 26 (Conditions for SPR). A rational transfer function G(s) is SPR if
and only if

1. G(s) is hurwitz.

2. ℜ[G(jω)] > 0 ∀ real ω.

3. G(jω − ϵR) + GT (−jω − ϵR) > 0 ∀ real ω.

A rational transfer function G(s) with relative degree zero is SPR if and only if

1. G(s) is hurwitz.

2. ℜ[G(jω)] > 0 ∀ real ω.

Definition 18 (Weakly Strictly positive real functions). A rational transfer
function G(s) is weakly strictly positive real (WSPR) if and only if

1. G(s) is hurwitz.

2. ℜ[G(jω)] > 0 ∀ real ω.

Result 27 (Conditions for WSPR). A rational transfer function G(s) is WSPR
if and only if

1. it is stable, i.e., it has no poles in Re[s] ≥ 0.

2. The relative degree of G(s) is one, zero or minus one.

3. ℜ[G(jω)] > 0 ∀ real ω.

Result 28 (Inverse of WSPR). A rational transfer function G(s) is WSPR if
and only if G−1(s) is WSPR.

10.2 Nominal Stability (NS)
In this section, we derive a set of constraints that guarantee nominal internal

stability of the feedback control system in direct data-driven framework.

Definition 19 (NS). The closed-loop is nominal stable if the controller internally
stabilizes the nominal plant in figure 9.3.
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10.2 – Nominal Stability (NS)

Constraints for NS will be derived based on the following 4 Theorems.

Theorem 1. If the coprime factors of a rational transfer functions Gn(s) are Xn(s)
and Yn(s) then Yn(s) is always a bi-proper transfer function.

Proof. We assume that the coprime factor Xn(s) has numerator NXn(s) and de-
nominator DXn(s). We further assume that the coprime factor Yn(s) has numerator
NY n(s) and denominator DY n(s). Then the plant Gn(s) can be represented as fol-
lows:

Gn(s) = NXn(s)DY n(s)
NY n(s)DXn(s) (10.2)

Result 24 states that either Xn(s) or Yn(s) is a biproper transfer function. We first
assume that Yn(s) is a biproper transfer function which means

deg[NY n(s)] = deg[DY n(s)], (10.3)

where deg[·] stands for degree of [·].
As Gn(s) is a proper transfer function, therefore,

deg[DXn(s)] ≥ deg[NXn(s)]. (10.4)

Hence, Xn(s) is a proper transfer function. So, we can say that if Yn(s) is a biproper
transfer function then Xn(s) is always a proper transfer function.

Now, we assume that Xn(s) is a biproper transfer function, therefore,

deg[NXn(s)] = deg[DXn(s)]. (10.5)

It is evident from equation (10.2) that Gn(s) is a proper transfer function if and
only if

deg[NY n(s)] ≥ deg[DY n(s)]. (10.6)

From the definition of the coprime factors, we know that Yn(s) is a proper transfer
function. Therefore,

deg[NY n(s)] ≯ deg[DY n(s)]. (10.7)

Thus
deg[NY n(s)] = deg[DY n(s)]. (10.8)

Hence, Yn(s) is a biproper transfer function.

Theorem 2. If the coprime factors of a rational transfer functions Gn(s) are Xn(s)
and Yn(s), and the numerator and denominator of the controller K(s) are N(s) and
D(s). Then the relative degree of N(s)Xn(s) + D(s)Yn(s) is always −dm where dm

is the degree of the controller’s denominator.
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Proof. Suppose, NXn(s) and DXn(s) be the numerator and denominator of the
coprime factor Xn(s). Similarly, NY n(s) and DY n(s) be the numerator and denom-
inator of the coprime factor Yn(s). Then

N(s)Xn(s) + D(s)Yn(s) = NXn(s)DY n(s)N(s) + NY n(s)DXn(s)D(s)
DXn(s)DY n(s) . (10.9)

As, K(s) is a proper transfer function and Yn(s) is a bi-proper transfer function.
Therefore,

deg[N(s)] ≤ deg[D(s)] and deg[NY n(s)] = deg[DY n(s)]. (10.10)

Hence,
deg[NY n(s)DXn(s)D(s)] ≥ deg[NXn(s)DY n(s)N(s)]. (10.11)

Therefore,

deg[NXn(s)DY n(s)N(s) + NY n(s)DXn(s)D(s)] = deg[NY n(s)DXn(s)D(s)]
= deg[DXnDY n(s)(s)D(s)].

(10.12)

Hence, the relative degree of N(s)Xn(s) + D(s)Yn(s) is

Relative deg[N(s)Xn(s) + D(s)Yn(s)] = −deg[D(s)] = −dm. (10.13)

Theorem 3 (Necessary and sufficient conditions for stability). Given a
plant and the frequency response of its coprime factors Xn(s) and Yn(s), the con-
troller K(s, ρ) stabilizes the given plant if and only if

(i) ℜ
[︂
(N(jω, ρ)Xn(jω) + D(jω, ρ)Yn(jω))Fs(jω, ζ)

]︂
> 0 ∀ ω ∈ Ω

where,

Fs(s, ζ) = [
q∏︂

k=1
(ζks + 1)]−1

is a strictly stable and proper transfer function, ζ ∈ Rq
+ are the unknown

poles of the Fs(s, ζ) and q ∈ N can take any value (dm − 1,dm,dm + 1).

(ii) N(s, ρ) and D
′(s, ρ) are hurwitz, where

D
′(s, ρ) =

⎧⎨⎩D(s, ρ), if D(s, ρ)has no integrator
D(s, ρ)/sni , otherwise

where, ni is specify ni integrators.
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10.2 – Nominal Stability (NS)

Proof. The characteristic polynomial for the plant Gn(s) = Xn(s)Y −1
n (s) and the

controller K(s) = N(s, ρ)D−1(s, ρ) is:

Pc(s, ρ) = 1 + Gn(s)K(s, ρ) = N(s, ρ)Xn(s) + D(s, ρ)Yn(s)
D(s, ρ)Yn(s) (10.14)

For closed loop stability, we check the roots of the numerator of the Pc(s, ρ). Sup-
pose,

PN(s, ρ) = N(s, ρ)Xn(s) + D(s, ρ)Yn(s). (10.15)
Result 27 states that the transfer function PN(s, ρ) is WSPR if its relative degree

is (−1, 0 or 1). From Theorem 2 we know the relative degree of PN , which is −dm.
Thus, in order to achieve the relative degree of PN equal to (−1, 0 or 1), we need an
additional strictly stable and strictly proper rational transfer function. We name
this function Fs(s, ζ) which can be selected as:

Fs(s, ζ) = [
q∏︂

k=1
(ζks + 1)]−1

where q can take any value (dm−1, dm, dm+1).
Now, we define

Ps(s, ρ, ζ) =
{︂
N(s, ρ)Xn(s) + D(s, ρ)Yn(s)

}︂
Fs(s, ζ). (10.16)

Since, Xn(s) and Yn(s) are strictly stable functions therefore Ps(s, ρ, ζ) is also a
strictly stable function. By construction, the relative degree of Ps(s, ρ, ζ) is (−1, 0
or 1).

By result 2 the closed-loop system is stable if and only if

(i) the numerator of Ps(s, ρ, ζ) is hurwitz.

(ii) there is no unstable pole-zero cancellation between plant and controller and
transfer functions.

If N(s, ρ) and D
′(s, ρ) are hurwitz polynomials then there is no unstable pole-

zero cancellation between plant and controller.

Now, we provide conditions under which numerator of Ps(s, ρ, ζ) is a hurwitz
polynomial. As stated before, Ps(s, ρ, ζ) is a strictly stable transfer function with
relative degree equal to (−1, 0 or 1). By result 27 Ps(s, ρ, ζ) is WSPR if and only
if

ℜ
[︂
(N(jω, ρ)Xn(jω) + D(jω, ρ)Yn(jω))Fs(jω, ζ)

]︂
> 0 ∀ω ∈ Ω. (10.17)

By Result 28, P−1
s (s, ρ, ζ) is also WSPR. Hence, the numerator of Ps(s, ρ, ζ) is

a hurwitz polynomial.
Thus, the closed-loop system is stable.
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Proof of Theorem 3 using the Nyquist plot

Proof. The phase ϕG of a rational transfer function G when the Nyquist plot inter-
sects the imaginary axis is given by:

ϕG = 90◦ + 180Ni

where, Ni is an integer. Thus, for a given transfer function G if

rG > 1 or rG < −1,

where rG is the relative degree of the transfer function G, then the Nyquist plot will
always move to the left half-plane (LHP). For a strictly stable transfer function G,
even if the relative degree is -1,0,1, the Nyquist can still move to the LHP. This is
due to the fact that the relative degree of {−1,0,1} dictates the Nyquist plot to stay
in the RHP only at ω → ∞. Infact, at lower frequencies, ϕG can be less than −90◦

or greater than 90◦. Thus the Nyquist plot of a strictly stable transfer function G
stays in the RHP if and only if:

• rG = {−1,0,1}.

• ℜ{G} > 0 ∀ ω.

If G is strictly stable and satisfies both of the above conditions then, the denom-
inator of G is hurwitz as any RHP zero will force the Nyquist plot into the LHP,
hence, violating the second condition.

In Theorem 3, we need to prove that the denominator of (N(s, ρ)Xn(s) +
D(s, ρ)Yn(s)) is a hurwitz polynomial. We already know that

• (N(s, ρ)Xn(s) + D(s, ρ)Yn(s)) is a strictly stable polynomial by construction.

• the relative degree of (N(s, ρ)Xn(s) + D(s, ρ)Yn(s)) is −dm by Theorem 2.

By introducing a strictly stable transfer function Fs(s, ζ), we have restricted the
relative degree of the (N(s, ρ)Xn(s)+D(s, ρ)Yn(s))Fs(s, ζ) to {−1, 0, 1}. Thus, the
closed-loop is stable if and only if

ℜ
[︂
(N(jω, ρ)Xn(jω) + D(jω, ρ)Yn(jω))Fs(jω, ζ)

]︂
> 0 ∀ω ∈ Ω (10.18)

where N(s, ρ) and D
′(s, ρ) are the stable polynomials.

Remark 7. In equation (10.16), we have used a strictly stable transfer function
Fs(s, ζ). This is equivalent of having a controller KF (s, ρ, ζ) instead of the con-
troller K(s, ρ), where

KF (s, ρ, ζ) = N(s, ρ)Fs(s, ζ)
D(s, ρ)Fs(s, ζ)
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From the above equation, it is clear that KF (s, ρ, ζ) = K(s, ρ). Thus, if KF (s, ρ, ζ)
stabilizes a stable plant then K(s, ρ) also stabilizes that plant. It is important to
note that replacing K(s, ρ) with KF (s, ρ, ζ) has no effect on sensitivities functions.

SFs(jω) = D(jω)Yn(jω)Fs(jω, ζ)
Fs(jω, ζ)(N(jω)Xn(jω) + D(jω)Yn(jω))

= D(jω)Yn(jω)
N(jω)Xn(jω) + D(jω)Yn(jω)

= S(jω)

(10.19)

TFs(jω) = Fs(jω, ζ)N(jω)Xn(jω)
Fs(jω, ζ)(N(jω)Xn(jω) + D(jω)Yn(jω))

= N(jω)Xn(jω)
N(jω)Xn(jω) + D(jω)Yn(jω)

= T (jω)

(10.20)

Now, we provide an alternative theorem for the closed-loop stability of the
strictly stable systems. Later we will also show that this theorem is equivalent to
Theorem 3 for strictly stable systems. Since, Fs(jω, ζ) introduced additional un-
knowns ζ, this new theorem provides stability conditions for strictly stable systems
without additional unknowns that may reduce the computational complexity in
some situations.

Theorem 4 (Stability conditions for strictly stable plants). Suppose the
frequency response of a strictly stable plant Gn(s) is available then the controller
K(s, ρ) guarantees the nominal internal stability of the closed loop if and only if

(i) ℜ
[︂{︂

Gn(jω)N(jω, ρ) + D(jω, ρ)
}︂
(D−1(jω, ρ)

]︂
> 0 ∀ω ∈ Ω

(ii) N(s, ρ) and D
′(s, ρ) are hurwitz, where

D
′(s, ρ) =

⎧⎨⎩D(s, ρ), if D(s, ρ)has no integrator
D(s, ρ)/sni , otherwise

and ni is specify ni integrators.

Proof. Suppose Pss(s, ρ) is the characteristic polynomial for a strictly stable plant
Gn(s).

Pss(s, ρ) = 1 + Gn(s)K(s, ρ) = Gn(s)N(s, ρ) + D(s, ρ)
D(s, ρ) (10.21)

The closed loop system is stable if and only if
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• Gn(s)N(s, ρ) + D(s, ρ) is a hurwitz polynomial.

• there is no unstable pole-zero cancellation between the plant and the controller
while forming the loop function.

Since, we are considering the class of controllers for which N(s, ρ) and D
′(s, ρ)

are hurwitz polynomials. Thus, there is no unstable pole-zero cancellation between
the plant and the controller. Result 2 states that the controller K(s, ρ) internally
stabilizes the plant Gn(s) if the sensitivity function S(s, ρ) is BIBO stable. Since,
both the controller and the plant doesn’t have any RHP zero, therefore, the BIBO
stability is guaranteed by:

∥S(jω, ρ)∥∞ < ∞. (10.22)

By replacing the K(s, ρ) = N(s, ρ)D−1(s, ρ), equation (10.22) can equivalently
be written as: ⃦⃦⃦⃦

D(jω, ρ)
Gn(jω)N(jω, ρ) + D(jω, ρ)

⃦⃦⃦⃦
∞

< ∞. (10.23)

By using the definition of the H∞-norm, (10.23) can be rewritten as:⃓⃓⃓⃓
Gn(jω)N(jω, ρ) + D(jω, ρ)

D(jω, ρ)

⃓⃓⃓⃓
> 0 ∀ω ∈ Ω (10.24)

Since,

ℜ
[︃
GnN(ρ) + D(ρ)

D(ρ)

]︃
(jω) ≤

⃓⃓⃓⃓
GnN(ρ) + D(ρ)

D(ρ)

⃓⃓⃓⃓
(jω), (10.25)

therefore, closed-loop system is internally stable if and only if

ℜ
[︂{︂

Gn(jω)N(jω, ρ) + D(jω, ρ)
}︂
(D−1(jω, ρ)

]︂
> 0 ∀ω ∈ Ω. (10.26)

Remark 8. By equations (10.17) and (10.26), Theorem 3 and 4 are equivalent if
Fs(s, ζ) = D−1(s, ρ), Xn(s) = Gn(s) and Yn(s) = 1.

Remark 9. In the rest of this section, we will use Theorem 3 only for the closed-
loop stability of unstable and marginally stable plants, whereas Theorem 4 will be
applied to ensure the closed-loop stability of the strictly stable plants.
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10.2.1 Stability of the controller
For CT systems, stability of the controller’s numerator and denominator is

achieved by using the Routh hurwitz criteria. For DT systems, stability of N(z, ρ)
and D

′(z, ρ) is ensured by using the Jury stability test. Here, we provide stability
of only for CT controller which can straight forwardly be extended to the DT
controllers as well.

From the controller structure provided in equation(9.12), it is clear that D
′(s, ρ)

is a hurwitz polynomial if and only if, all the coefficients in the first column of the
Routh table are positive. For polynomial N(s, ρ), sign of coefficients in the first
column of Routh’s table is dictated by the dc values of (10.17) and (10.26).

N0(ρ)Xn0 + D0(ρ)Yn0 > 0 (10.27)

Gn0N0(ρ) + D0(ρ)
D

′
0(ρ) > 0 (10.28)

where, (i) Xn0 and Yn0 are the dc value of the coprime factors, (ii) N0(ρ) and D0(ρ)
are the dc gain of N(s, ρ) and D(s, ρ), (iii) Gn0 is the dc gain of the plant, and (iv)
D

′
0(ρ) is the dc gain of D

′(s, ρ).

10.2.2 Controller parameter set for nominal stability
Definition 20 (Stabilizing Controller Parameter Set). A stabilizing controller
parameter set

S = {ρ ∈ Rnp |K(s, ρ) internally stabilizes Gn(s)} (10.29)

is the set of all the parameters of the controller that guarantee the internal stability
of the nominal plant Gn(s) in figure 9.3.

For stable plants, ρ is unknown whereas, ρ and ζ are unknown for unstable
and marginally stable plants. Thus, for the unified representation of the nominal
stability, we define

ξ = [ρ, ζ]T

and

FNS(jω, ξ) =

⎧⎨⎩FNS1(jω, ξ), for unstable and marginally stable systems
FNS2(jω, ξ), for stable systems

(10.30)
where,

FNS1(jω, ξ) = ℜ
[︂(︂

N(jω, ρ)Xn(jω) + D(jω, ρ)Yn(jω))Fs(jω, ζ)
]︂

(10.31)
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FNS2(jω, ξ) = ℜ
[︂(︂

Gn(jω)N(jω, ρ) + D(jω, ρ))(D−1(jω, ρ)
]︂
. (10.32)

Suppose, g(ρ) be the set of constraints that ensure the stability of N(s, ρ) and
D(s, ρ), then the set S can be redefined as:

SΩ = {ρ ∈ Rnp , ζ ∈ Rq
+ : FNS(jω, ξ) > 0 ∀ω ∈ Ω,

g(ρ) > 0.0}
(10.33)

In direct data-driven framework, frequency response of the plant or its coprime
factors is obtained for a set finite frequencies Ωd. Therefore, the set SΩ must be
redefined for finite frequencies set.

SΩd
= {ρ ∈ Rnp , ζ ∈ Rq

+ : FNS(jω, ξ) > 0 ∀ω ∈ Ωd,

g(ρ) > 0.0}
(10.34)

Since the set SΩd
is the same for both unstable and marginally stable plants,

therefore in the rest of the section, the term unstable plants will be used both
for marginally stable and unstable plants. Similarly, strictly stable plants will be
referred as stable plants.

10.3 Nominal Performance (NP)
Definition 21 (NP). The closed loop system in figure 9.3 achieves the nominal
performances if:

∥S(s, ρ)W1(s)∥∞ < γ

∥T (s, ρ)W2(s)∥∞ < γ
(10.35)

where, γ ≤ 1.

Definition 22 (NP Controller Parameter Set). A performance controller pa-
rameter set

P = {ρ ∈ Rnp |∥S(s, ρ)W1(s)∥∞ ≤ γ,

∥T (s, ρ)W2(s)∥∞ ≤ γ,

}
(10.36)

is the set of all the controller parameters that guarantees the nominal performance
of the plant Gn(s) given in figure 9.3.

Based on definitions of H∞-norm in equation (1.7), sensitivity function in equa-
tion (9.14) and complementary sensitivity function in equation (9.15), P can be
rewritten as follows.
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PΩ = {ρ ∈ Rnp

γ1|N(jω, ρ)Xn(jω) + D(jω, ρ)Yn(jω)|2 − |W1(jω)D(jω, ρ)Yn(jω)|2 ≥ 0 ∀ω ∈ Ω,

γ1|N(jω, ρ)Xn(jω) + D(jω, ρ)Yn(jω)|2 − |W2(jω)N(jω, ρ)Xn(jω)|2 ≥ 0 ∀ω ∈ Ω
}

(10.37)
where, γ1 = γ2.

In direct data-driven framework PΩ is rewritten as:

PΩd
= {ρ ∈ Rnp

γ1|N(jω, ρ)Xn(jω) + D(jω, ρ)Yn(jω)|2 − |W1(jω)D(jω, ρ)Yn(jω)|2 ≥ 0 ∀ω ∈ Ωd,

γ1|N(jω, ρ)Xn(jω) + D(jω, ρ)Yn(jω)|2 − |W2(jω)N(jω, ρ)Xn(jω)|2 ≥ 0 ∀ω ∈ Ωd

}
(10.38)

10.4 Robust stability and performance under un-
structured multiplicative uncertainty

10.4.1 Robust Stability (RS)
Definition 23 (RS). The closed-loop system is robustly stable if the controller
internally stabilizes every plant belonging to Π in equation (9.16).

By using result 3, the uncertain plant Gp(s) is robustly stable if the nominal
sensitivity function S(s, ρ) is stable and

∥T (s, ρ)Wu(s)∥∞ ≤ γ. (10.39)

where, γ ≤ 1.
Based on definitions of H∞-norm in equation (1.7) and complementary sensi-

tivity function in equation (9.15), equation (10.39) can be rewritten as given by.

γ1|N(jω, ρ)Xn(jω) + D(jω, ρ)Yn(jω)|2 − |Wu(jω)N(jω, ρ)Xn(jω)|2 ≥ 0 ∀ω ∈ Ω
(10.40)

In data-driven framework, RS can be redefined as:

γ1|N(jω, ρ)Xn(jω) + D(jω, ρ)Yn(jω)|2 − |Wu(jω)N(jω, ρ)Xn(jω)|2 ≥ 0 ∀ω ∈ Ωd

(10.41)
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Definition 24 (Robust stabilizing Controller Parameter Set). A robust sta-
bilizing controller parameter set

Rs = {ρ ∈ Rnp|K(s, ρ) internally stabilizes Gp(s)} (10.42)

is the set of all the parameters of the controller that guarantee the robust stability
of the uncertain plant Gp(s) in figure 9.3.

The set Rs can alternatively be rewritten as:

RΩd
={ρ ∈ Rnp , ζ ∈ Rq

+ : FNS(jω, ξ) > 0 ∀ω ∈ Ωd,

γ1|N(jω, ρ)Xn(jω) + D(jω, ρ)Yn(jω)|2 − |Wu(jω)N(jω, ρ)Xn(jω)|2 ≥ 0 ∀ω ∈ Ωd,

g(ρ) > 0.0}
(10.43)

10.4.2 Robust Performance
Definition 25 (Robust Performance (RP)). .

The closed loop system achieves the robust performance if the performance ob-
jectives are satisfied for every plant belonging to Π in equation (9.16).

The closed loop system in figure 9.3 achieves RP if NP and RS are achieved by
a factor of 2 (e.g., [85]), that is,

∥S(s, ρ)W1(s)∥∞ < 0.5 (10.44)

and
|T (s, ρ)Wu(jω)∥∞ < 0.5. (10.45)

Based on definitions of H∞-norm in equation (1.7) and RP in equations ((10.44)-
(10.45)), we define the following RP controller parameter set.

Definition 26 (RP Controller Parameter Set). A RP controller parameter set

PR = {ρ ∈ Rnp |∥S(s, ρ)W1(s)∥∞ ≤ 0.5,

∥T (s, ρ)Wu(jω)∥∞ ≤ 0.5,

}
(10.46)

is the set of all the parameters of the controller that guarantee the robust perfor-
mance of the uncertain plant Gp(s) in figure 9.3.

The RP controller parameter set can alternative be defined as:
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PRΩ = {ρ ∈ Rnp

0.25|N(jω, ρ)Xn(jω) + D(jω, ρ)Yn(jω)|2 − |W1(jω)D(jω, ρ)Yn(jω)|2 ≥ 0 ∀ω ∈ Ω,

0.25|N(jω, ρ)Xn(jω) + D(jω, ρ)Yn(jω)|2 − |Wu(jω)N(jω, ρ)Xn(jω)|2 ≥ 0 ∀ω ∈ Ω
}

(10.47)
In direct data-driven framework, PRΩ can be alternatively rewritten as:

PRΩd
= {ρ ∈ Rnp

0.25|N(jω, ρ)Xn(jω) + D(jω, ρ)Yn(jω)|2 − |W1(jω)D(jω, ρ)Yn(jω)|2 ≥ 0 ∀ω ∈ Ωd,

0.25|N(jω, ρ)Xn(jω) + D(jω, ρ)Yn(jω)|2 − |Wu(jω)N(jω, ρ)Xn(jω)|2 ≥ 0 ∀ω ∈ Ωd

}
(10.48)

10.5 Robust stability and robust performance for
UB uncertainty

Definition 27. If frequency response samples are collected from the coprime factors
of a plant are subjected to UB uncertainty described by equations (9.22)-(9.26) then
the closed-loop system will be robustly stable if

FRS(jω, ξ, Φ) = ℜ
[︂(︂

N(jω, ρ)X̃(jω, ϕ1)+D(jω, ρ)Ỹ (jω, ϕ2)
)︂
Fs(jω, ζ)

]︂
> 0

∀Φ ∈ U and ∀ω ∈ Ωd

(10.49)
where, for stable systems, Fs(jω, ζ) = D−1(jω, ρ), X̃(jω, ϕ1) = G̃(jω, ϕ1) and
Ỹ (jω, ϕ2) = 1.

Definition 28. A system subjected to UB uncertainty described by equations (9.22)-
(9.26) achieves the closed loop robust performance if

(i) W1(jω)S̃(jω, Φ) ≤ γ ∀Φ ∈ U , and

(ii) W2(jω)T̃ (jω, Φ) ≤ γ ∀Φ ∈ U

where, γ ≤ 1,

S̃(jω, Φ) = D(jω, ρ)Ỹ (jω, ϕ2)
N(jω, ρ)X̃(jω, ϕ1) + D(jω, ρ)Ỹ (jω, ϕ2)

(10.50)

T̃ (jω, Φ) = N(jω, ρ)X̃(jω, ϕ1)
N(jω, ρ)X̃(jω, , ϕ1) + D(jω, ρ)Ỹ (jω, ϕ2)

(10.51)
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Based on the definitions of S̃(jω, Φ) and T̃ (jω, Φ) provided in the equations
(10.50) and (10.51), the RP conditions for UB uncertainty can equivalently be
written as:

FW 1(jω, ρ, Φ) =γ1|N(jω, ρ)X̃(jω, ϕ1) + D(jω, ρ)Ỹ (jω, ϕ2)|2 − |W1(jω)D(jω, ρ)Ỹ (jω, ϕ2)|2 > 0
∀Φ ∈ U and ∀ω ∈ Ωd

FW 2(jω, ρ, Φ) =γ1|N(jω, ρ)X̃(jω, ϕ1) + D(jω, ρ)Ỹ (jω, ϕ2)|2 − |W2(jω)N(jω, ρ)X̃(jω, ϕ1)|2 > 0
∀Φ ∈ U and ∀ω ∈ Ωd

(10.52)
For stable plants, RP conditions are obtained by replacing X̃(jω, ϕ1) = G̃(jω, ϕ1)
and Ỹ (jω, ϕ2) = 1 in equation (10.52).

Remark 10. It is important to mention that in this chapter (and in the rest of
this section), the conditions for stability, robust stability and robust performance
are posed for a discrete set of frequencies as the data from the plant is obtained for
a finite frequencies set Ωd. This is based on the assumptions that a good experiment
was performed for the acquisition of the data and the number of frequencies in Ωd

are sufficient for describing the true behaviour of the plant. These assumptions are
reasonable in a sense that the similar type of assumptions are also made in any
black-box identification technique used for identifying the model of the plant.

It is worth mentioning that many interesting results in the field of scenario based
optimization are available for gridding the infinite constraints using a randomiza-
tion approach such that the violation probability approaches zero when the number
of samples goes to infinity (see e. g., [48], [140], [141] and [154]). The use of
randomized approach for choosing frequencies in Ωd will be the subject of the future
work.
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Chapter 11

Design of FOFS H∞ controller in
direct data-driven framework

In this chapter we consider the design of FOFS H∞ direct data-driven controllers
for the following problems.

(1) Problem 1: NS and NP.

(2) Problem 2: RS and NP for unstructured multiplicative uncertainty.

(3) Problem 3: RS and RP for unstructured multiplicative uncertainty.

(4) Problem 4: RS and RP for UB uncertainty.

Based on the results from the previous chapter, all four problems of direct data-
driven control design are first formulated as polynomial optimization problems
which are then solved by suitable convex relaxation methods.

11.1 Design of FOFS H∞ direct data-driven con-
troller for NS and NP

Based on the definition of SΩd
and PΩd

, the feasible controller parameter set
(FCPS) for NP and NS is given by:

DN = SΩd
∩ PΩd

(11.1)

That controller parameters that ensures the NS and NP are computed by solving
the following the polynomial optimization problem.

ξ∗ = arg min
ξ∈DN

γ1 (11.2)
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where, γ1 = γ2. As the constraints in FCPS given in equation(11.1) are nonconvex
polynomials in ξ, solving the problem in the equation (11.2) is NP-hard. To obtain
a globally optimal solution, we provide the following algorithm for solving the
optimization problem in equation (11.2).

Algorithm 2 SDP relaxation of FCPS

(i) Apply moment relaxation given in [83] to relax the nonconvex FCPS into a SDP
by choosing a suitable relaxation order.

(ii) Solve the SDP by YALMIP ([78]) and MOSEK ([115]).

(iii) Extract the global optimal solution (or solutions, if there are many solutions)
by extraction algorithm given in [28].

11.2 Design of robust FOFS H∞ controller for un-
structured multiplicative uncertainty

11.2.1 Design of robust FOFS H∞ controller for RS and
NP

Based on the definitions of RΩd
and PΩd

, the FCPS for achieving the RS and
NP in direct data-driven framework can be written as:

DR = {ρ ∈ Rnp , ζ ∈ Rq
+ :, FS(jω, ξ) > 0 ∀ω ∈ Ωd,

γ1|N(jω, ρ)X(jω) + D(jω, ρ)Y (jω)|2 − |W1(jω)D(jω, ρ)Y (jω)|2 ≥ 0 ∀ω ∈ Ωd,

γ1|N(jω, ρ)X(jω) + D(jω, ρ)Y (jω)|2 − |Wu(jω)N(jω, ρ)X(jω)|2 ≥ 0 ∀ω ∈ Ωd

g(ρ) > 0.0}.
(11.3)

where, γ1 = γ2.
The controller parameters for RS and NP are computed by solving to the fol-

lowing problem.
ξ∗ = arg min

ξ∈DR

γ1 (11.4)

The FCPS DR contains the nonconvex polynomials in ξ therefore the optimiza-
tion problem in equation (11.4) is NP-hard and difficult to solve. Thus, we use
algorithm 2 for solving the optimization problem in equation (11.4).
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11.2.2 Design of robust FOFS H∞ controller for RS and
NP

According to definitions of the sets SΩd
and PRΩd

, the FCPS for RS and RP is
defined as:

DP = SΩd
∩ PRΩd

. (11.5)

The controller parameters for RS and RP are obtained according to the following
problem.

ξ∗ = arg min
ξ∈DP

γ1 (11.6)

where, γ1 = γ2.
Since the polynomial optimization problem in equation (11.6) is nonconvex in

ξ therefore, we use algorithm 2 for solving the optimization problem in equation
(11.6).

Remark 11. It is important to mention that the controller computed for each of
the problem 1, problem 2 and problem 3 will be different for the proposed method
and the methods presented in ([6] and [13] ), even if the desired controller has no
unknown parameter in the denominator. This is due to the difference in the adopted
methodologies. For example in ([6] and [13] ), the constraint

γ1|N(jω, ρ)X(jω) + D(jω, ρ)Y (jω)| ≥ |W1(jω)D(jω, ρ)Y (jω)| (11.7)

is approximated by:

ℜ
[︂
{N(jω, ρ)X(jω) + D(jω, ρ)Y (jω)}F ] ≥ γ−1

1 |W1(jω)D(jω, ρ)Y (jω)| (11.8)

where F , N(jω, ρ) and D(jω, ρ) are stable transfer functions. In [6], the controller
is linearly parameterized and F = 1 such that the problem in (11.8) is converted
into an SDP for a given frequency grid. Similarly, in [13] a nonconvex problem
is solved locally for the optimal choice of the (i) controller parameters, (ii) basis
function parameters for the linearly parameterized controller and, (iii) basis func-
tion parameters for the linearly parameterized F. In our approach, N(jω, ρ) and
D(jω, ρ) are polynomials and the convexity of the FCPS is obtained by exploiting
moment based convex relaxation.

It is also worth mentioning that our method has a higher computational com-
plexity than the methods proposed in ([6] and [13] ). This is due to the inherent
higher computational cost associated with moment based convex relaxation.
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11.3 Design of robust FOFS H∞ controller for UB
uncertainty

Based on the definitions 27 and 28, the FCPS for RS and RP for UB uncertainty
can be defined as:

DRp = {ρ ∈ Rnp , ζ ∈ Rq
+, Φ ∈ U :

FRS(jω, ξ, Φ) > 0 ∀Φ ∈ U and ∀ω ∈ Ωd,

FW 1(jω, ρ, Φ) > 0 ∀Φ ∈ U and ∀ω ∈ Ωd,

FW 2(jω, ρ, Φ) > 0 ∀Φ ∈ U and ∀ω ∈ Ωd,

g(ρ) > 0.0}

(11.9)

It is worth mentioning that the uncertainty set U is a compact set by construction.
The compactness of the stability set can be achieved by restricting the controller
variables to a Euclidean ball by adding a redundant constraint similar to equation
(2.13). The optimization problem for computing the controller parameters is given
by:

min γ1

s.t. DRp(jω, ξ, Φ) ∀Φ ∈ U, ∀ω ∈ Ωd.
(11.10)

where, γ1 = γ2.
The FCPS DRp contains nonconvex polynomials in ξ. Furthermore, the set U is

an infinite set, therefore at each frequency, the FCPS DRp has infinite constraints in
Φ. Thus, the polynomial optimization problem in equation (11.10) is a semi-infinite
polynomial optimization problem (SIPP). In this work, we solve SIPP in equation
(11.10) by using the algorithm 3, which is based on the results presented in [101].

Since the stability set and the uncertainty set are compact, sub-problems (Qk)
and (Ok

i ) are solved globally by SDP relaxations and global optimal solutions are
extracted in each iteration, therefore Algorithm 3 has a finite convergence according
to result 23.
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Algorithm 3 SDP relaxation of SIPP

1: Choose a random Φ0 ∈ U and select U0 = {Φ0}. Set k = 0.

2: For kth iteration, apply moment relaxation given in [83] to solve

(Qk) :

⎧⎪⎨⎪⎩
γmin

1k := min γ1

s.t. DRp(ω, ξ, Φ) ∀Φ ∈ Uk, ∀ω ∈ Ωd

The global optimal solutions are extracted by extraction algorithm given in [28].
Let Sk = {ξk

1 , ..., ξk
ℓ } be the set of the global minimizers of problem (Qk).

3: Set Uk+1 = Uk. For i = 1, ..., ℓ, do the following

a) For frequency set Ωd = {ω1, ω2, . . . , ωn} calculate F =
[DRp(ω1, ξk

i , Φ), DRp(ω2, ξk
i , Φ), . . . , DRp(ωn, ξk

i , Φ)]T .

b) Use moment relaxation given in [83] to solve

(Ok
i ) : Fk

i :=
[︂

min
Φ∈U

F(ξk
i , Φ)(1), min

Φ∈U
F(ξk

i , Φ)(2),

. . . , min
Φ∈U

F(ωn, ξk
i , Φ)(3ωn)

]︂T

c) If all the elements of Fk
i are positive then stop. Otherwise select only those

elements of Fk
i which are negative and choose corresponding global minimizers.

d) Let T k
i = {Φk

i,j, j = 1, ..., tik} be the set of global minimizers of (Ok
i ) for

which elements of Fk
i are negative. Update Uk+1 = Uk+1

⋃︁
T k

i .

4: If k > kmax, stop. Otherwise k = k + 1 and go to step 2.
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Chapter 12

Simulation Examples

All the simulations in this chapter are performed on a PC running on 64 bit
Windows 10 platform, equipped with Intel core i7 − 7500 CPU and 8 GB RAM.

12.1 NS and NP for a stable DT system
Consider the following nominal DT system, which is strictly stable and minimum

phase.
Gn(z) = z + 0.43

z2 − 0.57z + 0.37 (12.1)

The sampling time for Gn(z) is 1 second. The nominal performance specifications
are given by the frequency domain weighting filters W1(z) and W2(z),

W1(z) = 0.631z2 − 1.021z + 0.4133
z2 − 1.819z + 0.8187 (12.2)

W2(z) = z2 − 1.096z + 0.2231
0.125z + 0.07612 (12.3)

where, W1(z) is the weighting filter for sensitivity function and W2(z) is the weight-
ing filter for the complementary sensitivity function. It is worth mentioning that
W1(z) and W2(z) are designed from the time domain specifications according to
the methodology presented in [95].

The goal is to design a PI-controller

K(z, ρ) = N(z, ρ)
D(z, ρ) = c1(z − 1) + c2

z − 1 (12.4)

such that the closed loop system satisfy the performance specifications W1(z) and
W2(z).

First of all, we will drive the stability constraints for N(z, ρ) and D(z, ρ). It is
clear from the equation (12.4) that D

′(z, ρ) = 1, thus there is no constraint for the
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stability of D
′(z, ρ). The condition in equation (10.27) is satisfied if c2 > 0. From

Jury stability test, N(z, ρ) is a stable polynomial if {c1 > 0, c2 > 0, 2c1 − c2 > 0}.
Thus, the constraints for the stability N(z, ρ) and D

′(z, ρ) are

g(ρ) = {c1 > 0, c2 > 0, 2c1 − c2 > 0}. (12.5)

In this example we collect frequency response data from Gn(z) at 100 logarith-
mically spaced frequencies between 0.001 rad/sec and 3.0903 rad/sec.

To find the parameters of the FOFS controller K(z, ρ), the nominal feasible
controller set DN (for DT system) is constructed according to equation (11.1). By
applying moment relaxation of order 4, the FCPS DN is relaxed to SDP. The opti-
mization problem in equation (11.2) is solved by using YALMIP ([78]) and MOSEK
([115]). The optimization problem converged with γ = 0.9775 n approximately 8
seconds. The global optimal solutions are extracted by extraction algorithm given
in [28]. The value of γ obtained from Hinfstruct function of MATLAB is 0.9777.

The controller obtained is given by:

K(z) = 0.048z + 0.04545
z − 1 (12.6)

It is worth mentioning that in this example the value of γ is almost same for
the proposed method and the Hinfstruct. However, since the proposed approach
uses frequency response data at the finite set of frequencies and the optimization
problem is solved by using convex relaxation methods, the optimal solution for the
proposed approach and the Hinfstruct may differ slightly in other cases.

The closed loop step response for the nominal plant is plotted in figure 12.1.
It is clear from the step response that the closed-loop system has achieved the

nominal stability.
For NP, we plot W1(z) against the sensitivity function S(z) in figure 12.2 and

W2(z) against the complementary sensitivity function T (z) in figure 12.3.
It is evident from figures (12.2-12.3) that:

1. magnitude of the S(z) is smaller than the magnitude of W −1
1 (z) at all fre-

quencies.

2. magnitude of T (z) is smaller than the magnitude of W −1
2 (z) at all frequencies.

Thus the closed loop system achieves the nominal performances specified by the
weighting filter W1(z) and W2(z).
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Figure 12.1: Closed-loop step response
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−1(ejω)| (solid) and |S(ejω))| (dashed)
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Figure 12.3: Comparison between |W2
−1(ejω)| (solid) and |T (ejω)| (dashed)

12.2 RS and NP for an unstable system CT sys-
tem

We consider the following uncertain plant analysed in [8].

Gp(s) = (s + 1)(s + 10)
(s + 2)(s + 4)(s − 1)(1 + Wu(s)∆(s)) (12.7)

where, weighting function for uncertainty is

Wu(s) = 0.81.1337s2 + 6.8857s + 9
s + 10 (12.8)

and weighting function for the complementary sensitivity function is

W1(s) = 2
(20s + 1)2 . (12.9)

It is important to note that the W1(s) and W2(s) are same as considered in [8].
Since, the plant Gp(s) is an unstable plant, therefore, an initial stabilizing controller
is required to obtain the coprime factors of the plant. In this example, we consider
the following stabilizing controller Ks(s)

Ks(s) = 2.074s2 + 9.702s + 6.425
0.01s2 + s

, (12.10)
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which is also the initial stabilizing controller used for constructing the desired open
loop transfer function in [8]. The coprime factors of the plant are given by:

Xn(s) = Gn(s)Ks(s)
1 + Gn(s)Ks(s)

= (s + 10)(s + 1)
(s + 300)(s2 + 1.698s + 0.8185)

(12.11)

Yn(s) = Ks(s)
1 + Gn(s)Ks(s)

= (s + 4)(s + 2)(s − 1)
(s + 300)(s2 + 1.698s + 0.8185)

(12.12)

where,
Gn(s) = (s + 1)(s + 10)

(s + 2)(s + 4)(s − 1) (12.13)

is the nominal plant.
The objective is to design a PID controller (same as in [8])

K(s, ρ) = N(s, ρ)
D(s, ρ) = c1s

2 + c2s + c3

c4s2 + s
, (12.14)

such that uncertain plant Gp(s) is internally stable while achieving the NP defined
through W1(s).

First of all, we will drive constraints for the stability of the controller based on
the Routh stability criteria. The numerator of the controller without integrator is
given by:

D
′(s, ρ) = c4s + 1. (12.15)

By applying Routh’s criteria to D
′(s, ρ), we get c4 > 0. For polynomial N(s, ρ),

sign of the coefficients in the first column of the Routh’s table is governed by the
equation (10.27), that is,

N0(ρ)Xn0 = c3 > 0. (12.16)
Now, by applying Routh’s criteria to N(s, ρ), we get {c1 > 0, c2 > 0, c3 > 0}.
Suppose, g(ρ) be the set of constraints that ensures the stability of N(s, ρ) and
D

′(s, ρ).

g(ρ) = {c1 > 0, c2 > 0, c3 > 0, c4 > 0}. (12.17)
We assume that the data from the coprime factors of the plant is collected at

the following set of frequencies.

Ωd = {0.01 : 0.01 : 0.09, 0.1 : 0.1 : 0.9, 1 : 1 : 20, 20 : 5 : 200}. (12.18)
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According to Theorem 3, Fs(s, ζ) is chosen as a first order pole:

Fs(s, ζ) = 1
s + ζ

. (12.19)

Based on Xn(s), Yn(s), K(s, ρ), g(ρ) and Fs(s, ζ), FCPS DR is constructed ac-
cording to equation (11.3). By applying moment relaxation of order 5, the FCPS
DR is relaxed to SDP. The optimization problem in equation (11.4) is solved by
using YALMIP ([78]) and MOSEK ([115]). The global optimal solutions are ex-
tracted by extraction algorithm given in [28]. Optimization problem converged with
γ = 0.73 and ζ = 1.8178 in approximately 25 minutes. The value of γ obtained by
Hinfstruct toolbox of MATLAB is 0.72, whereas the value of the γ computed by
the algorithm in [8] is 0.7247. It is important to mention that the Hinfstruct is a
model based approach and the direct comparison between the proposed technique
and Hinfstruct is not possible. Similar, direct data-driven approach proposed in [8]
is also different from the proposed technique. Thus for aforementioned techniques,
the optimal value of γ may differ slightly.

The controller obtained is

K(s) = 0.4589s2 + 2.0082s + 3.6093
s(0.0042s + 1) . (12.20)

The closed loop step response for the nominal plant is plotted in figure 12.4. It is
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Figure 12.4: Closed-loop step response of the nominal plant

clear from the step response that the closed-loop nominal system is stable.
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12.3 – RS and RP for a stable system subjected to UB uncertainty

For RS, we plot the Wu against the complementary sensitivity function T in
figure 12.5. It is clearly visible from the figure 12.5 that the magnitude of the
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Figure 12.5: Comparison between |Wu
−1(jω)| (solid) and |T (jω)| (dashed)

complementary sensitivity function T is smaller than the magnitude of W −1
u (s)

at all frequencies, thus the uncertain system Gp(s) is robustly stable against the
unstructured uncertainty defined by weighting function Wu(s).

For NP, we plot W1(s) against the sensitivity function S(s) in figure 12.6. Since,
from figure 12.6, magnitude of the sensitivity function is smaller than the magnitude
of W −1

1 (s) at all frequencies, thus the closed loop system achieves the nominal
performances specified by the weighting filter W1(s).

12.3 RS and RP for a stable system subjected to
UB uncertainty

Consider the following strictly stable CT plant

Gn(s) = 466.67(s + 15)
(s + 7)(s + 20)(s + 50) . (12.21)

The frequency response of the plant is acquired at 120 frequencies logarithmically
spaced between 10−1.5 rad/sec and 102.5 rad/sec. The frequency response of the
plant Gn(s) is subjected to additive uncertainty, that is,

G̃(jω) = Gn(jω) + ηα1 + jηβ1 ∀ω ∈ Ωd (12.22)
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Figure 12.6: Comparison between |W1
−1(jω)| (solid) and |S(jω)| (dashed)

where, ηα1 and ηβ1 belongs to the set Φ.

Φ =
{︂
ϕ1 ∈ R2 : ϕ1 = [ηα1, ηβ1]T ; ηα1 ∈ [−0.2 0.2],

ηβ1 ∈ [−0.25 0.25],
}︂
.

(12.23)

The objective is to design a PI controller

K(s) = N(s, ρ)
D(s, ρ) = c1s + c2

s
(12.24)

such that the plant G̃(s) is robustly stable while achieving the robust performance
according to definition 28.

The weighting filter for S̃(jω, Φ) is:

W1(s) = 11.14s2 + 1.782s + 0.0713
12.5s2 + s

.

Similarly, the weighting transfer function for T̃ (jω, Φ) is

W2(s) = 90s2 + 1890s + 3240
248s + 3720 .

It is worth mentioning that W1(s) and W2(s) are designed according to the time
domain specification.
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12.3 – RS and RP for a stable system subjected to UB uncertainty

The stability of the controller is ensured through Routh’s stability criteria. As-
suming that g(ρ) be the set of constraints that ensures the stability of N(s, ρ) and
D

′(s, ρ) then

g(ρ) = {c1 > 0, c2 > 0}. (12.25)
Based on the available information, the FCPS DRp is constructed according to

equation (11.9). Since, DRp is nonconvex polynomial in unknown controller pa-
rameters and semi infinite polynomial in uncertainty. The optimization problem in
equation (11.10) is relaxed and solved according to Algorithm 3 by using YALMIP
([78]) and MOSEK ([115]). The optimization problem converged in 2 iterations
where problem (Qk) is solved with a relaxation order of 4, and each problem in
(Ok

i ) is solved with a relaxation order of 3. The optimization problem converged
with γ = 0.9718 in approximately 15 minutes and the obtained controller is:

K(s) = 0.0260s + 0.1268
s

. (12.26)

The closed loop step response for the nominal plant is plotted in figure 12.7. It
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Figure 12.7: Closed-loop step response of the nominal plant

is clear from the figure figure 12.7 that the closed-loop nominal system is stable.
We grid both ηα1 and ηβ1 into 51 equally spaced values and call this grid as Φg.
The values of FRS(jω, ξ, Φ) in equation (10.49) are computed over the grid Φg for
every frequency in Ωd. The result is plotted in the figure 12.8. It is clear from the
figure 12.8 that FRS(jω, ξ, Φg) > 0 for all frequencies in Ωd. Hence, the closed-loop
system is robustly stable.

For RP: we plot W1(s) against S̃(jω, Φg) in figure 12.9; and W2(s) against
T̃ (jω, Φg) in figure 12.10.
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Figure 12.8: FRS(jω, ξ, Φg)
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Figure 12.9: Comparison between |W1
−1(jω)| (solid) and |S̃(jω, Φg)| (dashed)
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Figure 12.10: Comparison between |W2
−1(jω)| (solid) and |T̃ (jω, Φg)| (dashed)

It is clear from the figures ( 12.9-12.10) that the closed system has achieved the
desired robust performance.
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Chapter 13

Conclusions

In this section, we have proposed a unified approach for designing robust FOFS
H∞ mixed-sensitivity direct data-driven controllers, both for CT and DT systems.
The proposed method does not need any mathematical model of the plant and
only requires the frequency response samples collected from the plant (for stable
systems) or its co-prime factors (for the unstable system) at discrete frequencies.
The problem of designing the H∞ mixed sensitivity direct data-driven controller is
reformulated as a polynomial optimization problem. The polynomial optimization
problem is then relaxed to an SDP using moment relaxation.

The necessary and sufficient conditions for achieving nominal stability in the
direct data-driven framework without linear parameterization of the controller are
also developed in this section. It is worth mentioning that stability conditions for
direct-data driven control, provided in [8] and [6], are limited to linear parameter-
ized controllers and can only be applied in H∞ mixed sensitivity framework. On the
other hand, stability conditions developed in this section are generic and applicable
to both linearly and nonlinearly parameterized controllers.

Two classes of uncertainties for designing robust FOFS H∞ mixed-sensitivity
direct data-driven controllers are considered in this section. The first uncertainty
class is the unstructured uncertainty bounded by a frequency domain weighting
filter. A method to compute the frequency domain weighting filter for the unstruc-
tured uncertainty is also provided in this section. However, computation of this
filter requires collecting a large number of frequency response samples from the
plant or its co-prime factors at each frequency. For the unstructured description of
uncertainty, a single shot moment relaxation-based algorithm is provided for com-
puting the parameters of the FOFS controller. In the second case, it is assumed
that the frequency response samples collected from the plant or its co-prime fac-
tors are subjected to UB uncertainty that belongs to a given semi algebraic set.
For UB uncertainty, an iterative algorithm based on the exchange method is pro-
vided to design robust FOFS H∞ mixed-sensitivity direct data-driven controllers.
It is worth mentioning that the sub-problems in the exchange algorithms are solved
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globally by using moment relaxation. The main advantage of this method is that
it requires only one sample of data at each frequency for computing robust FOFS
direct data-driven controllers.

The main advantages of the proposed algorithms compared to existing methods
are:

(i) It does not require linear parameterization of the controller or its co-prime
factors.

(ii) Compared to [13] and [5], which provide only the local solutions, the proposed
algorithm guarantees the globally optimal solution.

(iii) Compared to [98], [63], [64] and [8], it does not require fixing the denominator
of the controller for the globally optimal solution.

(iv) In contrast to [6] which converges to a globally optimal solution only for
higher-order controllers, the proposed algorithms converge to the globally
optimal solution, both for low-order and high-order fixed structure controllers.

Finally, we provide three simulation examples to show the efficiency of the
proposed algorithms on both CT and DT systems.
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Computation of Bode envelope
bounds for LTI systems effected

by semialgebraic parametric
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Chapter 14

Introduction

Uncertainty in the plant’s model exists for all physical systems. The parametric
uncertainty in the model can come from several sources. For example, the pa-
rameters are known approximately, they may vary due to nonlinearities, they may
change due to changes in the operating conditions or aging. As an example of
parametric uncertainty, consider the following mass-spring-damper model.

G(s) = 1
ms2 + bs + k

(14.1)

where k is the spring constant, b is the damping and m is the mass. Suppose m is
uncertain and we only know that the value of m varies from 2 to 3, then the system
in (14.1) is said to be a parametric uncertain system.

Frequency domain is one of the the key tool in the linear control theory. One of
the best tool in the frequency domain is the H∞ control. Parametric uncertainty can
be represented in the H∞ framework by considering real perturbations. However,
real perturbations are difficult to handle both mathematically and numerically.
Typically, in the H∞ framework, the real perturbations are replaced with complex
perturbations which results in overbounding of the uncertainty set.

Many powerful graphical tools such as the Bode plot, Nyquist plot, and Nichols
chart are also available in the frequency domain for the control system design and
analysis. In the case of the fixed nominal plants, stability and stability margins can
be computed from these graphical tools. However, it becomes much more difficult
to compute the stability and stability margins for parametric uncertain plants, as
the frequency response of the entire family must be available for this purpose. Loop
shaping is one of the powerful methods for the control system design and it can
be performed on the Bode, Nyquist, and Nichole plots. For loop shaping of the
parametric uncertain plants, it is compulsory to compute the frequency response
of every member of the entire family.

A significant effort through the years has been devoted towards the problem of
computing Bode, Nichole and Nyquist envelopes for systems affected by parametric
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uncertainty. Some of the important methodologies for computing the frequency
response envelopes of different families subjected to parametric uncertainty, are
given below.

14.1 Existing Methods for computing the frequency
response envelopes

Many results on computing the frequency response of the parametric uncer-
tain systems, using Kharitonov’s theorem [99], Edge theorem [2] and Generalized
Kharitonov’s theorem [57], are available in the literature. The differences between
these results are: (i) the geometric structure of the uncertainty in the parameter
space and (ii) how the uncertainty enters the numerator and the denominator of
the transfer function of a parametric uncertain plant. Some of the most important
studies are:

14.1.1 Interval plants
An interval plant is an LTI SISO plant in which uncertainty enters the numer-

ator and denominator of a given transfer function linearly and the uncertainty set
in the coefficient space is a box. Different methods for computing the frequency
response of uncertain interval plants are provided in [1],[24], [145], [11] and [118].
These methods use the results based on Kharitonov’s theorem and Generalized
Kharitonov’s theorem to compute the Nyquist, Nichole and Bode envelopes.

14.1.2 Polytopic plants
A polytopic plant is an LTI SISO plant in which the uncertainty enters the

numerator and the denominator of the transfer function linearly and the coefficient
space have a polytopic structure. Based on the frequency response of the edge
transfer functions, different methods for computing the frequency response of the
polytopic systems are presented in [106], [17], [19], [18], [117] and [84].

14.1.3 Multilinear plants
In these LTI SISO systems, uncertainty enters multi-linearly in the numerator

and the denominator of a given plant. Multilinear interval plants are the most stud-
ied plants in this family. The transfer function of a multilinear interval plant is the
ratio of multilinear interval polynomials. By using the Generalized Kharitonov’s
theorem and the Mapping theorem, methods for computing the frequency response
of the multilinear interval plants are provided in [145]. A 2q−convex par-polygon
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technique is used in [156] to compute the Bode and Nyquist envelopes of multilin-
ear interval transfer functions that are multiples of polynomials with affine linear
uncertainty.

14.1.4 Ellipsoidal plants
In ellipsoidal plants, the uncertainty enters linearly in the numerator and de-

nominator of a given transfer function and the coefficient space is ellipsoidal. A
method for the computing the Bode magnitude envelope, based on the solution to
an SDP, has been presented in [167]. A complete characterization of the frequency
response of ellipsoidal plants has been provided in [49].

14.1.5 Plants with nonlinear uncertainty
In these plants, the uncertainty enters nonlinearly in the numerator and denom-

inator of a given transfer function. Different methods for computing the frequency
response bounds of transfer functions whose coefficients have a nonlinear depen-
dency on a set of uncertain parameters belonging to a given box are provided in
[126], [127] and [128].

14.2 Research Objective
The objective of this research is to compute the Bode envelopes for parametric

uncertain plants subjected to semialgebraic uncertainty. The main focus of the ex-
isting techniques is on the box coefficient space of uncertain parameters. However,
in the last decade, new results about set-membership identification (SMI) of LTI
systems from input-output data corrupted by bounded measurement errors have
been presented (see, e.g.,[159], [161] and [158]). In SMI framework, the solution
to the identification problem is in the form of a semialgebraic family of rational
functions, that is, the coefficients of the rational functions belong to a set in the
parameter space defined by polynomial constraints. Motivated from these results,
computation of Bode envelopes bounds for such class of uncertain system is ad-
dressed in the proposed approach.

14.2.1 Contribution
The major highlights of this work are:

• A unified formulation is proposed for both CT and DT systems affected by
semialgebraic uncertainty.
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• In the proposed approach, the uncertainty can enter the rational transfer
function polynomially, that is, each coefficient of the numerator and the de-
nominator can be a polynomial function of the uncertain parameters. Further-
more, the uncertain parameters belongs to a semialgebraic set. Since, boxes,
polytopes and ellipsoids are particular cases of semialgebraic sets. Therefore
the proposed approach can be considered as a generalization of the techniques
previously proposed for the computation of Bode plot envelopes.

• The problem of computing the Bode envelopes is formulated in terms of the
solution to 4 polynomial optimization problems for each value of the fre-
quency. Global optimal solutions to the formulated optimization problems
are obtained by applying recently proposed convex relaxation techniques.

The results presented in this section are partially published in [162].
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Chapter 15

Computation of Bode envelopes of
LTI systems

15.1 Frequency domain representation of uncer-
tain polynomials

Consider the following CT uncertain polynomial

P (s, θ) = θ0 + θ1s + θ2s
2 + θ3s

3 + · · · + θnsn (15.1)

where, n is the order of polynomials, θ = [θ0, θ1...θn] is a vector of uncertain coeffi-
cients of P (s, θ).

The polynomial in equation (15.1) can be represented in the frequency domain
by substituting s = jω, that is

P (jω, θ) = θ0 − ω2θ2 + .... + j{ωθ1 − ω3θ3 + . . . } (15.2)

For a given fixed frequency ωk, P in (15.2) can be written as the sum of real
and imaginary functions.

P (jωk, θ) = α1(θ) + jβ1(θ) (15.3)

where,

α1(θ) = θ0 − ω2
kθ2 + . . .

β1(θ) = ωkθ1 − ω3
kθ3 + . . .

Based on the result in equation (15.3), the magnitude and the phase of the
polynomial P at fixed frequency ωk are given by:

|P (jωk, θ)| = |α1(θ) + jβ1(θ)| =
√︂

α2
1(θ) + β2

1(θ) (15.4)
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arg [P (jωk, θ)] = tan−1(β1(θ)
α1(θ)) (15.5)

It is evident from the equations ((15.4)-(15.5)) that at fixed frequency ωk:

(i) |P (jωk, θ)|2 is a polynomial in uncertain parameters.

(ii) tan(arg [P ]) is a rational function of uncertain parameters.

Therefore, at a fixed frequency ωk, it is possible to formulate optimization prob-
lems for the computation Bode gain and phase envelopes of the polynomial P .
Now, consider the following discrete time uncertain polynomial

Pd(z, θ) = θ0 + θ1z + θ2z
2 + θ3z

3 + · · · + θnzn (15.6)

The polynomial Pd can be represented in the frequency domain by substituting
the value of z = ejω = cos(ω) + jsin(ω) in equation (15.6), that is

Pd(ejω, θ) =θ0 + θ1cos(ω) + . . .

+ j{θ1sin(ω) + 2θ2cos(ω)sin(ω) + . . . }
(15.7)

At a given frequency ωk, polynomial Pd is given by:

Pd(ejωk , θ) = α2(θ) + jβ2(θ) (15.8)

where,

α2(θ) = θ0 + θ1cos(ωk) + ....

β2(θ) = θ1sin(ωk) + 2(θ2)cos(ωk)sin(ωk) + . . .

It is evident from the equation (15.8) that at a given frequency ωk, the gain
and the phase of the polynomial Pd can be represented as polynomials of α2(θ) and
β2(θ). Thus, polynomial optimization problems can be formulated to compute the
Bode phase and gain envelopes of Pd at ωk.

Remark 12. It is obvious from equations ( (15.3) and (15.8)) that polynomials
P (s, θ) and Pd(z, θ) have similar representation at a fixed frequency ωk. Same is
true for the CT and DT transfer functions. Therefore, polynomial optimization for
the computation of Bode gain and Bode phase envelopes will be formulated only for
CT system. These results are equally valid for the DT systems.
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15.2 Problem Formulation
Consider a CT LTI SISO plant described by the transfer function

G(s, θ) = N(s, θ)
D(s, θ) (15.9)

where,

N(s, θ) = p0(θ) + p1(θ)s + p2(θ)s2 + p3(θ)s3 + · · · + pm(θ)sm, (15.10)

D(s, θ) = pm+1(θ) + pm+2(θ)s + pm+3(θ)s2 + · · · + pm+n(θ)sn, (15.11)

n ≥ m, θ = {θ0, θ1, . . . , θm+n} is the vector of uncertain parameters, p0(θ), p1(θ), . . . , pm+n(θ)
are polynomial functions of θ.

It is assumed that the coefficient vector θ belongs to a semialgebraic set Sθ

which is defined by ℓ polynomial equalities and / or inequalities in θ, that is,

Sθ = {θ ∈ Rn+m+1; fk(θ) ≥ 0, k = 1,2, . . . , ℓ} (15.12)

where, each fk(θ) is a multivariate polynomial in θ.
The Bode gain and phase envelopes are computed at a given set of frequencies,

defined as:
Ωd = {ω1, ω2, . . . , ωN}. (15.13)

At each ωk ∈ Ωd, the problem of computing the Bode gain and phase envelopes
of an uncertain polynomial G(s, θ) boils down to solving the following 4 optimiza-
tion problems.

G(ωk) = min
θ∈Sθ

|Gk(jωk, θ)| (15.14)

G(ωk) = max
θ∈Sθ

|Gk(jωk, θ)| (15.15)

ϕ(ωk) = min
θ∈Sθ

arg [Gk(jωk, θ)] (15.16)

ϕ(ωk) = max
θ∈Sθ

arg [Gk(jωk, θ)]. (15.17)

In the next section, we will propose new numerical algorithms for solving the
optimization problems in (15.14), (15.15), (15.16) and (15.17).
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15.3 Computation of Bode envelopes by polyno-
mial optimization methods

Based on the result in equation (15.3), at a given frequency ωk, uncertain system
in equation (15.9) can be rewritten as:

Gk(jωk, θ) = αN(θ) + jβN(θ)
αD(θ) + jβD(θ) (15.18)

where, αN(θ), αD(θ), βN(θ) and βD(θ) are polynomial functions of θ. For sim-
plicity, αN(θ), αD(θ), βN(θ) and βD(θ) are denoted as αN , αD, βN and βD in rest
of this chapter.

At given fixed frequency ωk, the magnitude and the phase of the system in
(15.9), are given by:

|Gk(jωw, θ)| = |αN + jβN |
|αD + jβD|

=

√︂
α2

N + β2
N√︂

α2
D + β2

D

(15.19)

arg [Gk(jωi, θ)] = arctan(βN

αN

) − arctan(βD

αD

) (15.20)

To formulate polynomial optimization problems for the computation of the Bode
envelopes, we introduce

γmk = |Gk(jωk, θ)|2 = α2
N + β2

N

α2
D + β2

D

(15.21)

and

γtk = tan(arg [Gk(jωk, θ)]) (15.22)

By using fundamental results of the trigonometry, equation (15.22) can be
rewritten as:

tan(γtk) = αDβN − βDαN

αNαD + βNβD

(15.23)

15.3.1 Computation of Bode gain envelope
At a given frequency, ωk, G(ωk) and G(ωk) can be computed as following:

G(ωk) = √
γmk (15.24)
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G(ωk) =
√︂

γmk (15.25)

where,

γ
mk

= min γmk

s. t.⎧⎨⎩γmk(α2
D + β2

D) − α2
N − β2

N = 0,
θ ∈ Sθ

(15.26)

γmk = max γmk

s. t.⎧⎨⎩γmk(α2
D + β2

D) − α2
N − β2

N = 0,
θ ∈ Sθ

(15.27)

15.3.2 Computation of Bode phase envelope
At a given frequency ωk, ϕ(ωk) and ϕ(ωk) can be computed as following:

ϕ(ωk) = arctan(γ
tk

) (15.28)

ϕ(ωk) = arctan(γtk) (15.29)

where,

γ
tk

= min γtk

s. t.⎧⎨⎩γtk(αNαD + βNβD) − αDβN + βDαN = 0,
θ ∈ Sθ

(15.30)

γtk = max γtk

s. t.⎧⎨⎩γtk(αNαD + βNβD) − αDβN + βDαN = 0,
θ ∈ Sθ

(15.31)
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It is known from trigonometry that tan(·) is discontinuous at every odd multiple
of π

2 . Therefore, at a given frequency ωk, optimization problem (15.30) (optimiza-
tion problem (15.31)) may return a false minimum (maximum) if any system in
the uncertain set have a phase angle equal to odd multiples of π

2 . Luckily, cot(·) is
continuous at the odd multiples of π

2 . Therefore, if the magnitude of the optimal
solution of optimization problem (15.30) (optimization problem (15.31))) is very
large, we can switch to an optimization problem with an objective function based
on the cot(·). For this purpose, suppose

γck = cot(arg [Gk(jωk, θ)]) (15.32)

By applying elementary trigonometry rules, equation can be rewritten as:

cot(γck) = αNαD + βNβD

αDβN − βDαN

(15.33)

Thus, the optimization problems for computing ϕ(ωk) and ϕ(ωk) are given by:

ϕ(ωk) =arccot(γck) (15.34)

ϕ(ωk) =arccot(γ
ck

) (15.35)

where,

γ
ck

= min γck

s. t.⎧⎨⎩γck(αDβN − βDαN) − αNαD − βNβD = 0,
θ ∈ Sθ

(15.36)

γck = max γck

s. t.⎧⎨⎩γck(αDβN − βDαN) − αNαD − βNβD = 0,
θ ∈ Sθ

(15.37)

Remark 13. Optimization problems (15.26), (15.27),(15.30), (15.31),(15.36) and
(15.37) are nonconvex polynomial optimization problem. Standard nonlinear opti-
mization tools such as Newton method, can not be applied to solve these optimization

122



15.3 – Computation of Bode envelopes by polynomial optimization methods

problem as they can typically trap in local minima. However, by applying sparse
SDP relaxation methods in proposed in [103] and [68], these optimization problems
can be solved to the global optimal solution. It is worth mentioning that by increas-
ing the relaxation order, the solution of the relax SDP problem converges to the
global optimal solution of the original polynomial optimization problem. Theoreti-
cally, convergence is guaranteed for relaxation order approaching infinity. However,
in practice, convergence is usually fast and the global optimal solution is accurately
approximated with low relaxation order, see, e.g., [104] for details.

It is important to mention that each optimization problem ( (15.26), (15.27),(15.30),
(15.31),(15.36) and (15.37)) is computed for every frequency in the grid Ωd, inde-
pendent of other frequencies in the grid. However, Ωd is an approximation of the
infinite frequency set [0, +∞), and is introduced for applying the SDP relaxation
methods. Adding more frequency points to the frequency grid Ωd is a trade-off
between the accuracy of the frequency response and the computational cost.

For practical purposes, here we present general guidelines for the selection of
the frequency grid.

(i) Select an initial frequency grid based on the Bode plots of the given transfer
function for one or more (a few) fixed θ ∈ Sθ over a dense frequency grid.

(ii) Compute the Bode phase and gain envelopes for the initial frequency grid.

(iii) Identify the critical frequency regions, such as resonance peaks, by plotting
the computed Bode envelope bounds for the initial frequency grid.

(iv) Select a new frequency grid for additional frequencies in the critical frequency
regions.

(v) Compute the Bode gain and phase envelopes only for the new grid and aug-
ment them to the Bode envelopes computed for the initial grid. If Nn is
the number of frequencies in the new frequency grid, then this requires the
solution of 4Nn additional optimization problems.

(vi) Repeat the step (iii), (iv) and (v), if necessary.

123



124



Chapter 16

Simulation Examples

All the simulations in this chapter are performed on a PC running on 64 bit
Windows 10 platform, equipped with Intel core i7 − 7500 CPU and 8 GB RAM.

16.1 Example 1
Consider the following CT system:

Gp(s) = 5(s + θ2)
s2 + θ1s + θ2

(16.1)

The interval bounds for the uncertain parameters θ1 and θ2 are given by:

30 ≤ θ1 ≤ 60
120 ≤ θ2 ≤ 350

The semialgebraic set Sθ for the uncertain parameters θ1 and θ2 is given by:

Sθ = {(θ1, θ2) : 30 ≤θ1 ≤ 60, 120 ≤ θ2 ≤ 350,

θ2 <= 0.0852θ2
1 + 43.3333}.

(16.2)

The semialgebraic set Sθ and the interval set are plotted in the figure 16.1.
The set of frequencies Ωd for computing the frequency response bounds is given

by:
Ωd(rad/sec) = [1 : 2 : 1000]. (16.3)

Bode gain envelope is computed by solving the optimization problems (15.26)
and (15.27) both for interval and semi-algebraic set uncertainty by using Sparse-
POP software with a relaxation order of 3. The results are plotted in the figure 16.2.
Bode phase envelope is computed by solving the optimization problems (15.30),
(15.31),(15.36) and (15.37) both for interval and semi-algebraic set uncertainty by
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Figure 16.1: Semialgebraic region (green region) and interval region (box)

using Sparse-POP software with a relaxation order of 5. The results are plotted in
the figure 16.3.

It is clear from the figures 16.2 and 16.3 that the proposed approach provide a
tight bounds both for Bode gain and phase envelopes for semialgebraic uncertainty.
This is due to the fact that the chosen relaxation orders, for this example, are large
enough to provide tight convex bounds for the original nonconvex problem. It is
also evident from the figures 16.2 and 16.3 that the semialgebraic description of the
uncertainty reduces the significance amount of conservativeness introduced by the
interval description of the uncertainty.

16.2 Example 2
Consider the following second order CT system:

Gp(s) = 10(s + θ1)
(s + θ2)2 (16.4)

where, θ1 and θ2 are the uncertain parameters. It is important to point out that the
uncertainty enters polynomially in the transfer function (16.4) and the uncertain
parameters, θ1 and θ2, belong to the following semialgebraic set.

Sθ = {(θ1, θ2) : 30 ≤θ1 ≤ 60, 120 ≤ θ2 ≤ 350,

θ2 <= 0.0852θ2
1 + 43.3333}.

(16.5)

The semialgebraic set Sθ is plotted in the figure the figure 16.4.
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16.2 – Example 2

Figure 16.2: Magnitude bounds: interval description (black lines), proposed ap-
proach (red lines), envelope obtained by gridding the semialgebraic uncertainty set
(green region)

Figure 16.3: Phase bounds: interval description (black lines), proposed approach
(red lines), envelope obtained by gridding the semialgebraic uncertainty set (green
region)

For comparison of semialgebraic uncertainty with the interval uncertainty, the
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Figure 16.4: Semialgebraic region (green region) and interval region (box)

interval bounds for the uncertain parameters are given by:

40 ≤ θ1 ≤ 50
20 ≤ θ2 ≤ 30

We compute the Bode phase and gain envelopes for all the frequencies in the
set Ωd.

Ωd(rad/sec) = [1 : 3 : 200]; (16.6)

Bode gain and phase envelopes are computed by solving the optimization prob-
lems (15.26), (15.27), (15.30), (15.31),(15.36) and (15.37) by using Sparse-POP
software. A relaxation order of 4 is chosen for computation of Bode gain envelope
whereas, a relaxation order of 5 is used for computation of Bode phase envelope.
The Bode gain envelope is plotted in the figure 16.5, and the Bode phase envelope
is plotted in the figure 16.6.

It is important to highlight that the existing techniques use the box/interval de-
scription of the uncertainty when the transfer function is a polynomial function of
the uncertain parameters. However, such a description of the uncertainty can intro-
duce the significance amount of conservativeness which is evident form the figures
(16.5- 16.6). It is also clear from figures(16.5- 16.6) that the proposed approach is
able to provide a tight description of actual Bode envelope, even though the transfer
function is a polynomial function of uncertain parameters and uncertain parame-
ters belong to a semialgebraic set. Thus, a significant amount of conservativeness
in the Bode envelopes can be reduced by the proposed approach.
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Figure 16.5: Magnitude bounds: interval description (black lines), proposed ap-
proach (red lines), envelope obtained by gridding the semialgebraic uncertainty set
(green region)
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Figure 16.6: Phase bounds: interval description (black lines), proposed approach
(red lines), envelope obtained by gridding the semialgebraic uncertainty set (green
region)

16.3 Example 3
Consider the following DT uncertain system:
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Gp(z) = 2z + θ1

4z2 − θ2z + 2 (16.7)

It is assumed that the uncertain parameters θ1 and θ2 belong to the following
semialgebraic set:

Sθ = {(θ1, θ2) : 2 ≤θ1 ≤ 4 1 ≤ θ2 ≤ 3,

θ2
2 <= −4θ2

1 + 17},

θ2 >= −θ2
1 + 5}.

(16.8)

The semialgebraic set Sθ is plotted in the figure 16.7.
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Figure 16.7: Semialgebraic region (green region) and interval region (box)

The interval bounds for the uncertain parameters are given by:
2 ≤ θ1 ≤ 4
1 ≤ θ2 ≤ 3

Frequency response bounds are computed over a set of 100 frequencies in the
range Ωd(rad/sec) = [0.01,2.53].

Bode gain envelope is computed by solving the optimization problems (15.26)
and (15.27) both for interval and semi-algebraic set uncertainty by using Sparse-
POP software with a relaxation order of 4. The results are plotted in the figure 16.8.
Bode phase envelope is computed by solving the optimization problems (15.30),
(15.31),(15.36) and (15.37) both for interval and semi-algebraic set uncertainty by
using Sparse-POP software with a relaxation order of 3. The results are plotted in
the figure 16.9.
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Figure 16.8: Magnitude bounds: interval description (black lines), proposed ap-
proach (red lines), envelope obtained by gridding the semialgebraic uncertainty set
(green region)
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Figure 16.9: Phase bounds: interval description (black lines), proposed approach
(red lines), envelope obtained by gridding the semialgebraic uncertainty set (green
region)

It is evident from the figures (16.8-16.9) that:
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(i) The proposed approach provides the tight bounds for Bode envelopes even for
the peculiar semialgebraic structure of the parametric uncertainty affecting
the system.

(ii) The Box description of the parametric uncertainty introduces conservative-
ness both in the Bode gain and phase envelopes which can be significantly
reduced by assuming the semialgebraic description of the uncertainty.
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Chapter 17

Conclusions

17.1 Conclusions
In this section, a novel approach is proposed for computing the Bode envelope

bounds for uncertain LTI systems whose parameters belong to a given semialgebraic
set. The problem is formulated in terms of four polynomial optimization problems
and their global optimal solution are computed by exploiting sparse moment relax-
ation. The problem of computing the Bode plots bounds for a plant subjected to
semialgebraic uncertainty is motivated from the results in SMI framework where
the identified model is in the form rational functions and the coefficients of the
rational functions belong to a given semialgebraic set.

In the existing techniques:

• the uncertainty can enter the numerator and the denominator of a transfer
function linearly, multi-linearly or nonlinearly, and

• the coefficient space is restricted to interval, polytopic and ellipsoidal sets.

In the proposed approach, the uncertainty can enter the polynomial nonlin-
early and the coefficient space is a semialgebraic set. Thus, the proposed approach
generalizes previous available results. The reported simulation examples show the
effectiveness of the proposed methodology in the computation of tight bounds on
the Bode plots envelope.
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Future works

Frequency gridding
In the design of FOFS direct data-driven control, the conditions for the stability

and robustness are posed for a discrete grid of frequencies. However, the theorems
and results for stability and robustness are derived for an infinite continuous set of
frequencies. In future we would like to consider a random approach for the selection
of the frequencies in the grid. There are some interesting results in the field of
scenario based optimization about gridding a convex or nonconvex optimization
problem over a finite grid and providing a bound on the violation probability of the
constraints (see e. g., [48], [140], [141] and [154]). The main idea to combine the
moment convex relaxation and the scenario based optimization such that stability
and robustness can be guaranteed with some probability level and approaches to
zero when the number of samples goes to infinity. Using these algorithms, we would
like to specifically investigate the plants with many resonant modes.

Parametric robust control
In future, we will design the model-based FOFS mixed sensitivity H∞ controllers

for uncertain LTI systems subjected to semialgebraic parametric uncertainty by
using convex relaxation methods.

Polynomial control system
In polynomial control system, the description of the control system is provided

in terms of polynomial functions. Polynomial control systems has numerous ap-
plications as many nonlinear control problems can be modeled, transformed, or
approximated by polynomial control systems. Polynomial control system can be
divided into three broad categories:

1 polynomial control systems based on the qualitative behavior of polynomial
systems.

2 polynomial control systems based on the algebraic nature of polynomial con-
trol systems

3 polynomial control systems based on the computational properties of polyno-
mials.

Polynomial control systems based on the computational properties of polynomials
is further divided into: (1) methods based on symbolic computations such as Grob-
ner bases and (2) methods based on numerical computations like SDP and SOS
decomposition. Thus, study of nonlinear polynomial control systems and polyno-
mial linear parameter varying systems is the natural extension of this thesis.
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