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Abstract

This dissertation deals with the in situ characterization of the small-strain shear-
wave velocity and damping ratio from the interpretation of Multi-channel
Analysis of Surface Waves (MASW) surveys. Indeed, low-strain parameters
dramatically affect the ground response under dynamic loading. Due to their
remarkable role, an in-situ estimate of these quantities is highly recommended. A
promising way to obtain soil stiffness and dissipative parameters relies on the
MASW scheme. This approach is based on the interpretation of the propagation
characteristics of Rayleigh waves, namely the phase velocity and the phase
attenuation.

The first goal of this research was to identify and quantify uncertainties
affecting the estimated Rayleigh wave parameters, with a focus on phase
attenuation. For this purpose, a suite of synthetic wavefields and in situ
measurements were considered, thus obtaining a benchmark for understanding the
issues in the estimate.

The study focused on modeling epistemic uncertainties affecting the Rayleigh
phase attenuation. On the one side, the influence of the processing technique was
addressed. In this context, a novel technique (named Frequency-Domain
BeamForming-attenuation, FDBFa) is proposed. This technique incorporates an
explicit modeling of the geometry of the wavefield, and it allows to isolate
different Rayleigh propagation modes, through a filtering scheme. Therefore, it
returns reliable attenuation estimates even in the presence of multi-mode
wavefield, which is typical of complex stratigraphy conditions. Then, the study
focused on the sensitivity of the Rayleigh wave parameters to the acquisition
setup, in terms of the type of the active source and the recording device. As for
source characteristics, results show that low-energy sources (e.g., a
sledgehammer) return reliable estimates of the phase velocity and attenuation,
albeit with larger variability. This result demonstrates the possibility of retrieving
reliable attenuation data also in ordinary MASW surveys, in which the
sledgehammer is commonly used. As for the sensing device, estimated phase
velocity and phase attenuation data obtained from geophone and fiber-optic DAS
data were compared. The latter represents an innovative technology in seismic
measurements and monitoring, of which use in geophysics is still limited but
promising. Indeed, also existing fiber-optic networks for telecommunication can
be used for the acquisition of seismic data. The high degree of matching between
observed data demonstrated that the DAS technology can be successfully used to
jointly estimate the phase dispersion and attenuation data, obtaining the same
level of reliability as an “ordinary” geophone array.



Furthermore, this dissertation proposed a statistical scheme to model aleatory
variabilities in the estimated phase velocity and attenuation data. Indeed, various
models have been proposed to quantify the dispersion variability, whereas no
scheme was explicitly demonstrated for attenuation data. The model describes the
variability in experimental data according to a bivariate lognormal distribution,
although the observed low correlation allows using lognormal marginals for the
statistical characterization. The lognormal scheme is preferred to the Gaussian
model to describe highly variable data (as the phase attenuation) without
including negative values. This assumption ensures greater consistency, from the
physical point of view.

Then, the research focused on mapping the experimental Rayleigh wave
parameters into soil models describing the profiles of shear-wave velocity and
damping ratio with depth. A robust inversion algorithm was developed for this
purpose. This technique is a Monte Carlo, global search algorithm, which
implements a smart sampling procedure. This scheme exploits the scaling
properties of the solution of the Rayleigh eigenvalue problem to modify the trial
earth models and improve the matching with the experimental model. Thus, a
reliable result can be achieved with a moderately small number of trial ground
models. In general, estimated soil models exhibit well-defined shear-wave
velocity profiles, whereas the damping ratio profile is affected by remarkably
large scatter, although a trend can still be identified. This difference is the effect
of the high variability characterizing experimental attenuation data, the limited
wavelength range at which reliable values of these parameters can be retrieved,
and the sensitivity of attenuation data to both damping ratio and the S-wave
velocity. However, the resulting response to the ground motion is affected by
moderately small variability, and it consistently matches in situ observed data.
The result stresses the effectiveness of using damping ratio estimates from in situ
surface wave data, as an alternative to other characterization techniques.

Overall, this research shows the feasibility of retrieving both stiffness and
attenuation parameters from surface wave testing, highlighting also the issues
related to the uncertainties and the different level of reliability affecting these two
quantities. In general, great care is required when modeling the geometric features
and the multi-mode nature of the wavefield, as well as model incompatibility
effects. Indeed, these features dramatically affect the estimated attenuation. On
the other side, under proper modeling of wavefield conditions and adopting robust
inversion procedures, a reliable and accurate prediction of the actual behavior can
be achieved.
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Figure A-7. Influence of filter calibration parameters in the application of the
FDBFaMF algorithm on SW3, with a focus on the first three modes:
a-b) Estimated dispersion curves (a) and attenuation curves (b) for the
fundamental mode, labeled as RO; c-d) Estimated dispersion curves
(c) and attenuation curves (d) for the first higher mode, labeled as R1;
e-f) Estimated dispersion curves (e) and attenuation curves (f) for the
second higher mode, labeled as R2. Results correspond to the set of
parameters [kp; ks] = [2; 4]. Results of the FDBFa are also reported,
for comparison purposes. Estimated data points beyond the array
resolution limits — i.e., the grey areas in (a), (c), and (e) — are colored
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Figure A-8. Influence of filter calibration parameters in the application of the
FDBFaMF algorithm on SW3, with a focus on the first three modes:
a-b) Estimated dispersion curves (a) and attenuation curves (b) for the
fundamental mode, labeled as RO; c-d) Estimated dispersion curves
(c) and attenuation curves (d) for the first higher mode, labeled as R1;
e-f) Estimated dispersion curves (¢) and attenuation curves (f) for the
second higher mode, labeled as R2. Results correspond to the set of
parameters [kp; ks] = [3; 10]. Results of the FDBFa are also reported,
for comparison purposes. Estimated data points beyond the array
resolution limits — i.e., the grey areas in (a), (c), and (e) — are colored
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Figure A-9. Influence of filter calibration parameters in the application of the
CFDBFaMF algorithm on SW3, with a focus on the first three modes:
a-b) Estimated dispersion curves (a) and attenuation curves (b) for the
fundamental mode, labeled as RO; c-d) Estimated dispersion curves
(c) and attenuation curves (d) for the first higher mode, labeled as R1;
e-f) Estimated dispersion curves (e) and attenuation curves (f) for the
second higher mode, labeled as R2. Results correspond to the set of
parameters [kp; ks] = [1; 2]. Results of the CFDBFa are also reported,
for comparison purposes. Estimated data points beyond the array
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Figure A-10. Influence of filter calibration parameters in the application of the
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a-b) Estimated dispersion curves (a) and attenuation curves (b) for the
fundamental mode, labeled as RO; c-d) Estimated dispersion curves
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e-f) Estimated dispersion curves (e) and attenuation curves (f) for the
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Figure A-11. Influence of filter calibration parameters in the application of the
CFDBFaMF algorithm on SW3, with a focus on the first three modes:
a-b) Estimated dispersion curves (a) and attenuation curves (b) for the
fundamental mode, labeled as RO; c-d) Estimated dispersion curves
(c) and attenuation curves (d) for the first higher mode, labeled as R1;
e-f) Estimated dispersion curves (¢) and attenuation curves (f) for the
second higher mode, labeled as R2. Results correspond to the set of
parameters [kp; ks] = [3; 10]. Results of the CFDBFa are also reported,
for comparison purposes. Estimated data points beyond the array
resolution limits — i.e., the grey areas in (a), (c), and (e) — are colored
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Figure A-12. Influence of filter calibration parameters in the application of the
FDBFaMF algorithm on SW4, with a focus on the first three modes:
a-b) Estimated dispersion curves (a) and attenuation curves (b) for the
fundamental mode, labeled as RO; c-d) Estimated dispersion curves
(c) and attenuation curves (d) for the first higher mode, labeled as R1;
e-f) Estimated dispersion curves (e) and attenuation curves (f) for the
second higher mode, labeled as R2. Results correspond to the set of
parameters [kp; ks] = [1; 2]. Results of the FDBFa are also reported,
for comparison purposes. Estimated data points beyond the array
resolution limits — i.e., the grey areas in (a), (c), and (e) — are colored
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Figure A-13. Influence of filter calibration parameters in the application of the
FDBFaMF algorithm on SW4, with a focus on the first three modes:
a-b) Estimated dispersion curves (a) and attenuation curves (b) for the
fundamental mode, labeled as RO; c-d) Estimated dispersion curves
(c) and attenuation curves (d) for the first higher mode, labeled as R1;
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e-f) Estimated dispersion curves (¢) and attenuation curves (f) for the
second higher mode, labeled as R2. Results correspond to the set of
parameters [kp; ks] = [2; 4]. Results of the FDBFa are also reported,
for comparison purposes. Estimated data points beyond the array
resolution limits — i.e., the grey areas in (a), (c¢), and (e) — are colored
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Chapter 1
Introduction

1.1 Motivation

The characterization of soil response to dynamic loading has great relevance in
geotechnical earthquake engineering. In these conditions, the actual stress-strain
response of soils depends on various quantities, which describe dynamic
properties. Key parameters are the small-strain shear-wave velocity and the
damping ratio, which quantify the stiffness and the internal energy dissipation by
the soil at low strains, respectively. Although the uncertainties related to the
small-strain damping ratio are usually referred as secondary (Idriss, 2004; Rathje
et al., 2010; Cabas and Rodriguez-Marek, 2018), the choice of adequate values
can strongly influence the soil response, especially in the small-strain field (e.g.,
Thompson et al., 2012; Tao and Rathje, 2019). Indeed, this quantity plays a key
role in understanding low-intensity shaking (Schevenels, 2007; Tao and Rathje,
2019; Rodriguez-Marek et al., 2021) and anchoring soil nonlinear behavior when
strong shaking is involved (e.g., Stewart et al., 2014b; Foti et al., 2021).

Many design applications rely on estimates of the small-strain damping ratio
obtained through laboratory testing or empirical relationships, although some
studies have inferred in-situ estimates of this quantity. The in-situ values are
typically larger than the ones obtained through laboratory tests (e.g., Stewart et
al., 2014b; Tao and Rathje, 2019). Indeed, at the site scale, complex wave
propagation phenomena (e.g., wave scattering) induce additional energy
dissipation besides material dissipation that cannot be captured by laboratory
tests. Therefore, an in-situ estimate of this quantity should be adopted in ground
response simulations. A promising technique for obtaining soil dissipative
parameters relies on the Multichannel Analysis of Surface Waves (MASW; Foti,
2000). The MASW-based estimate of the small-strain damping ratio usually refers
to the measurement of the spatial attenuation of Rayleigh waves along linear
arrays with active sources (Foti et al., 2014). In this case, the S-wave velocity and
damping ratio profiles are jointly estimated through an inversion scheme, where a
theoretical soil model is calibrated to match the experimental dispersion and
attenuation data.



However, the estimation of the dissipation parameters is a nontrivial task,
especially in the presence of complex stratigraphy, and large uncertainties affect
the estimated values. On the one side, various studies attempted to develop robust
procedures for the estimate of the S-wave velocity and statistical models to
quantify the related uncertainties (e.g., Foti et al., 2018; Passeri et al., 2020; Hallo
et al., 2021). Instead, only a few methods for deriving the small strain damping
ratio are available, and they often rely on limiting assumptions about the geometry
and the composition of the recorded wavefield (e.g., Lai et al., 2002; Badsar et al.,
2010). Furthermore, there is still a lack of knowledge on the uncertainties
affecting the resulting damping ratio. A proper modeling is instead crucial when
investigating the soil behavior in dynamic conditions, as the complex response
does not allow the a priori choice of conservative values for the mechanical
parameters. Instead, data uncertainties should be considered in an explicit way,
within a probabilistic framework in order to Identify, Quantify, and Manage (i.e.,
IQM method; Passeri, 2019) all the uncertainties and variabilities involved in the
analyses, to obtain reliable and accurate estimates of the actual response.

1.2 Research objectives and achievements

The main purpose of this research is the assessment of the reliability and the
uncertainties that characterize the estimated shear-wave velocity and small-strain
damping ratio from the interpretation of MASW surveys. However, the main
focus will be the derivation of the damping ratio, as only few studies addressed
this parameter (e.g., Lai and Rix, 1998b; Foti, 2003; Misbah and Strobbia, 2014).
On the one side, the research addresses the estimation of the propagation
characteristics of Rayleigh waves from measured waveform data, both in terms of
velocity and attenuation. For this purpose, a vast dataset of synthetic seismograms
and high-quality, in situ surface wave data were acquired in massive site
characterization campaigns at two locations in the United States, where
seismograms generated by artificial sources were recorded on arrays composed by
receivers of different types. Besides, a novel technique (named Frequency-
Domain BeamForming-attenuation, FDBFa) to estimate Rayleigh wave
attenuation data is proposed. This technique relies on a wavefield transform, that
allows to reduce the problem of the attenuation estimate into a dispersion analysis
of the transformed data. Furthermore, it incorporates an explicit modeling of the
geometry of the wavefield and it allows to isolate different Rayleigh propagation
modes, through a filtering scheme. Furthermore, the research includes a thorough
analysis of some sources of epistemic uncertainties affecting the estimated R-
wave parameters, with a focus on the influence of modeling assumptions (that is,



near- and far-field effects; Foti et al., 2014), the adopted processing scheme, the
type of active source, and the acquisition device (i.e., the sensors). Specifically,
the study addresses the sensitivity of the derived velocity and attenuation data to
perturbations in the recorded Rayleigh wavefield, due to body waves and
incoherent noise. Furthermore, it assesses the quality of experimental data as a
function of different interpretation techniques and various source types,
quantifying the performance in terms of the reliability and the accuracy of the
estimated propagation parameters. Finally, the analysis of the influence of the
acquisition device compares geophone versus fiber-optic data, to investigate the
sensitivity of estimated parameters to the receiver type. This study also aims at
understanding the potential of the fiber-optic device in retrieving dissipation
parameters. The research also addressed aleatory variability, by proposing a
statistical model to jointly describe the variability in derived phase velocity and
attenuation data.

On the other side, experimental Rayleigh-wave data need to be mapped into
earth models that capture the stiffness and damping ratio variations with depth, by
means of an inversion procedure. To address this topic, a robust inversion
algorithm is proposed, which is based on a Monte Carlo procedure. The developed
algorithm is based on a smart sampling technique of the model parameter space,
by exploiting the scaling properties of the Rayleigh wave parameters in linear
viscoelastic media. These properties are introduced in this study and they allow a
significant saving in computation time, preserving the quality of the resulting
ground models at the same time. Finally, the reliability of the derived earth
models is assessed, by comparing them with the available information and by
assessing the reliability in terms of the measured response to ground motion,
compared with in situ observed data. The comparison highlighted an acceptable
level of compatibility between estimated and empirical amplification, which
stresses the effectiveness of using damping ratio estimates from in situ data.

1.3 Dissertation outline

The dissertation starts with a literature review on the small-strain damping ratio,
providing a definition of this parameter and an overview on the methods used for
its derivation.

Specifically, Chapter 2 provides a quick overview of the soil behavior under
cyclic loading at small strain levels, according to the theory of linear, viscoelastic
media. Then, the focus shifts to the small-strain damping ratio, with a description
of the influence of loading conditions and mechanical parameters and a list of
empirical relationships for its prediction. The chapter ends with a description of



the role of the small-strain damping ratio in various engineering applications, to
highlight its relevance.

Chapter 3 focuses on the propagation of body waves and Rayleigh waves in
continuous media, both in linear elastic and in linear viscoelastic conditions. In
particular, the governing equations and the relevant parameters are introduced.
The chapter ends with a review of the main mechanisms of attenuation theory, to
provide a list of the factors affecting the amplitude of perturbations propagating in
a medium while moving away from the source.

Chapter 4 summarizes the most common estimation procedures for the S-
wave small strain damping ratio. Specifically, the description focuses on
laboratory tests and in situ characterization methods, based on invasive and
noninvasive geophysical tests and down-hole arrays. Finally, a brief comparison
of results from laboratory and in situ tests is reported.

The second part of the dissertation focuses on the processing stage of surface
wave data, which infers the Rayleigh wave parameters from recorded waveform
data.

Chapter 5 introduces the FDBFa algorithm, specifying the various
modifications applied to accommodate for the geometrical shape of the Rayleigh
wavefield and the presence of multiple propagation modes. The chapter ends with
a parametric study on near-field effects and incoherent noise, to assess the
performance of the proposed scheme in complex wave conditions and understand
their effect on experimental data.

Chapter 6 presents the experimental dataset, consisting of a suite of MASW
surveys devoted to the collection of high-quality surface wave data at the Garner
Valley Downhole Array (GVDA) and the Hornsby Bend (HB) sites, in the United
States.

Chapter 7 contains a thorough analysis of various sources of uncertainties
affecting the estimated Rayleigh phase velocity and phase attenuation. On one
side, epistemic uncertainties are addressed, by investigating the influence of the
specific processing algorithm, the type of active source and the acquisition device
on the estimated wave parameters. The investigation refers to both synthetic cases
and to wavefield data extracted from in situ surveys. The overview of epistemic
uncertainties ends with a comparison between the derived propagation parameters
obtained from geophone and fiber-optic data at the HB site. The final part of this
Chapter focuses on the aleatory variability, introducing a statistical model to
jointly describe the variability of the experimental dispersion and attenuation data.

The final part of the dissertation addresses the derivation of the earth models
from experimental data, with a focus on the stiffness and attenuation structure.



Chapter 8 describes a new algorithm for the joint inversion of velocity and
attenuation data to retrieve both stiffness and dissipation parameters, that relies on
an improved Monte Carlo scheme. It also includes the application of this
algorithm at the HB site.

Chapter 9 contains a discussion of the retrieved earth models, obtained from
the inversion procedure, with a focus on the related reliability and the implications
of uncertainties in both the S-wave velocity and damping ratio on the predicted
ground response. The discussion focuses on the experimental dataset collected at
the GVDA.

Finally, Chapter 10 summarizes and discusses the main conclusions of the
research, along with some indications on possible future studies on the topic.

Appendix A focuses on some technical aspects linked with the FDBFa
procedure.

Appendix B collects implementation details of various literature approaches
to derive experimental Rayleigh wave parameters.

Appendix C contains the mathematical demonstration of the scaling properties
of the Rayleigh eigenvalue problem in linear viscoelastic media.






Chapter 2
Small-strain damping ratio

This Chapter addresses some key features of soil behavior, with a focus on the
small-strain damping ratio. Specifically, a quick overview of the general behavior
under cyclic loading is followed by a more detailed description of the response at
small strain levels, according to the theory of linear, viscoelastic media. The main
references for the description of this theory are the contributions by Kramer
(1996), Ben-Menahem and Singh (2012), Foti et al. (2014), and Kokusho (2017).
Then, the Chapter focuses on the influence of loading and mechanical parameters
on the small-strain damping ratio, including a physical interpretation of such
dependencies. This is followed by a literature review of some empirical
relationships for its prediction, that allow to define an order of magnitude of this
parameter. The Chapter ends with a description of the role of the small-strain
damping ratio in various engineering applications, to highlight its relevance.
Part of this Chapter has been already published in Foti et al. (2021).

2.1 Response of soils to cyclic actions

2.1.1 Experimental evidence

Many insights on the soil behavior under dynamic loads derive from experimental
tests carried out in the laboratory, specifically from cyclic tests. Although the
loading path does not perfectly simulate the actual action exerted by an
earthquake (i.e., harmonic, cyclic loads instead of irregular, aperiodic load
variations), the observed response allows to predict the soil response in seismic
conditions.

In general, soil behavior is strongly dependent on the norm of the deviatoric
strain tensor (e.g., Foti et al.,, 2014). In the simplified case of uniaxial, shear
loading, this general statement maps into a dependence of the soil response on the
magnitude of the shear strain.

Figure 2-1a shows a typical observed response of a soil sample to a given
level of cyclic shear strain amplitude y., corresponding to a specific cyclic shear
stress amplitude z.. The response is usually investigated in the -y domain, where 7
and y are the shear stress and the shear strain, respectively. This result could be



the output of a cyclic simple shear test (see Chapter 4 for further details). The
response is characterized by strong nonlinearity and irreversibility in the loading-
unloading cycles, as the initial strain state (i.e., null strain) is not restored after
unloading. The irreversibility results in energy dissipation during cycles, whose
main mechanism can be linked to hysteretic damping. In addition, soil response
strongly depends on the cyclic strain amplitude and this relationship is also
reflected in variations in the geometry of the stress-strain loops (Figure 2-1b-d).
Finally, soil behavior depends on the number of cycles, as more cycles induce a
degradation in mechanical properties, although this effect is remarkable only at
great strains (Figure 2-1d).

Changes in soil behavior are not gradual and some threshold strain values can
be identified (Vucetic, 1994). At very small strains, geomaterials exhibit a quasi-
linear response, hence the hysteretic component in the energy dissipation is
negligible (Figure 2-1b). However, the energy dissipation is not zero because
other mechanisms contribute to this, as explained in Section 2.2. The upper bound
of the corresponding strain range is termed as linear cyclic threshold shear strain
y.. For increasing cyclic strains, stress-strain loops become gradually flatter and
broader (Figure 2-1c), implying a reduction in stiffness and an increase of
dissipated energy. On the other side, volumetric changes in drained conditions or
residual pore-water pressure in undrained samples are not observed. At very large
strains, the soil behavior is strongly nonlinear, with severe stiffness and strength
degradation as the strain level increases. Besides, the effect of the number of
cycles becomes relevant on the soil response (Figure 2-1d). In these conditions,
there is a relevant modification in the microstructure, resulting macroscopically in
a permanent volume change accumulation in drained conditions or a permanent
pore-water pressure build-up in undrained conditions. The strain level at which
these phenomena start to become relevant is called volumetric cyclic threshold
shear strain y,.
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Figure 2-1. a) Example of stress-strain loops of a geomaterial under cyclic loading,
represented in the z-y domain. b-d) Variations in the loop geometry at increasing level of
cyclic strain amplitude y. and the number of cycles N (modified from Lanzo and Silvestri,
1999). In the plots, y; is the linear cyclic threshold shear strain, y, is the volumetric cyclic
threshold shear strain and N; and N; are two values for V.

2.1.2 Models

Modeling the nonlinear, degrading soil behavior under cyclic loading is not
straightforward, due to its intrinsic complexity. However, an effective model for
describing the cyclic behavior of geomaterials at low strain levels is the equivalent
linear model, which relies on the theory of linear, viscoelastic media (Ishihara,
1996). This model simplifies the various mechanisms responsible of the energy
dissipation as a viscous damping. This assumption is necessary because the large
number of mechanisms contributing to energy dissipation does not allow to
represent them all with a single modification of the constitutive equations



(Ben-Menahem and Singh, 2012). However, the linear viscoelastic model is quite

effective in describing the actual response of soils under dynamic loading.

Furthermore, this model can be adapted to predict soil behavior at moderately

large strains, by means of the equivalent linear procedure (Seed and Idriss, 1970).
A linear viscoelastic material satisfies two fundamental properties:

e The stress components are linearly related to strain components at a given
time;

e The strain induced by two arbitrary, but different stress inputs applied at
different times equals the sum of the strain states obtained from each of
these stresses, acting separately. This property represents the principle of
linear superposition (Ben-Menahem and Singh, 2012).

The models fulfilling the conditions of linear viscoelasticity rely on the
superposition of two resisting mechanisms to deformation: linear elasticity and
Stokes’ viscosity. These two components can be synthetically described according
to specific mechanical analogs, namely the Hooke’s linear spring and the
Newton’s viscous dashpot. Different combinations of these elements in series or
in parallel generate various models, with increasing level of complexity and
capability of reproducing the actual behavior of geomaterials. However, the linear
viscoelastic theory often relies on basic models, that allow to capture the main
features in the response of anelastic materials. Their description and the
formulation of the constitutive laws refers to the specific case of cyclic uniaxial
shearing (Figure 2-2a), to make a parallelism with the loading conditions typically
investigated in soil characterization.

On the one side, the Kelvin-Voigt model is rather popular in engineering
mechanics. The mechanical analog is a system composed by a linear spring (with
stiffness ) and a viscous dashpot (with viscosity #) connected in parallel (Figure
2-2b). Therefore, this rheological model decouples the overall action into an
elastic component, following the Hooke’s law, and a viscous component,
following the Newton’s law. Thus, in cyclic uniaxial shearing, 7 is balanced by the
superposition of an elastic component, which is proportional to y, and a viscous
part, which is proportional to the strain rate. Therefore, the constitutive law for the
Kelvin-Voigt solid under shearing is the following:

4
T—G7+778t (2.1)

Alternatively, the Maxwell model can be described as a composition of a
linear spring connected in series with a viscous dashpot (Figure 2-2¢). In this case,
the two elements share the same stress state and the strain is the summation of the
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corresponding strains. From these considerations, the following constitutive law
can be derived:
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Figure 2-2. Mechanical model of the Kelvin-Voigt (b) and Maxwell (c) solid, to represent
the behavior of a soil element under uniaxial shear loading, represented by the shear
stress 7 (a). The elastic component of the response is synthetized by a linear spring with
stiffness G, whereas a viscous dashpot with viscosity # models the viscous component.

However, the actual response of an isotropic, linear viscoelastic medium is
provided by an integral relationship, linking the strain history to the stress history
by means of a relaxation tensor function, which synthetizes the time-dependent
behavior of the material (Christensen, 2012). In general, the derivation of the
stress state is a nontrivial operation. On the other side, the constitutive relationship
dramatically simplifies in the presence of uniaxial, harmonic loading. Specifically,
the corresponding behavior is equivalent to the one provided by the Kelvin-Voigt
model. For this reason, this section will continue referring to this simplified model
for the description of the shear-stress response of isotropic, linear viscoelastic
media.

In the presence of a harmonic shear strain with amplitude y., the stress-strain
response of a Kelvin-Voigt solid is a rotated ellipse (Figure 2-3). The ellipse is
centered at the origin of the 7-y domain, i.e. the null stress-strain state, and the
slope of the major axis with respect to the y axis is equal to the stiffness G.
Interestingly, this shape matches well the hysteresis loops that geomaterials
exhibit under shear at a fixed level of y. (Figure 2-1a). For this reason, the linear
viscoelastic scheme is effective in describing soil behavior under dynamic
conditions, at least at small strains.

Furthermore, the strong analogy between the response of the Kelvin-Voigt
solid and geomaterials allows a synthetic description of the dynamic response at
each strain level according to some parameters (termed as dynamic properties),
extracted from the geometry of the loops and providing description of
deformability and energy dissipation (Figure 2-3).
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On the one side, the major axis of the ellipse has a slope equal to G, that is the
stiffness of the spring in the Kelvin-Voigt solid. Therefore, the stiffness behavior
(which continuously changes due to nonlinearity) can be synthetized through an
“equivalent” parameter that describes the average stiffness of the soil across the
loop. This is equal to the secant shear modulus (also denoted as Gs), which is the
slope of the secant line at the two extreme points of the loop.

Figure 2-3. Mechanical response under shearing of the isotropic, linear viscoelastic
medium, represented in the -y domain. At a fixed level of cyclic shear stress amplitude
7., the response can be modelled as an elliptical loop with maximum absolute ordinate
equal to the cyclic shear stress amplitude 7.. The average slope is the secant shear
stiffness G. Instead, the area W) enclosed within the loop describes the dissipated energy
and Wi corresponds to the maximum elastic stored energy.

The description of energy dissipation relies on the analogy between the stress-
strain response of the Kelvin-Voigt solid and the hysteresis loops that describe the
behavior at resonance of an idealized Single-Degree of Freedom (SDOF) system
composed by the linear spring and the viscous dashpot (Chopra, 2017). Therefore,
a possible parameter to measure cyclic energy dissipation is the material shear
damping ratio Ds, defined as the fractional part of the elastic stored energy which
is dissipated during each cycle:

1w,
S 4rw,

The dissipated energy Wp equals the work done by the stress (per unit volume
of material) for an infinitesimal variation of strain and it is related to the size of
the area enclosed within the loop (Figure 2-3):

(2.3)
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The maximum elastic stored energy Wg, instead, corresponds to the area of

the triangle defined by the secant line at the cyclic strain amplitude (Figure 2-3):
w, = % Gy’ (2.5)

Being the dissipated energy proportional to the excitation frequency w, the
damping ratio associated with the equivalent Kelvin-Voigt solid is frequency-
dependent. However, experimental observations demonstrate that the intrinsic
energy dissipation in geomaterials is independent from the loading rate, at least in
the frequency range of engineering interest (see Section 2.2). For this reason, a
modified version of the Kelvin-Voigt solid is usually adopted for modelling soil
response, where the viscous dashpot is replaced by a nonviscous element
(Theodorsen and Garrick, 1940; Kramer, 1996). In this model, an equivalent
viscosity H is assumed, which is inversely proportional to the loading frequency.

H=1 (2.6)
10

Thus, the corresponding damping ratio is independent of frequency,
consistently with the observed behavior of geomaterials.

The influence of y. on the soil mechanical behavior results in a strain-
dependence of G and Ds (Figure 2-4). Indeed, for increasing y., G becomes
smaller because the average slope of the cycles decreases. Conversely, Ds gets
larger as the enclosed area becomes greater. Furthermore, the most relevant
changes in these quantities are consistent with the cyclic strain thresholds
(Vucetic, 1994). At very small strains, soil response is virtually linear, meaning
that the cycles are regular and not sensitive to variations in the strain level.
Therefore, G is constant and it assumes its maximum value, labeled as Gx. On
the other side, the energy dissipation is almost constant and Ds equals the small-
strain material damping ratio (Ds,). At larger shear strains, exceeding the linear
threshold y;, nonlinearity in the stress-strain soil behavior leads to flatter and
broader loops, with an increase of the energy dissipation. This entails a gradual
decay of G and an increase in Ds. At high strain levels, the instability of stress-
strain loops results in a dependence of G and Ds on the number of cycles. The
variation of these quantities with y. is captured by the Modulus Reduction and
Damping (MRD) curves, that provide G (or G normalized by Guax) and Ds as a
function of y..

13



max

G/G

Figure 2-4. Normalized modulus reduction and damping curves, describing variations of
the normalized shear modulus G/G..x and damping ratio Ds as a function of the shear
strain p. The influence of the number of cycles N is included. The plot also highlights the
location of the linear cyclic threshold shear strain y;, the volumetric cyclic threshold shear
strain y, and the small-strain shear damping ratio Dsy (modified from Lanzo and Vucetic,
1999)

2.2 Parameters affecting the small-strain damping ratio

From this point onwards, the focus of the dissertation shifts to the small-strain
range of the soil behavior and, specifically, on the small-strain shear damping
ratio Dso. The focus on this specific aspect is corroborated by the common
practice in soil dynamics to decompose the damping ratio into a small-strain
component and a nonlinear, strain-dependent element (e.g., Darendeli, 2001). This
separation allows to isolate the linear range from the nonlinear part, thus
simplifying the modeling. Also, the partition has a specific physical meaning,
linked to the mechanisms of energy dissipation intervening at different strain
levels. Indeed, geomaterials under high-amplitude cyclic loading undergo a
remarkable energy dissipation due to plastic deformations, that are visible as
hysteretic loops. At small strains, instead, this component becomes negligible in
favor of other mechanisms, of frictional and viscous nature.

The small-strain damping ratio depends both on material properties and on the
loading conditions, e.g. the confinement level. Before addressing the role of soil
mechanical parameters, the effect of the loading frequency on the small-strain
damping ratio has to be investigated. The influence of these parameters is
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assessed accounting for the physical phenomena occurring at the microstructural
scale.

2.2.1 Loading frequency

The effect of the loading frequency — alternatively, the strain rate — on Dsy
strongly depends on the material type. Indeed, the energy dissipation is the
combined effect of different mechanisms taking place in geomaterials during
cyclic loadings (e.g., Stoll and Bryan, 1970; Shibuya et al., 1995; d'Onoftio et al.,
1999). Part of the energy dissipation results from friction between soil particles, as
they mutually slide to each other, and the anelastic behavior of the particles
themselves. A relevant component of energy dissipation is linked to relative
movement between the water and the soil skeleton, due to pore fluid viscosity —
the corresponding viscous damping is frequency-dependent. The key role of pore
fluid in the damping ratio at small strain levels is suggested by an observation that
moonquakes, which occur in the vacuum environment presumably without any
fluid, are known to keep vibrating for a much longer duration than earthquakes
probably because of very low damping in small strain in the near-surface (Latham
et al., 1970; Latham et al., 1971; Kokusho, 2017).

In fine-grained soils, Shibuya et al. (1995) performed a dynamic
characterization of normally consolidated clays at low frequencies, less than 0.1
Hz. By merging results with those of other studies that investigated alternative
frequency bands (Hara and Kiyota, 1977; Kim, 1991), they suggested the
existence of three different branches (Figure 2-5a). At low frequencies (< 0.1Hz),
Ds,o tends to decrease with increasing frequencies. In the medium range (between
0.1 and 10 Hz, i.e., the typical seismic bandwidth) the damping is almost constant,
irrespectively of the loading frequency. Finally, for higher frequencies Dsy
increases with f because of viscous effects. The “U”-shaped dependence of Dz
with respect to the loading frequency has been also observed in other studies,
although the trend displayed less sharp variations, entailing some influence of the
loading frequency on Dsy even in the seismic bandwidth (e.g., d'Onofrio et al.,
1999; Stokoe and Santamarina, 2000; Darendeli, 2001; MateSi¢ and Vucetic,
2003; Meng, 2003; Rix and Meng, 2005), as shown in Figure 2-5b. This effect is
relevant especially in plastic soils (Stokoe and Santamarina, 2000; Darendeli,
2001). For this reason, the actual dependency on the loading frequency within the
typical seismic bandwidth is still controversial. Some effect of the loading
frequency is also visible on G, although the relative variations are negligible
(Figure 2-5b). On the other side, the influence of the frequency is less remarkable
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at high strain amplitudes. Indeed, the frequency-independent, hysteretic damping
increase due to plastic deformation partially covers these aspects.

The motivation behind this behavior has to be found into the different
mechanisms of energy dissipation taking place in cohesive soils during cyclic
loadings (e.g., Shibuya et al., 1995; d'Onoftio et al., 1999). In fine-grained soils,
indeed, dissipations are linked to complex phenomena occurring at the
microstructure scale, controlled by electromagnetic interactions between water
dipoles and microscopic solid particles (Foti et al., 2014). However, the degree of
contribution of each component is not the same and it depends on the loading
frequency, thus justifying the “U”-shaped trend of Dso with the frequency. A
remarkable aspect is that dissipation due to frame inelasticity is dominant across a
broad brand of frequencies, whereas fluid losses are negligible due to limited fluid
mobility, except at high frequencies (Stoll and Bryan, 1970; Stoll, 1977). In the
very low-frequency range, the application of the load is quasi-static and creep
phenomena occur. Due to creep, indeed, the elastic limit shear strain (i.e., the
maximum strain level at which the tangent stiffness equals the maximum one)
decreases at small strain rates, thus the stress-strain loops are enlarged
proportionally as the loading frequency decreases (Dobry and Vucetic, 1987;
d'Onofrio et al., 1999). Therefore, the slower is the application of the load, the
higher is Dso. On the contrary, creep-induced energy dissipation becomes
negligible at high frequencies. Instead, in the medium frequency range (i.e., the
seismic band), energy dissipation is mainly the result of the anelastic soil
behavior. At high frequencies, the Ds o increase with growing f may be an effect of
the relevant contribution of the pore fluid viscosity at high loading rates.
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Figure 2-5. a) Effect of loading frequency f on the small-strain damping ratio Dsy of
cohesive soils (modified from Shibuya et al., 1995); b) Effect of the loading frequency on
the small-strain shear modulus G... and damping ratio Dsy for cohesive soils, as a
function of the plasticity index P/. To highlight the influence of £, these parameters are
normalized by the corresponding values measured at f = 1 Hz, namely G,.  and Dsy

(modified from Stokoe and Santamarina, 2000).
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In coarse-grained soils, where gravity forces are governing the overall
behavior, the main dissipative mechanisms are losses at contacts between soil
particles (mainly with frictional nature), matrix anelasticity and fluid flow losses
due to the relative movement between the solid and the fluid phase (e.g., Stoll and
Bryan, 1970; Stoll, 1977). Being the fluid mobility significant, the frequency-
dependence of Dsy strongly depends on the moisture content. In coarse-grained
dry materials, the effect of loading frequency seems to be negligible in the
frequency range of typical interest (Kim and Stokoe, 1994; Lo Presti et al., 1997;
Menq, 2003). However, creep effects have been observed under quasi-static
loading conditions (Di Benedetto, 1997). The moisture addition, instead, induces a
remarkable dependence on the loading frequency, whereas G is almost constant in
the seismic band (Figure 2-6). The variation is still described as a “U”-shaped
trend, although the frequency boundaries differ from those identified in fine-
grained soils. On the one side, Dsy increases as frequency decreases below 1 Hz,
as a result of creep at such slow loading rates. Then, it does not remain constant
along a given bandwidth, but it immediately increases at higher frequencies —
however, the relative variation is not strong (Mengq, 2003). This is an effect of the
viscous damping generated by relative movement between water and the soil
skeleton, which is comparable with frame losses (or even dominant) even at low
frequen01es due to hlgher moblhty of the pore fluid (Stoll, 1977)
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Figure 2-6. Effect of the loading frequency f on the small-strain shear modulus G, and
damping ratio Ds, for saturated, gravelly soils, as a function of the plasticity index PI. To
highlight the influence of £, these parameters are normalized by the corresponding values
measured at f= 1 Hz, namely G,.. and Ds) (after Meng, 2003).

A similar behavior is observed in rock-like materials, as results from
laboratory data typically show that this parameter is independent of the loading
frequency in dry rocks (Johnston et al., 1979). Indeed, the energy dissipation
results from the combined effect of several mechanisms that are linked with the
microstructure of rocks, which are a composition of intact rock matrix and
discontinuities — macroscopic fractures or small cracks. Therefore, part of energy
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losses are an effect of rock matrix anelasticity (Walsh, 1966) and friction-based
dissipation in relative motion along cracks and grain boundaries, that induce a
frequency-independent energy loss. As in soils, the presence of fluid may induce
additional energy dissipation, mainly through water wetting — it enhances friction-
like relative sliding — or complex phenomena linked to the interaction with small
cracks, e.g. “squirting” type flow from small cracks to pores (Mavko and Nur,
1975; O'Connell and Budiansky, 1977) in fully saturated rocks. In most scenarios,
however, fluid losses seem not to dominate the frequency-independent losses
induced by the remaining mechanisms, especially in shear at seismic frequencies
(e.g., Paffenholz and Burkhardt, 1989).

2.2.2 Material parameters

As in the investigation of the frequency effect, the assessment of the role of
material parameters on the small-strain damping ratio accounts for the soil type,
due to the different mechanisms contributing into the energy dissipation.

In fine-grained soils, Dsy is mainly affected by the plasticity index PI, as
highly plastic soils tend to be more dissipative than low plastic ones (Stokoe et al.,
1995; Stokoe et al., 1999; Darendeli, 2001; Roblee and Chiou, 2004; Zhang et al.,
2005; Figure 2-7), whereas the influence of confining pressure is secondary. The
plasticity index also affects the sensitivity of Dsy to the loading frequency. In
highly plastic soils, in fact, there is an increase by 100% over a log-cycle increase
in the frequency (Figure 2-5b). Specifically, variations become relevant at
frequencies higher than 10 Hz (Darendeli, 2001). The small-strain damping ratio
also depends on the overconsolidation ratio and the confining pressure (Hardin
and Drnevich, 1972b; Darendeli, 2001), as their increase leads to a reduction in
Ds. However, the induced variation is a second order effect compared to changes
in PI.

18



w

& Quaternary soil ;Based on TS data only

O Tertiary and older soil | { Loading frequency = 0.5 Hz
i : Number of cycles = 10

A

atm, D¢ g (%)

D iy = 0.008P7 +0.82

<

0 30

60 90 120 150
Plasticity index, PI (%)

Small-strain shear damping ratio at o,, = 1

Figure 2-7. Relationship between plasticity index P/ and small-strain shear damping ratio
1 atm

50 (normalized to the atmospheric pressure; after Zhang et al., 2005).

In coarse-grained soils, instead, less case studies are available, due to issues in
obtaining high quality measurements of the material damping ratio, especially for
gravels. These difficulties stemmed from the rather low linear cyclic threshold
(e.g., 10% in gravels), that force to investigate very low strain amplitudes, not
easily achievable in laboratory testing (Meng, 2003). Nonetheless, Ds,o of coarse-
grained soils is strongly dependent on the confining pressure o, (Figure 2-8a;
Laird, 1994; Menq, 2003). Menq (2003) also highlighted a remarkable effect of
the grain size distribution, in terms of the uniformity coefficient C, and the
equivalent particle diameter Dso. Specifically, Dso decreases with increasing Dso
and decreasing C,. He also noticed a direct relationship with the void ratio
(similar to Laird, 1994), albeit less well defined than in Gax.

Furthermore, Ds, in coarse-grained materials is remarkably sensitive to the
degree of saturation. Indeed, the moisture addition exerts a twofold effect on the
damping ratio (Menq, 2003). On the one side, Ds becomes rather sensitive to the
loading frequency, as reported in Section 2.2.1. Furthermore, it induces a strong
increase with respect to the values measured on dry specimens, more than
doubling itself (Figure 2-8b). The increase in magnitude and the frequency-
dependence may be interpreted as the result of viscous damping caused by pore
water movement in voids among soil particles.
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Finally, material damping in rock-like materials exhibits similar behavior to
coarse-grained soils, as similar mechanisms of energy dissipation are involved.
Specifically, this parameter depends on the confinement level and it is remarkably
sensitive to the saturation degree, because the introduction of fluid in cracks
introduces a slight frequency-dependence of Ds together with the increase in its
value (e.g., Gardner et al., 1964).

2.2.3 Typical values of the small-strain damping ratio

This section provides an overview of typical values of Dsyg, to set an order of
magnitude of this quantity as a function of the type of geomaterial. Furthermore,
this section describes some of the most recent empirical relationships to estimate
Ds, that also explicit the role of soil parameters. However, it should be remarked
that the relationships presented below derive from laboratory tests, unless
otherwise stated.

In fine-grained soils, the typical range of Dsyo is around 3+5% (Kokusho,
2017). Darendeli (2001) calibrated an empirical equation for predicting Ds in
fine-grained soils, that incorporates the dependency of Dsy from f in the range
between 0.2 and 100 Hz:

D =(0.8005+0.0129- PI-OCR™*1*). 6,70 .[140.2919-In(f)]  (2.7)

m

where PI is expressed in percentage, f'in Hz, and ¢ » in atm. This relationship
was developed from experimental tests carried out at ¢ ,, ranging from 30 to 2,500
kPa on soils characterized by PI ranging from 0 to 130% and OCR varying
between 1 and 8. In addition, an estimation of the corresponding standard

20



deviation op is provided, and the amount of variability depends on the mean
estimate of Dy itself:

o, =0.0067+0.78,/D; (2.8)
Ciancimino et al. (2020) proposed a similar formulation for predicting Ds,o in
fine-grained soils from Central Italy, in terms of the mean and op:

0274 [140.134-In(f) ]
—0.6243 + e—l.SOOlDS 0

'

Dgo =(1.281+0.036-PI)-o,
s0.=( ) 2.9)

op=e

This relationship was developed from experimental tests carried out at o
ranging from 30 to 440 kPa on soils characterized by P/ ranging from 0 to 42%.

However, both relationships for op give only an estimation of the dispersion
affecting the curves. Indeed, the adopted procedure does not propagate in a
rigorous manner the uncertainties of the multiple variables related to the nonlinear
relationships (Ciancimino et al., 2020). Furthermore, the dependence on the mean
estimate of Ds was introduced mainly to account the increase in data uncertainty
as the shear strain increases.

Figure 2-9 reports the mean Ds and the related variability (expressed through
the coefficient of variation, CoV, defined as the ratio between standard deviation
op and mean) for fine-grained soils, as a function of P/ in the range from 0 to
100%. Data were computed for three different confinement levels, i.e., o » equal
to 50 kPa, 300 kPa and 1,000 kPa, to simulate conditions ranging from shallow to
deep soil deposits. The computation accounted for the applicability constraints of
the considered empirical relationships. Generally, Ds o ranges around 1+2%, up to
3% 1n plastic soils and the CoV varies between 0.5 and 1, meaning that the
variability in the estimate is high.
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Figure 2-9. a-c) Empirical estimates of the mean value of the small-strain damping ratio
Dsy as a function of the plasticity index P/, for confining pressures equal to 50 kPa (a),
300 kPa (b) and 1,000 kPa (c); a-c) Empirical estimates of the coefficient of variation
(CoV) of Ds, as a function of P/, for confining pressures equal to 50 kPa (a), 300 kPa (b)
and 1,000 kPa (c).

In coarse-grained soils, instead, Dsy typically ranges around 1% (Kokusho,
2017). However, less case studies are available for gravels, due to difficulties in
obtaining high quality measurements of material damping ratio at small strains
(Mengq, 2003). Menq (2003) proposed the following empirical relationship for dry
coarse-grained materials, as a function of the uniformity coefficient C,, the
equivalent particle diameter D5y and the confining stress:

, \—0.08
D, =0.55-C>!. D3 ( Tm J (2.10)
atm

He also provided a measure of variability, with a constant ap equal to 0.1%.
Figure 2-10 compares the mean Ds,p and the related CoV for sands and gravels, as
a function of ¢ . Data were estimated from Menq (2003) relationships by setting
C. = 20 and Dsyp = 8.0 mm for gravels and C, = 1.5 and Dsp = 0.5 mm for sands.
Compared to fine-grained soils, there is a reduction both in Ds9, which is less than
1%, and in the CoV, which ranges around 0.2+0.4.
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Finally, Dso estimates for rock-like materials or cemented soils are mainly
available through specific laboratory tests, whereas empirical relationships for its
prediction are currently not available. Table 2.1 lists some typical values extracted
from technical literature.

Table 2.1. Typical values of the small-strain damping ratio Dsy for some dry rock-like
materials or cemented soils.

Rock type Ds,

Tuffs (Choi, 2007) 0.4+1%
Sandstone (Gardner et al., 1964; Paffenholz and Burkhardt, 1989) 0.2+1.2%
Limestone (Paffenholz and Burkhardt, 1989) 0.1+0.6%
Dolomite (Paffenholz and Burkhardt, 1989) 0.25+0.6%

On the other hand, additional empirical relationships allow to infer Dsy as a
function of other mechanical parameters. A popular scheme relates the so-called
“quality factor” Qs (Carcione, 2007), which is an alternative dissipation parameter
to Dso commonly used in seismology, with the S-wave velocity Vs. Many
proposed formulations assume a proportionality between these parameters (e.g.,
Olsen et al., 2003; Campbell, 2009):

1
Q&;—-z

S,0

—a+bV @2.11)

Note that these relationships do not derive from laboratory-based damping
estimates, but they are inferred from observations on ground motion data (see
Chapter 4 for further details). Therefore, they are they are proxies of the in-situ
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damping ratio and they might not necessarily provide a measure of intrinsic
dissipation only.

2.3 Role of the small-strain damping ratio

2.3.1 Seismic site response

The proper prediction of the earthquake-induced ground motion is crucial for the
seismic design of buildings and geotechnical systems. Typical design approaches
do not model the complete propagation of seismic waves from the source (i.e., an
active fault) to the target (e.g., a structure), as conventional ground motion
prediction relies in a decomposition of the problem into three steps: source, path
and site effects (Figure 2-11). Source effects analysis models the fault rupture and
provides an estimation of the released energy, whereas path effects are linked with
the propagation of seismic waves across the crust. Site effects, instead, represent
alterations in amplitude and frequency content of seismic waves induced by local,
near-surface geology. Modeling of source and path effects is typically carried out
through Probabilistic Seismic Hazard Analyses (PSHA; Cornell, 1968). PSHA is
performed for a reference geological condition, typically for rock-like outcropping
formations. Therefore, site effects studies allow to map the ground motion from
the reference conditions into a site-specific hazard estimate, that accounts for the
site geomorphology. An effective indicator of variations in the ground motion
characteristics due to local site conditions is the acceleration transfer function
(TF), defined as follows:

TF:—i{?(f’X)

iy, (f)

The TF measures relative variations between the Fourier spectrum of the
ground acceleration ,(f,;x) at the generic location x inside the soil deposit
(typically, the free surface) and the Fourier spectrum of the ground acceleration
lig.o(f) recorded in rock-like outcropping formation, i.e. the reference geological
condition (Figure 2-11). An alternative indicator commonly used in engineering
seismology is the spectral amplification function AF, defined as the ratio between
the 5%-damped elastic response spectrum Se(7,X) in a location in the soil deposit
and the reference one S o(7):

(2.12)

_SE(T,X)

AF = 5 0 (2.13)
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Figure 2-11. Distinction between source, path and site effects in propagating seismic
waves (modified from Passeri, 2019). The plot highlights the motion recorded in the
reference geological condition, represented in terms of the Fourier spectrum of the ground
acceleration g (f) and the elastic response spectrum S, ,(7), and the motion inside the soil
deposit, represented in terms of zi,(f;x) and S.(7,x).

The modifications in ground motion characteristics are the result of the
mechanical properties of the soil deposit and the geometry of stratigraphic
interfaces and they are usually termed as stratigraphic amplification and
topographic amplification. A detailed assessment of the modification of the
ground motion should take into account all these factors, by carrying 2D or even
3D analyses — typically termed as Site Response Analyses (SRAs). Yet, SRAs
require a detailed geologic and geotechnical characterization of the location under
examination for an adequate extent, able to cover the representative volume of
interest. The large amount of investigations required and the necessity of
sophisticated numerical codes make SRAs to be used only on specific project
topics, e.g. for critical facilities. Ordinary design applications typically rely on 1D
Ground Response Analyses (GRAs), that assume a 1D model for the site deposit
and ignore the actual geometry (i.e., lateral variations, local heterogeneities, etc.)
to focus on stratigraphic amplification. Even though this scheme is not applicable
in every geological condition, GRAs have become very popular thanks to the
limited amount of input parameters, the simplicity in the interpretation and the
limited computational effort. In addition, GRAs have been proved to provide
reliable estimates of site amplification in several cases.

Notwithstanding their simplicity, GRAs are affected by uncertainties due to
several factors. Following the scheme devised by Idriss (2004) and Rathje et al.
(2010) and extended by Passeri (2019), the main sources of uncertainties are the
shear-wave velocity (Vs) profile, the MRD curves, the shear strength, the small-
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strain damping ratio, the input motions selection and the type of approach for
modeling soil dynamic behavior. The choice of mechanical parameters is a
nontrivial task, yet it is a critical step in conducting GRAs. Indeed, the key issue is
the non-existence of a priori conservative values for the mechanical parameters.
The reason of this difficulty is the coupled effect of the large amount of input
information involved in GRAs, that may have mutual and/or opposite effects on
the resulting amplification, and the remarkable nonlinearity that affects the
problem. For this reason, GRAs should be carried out by considering the
parameter uncertainties in an explicit way, within a probabilistic framework in
order to Identify, Quantify, and Manage (i.e., IQM method; Passeri, 2019) all the
uncertainties and variabilities involved in the analyses. A thorough discussion on
the role of each parameter and the related uncertainties would be beyond the
scope of this dissertation, which focuses on the effect of the small-strain damping
ratio. A detailed overview of the remaining parameters is available in Foti et al.
(2019a), Foti et al. (2019b), Passeri (2019), and Foti et al. (2021).

Although the uncertainties related to Dsy are usually referred as secondary
(Idriss, 2004; Rathje et al., 2010; Cabas and Rodriguez-Marek, 2018), the choice
of adequate values can strongly affect the soil response, especially in the small-
strain field (e.g., Thompson et al., 2012; Tao and Rathje, 2019). For instance,
Field and Jacob (1993) observed that poorly constrained damping ratio values,
together with uncertainties in the S-wave velocity of shallow layers, result in a
large variability in simulated amplification data. Boaga et al. (2015) observed that
Ds,o affects the 1-D amplification in presence of strong impedance contrasts and
its effect is more relevant at high frequencies, whereas its impact is smaller in soil
deposits with smooth variations of the mechanical properties. Indeed, in the
presence of sharp variations in stiffness, the 1-D ground model exhibits a response
closer to the theoretical case of a homogeneous medium over a rigid bedrock,
where the entity of the ground motion amplification is inversely proportional to
Ds (Kramer, 1996).

Ordinary applications estimate Ds by means of specific laboratory tests or
from in-situ surveys, based on seismological methods or geophysical testing — the
different estimation methods will be addressed in Chapter 4. Alternatively,
empirical models (e.g., Hardin and Drnevich, 1972a; Kokusho et al., 1982; Seed
et al., 1986; Vucetic and Dobry, 1991; Ishibashi and Zhang, 1993; Darendeli,
2001; Menq, 2003; Zhang et al., 2005; Senetakis et al., 2013; Vardanega and
Bolton, 2013; Ciancimino et al., 2020) can be used to predict the soil behavior as
a function of different variables (e.g., soil type, P/, mean confining pressure,
OCR, loading frequency). The uncertainties on the empirical models related to the
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experimental variability of MRD curves and possible experimental errors can be
quantified through the standard deviation provided along with the mean values
(e.g., Darendeli, 2001; Zhang et al., 2005; Akeju et al., 2017; Ciancimino et al.,
2020). Conversely, when laboratory tests are carried out, the main uncertainties
are related to the experimental limitations and the natural randomness of soil
properties at the site scale, associated with geological spatial variations (Park and
Hashash, 2005).

However, the applicability of Ds,y values obtained through laboratory tests for
GRAs has been questioned by different Authors (e.g., Thompson et al., 2012;
Stewart et al., 2014a; Zalachoris and Rathje, 2015; Xu et al., 2019). Indeed,
experimental evidence from back-analysis of Down-Hole seismic arrays showed
small-strain damping ratios in the field larger than the values obtained through
laboratory tests (see Chapter 4). For clarity of interpretation, the small-strain

site

damping ratio in field is hereafter referred as D55, while Dsy is adopted for the

material small-strain damping ratio measured in the laboratory. These differences
have to be interpreted taking into account the energy dissipation mechanisms
acting at the site scale. Wave scattering effects can modify the propagating
seismic waves due to heterogeneities in the soil profile (Field and Jacob, 1993;
Thompson et al., 2009). This phenomenon, which is relevant especially in the
presence of large contrasts of mechanical properties (Zalachoris and Rathje,
2015), causes additional energy dissipation to the material dissipation and cannot
be captured by laboratory tests. As a consequence, the D55 should be adopted as

small-strain damping when GRAs are performed. However, the proposed methods

site

for estimating Dy rely on data and resources that are often not available in

common engineering applications and there is no consensus about the best
approach for its estimate. This difficulty has been highlighted by Stewart et al.

(2014a), who suggested dealing the discrepancy between Dy and Dsy as an

site

epistemic uncertainty, when no measurements of D5 are available. Therefore,
this uncertainty should be handled through a sensitivity study by assuming
different D55 values, given as the sum of Ds and a depth-independent additional

site

damping AD, ranging between zero (i.e., D5 coincides with Ds) and 5%.

Foti et al. (2021) investigated the influence of the uncertainties in Dsy in the
seismic ground amplification, mapping the variations of Dsy on the stratigraphic
amplification of generic soil models, extracted from a stochastic database of
GRAs (Aimar et al., 2020). In this dissertation, only results from two subsets are
presented: a group of relatively stiff ground models, characterized by time-
weighted average of the Vs profile (Vsu) of 400+450 m/s and bedrock depth close
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to 40 m; a group of soft soil deposits, with Vs close to 250 m/s and sediment
thickness around 60 m. Following the recommendations prescribed in Stewart et
al. (2014a), for each ground model multiple GRAs were performed, by computing

site

for each layer Ds'5 as the sum of Dsy, derived through literature models, and an

additional depth-independent damping AD equal to 0%, 2.5% and 5%.
Simulations were carried out with seismic input motions representative of small-
to-moderate and high seismicity levels. Figure 2-12a-b shows the mean AF for

site

each group of soil models, for low and high seismicity. The impact of Ds'§

depends on the deformability of the ground model and on the level of seismicity.

site

Variations in Dss have a strong influence on the seismic amplification in

deformable soil deposits (Figure 2-12b), with a reduction of the AF up to 10% at
resonance and 30% at high frequencies for AD = 5%. Similar features are
observed under strong seismic input motions, even though the effect is less
relevant. As for the variability in the stratigraphic amplification (Figure 2-12c¢-d),

site

the increase of Ds’5 induces a slight reduction in the variability of AF, especially

at short vibration periods in soft soil deposits. This kind of ground models, indeed,
usually exhibits local variations — i.e., thin layers, in 1-D conditions — that induce

site

strong variability in the response. On the other side, increasing Ds’s leads to an

overdamping of the high-frequency components of the wavefield, that are more

site

sensitive to such variations. Furthermore, the effect of D3 on the response

variability is observed on soft soil models under strong seismic inputs (Figure
2-12d). A possible reason might be the shifting of the D curve towards higher

site

values at large strains due to the increase of Dsj, resulting in an additional

attenuation of the high-frequency components of the wave.
In the same study, Foti et al. (2021) addressed the influence of Dsy on a site-
specific amplification study, with reference to the site of Roccafluvione (Italy).

site

The uncertainties of Ds'y were simulated through the approach suggested by

Stewart et al. (2014a) also in this case, hence Ds’s was computed as the sum of

Dso (derived from the model by Ciancimino et al., 2020) and an additional
contribution 4D, equal to 0%, 2.5%, and 5%. GRAs were performed with
reference to two suites of input motions, compatible with the site-specific
Uniform Hazard Spectra for the return periods of 50 and 475 years.
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Figure 2-12. a-b) Mean amplification factor AF vs. period T for moderately stiff (a) and
deformable (b) soil deposits, as a function of the additional damping contribution AD and
seismicity level; c-d) Standard deviation (in logarithmic scale) of the AF omnur) vs. T for
moderately stiff (a) and deformable (b) soil deposits, as a function of AD and the
seismicity level (after Foti et al., 2021).

They compared variations in the AF due to the epistemic uncertainty in Ds,
with the variability due to Vs and the MRD curves. Such variability was computed
over a statistical sample of ground models generated through a Monte-Carlo

site

simulation from results of the geophysical investigations by keeping Ds'¢ as equal

to Dsp in Foti et al. (2019a). The corresponding AF distribution is represented in
Figure 2-13 by the interval defined by the mean and one standard deviation (in
logarithmic scale), together with the curves obtained as a function of AD. A

site

change in Ds); leads to a variation in the amplification which is significant

compared with the overall variability of the results. Indeed, for AD = 2.5%, the
AF is close to the lower boundary of the distribution, whereas a value AD = 5%
leads to a large reduction of the amplification, which lies completely below the
bounds. This effect is relevant especially at high frequencies and close to the
resonance peak, even when the soil profile is subjected to the higher seismicity

site

level. This difference demonstrates than variations in Ds§ may have a

considerable impact on stratigraphic amplification and its proper quantification is
necessary for a good prediction of the ground response in seismic conditions.
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Figure 2-13. Comparison between the distribution of the amplification factor AF
(represented in terms of x4 + ¢ interval), obtained by varying the S-wave velocity Vs and
the MRD curves, and the AF curves as function of the additional damping contribution
AD for (a) low-intensity motions and (b) high-intensity motions (after Foti et al., 2021).

Finally, the recent study by Rodriguez-Marek et al. (2021) investigated the
epistemic uncertainties affecting GRAs, with reference to a synthetic soil model.
Differently from previous studies, they did not assess only the effect of variations
in Vs, but they performed a thorough investigation of the role of various soil

site

deposit mechanical parameters, including Ds's as well. Their study, indeed, is an

attempt to overcome issues in modeling epistemic uncertainties that, according to
the Authors, are the result of an oversimplified and incomplete definition of such
uncertainties. The mapping of epistemic uncertainties into the ground motion
amplification was carried out through a logic tree approach, where multiple
scenarios (called “branches”) — each corresponding to a possible outcome for any

site

input variable — are modelled (Figure 2-14). In this study, D55 was assumed to be

proportional to the laboratory-based estimate Dso and the related uncertainties
were introduced by setting various values on the multiplier. Logic trees allow to
infer both the statistical dispersion of the amplification and the relative
contribution of the epistemic uncertainties of each parameter. The latter is
provided by sensitivity analyses on results, that compute the mean amplification
conditioned on a specific branch (i.e., a specific value) for each parameter being
true. The conditioned means can then be compared to the overall mean, in terms
of relative difference (in logarithmic scale), called “sensitivity” (Figure 2-15).
Interestingly, the multiplier of Dsy is the most influencing parameter at short
vibration periods, with an impact even more relevant than Vs. This entails that the
high-frequency amplification is strongly dependent on Dsy. Conversely, the long-
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period response is mainly affected by variations in the Vs of shallow layers,

whereas Ds, plays a secondary role.
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Figure 2-14. Logic tree used for the analysis of the effect of epistemic uncertainties in
GRAs (after Rodriguez-Marek et al., 2021).
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Figure 2-15. Sensitivity of the mean amplification factor AF to the various parameters
involved in the logic tree (Figure 2-14), as a function of the investigated vibration period
T: 0.1 s (a) and 1.0 s (b). The size of each symbol is proportional to the weight assigned
to the corresponding branch (after Rodriguez-Marek et al., 2021).

2.3.2 Ground vibrations

The proper assessment and management of artificially induced vibrations has
gained interest in the last decades, due to the growing environmental concern and
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the impact on acoustic comfort of people. Besides, at very high levels, vibrations
might induce structural damage. Sources of vibrations can be clustered into three
main categories: traffic, industrial activity and construction activity. The
distinction is just indicative and not exhaustive, although each category is
characterized by different levels of amplitude and frequency content. National and
international guidelines set proper constraints, based on various kinds of
parameters, threshold levels and frequency ranges, as a function of potential
consequences of vibrations in building. The considered scenarios are
malfunctioning of sensitive equipment (e.g., Gordon, 1991), discomfort to people
(e.g., British Standard Institution, 1992; International Organization for
Standardization, 1999) and structural damage (e.g., Deutsches Institut fur
Normung, 1999). Generally, criteria rely on design parameters linked with the
particle velocity field, hence this is the target quantity intervening in vibration-
based problems.

The prediction of the entity of ground-borne vibration often relies on
empirical approaches. However, the current trend is to perform a theoretical
prediction to simulate the whole phenomenon of vibration propagation, based on
physical modeling. From the physical viewpoint, vibrations are elastic waves that
are generated by a source, which is simulated as a dynamic force applied onto the
soil. These waves propagate inside the medium and they impinge on the receiver
(e.g., the foundations of nearby buildings), thus generating structural vibrations
and re-radiated noise (Figure 2-16). Typical modeling performs a decomposition
of the problem into three subproblems, that are treated separately (e.g., Lai et al.,
2005a): the characterization of the source, the transmission of elastic waves from
the source to the receiver under free-field conditions, and the interaction of the
receiver with the incident wave field. The decomposition does not account for the
mutual dependence of the solutions of each subproblem, however the
approximation introduced by such separation is acceptable when the characteristic
wavelength of the generated wavefield is small compared to the source-receiver
distance. In this case, indeed, the presence of the target element does not
significantly affect the incident wavefield. Not surprisingly, this partition recalls
the source-path-site separation used in engineering seismology. Indeed, seismic
hazard analysis and vibration studies both address the propagation of mechanical
waves in the soil, albeit with some key differences. On the one side, ground-borne
vibrations induce low strain levels, lying below the linear cyclic threshold shear
strain, whereas seismic waves usually have large amplitudes, hence the
nonlinearity may be relevant. Therefore, the transmission of ground-borne
vibrations may be modeled using a linear soil constitutive model. Furthermore,
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vibrations involve waves with frequencies (up to 200 Hz) that are an order of
magnitude higher than those induced by earthquakes (up to 30 Hz; Pyl, 2004).
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Figure 2-16. Schematic representation of the propagation of ground-borne vibrations
(after Lai and Ozcebe, 2015).

The soil model characteristics are relevant in the assessment of vibrational
impact, as they affect both the source characterization, the propagation, and the
interaction with the receiver. On the one side, the energy transmitted from the
source into the ground is the result of an interaction among the source itself, the
foundation and the soil, all of them affecting the entity of vibrations. Then, the
energy spreads into the soil medium in free field conditions, undergoing changes
in amplitude and frequency content as an effect of soil anelasticity. Finally, the
ongoing wave impinges the receiver, and the induced motion is affected by the
interaction between the foundation and the soil. This section focuses on key
aspects about vibrations generation and propagation, whereas the interaction with
the receiver is addressed in the next section, due to the remarkable analogies with
the problem of seismic soil-structure interaction. Furthermore, several studies tend
to couple the modeling of the source effects and the propagation of vibrations in
the ground.

Modeling of the source effects often relies on physically-based analytical
models or numerical schemes that account for the mutual interaction between the
source and the underlying structure and soil (e.g., Lombaert et al., 2000; Clouteau
et al., 2001; Hussein and Hunt, 2007). The relevant role of soil model
characteristics is evident when focusing on prediction accuracy of such theoretical
models. Comparing predicted vibrations to experimental data often reveals good
qualitative agreement, whereas it is challenging to achieve a good quantitative
accuracy, as the prediction in common models error usually ranges around 10 dB
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(Hunt and Hussein, 2007). Furthermore, the degree of fit strongly depends on the
excitation frequency. For instance, Lombaert and Degrande (2003) and Lombaert
et al. (2006) noticed that simulated and experimental data compare well when
dealing with noise generated by road traffic, whereas the matching quality is poor
if effects of rail traffic are investigated. The different performance is the coupled
effect of uncertainties in the soil model and the frequency content of the vibration
generated by the source. On the one side, the complete spatial variation of
dynamic soil characteristics is impossible to identify, hence soil models are
subject to uncertainty (Lai and Ozcebe, 2015). Furthermore, road vehicles mainly
generate a low-frequency signal that, having large wavelengths, is poorly sensitive
to small variations and local heterogeneities in the soil. Notwithstanding several
studies explicitly recognize the paramount role of soil dynamic parameters in the
ground-borne vibrations (e.g., Kouroussis et al., 2011), only few cases performed
a thorough parametric analysis on this purpose or used in situ estimates of soil
parameters, especially for the dissipative ones (e.g., Dos Santos et al., 2016).

Schevenels (2007) investigated in detail the influence of soil dynamic
parameters on the free-field wave propagation. For this purpose, he carried out a
parametric analysis on a homogeneous half space, by modifying each soil
parameter separately and studying variations in the propagating wave. The
variability in Vs and Dso was modeled assuming a lognormal distribution, where
the mean value and standard deviation are consistent with typical studies of
stochastic soil dynamics. The coefficient of variation of Ds, is equal to 0.4, which
is much higher than the dispersion in the soil stiffness (as the corresponding value
is 0.2), to account for the high uncertainties affecting in situ estimates of Dsyo
(Figure 2-17a-d; Karl, 2005). The vibration entity was measured through
displacement transfer functions, that provide the displacement field due to a unit
force applied on the surface of the medium. He noticed that variations in Dz
impact in a similar way to those in Vs (Figure 2-17). Furthermore, the effect
strongly depends on the investigated frequency, as the variability in the estimated
transfer function exponentially increases with the frequency, especially at large
distances from the source. For instance, the 95% confidence region of the transfer
function estimated at high frequencies far from the source may span multiple
orders of magnitude. This result demonstrates the strong impact of the
uncertainties in Ds in the wave propagation at small strains.
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Figure 2-17. a-c) Parametric study with reference to the shear modulus: a) Probability
density distribution; Ten realizations (grey lines) and 95% confidence regions (shaded
area) of the transfer function amplitude for a receiver located at 4 m (b) and 32 m (c)
from the source; d-f) Parametric study with reference to the shear damping ratio: d)
Probability density distribution; Ten realizations (grey lines) and 95% confidence regions
(shaded area) of the transfer function amplitude for a receiver located at 4 m (e) and 32 m
(f) from the source. Darker lines correspond to higher values of the investigated
parameter (after Schevenels, 2007).

Instead, Papadopoulos et al. (2019) investigated the effect of soil parameters
uncertainties on the estimated transfer function for a real case. Specifically, they
mapped soil uncertainties into the response of a real building, located in Belgium.
Simulations considered a suite of representative soil profiles obtained from the
interpretation of a MASW survey, with low-uncertainty Vs data, whereas Ds is
well constrained in the shallow layers, but it is affected by high variability at
greater depths (Figure 2-18a-b). The parameter uncertainty results in broad
variability in the theoretical transfer function and in the estimated displacements
in the structure that, however, allow to achieve a good prediction of the in situ
observed data (Figure 2-18c).
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Figure 2-18. a-b) Representative S-wave velocity Vs and small-strain damping ratio Ds
profiles; ¢) Measured (solid line) vs. predicted (dashed line) vertical displacement transfer
function u at the ground floor of the target building. The grey solid lines denoted
realizations for different soil profiles (after Papadopoulos et al., 2019).

2.3.3 Dynamic soil-structure interaction

The parameters describing the low-strain soil dynamic behavior are relevant also
in problems of dynamic soil-structure interaction. Indeed, in the presence of
dynamic loading, the deformability of the soil-foundation system affects the
motion of the structure and, conversely, the motion of the structure itself affects
the motion of the soil-foundation system. Therefore, there is a mutual effect of the
components’ deformability on the overall response of the system. Variations in
the dynamic response in the structures due to the interaction between the
superstructure, the foundation and the underlying soil are termed as Soil
Foundation Structure Interaction (SFSI).

This kind of problem is relevant in all the geotechnical systems, and it is
intrinsically complex. Indeed, the mechanisms involved in the dynamic
interaction primarily depend on the foundation type because, for example,
structures founded on footings or piles (e.g., Mucciacciaro and Sica, 2018) exhibit
rather different responses. Furthermore, the characteristics of the superstructure
itself affect the response of the system, as the interaction changes when dealing
with isolated piers (e.g., Gaudio and Rampello, 2019), continuous-beam bridges
or multi-storey buildings. Also, the boundary conditions of the system affect
dynamic interaction. Typical examples are offshore systems, where water actively
participates in the global response (e.g., Kementzetzidis et al., 2019), or earth-
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retaining walls (e.g., Argyroudis et al., 2013). Even the degree of contact between
the foundation and the underlying soils may affect the overall response, e.g. in the
presence of local scour at bridge piers (e.g., Ciancimino et al., 2021).

Nonetheless, the global response of the soil-foundation-structure system
involves some basic features, that are shared across different geotechnical
systems. On the one side, the deformability of the supporting soil affects the
dynamic response of the system, as the foundation is characterized by additional
degrees of freedom in terms of translation and rotation. This interaction results in
the lengthening of the fundamental period of the system and to an increase of
energy dissipation, which is not only due to intrinsic structural damping, but it
also occurs through wave radiation and hysteretic behavior of the soil (Veletsos
and Meek, 1974). In most cases, the SFSI induces a reduction of the seismic
demand in structures, hence a conservative design approach would disregard such
effects. However, several Authors identified specific situations where SFSI could
be detrimental to the dynamic response (e.g., Mylonakis and Gazetas, 2000). For
instance, the period lengthening increases the seismic demand in stiff structures,
whereas the SFSI might increase the displacement- and the ductility-demand in
flexible structures. Furthermore, it could favor double resonance phenomena
when the natural frequency of the whole system approaches the predominant
frequency of the ground motion or the fundamental frequency of the soil deposit.

Proper modeling of SFSI is crucial for estimating the structural response to
ground borne vibrations, especially when modeling three-dimensional effects of
traffic induced vibrations. This interaction is relevant especially when the ground
and structural stiffnesses are comparable or when a deformable structure lies on
stiff soils (Frangois et al., 2007). Furthermore, dynamic SFSI may be relevant in
spatially variable soil deposits, even if they are moderately stiff, especially at high
frequencies (Papadopoulos et al., 2018). Yet, this kind of modeling is more
challenging than seismic SFSI due to the broader frequency range investigated.
Indeed, the prediction of the high frequency response is more sensitive to
modeling errors and local variations in the model.

Given the nature of the phenomenon, SFSI is strongly dependent on the
geotechnical parameters of the soil deposit. The most relevant parameter is soil
stiffness, as it governs soil deformability which, in turn, is responsible of the SFSI
(Veletsos and Meek, 1974). Instead, the mapping of the soil dissipation
characteristics into the SFSI is nontrivial. Indeed, energy dissipation in SFSI
occurs as the composition of multifold phenomena, that combine geometrical and
anelastic effects. Furthermore, different geotechnical systems involve different
mechanisms of energy dissipation, where the role of soil damping can be variable.
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For instance, in shallow foundations, energy dissipation is the result of three main
mechanisms of energy dissipation. One component is dissipation due to inelastic
phenomena occurring in the structure (termed as “structural damping”), which is
usually modeled as equivalent viscous damping. Then, hysteretic dissipation in
the soil deposit contributes to motion attenuation. Another component is radiation
damping, which is the geometrical effect of radiation of waves emanated at the
foundation-soil interface that, spreading outward, carry energy away from the
foundation system. Radiation damping is highly dependent on the frequency, and
it increases with the foundation width and embedment depth. However, it
decreases when the soil deformability is lower, except in case of deep
homogeneous soil deposits. In a completely different case, as in offshore
structures and wind turbines, part of energy dissipation occurs geometrically
through hydrodynamic damping, that mimics the energy carried away due to
viscous drag exerted by water and wave radiation (e.g., Kementzetzidis et al.,
2019).

Typical modeling assumes that the radiation damping represents the main
mechanism of energy dissipation, especially at small strains. However, in stiff,
slender structures with height-width ratios greater than one, large part of energy is
dissipated by material damping (Ambrosini, 2006). Furthermore, Martakis et al.
(2017) observed in centrifuge tests that the identified equivalent damping ratio in
SSI is remarkably larger than the predicted one and it exhibits a strong
dependence on the shaking intensity (hence, the strain level). The strain
dependence supports the idea that the main dissipation mechanism is hysteretic
and linked to soil intrinsic dissipation even at small strains, in contradiction with
the common practice. However, most studies focused on the search for an
appropriate modeling of soil nonlinearity and the choice of the constitutive model,
whereas a specific study on the choice of soil parameters has not been carried out
yet, especially in terms of dissipation at small-strains.
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Chapter 3
Wave propagation

Mechanical waves represent the propagation in space of a perturbation of a
physical attribute applied in a physical medium (Ben-Menahem and Singh, 2012).
The propagation only involves a transfer of energy, whereas there is no
transportation of material, as particle movement occurs through small distances
about the equilibrium point in an oscillatory way, without permanent
displacement.

In earthquake engineering, a basic classification of the mechanical waves of
interest (also termed as seismic waves) distinguishes body waves and surface
waves. Body waves are mechanical waves propagating within the body of the
medium and many typical applications rely on two main classes: compression
waves (or P-waves) and shear waves (S-waves). Surface waves, instead, exist
when the medium includes a free surface. The attribute “surface” derives from the
fact that the wave energy propagates only in the portion of the medium closest to
the free surface. The most investigated surface waves are the Rayleigh waves,
although some applications also involve Love and Scholte waves (e.g.,
Shinkarenko et al., 2021). Additional types of body and surface waves can carry
energy inside a physical medium, depending on the specific boundary conditions
or even the constitutive model (e.g., Biot, 1956). However, this dissertation will
address only Rayleigh waves as they are widely used in site characterization
studies.

The wave propagation theory involves alternative criteria for the classification
of mechanical waves. A relevant distinction separates hyperbolic waves and
dispersive waves. Hyperbolic waves propagate in the medium according to
hyperbolic partial differential equations and they travel at a fixed velocity,
depending on the medium mechanical properties. Body waves propagating in an
isotropic, linear elastic medium are an example of hyperbolic waves. Dispersive
waves, instead, assume a complex behavior, because the propagation speed is a
function of the wave frequency. As each frequency component travels at a
different speed, nonmonochromatic signals change shape as they propagate
(Figure 3-1a-b). Due to this dependence, the description of the wave propagation
velocity is nontrivial and it refers to two parameters: the phase velocity and the
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group velocity. Their definition relies on the solution for dispersive waves, here
referred to the simplified case of one-dimensional propagation along the spatial
coordinate x (e.g., Foti et al., 2014):

u(x,1) = A 3.1)

In the equation, u labels the displacement (but it can be any physical
quantity), 4 is the wave amplitude and £ is the wavenumber, which is a parameter
characterizing the wave propagation, at the circular frequency . The phase
velocity is the propagation speed of the wavefront, which is the locus of points
with equal phase, i.e.

kx—(k)t = const. (3.2)
Therefore, the phase velocity is defined as follows:
podr_olk) (3.3)
dt k

The group velocity, instead, represents the propagation speed of the wave
energy (Figure 3-1c¢) and it is defined as follows:
d a)(k)
V,=——>"—= 3.4
=0 (3.4
Rayleigh waves propagating in a vertically heterogeneous, elastic medium are
an example of dispersive waves.

a) b)
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Figure 3-1. a-b) Propagation of a nondispersive wave (a) and of a dispersive wave (b). ¢)
Distinction between phase velocity V and group velocity V, (modified from Foti et al.,
2014).

The next sections provide some details about the propagation of body waves
and Rayleigh waves in continuous media, with a description of the governing
equations and the main parameters. Firstly, wave propagation in linear elastic
media is addressed, to introduce the main features and properties of body waves in
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a simplified manner. Then, the propagation is generalized into the case of linear
viscoelastic media, which is the focus of this dissertation. The following schemes
will be generalized to Rayleigh waves. Part of this Chapter is based on the book
by Foti et al. (2014).

3.1 Body waves

3.1.1 Body waves in linear elastic media

The wave propagation in a continuum body is described by the dynamic
equilibrium equation, that prescribes the equilibrium conditions of an infinitesimal
volume element in the presence of a dynamic excitation. The equation assumes a
relatively simple form when introducing the hypothesis of small-strain levels and
an isotropic, linear elastic and homogeneous behavior for the body. Under this
assumption, the equilibrium equations degenerate in the Navier’s displacement
equations of motion:

(A+ 1) VVu+ 1V:u = pii (3.5)

The equation provides the space-time variations of the displacement field u,
as a function of the relevant material parameters, that are the mass density p and
the Lamé’s elastic parameters 4 and u. The Lamé parameters are an alternative
description of the behavior of linear elastic and isotropic media, with respect to
the engineering parameters — in soil dynamics, these are the shear modulus G and
the Poisson’s ratio o.

The Helmoltz’s theorem allows to demonstrate that the wavefield is the
combination of two uncoupled wave components. Specifically, a component gives
rise to volumetric deformations only, hence the corresponding wave is termed as
compression, longitudinal or primary (P) wave. The other component, instead,
induces distortional deformations in the medium and the corresponding wave is
labeled as shear, transversal or secondary (S) wave. Each wave propagates in the
medium according to a propagation velocity Vp (i.e., the P-wave velocity) and Vs
(i.e., the S-wave velocity), linked with the material mechanical properties as

/1+2,u 2G 1- v
Ve = 2v
(3.6)
F
P

follows:

Vs =

S

H_
o,
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The propagation speeds are not identical, as P waves propagate faster than S
waves. The ratio between these velocities is a function of v:
y: o o 2(l-v
£ = ( ) (3.7)
Ve  1=-2v

In typical geomaterials, where v is close to 0.3, the P-wave velocity is around

twice the S-wave velocity. However, in saturated soils, body wave propagation
occurs in undrained conditions, where v approaches 0.5 due to water (and soil)
incompressibility (Figure 3-2a). In this condition, Vp tends to be infinite. Instead,
laboratory and field tests showed much lower Vp values, around 1,500 m/s. In real
geomaterials, indeed, water is compressible and intergranular voids always
contain a small amount of air, that dramatically drops down the stiffness. For this
reason, Vp is highly sensitive to the saturation degree (Figure 3-2b). Furthermore,
propagation velocities do not depend on the frequency, hence P and S waves in
linear elastic, isotropic media are nondispersive. Therefore, Vs can be viewed as a
material parameter and as a proxy of the shear stiffness.

Table 3.1. Typical values of the S-wave velocity Vs for different geomaterials (after Foti
et al., 2018).

Geomaterial S-wave velocity, Vs (m/s)
Soft clay 80 + 200

Stiff clay 200 + 600

Loose sand 80 + 250

Dense sand 200 + 500

Gravel 300 <900

Weathered rock 600 + 1,000

Competent rock 1,200 + 2,500

As for the displacement field induced by body waves, P waves induce a local
displacement parallel to the direction of propagation, whereas S waves induce a
particle displacement acting along a plane perpendicular to the direction of
propagation. For simplicity, the S-wave motion is typically decomposed into a
vertically polarized SV-wave and a horizontally polarized SH-wave.
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Figure 3-2. a) Variation of the ratio between P- and S-wave velocities Vp/Vs as a function
of the Poisson’s ratio v; b) Variation of the P- and S-wave velocities in sandy specimens
as a function of the saturation degree, quantified through the Skempton’s B-value (after
Valle-Molina, 2006).

Further insights on the propagation characteristics of body waves can be
obtained by explicating the harmonic solution along the positive x direction for
the specific case of 1D wave propagation:

u, (x,2)= A7) (3.8)

The equation is valid both for P-wave or for S-wave propagation (i.e., y = P,
S), and up denotes the axial displacement, whereas us labels the transverse
displacement. The wavefield is a two-dimensional harmonic function in the space-
time domain with amplitude 4 (Figure 3-3), where the wavenumber k, describes
the spatial variation and it is linked with the wave velocity as follows:

k, =— (3.9)

The time variation at a specific point is described by a sinusoidal variation
with oscillation period 7, linked with w as:
2
7=~ (3.10)
10
Alternatively, time variations of the wavefield can be described in terms of
frequency f, equal to the reciprocal of 7. The spatial oscillation at a fixed time
instant is also sinusoidal and the length of a single cycle is named wavelength A,
which is linked with the wavenumber £ as:

PR

x

(3.11)
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Figure 3-3. Space-time variation of the displacement field u,(x,f) induced by a body wave
with amplitude A propagating in an elastic body, in 1D conditions. The top portion shows
the spatial variation of body waves, at a fixed time instant #), characterized by the
wavelength 4,. Instead, the left part represents the time variation, at a fixed location xy,
characterized by the vibration period 7.

The wavefield solution in 1D conditions allows a simplified description of the
behavior at the interface between materials with different mechanical properties.
In this case, the interaction of an incident body wave with the interface generates
one reflected wave and one transmitted wave (Figure 3-4a). The continuity of the
displacement field and the equilibrium in the stress state set a constraint in the
relationship between the amplitudes of the incident, reflected and transmitted
wave, labeled as 4;, 4, and A, respectively:

l-a 2

A =—7"24, A= A (3.12)
1+az,l

The parameter a.,, is the impedance ratio, which is the ratio between the mass-
wave velocity product (i.e., the impedance) of the arrival medium and the one of
the starting medium:

a., = Plya (3.13)
PV

The effect of a., on the amplitudes of the transmitted and reflected waves is

shown in Figure 3-4b. When a body wave moves from a softer to a more rigid

medium (i.e., p2Vy,2 > piV,; and o, > 1), the reflected wave has a smaller

amplitude than the incident wave, with amplitude reversal; instead, the transmitted

wave is concordant with the incident wave but with smaller amplitude. When a
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body wave moves from a more rigid to a softer medium (i.e., p2V,,2 < piV,,; and
oz, < 1), the reflected wave has a smaller amplitude; instead, the transmitted wave
is concordant with the incident wave but with greater amplitude. This aspect is
relevant in the geotechnical earthquake engineering because seismic waves
typically move from hard rock to soft soil deposits, thus undergoing a strong
amplification. On the contrary, typical site characterization studies rely on waves
generated on the free surface that propagate in materials with increasing
impedance with depth, thus deamplifying. The deamplification limits the
capability of investigating at large depths.

In 3D conditions, the interaction of body waves with interfaces between
material with different mechanical properties is more complex as different types
of waves might interact with each other (“mode conversion” of P and SV-waves;
Foti et al., 2014). In this case, the prediction of the amplitude of reflected and
refracted waves is less trivial (Richter, 1958; Aki, 2002).
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Figure 3-4. a) Wave components involved in the interaction of a body wave with a
material interface between two media characterized by mass density and S-wave velocity
equal to p; and V,;, and p; and V2. These components are represented in terms of their
amplitudes: 4; (for the incident wave), A, (for the transmitted wave), and A, (for the
reflected wave); b) Variations of 4, and 4, (normalized with respect to 4;) as a function of
the impedance ratio a.,.

The interaction of body waves with interfaces between material with different
mechanical properties in 3D conditions follows similar rules as in the 1D case,
although the phenomenon is more complex. In this case, the Snell’s refraction law
and the Huygens’ principle state that an incident P-wave generates both two
reflected and refracted P- and SV-waves and two refracted P- and SV-waves, as
the incident wave generates both volume and distortion changes. Similarly, an
incident SV-wave generates both two reflected and refracted P- and SV-waves
and two refracted P- and SV-waves. This phenomenon of combination of P- and
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SV-waves at media interfaces is called “mode conversion” (Foti et al., 2014). On
the converse, incident SH-waves only generate one reflected SH-wave and one
refracted SH-wave. In this case, the prediction of the amplitude of reflected and
refracted waves is less trivial, as the equilibrium and compatibility conditions
should account both for the ray path inclination and the mode conversion in P-
and SV-waves. However, a prediction is possible when dealing with harmonic
signals (Richter, 1958; Aki, 2002).

3.1.2 Body waves in linear viscoelastic media

A proper modeling of body wave propagation in a linear viscoelastic medium
would require a workflow analogous to that illustrated for the linear elastic case.
Specifically, new dynamic equilibrium equations should be built, in compliance
with the new constitutive models, whence a solution is then derived. However,
this operation is nontrivial as the dynamic equations in viscoelastic media assume
a complex behavior and the identification of their solutions is not straightforward.

An alternative way relies on the elastic-viscoelastic correspondence principle
(Ben-Menahem and Singh, 2012). This principle states that any solution of
Navier’s equation in linear viscoelastic media is identical to the corresponding
solution of Navier’s equation in linear elastic media, if the elastic parameters are
replaced by complex-valued, frequency-dependent moduli. The correspondence
principle allows an immediate derivation of the induced displacement field, as it is
identical to the one in elastic conditions, but with mechanical parameters replaced
by equivalent ones. Theoretically, the correspondence principle is valid only for
time invariant boundary conditions and in the harmonic case. However, the
Fourier synthesis allows the decomposition of any signal into its harmonic
components, thus giving the possibility to extend the applicability of the principle
also to arbitrary time functions (Foti, 2000).

The relevant parameter to be used in the correspondence principle is the wave
propagation velocity, that directly depends on the mechanical properties.
Specifically, the complex-valued equivalent quantity V(o) is the following (Lai

and Rix, 2002):
V (@ 1+,/1+4D2(a))
(@)= Al 2) [ — ]+iDZ(a)) (3.14)
\/[1 +4D2 ()]
However, the following relationship is typically used:

V,(0)=V,(o)-[1+iD,(o)] (3.15)

V4 V4
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This formulation is an approximation that is valid in weakly dissipative
media, where Dy(w) < 0.05, whereas it overestimates the magnitude of V(®) in
strongly dissipative media (Figure 3-5a). Since the typical damping ratio value of
geomaterials within the linear cyclic strain threshold range is smaller than 0.05,
this approximation is acceptable (Foti et al., 2014).

On the other side, viscoelastic quantities exhibit a remarkable frequency-
dependence. Indeed, mechanical parameters in viscoelastic media should fulfill
the Kramers-Kronig relations, to comply with the causality principle (Christensen,
2012). This principle states that V(@) and D,(w) are mutually linked and, as a
corollary, they are frequency dependent, hence body waves are dispersive. In
practical applications, however, D,(®) is typically assumed as constant, because
experimental evidence shows that dissipative properties are not strongly sensitive
to the loading frequency, at least over the seismic bandwith (i.e., between 0.1 Hz
and 10 Hz — see Section 2.2). Under this hypothesis, the Kramers-Kronig relations
provide an explicit solution for the phase velocity of body waves (Aki, 2002), that
allows to predict the dispersion model of body wave velocities once the value at a
reference frequency w..r (typically equal to 2m) is known:

% AL (3.16)

(@)= {H 2;)1 ln[;fﬂ

This formulation provides an estimate of V,(w), which grows both for

increasing loading frequency or for increasing damping ratio. However, in weakly
dissipative media under seismic loading, the frequency dependence of the phase
velocity is weak, as variations range within 5% (Figure 3-5b). For this reason, the
phase velocity is typically assumed as constant with the frequency and equal to
the elastic value (e.g., Badsar, 2012). The main drawback of this approach is that
a linear viscoelastic model with frequency-independent stiffness and damping is
not transformable precisely in the time domain due to non-causality, hence this
dissertation will focus on the wave propagation in the frequency domain.

Furthermore, the application of the correspondence principle requires the
definition of proper values of D,(w). In soil dynamics, various empirical
relationships for predicting Dso(w) are available, as seen in Section 2.2.3. As for
the P-wave damping ratio, instead, only few studies focus on its estimation. In
general, Dpo(w) 1s close to Dso(w) in unsaturated conditions (e.g., Mavko et al.,
2005), whereas it might be greater in the presence of pore water (e.g., Winkler and
Nur, 1982).
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Figure 3-5. a) Ratio between viscoelastic and elastic velocities | V,/¥,| computed
according to the exact and approximate damping relationships, as a function of the
damping ratio D, (modified from Foti et al., 2014); b) Dispersion relationship for the
body wave velocity ratio V{w)/V @) in hysteretic media (i.e., frequency-independent
damping ratio), as a function of D, and the frequency f.

The description of the displacement field induced by the propagation of body
waves in isotropic, linear viscoelastic and homogeneous media refers to the
propagation in 1D conditions, for simplicity. In this case, the solution corresponds
to the one for the elastic case, including a complex wavenumber R/(w), as it

incorporates the constitutive parameters of the medium:

£, (o)== (3.17)
AT
Therefore, the displacement field is the following:
u (x,t)= ¢! (3.18)

An intuitive interpretation of the wave equation can be obtained by separating
the real and the imaginary part of the complex wavenumber:
" _Rezél(a))xj

u, (x.t)= de ™% - (3.19)

The resulting wavefield induces a particle displacement according to an
exponentially decaying harmonic function. The cyclic variations are linked with
the real part of R/(w), whereas the spatial decay depends on the imaginary part

(Figure 3-6). Therefore, the real part k() is related to the phase velocity and the
imaginary part o,() incorporates the material intrinsic dissipation:
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£, (0)=k,(0)-ia, (o) (3.20)

V4 V4
The imaginary part a,(w) is called phase attenuation and it is related with
V@) and D(w) as follows (Lai and Rix, 2002):

o 1+4D;(0)-1 b, @D, (@)
V,(0) 2D,(w) % (o)

X X

a,(o)= (3.21)

Thus, the solution can be rewritten by explicating the components of the
complex wavenumber:

u, (x,1)= Ae o Lok on] (3.22)
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Figure 3-6. Space-time variation of the displacement field u,(x,¢) induced by a body wave
with initial amplitude 4 propagating in linear, viscoelastic medium, in 1D conditions. The
top portion shows the spatial variation of body waves, at a fixed time instant ¢,
characterized by the wavelength 4, and amplitude decay Ae “. Instead, the left part
represents the time variation, at a fixed location xy, characterized by the vibration period

—0t X0

T and amplitude A4e “™ .
3.2 Surface waves

When the medium includes a free surface (or an interface with a change in the
impedance), the dynamic equilibrium equation allows additional types of waves
as a solution. In this kind of waves, the motion is mostly concentrated in the
shallow portion of the medium, hence they are typically termed as “surface”
waves.

Different types of surfaces waves can be identified. However, in soil
dynamics, the most relevant categories are the Rayleigh waves and the Love
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waves (Figure 3-7). In Rayleigh waves, the particle motion develops along a
vertical plane parallel to the direction of propagation, according to elliptical
trajectories. Love waves, instead, induce a particle motion only in the transverse,
horizontal direction. A peculiar feature of Love waves is that they exist only in
media where the shallow portion is softer than the underlying material. Therefore,
they can only propagate in layered media, whereas Rayleigh waves exist also in a
uniform half-space.
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Figure 3-7. Rayleigh waves and Love waves.

The next section provides a detailed description of Rayleigh waves, as they
are widely used in ordinary applications for near-surface site characterization. In
analogy with the description of body waves, Rayleigh wave propagation in
isotropic, linear, elastic media is firstly addressed. Thus, the main features are
discussed in a simplified way, without loss of generality. Then, the propagation
characteristics are generalized into the case of isotropic, linear viscoelastic
medium. Finally, the Lamb’s problem is described, as its solution represents the
theoretical basis of several in situ characterizations techniques relying on the
measurement of the Rayleigh waves propagation.

3.2.1 Rayleigh waves in isotropic, linear elastic media

Rayleigh or R-waves (Rayleigh, 1885) are surface waves generated from the
interaction between P-waves and SV-waves at the free surface of a continuum
body. These waves represent a solution of the Navier’s equations for dynamic
equilibrium, under the constraint of null stress state at the free surface.
Specifically, the corresponding solution can be searched using Helmholtz’s
decomposition and assuming a decaying exponential form, to mimic the limited
penetration depth of the surface wave motion amplitude.

The solution assumes an intuitive form when considering wave propagation
over a homogenous half-space, in plane strain field conditions. In this case, the
propagation characteristics respect the so-called “characteristic equation of
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Rayleigh waves” (henceforth termed only as “characteristic equation’), which
links the Rayleigh wave velocity V'z with body waves’ velocities:

B® —SB4+(24—16R2)32 +16(R2 —1):0 (3.23)

In the equation, parameters B and R are the ratios between Rayleigh and body
wave velocities:

V.
B=-£ R=-% (3.24)
VP

As the frequency does not appear in the characteristic equation, Rayleigh
waves in isotropic, linear elastic and homogeneous media are nondispersive and
their propagation speed only depends on the P- and S-wave velocities. Viktorov
(1967) provides an approximate solution of the characteristic equation, from
which the R-wave velocity depends on v. However, the dependence is weak when
considering the typical range of the Poisson’s ratio in geomaterials and Vz
typically ranges around 0.9 times the S-wave velocity:

B:0.87+1.120 (3.25)
I+v

The induced displacement field lies in the plane of wave propagation and it
involves a vertical and horizontal component that are out of phase of exactly 90°.
Furthermore, the vertical component is generally larger in amplitude than the
horizontal one. Therefore, the particle motion follows elliptical trajectories, whose
geometry strongly depends on the depth and, secondarily, on » (Figure 3-8).
Indeed, the amplitude of both components exhibits an exponential decay with
depth and it tends to vanish quite immediately, being negligible at a depth
approximately equal to one-two wavelengths. Besides, the horizontal component
changes its sign with depth, implying a reversal in the direction of particle
rotation. The remarkable decay in the motion amplitude with depth is consistent
with the definition of surface waves, as they induce a perturbation lying only in
the near-surface portion of the medium. Furthermore, this allows to state that the
wave propagation is mainly influenced by the mechanical parameters of the
material down to around one wavelength depth, as deeper portions of the half-
space are not affected by the wave displacement field because it vanishes before.
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Figure 3-8. Variation of the horizontal and vertical displacement amplitude |u(z)),
normalized with respect to the motion amplitude at the surface |1(0)|, as a function of the
depth z (normalized with respect to the wavelength 1) and the Poisson’s ratio v (modified
from Richart et al., 1970).

Real media, however, are not homogeneous as the mechanical properties
exhibit a spatial variation, which is remarkable with changing depth. A typical
scheme is the vertically heterogeneous and transversely isotropic linear elastic
half-space with interfaces parallel to the free surface, where mechanical properties
only depend on the depth z (hereafter mentioned as “layered” linear elastic
halfspace; Figure 3-9). This scheme is compatible with the stratigraphy of several
soil deposits.

The solution linked with Rayleigh waves propagating in such media is now
obtained from Navier’s displacement equations of motion, supplemented by the
same boundary conditions as in the homogeneous half-space (i.e., null stress field
at the free surface and vanishing of stress and displacement fields at infinite
depth) together with the constraint of continuity of the stress and displacement
fields at each layer interface. For each frequency w, it can be demonstrated that
the solutions linked with the Rayleigh wave are described by a differential
eigenvalue problem, where the characteristic equation assumes an implicit form
(Lat and Rix, 1998b):

@[V (2).v(2). p(2),kp 0] =0 (3.26)
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Figure 3-9. Scheme of layered linear elastic halfspace.

The functional form @g[-] is named “secular function” and it is a highly
nonlinear, transcendental function of the arguments. In the equation, the unknown
is the wavenumber kg, that synthetizes the Rayleigh wave propagation
characteristics. Differently from the homogeneous halfspace, the characteristic
equation has multiple solutions, each one being frequency dependent.

Each solution kg; of the characteristic equation depends on the frequency w.
Therefore, the resulting wavefield is dispersive and the R-wave velocity Vz
(computed as Vr(w) = w/krj(w)) has to be interpreted as a phase velocity. The
dependence of V' on the frequency in layered linear elastic media is termed
“geometrical dispersion” because it is an effect of geometrical variations of
mechanical parameters with depth (Foti, 2000). The variation of Vz over the
frequency is described by the so-called “Rayleigh wave dispersion curve” (or
simply “dispersion curve”, hereafter labeled with the symbol “Vz(w)”). A physical
interpretation of the dispersive nature of Rayleigh waves relies on the limited
depth range at which the particle motion occurs, as its amplitude is negligible at
depths larger than one wavelength (Figure 3-10). For this purpose, let us recall the
link between propagation velocity and frequency, defined in Section 3.1.1:

Ve=I (3.27)

Due to the inverse proportionality between frequency and wavelength, high-
frequency waves typically correspond to short wavelengths and they only travel
on the near-surface portion, hence their propagation mostly depends on the
mechanical properties of the corresponding material. In the limit condition of /' —
o, Vr(w) tends to a velocity value equal to the R-wave velocity of a homogeneous
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medium composed by the near-surface layer only. Instead, low-frequency waves
induce a significant particle motion at greater depths, hence their propagation
depends also on mechanical properties of deeper layers. At very low frequencies,
Vr(w) tends to the R-wave velocity of the bottom layer, computed as if it was a
half-space. Therefore, the shape of dispersion curves is intrinsically connected to
stiffness variations with depth (Foti, 2000). This feature represents one of the
principles of geophysical characterization methods based on the measurement of
Rayleigh waves.
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Figure 3-10. Physical interpretation of the geometrical dispersion of Rayleigh waves in
layered linear elastic media: a) Qualitative sketch of the vertical displacement amplitude
versus depth for three wavelengths A;, 4> and A; in a two-layer medium, with S-wave
velocities Vs and Vsgp; b) Dispersion curve in the phase velocity-wavelength Vz — Az
domain; c) Dispersion curve in the phase velocity-frequency Vz — f domain (after Foti et
al., 2018).

Furthermore, the characteristic equation has a finite set of possible solutions
krj(®), j = 1,..., M at each frequency — at least, beyond a well-defined cut-off
frequency (Ewing, 1957). Instead, in a homogeneous half-space, a unique solution
exists. Therefore, the Rayleigh wave propagation in layered media is
characterized by a set of multiple and discrete dispersion curves and,
correspondingly, by various displacement patterns, that are obtained by plugging
each solution of the characteristic equation into the Rayleigh eigenvalue problem
(Figure 3-11). Each solution is labeled as a mode of propagation of the R-wave,
and they are characterized by different phase velocities. This difference can still
be interpreted in the light of the penetration depth of the wave, as each mode
assumes a specific displacement pattern whose amplitude decays quicker or
slower with depth, thus sampling different portions of the medium, with different
mechanical properties. Typically, the mode characterized by the lowest values of
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phase velocity at every frequency is termed “fundamental mode”, whereas the
remaining are called “higher modes”. From the physical viewpoint, the existence
of multiple vibration modes at each frequency is the result of constructive
interference phenomena occurring among waves undergoing multiple reflections
at the layers interfaces (Foti et al., 2014).
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Figure 3-11. Example of Rayleigh dispersion curves for a layered linear elastic medium:
a) Layered model, represented as S-wave velocity profile Vs with depth z; b) Dispersion
curves for the model in a), represented as R-wave phase velocity Vz vs. frequency f; ¢)
Horizontal and vertical Rayleigh displacement eigenfunctions, at f= 20 Hz. Data reported
in b) and c) refer to the first 4 modes, labeled as R0, R1, R2, and R3, respectively.

The complexity in the investigation for solutions of the characteristic equation
led to the development of several computational techniques to solve the Rayleigh
eigenvalue problem. The most popular approaches are the transfer matrix method
(Thomson, 1950; Haskell, 1953), the dynamic stiffness matrix method (Kausel
and Roésset, 1981) and the method of reflection and transmission coefficients
(Kennett, 1974).

3.2.2 Rayleigh waves in linear viscoelastic media

The modeling of Rayleigh wave propagation in a layered linear viscoelastic
medium is straightforward when relying on the elastic-viscoelastic
correspondence principle (Ben-Menahem and Singh, 2012). The correspondence
principle modifies the secular function inside the characteristic equation as the
mechanical parameters are replaced by complex-valued, equivalent quantities.
Therefore, each modal solution is characterized by a complex wavenumber
krj(w). The real part describes the dispersion relationship and it is comparable to
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the wavenumber of the Rayleigh wave in an elastic medium, hence it is typically
labeled as kzj(w) (Figure 3-12c). Instead, the imaginary part or;(w) incorporates
the material intrinsic dissipation and it is termed as “Rayleigh wave (modal)
attenuation” because it controls the spatial decay in the displacement amplitude of
the surface wave:

Ry (@) =ReR,  (@)+iImR,  (0) =k, (®)—ia,, (o) (3.28)
The R-wave attenuation variation with frequency is described by the modal
attenuation curves (or simply “attenuation curves”, hereafter labeled by the
symbol “arj(®)”), that tend to increase with frequency (Figure 3-12d). The
Rayleigh complex wavenumber can be related to material parameters, by referring
to two quantities derived from the real part and the imaginary part of Rz (w),
respectively. On the one side, the modal phase velocity (or simply “phase
velocity”) Vz,(w) is computed from the real part of Rz (w):
v, (0)=—2—— 3.29
v (@) Rek, () (3:29)
The phase velocity exhibits a direct link with layer velocities through the
geometrical dispersion, as in the elastic case (Figure 3-12¢). Indeed, the related
dispersion curves are approximately identical to those of the corresponding elastic
medium, especially in weakly dissipative media.
Then, the modal phase damping ratio (or simply “phase damping ratio”)

Drj(w) is the ratio between the imaginary and the real part of the complex
wavenumber (Misbah and Strobbia, 2014):

Im[ﬁR, ; (a))]

D R.j (a)) = E
2Re[ Rl(w)}
The phase damping ratio exhibits a variation with the frequency that is related
to layers’ S-wave damping ratios through the geometrical dispersion (Figure
3-12f). The link is evident when considering the fundamental mode, as high-

(3.30)

frequency values almost equal the top layer Ds, whereas the phase damping at low
frequencies approach the Ds of the deepest layer. For this reason, the phase
velocity and damping ratio are often used in place of the complex wavenumber
for their immediate interpretation and link with the material properties.
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Figure 3-12. Solutions of the characteristic equation in a layered linear viscoelastic
medium: a-b) Profiles of S-wave velocity Vs and damping ratio Ds with depth of z; c-d)
Modal dispersion and attenuation curves in terms of real wavenumber kz and attenuation
or versus frequency f; e-f) Modal dispersion and attenuation curves in terms of phase
velocity V; and phase damping ratio D versus f.

The solution of the characteristic equation in layered linear viscoelastic media
is a nontrivial task, because the arguments of the secular function are complex-
valued. Some numerical approaches rely on an extension of computational
methods for the elastic eigenvalue problem into the viscoelastic case (e.g.,
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Schevenels et al., 2009). Another strategy adopts the solution of the elastic
eigenproblem as initial estimate of the viscoelastic Rayleigh eigenvalues (e.g.,
Schwab and Knopoff, 1971). This approach was questioned by Lai and Rix
(2002), who proposed an elegant scheme, based on the Cauchy residue theorem of
complex analysis, that works successfully both in weakly and strongly dissipative
media. Under the assumption of weak dissipation, an alternative strategy relies on
the Rayleigh variational principle to obtain a direct estimate of the dispersive and
the dissipative properties, starting from the solution of the Rayleigh eigenproblem
in elastic media (Aki, 2002).

In general, the R-wave attenuation is the combined effect of P-wave and S-
wave dissipative characteristics. However, the two elements do not play the same
role. For instance, Macdonald (1959) and Viktorov (1967) showed that the R-
wave attenuation in a homogeneous, linear viscoelastic, low-loss medium is the
linear combination of the P-wave and S-wave attenuation:

o (@)= Aa, (o) +(1-A)ag (@) (3.31)

The quantity 4 depends on the Poisson’s ratio v. However, A4 is less than 0.2
in all geomaterials. Therefore, arj(w) strongly depends on S-wave attenuation,
whereas P-wave dissipation characteristics are less relevant.

Finally, some remarks on the particle displacement are provided. In linear
viscoelastic media, the phase difference between the vertical and the horizontal
component is no longer equal to 90°, because the Rayleigh eigenfunctions are
complex-valued. Therefore, the particle displacement occurs along ellipses whose
principal axis is oblique with respect to the free surface (Figure 3-13; Borcherdt,
1973). Furthermore, the degree of sloping and the semi-axes ratio varies
independently with frequency, distance from the source and it depends on the
mechanical properties of the medium (Foti et al., 2014). As for the motion
amplitude, it decreases with the distance, with a stronger decay at high
frequencies. Instead, the shape of the displacement profile with depth is
compatible with the elastic case.
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Figure 3-13. Rayleigh particle displacement orbits at the free surface of a layered, linear
viscoelastic half-space, at given frequencies f'and distances r (after Foti et al., 2014).

3.3 The source problem

The solutions described above deal only with one aspect of the dynamic
problem, which is the propagation of Rayleigh waves under free vibration
conditions, i.e., no external force is acting on the medium. However, near-surface
characterization methods measure Rayleigh waves that are artificially generated
from a source, hence the problem of forced vibrations has to be addressed.

Lamb (1904) provided an estimate of the displacement field induced by a
point harmonic force applied on the free surface of a homogeneous, isotropic,
linear elastic half-space (Figure 3-14a). He demonstrated that this kind of source
generates a complex wavefield, including both body waves (P and S) and
Rayleigh waves. The surface wave is the slowest wave, but it produces the largest
amplitude in the motion, especially far from the source.
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Figure 3-14. a) Scheme of the Lamb’s problem, specifying the input force Fe and the
distance from the source r; b) Geometry of wavefronts of body and surface waves
generated from a source on the free surface (modified from Miller and Pursey, 1955).
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Indeed, Lamb observed that the amplitude of motion induced by body waves
attenuates proportional to the distance, whereas the displacement due to Rayleigh
waves decays only with the square root of the distance. The reason is that body
waves generated from a point source on the free surface propagate along
hemispherical wavefronts and the associated energy distributes along this surface.
Surface waves, instead, propagate along cylindrical wavefronts, as they involve a
portion of the half-space with limited depth (Figure 3-14b). Furthermore, Miller
and Pursey (1955) investigated a similar problem, i.e. the estimation of vibrations
induced by a circular plate on a half-space, and they demonstrated that the largest
portion of energy generated by the source is transmitted by surface waves.
Therefore, the wavefield is mainly governed by Rayleigh waves, especially at
moderate-to-large distances from the source.

The displacement field induced by the point source includes a vertical
component u#. and a radial component u,, being the problem axial symmetric.
Many practical applications rely on the far-field approximation of the actual
displacement field, comprising only the contribution of Rayleigh waves (Figure
3-15; Lamb, 1904):

u, (r, )= Fe™ M, -HY (k,r)
u, (r,0)=Fe™ M, -H" (k,r)

In the equations, Fe’ is the time-harmonic point force and 7 is the distance
from the source. The quantity Mg (f = z, r) depends on kg, derived from the
frequency-independent Vz (in turn obtained as the solution of the characteristic

(3.32)

equation), and on the mechanical properties of the half-space. The terms Héz) []

and H" [+] denote the Hankel functions of the second kind of zero order and of

first order, respectively. These functions are oscillatory functions that capture the
cylindrical shape of the wavefront of the Rayleigh waves.

However, the Hankel functions can be approximated as complex exponentials
when the argument kzr is sufficiently large — typically, when r is on the order of
one half of the R-wave wavelength (i.e., the far-field; Foti et al., 2014). Under this
assumption, the displacement field assumes the following formulation:

L o) 3.33
e (3.33)

The quantity Nz depends on kr and on the mechanical properties of the half-
space, whereas ¢. equals 7/4 and ¢, equals -7/4. Interestingly, in the far-field, the

7y (r, a)) = Fe™ N

Rayleigh wave is planar, i.e., it propagates with planar wavefront.
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Figure 3-15. Amplitude |u:| and phase argu. of the vertical displacement field of Rayleigh
waves in a homogeneous elastic medium, as a function of the distance r.

In a linear viscoelastic medium, the correspondence principle allows an
immediate derivation of the induced displacement field, by replacing the elastic
parameters with the complex-valued equivalent ones:

u,(r,0)=Fe” - M, -H (@r)

. (3.34)
o (r0) = Fe - 2, B (o)
and for the far-field approximation:
uy(r,w)=Fe™ - NV, -Lei(%%ﬂ) (3.35)

’r
The terms A4 and A depend on 4 and on the mechanical properties of the
medium.
By recalling the definition of & (Eq. 3.28), a more intuitive expression is
obtained, by separating the amplitude and the phase components:

—agr

u, (r,0)=Fe” - A, .. &) (3.36)

b

The amplitude component decays according to the square root and an
exponent of the distance from the source. These components are the combined
effect of the intrinsic attenuation and the geometric attenuation — linked with the
spreading of energy across a cylindrical wavefront.

The solution can be generalized to the case of layered linear viscoelastic
medium. Similarly to the homogeneous case, an analytical solution can be derived
at moderately large distances from the source, where the effect of body waves is
negligible. Under this assumption, the displacement field induced by Rayleigh
waves is the summation of a number of distinct Rayleigh modal displacements,
each described by a Hankel function (Ben-Menahem and Singh, 2012):
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u (r,o)= Fei“’té[mz (a))]j H [(/éR] (a))r)]
u, (r.o) = Fe"“”i[mr ()] -HP[(4,,(0)r)]

A more intuitive interpretation of the displacement field can be obtained for
sufficiently large distances, where the Hankel functions can be approximately

(3.37)

replaced by the complex exponentials, thus the displacement field modifies as
follows:

M |
uy (r,0)=Fe” Z[?’Lﬂ (r, a))l ) glovhntor] (3.38)

J=1

These relationships account for the multimodal nature of the Rayleigh wave
propagation in layered media, and the corresponding displacement field is
computed through modal superposition. Indeed, each addendum represents the
displacement field associated to a Rayleigh propagation mode, with wavenumber
krj(w) and attenuation o (w), which is weighted according to the corresponding
amplitude function [74(r,)]; in the vertical and radial direction for the j-th mode.
The modal amplitudes depend on Rayleigh wave parameters, obtained through the
solution of the Rayleigh eigenvalue problem, and on the distance from the source.
Furthermore, the formulation for the layered medium assumes general validity
and it incorporates the Lamb’s solution as a special case. The corresponding
expression can be obtained by setting the dispersion and attenuation
characteristics derived for the homogeneous case and considering the contribution
of a single mode.

It can be demonstrated that the displacement field us(r,) can be rewritten as
follows (Lai and Rix, 1998b):

u, (r,0)=Fe™ -V, (r,0)-¢"" (3.39)

Interestingly, the mathematical formulation describing the displacement field

in a layered medium resembles the one valid in a uniform half-space. However,
the phase term assumes a complex dependence over the distance, whereas it was
linear in a homogeneous medium. Therefore, the ‘“equivalent” or “effective”
wavenumber (i.e., the one of the waveform composed by multiple Rayleigh
modes) is no longer constant. Similarly, the amplitude term VYg(r,w) exhibits a
complex behavior, which is no longer decaying according to the square root of the
distance. The difference is significant both in normally and inversely dispersive
media, especially at high frequencies. In layered media, indeed, the Rayleigh
wavefield is the result of the superposition of multiple modes, that are caused by
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the constructive interference among waves undergoing multiple reflections and
refractions at the layer interfaces. The function VYp(r,w) is named Rayleigh

geometric attenuation function (Lai and Rix, 1998b), as it models the geometric
attenuation of Rayleigh waves in layered media (Figure 3-16).
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Figure 3-16. Geometrical spreading function V. for the vertical displacement versus
distance r, computed for different types of half-space at a frequency f equal to 7 Hz (a)
and 90 Hz (b — after Foti et al., 2014).

When dealing with surface waves generated by point sources, a remarkable
concept is the apparent phase velocity and apparent phase attenuation — or
effective phase velocity and effective phase attenuation:

app _ w app _ ahn[j:ﬂ (r, a))]
Vi (re)= aRe[j-"ﬂ (r,a))} @iy (re)= or (3.40)
or

These parameters describe the propagation of multi-mode Rayleigh waves in
layered linear viscoelastic media, as they are linked with the slope of the phase
and amplitude changes with the distance, at a fixed frequency (Figure 3-17a-b).
Therefore, they represent the propagation velocity and spatial attenuation of a
waveform composed by the superposition of multiple Rayleigh modes. The
effective quantities can be estimated as a function of the solution of the Rayleigh
eigenvalue problem. These parameters are dependent both on the frequency and
the distance from the source, hence it is possible to describe the phase velocity
and the phase attenuation variation with the frequency (i.e., the effective
dispersion curve and the effective attenuation curve) only locally or globally
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through a Rayleigh dispersion surface. Furthermore, they vary between the radial
and the vertical component, meaning that they travel at different phase velocities.

The concepts of effective phase velocity and effective phase attenuation are of
paramount importance in real testing. Indeed, site characterization methods
measure the displacement field induced by a seismic source. Then, they infer the
phase velocity from the phase lag and the phase attenuation from the spatial decay
of the particle displacement, normalized to the geometrical damping. Therefore,
these techniques measure the effective phase velocity and the effective phase
attenuation. This aspect leads to two considerations. On the one side, field surveys
might not estimate the modal dispersion curves, as the effective dispersion curve
may not coincide with them. In normally dispersive media, where the impedance
gradually increases with depth, the measured curve may be coincident with the
fundamental mode dispersion curve in a broad frequency range, because the wave
energy is mostly carried by the fundamental mode only. However, some deviation
of the effective data might occur, especially in the low frequency range (Foti et
al., 2014). The deviation becomes relevant in inversely dispersive media, i.e.,
half-spaces with impedance reversals, where higher modes highly contribute to
the surface wave propagation. Therefore, the apparent dispersion curve does not
follow a specific modal dispersion curve and it gradually shifts from one to
another as a function of the frequency. Furthermore, the dominant mode cannot be
predicted a priori. On the other side, the measured effective dispersion curve
depends on the spatial configuration of the testing, due to the local nature of the
effective quantities, i.e., their dependence from the distance. Therefore, its
relationship with the modal curves may be variable as a function of the testing
setup (Gucunski, 1992).
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Figure 3-17. Geometrical interpretation of the effective phase velocity V;™ (a) and of the
effective phase attenuation a;” (b) at the distance r;. The graphs represent a) the spatial
variation of the phase of the displacement field argu(r,w) and b) the spatial variation of
the logarithm of the amplitude |u(r,w)| corrected by the geometric spreading V.(r,w).

From these two quantities, both the effective wavenumber kz” (hence, V;”) and az”

can be derived (after Lai and Rix, 1998Db).
3.4 Mechanisms of wave attenuation

The attenuation theory seeks to identify the mechanisms responsible of changes in
amplitude of perturbations propagating in a medium while moving away from the
source. According to this theory, attenuation of seismic waves in real media may
be interpreted as the superposition of three damping mechanisms: intrinsic
damping, geometrical damping and extrinsic (or scattering) damping. These
phenomena are associated with different levels of “complexity” in the medium,
both in terms of constitutive behavior and of spatial variability of mechanical
characteristics. However, the separation among the components is not trivial as
they are often lumped into each other, because they all map into an amplitude
decay with increasing distance from the source.

The partition of attenuation components is crucial in site characterization
techniques. Indeed, their target is typically the intrinsic damping, however the
measured displacement data reflect the combination of all three mechanisms.
Therefore, a correct estimate of material attenuation geometric spreading and
extrinsic damping must be accounted for obtaining reliable values of material
attenuation (Jongmans, 1990; Yoon, 2005). On the other side, proper modeling
and separation of these components is often not straightforward.
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The main mechanism behind the spatial amplitude decay is intrinsic damping
(or material damping), which is an effect of material anelastic behavior, that
entails energy dissipation under dynamic excitation. When propagating, indeed,
part of the elastic energy is converted into other forms — e.g., heat — due to
internal friction. Modeling of this dissipation mechanism relies on proper
rheological models, for instance the linear viscoelastic scheme mentioned above.
In this case, the effect on the displacement field amplitude can be summarized
through the following relationship:

A=Ae ™ (3.41)

Geometrical damping, instead, represents a reduction in the motion amplitude
due to the expansion of the wavefront. In this case, the wave energy is constant —
if the wave is propagating in a linear elastic material — but the energy density
decreases because the wavefront is spreading over a greater volume of material.
Being the energy density proportional to the square root of the displacement
amplitude, this reduces down as well (Kramer, 1996). Amplitude variations
induced by geometrical damping depend on the type of wave and the mechanical
and geometrical characteristics of the medium, and they assume a simple and
intuitive trend in homogeneous bodies. In planar waves, the wavefront translates
keeping its area unchanged, hence the energy density and the amplitude are
constant while moving far from the source. Cylindrical waves (e.g., surface waves
generated from a point source) are characterized by a wavefront expanding as a
cylinder. Therefore, the displacement amplitude decays according to the square
root of the distance. In spherical waves (e.g., body waves generated from a point
source), the wavefront expands as a sphere, hence the displacement amplitude
decays proportionally to the distance (Kokusho, 2017). In summary, geometrical
damping in homogeneous media can be summarized through the following
relationship:

A=Ar™" (3.42)
where n = 0 for planar waves, n = % for cylindrical waves, and n = 1 for
spherical waves.

In the case of Rayleigh wave propagation, geometrical damping is described
through the geometrical spreading function Ys(r,w). In a homogeneous halfspace,
VYp(r,w) depends only on r (Eq. 3.36). Badsar (2012) compared the effect of
intrinsic and the geometrical damping on the wave amplitude decay, as a function
of the distance and the frequency (Figure 3-18a). The geometric damping is more
relevant at short distances, whereas the material damping dominates into the
displacement amplitude decay only far from the source. However, for increasing
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frequencies, the role of material damping becomes more important, and it
overcomes the geometrical one at progressively shorter distances from the source.
This is an effect of the frequency-dependence of the phase attenuation of Rayleigh
waves in homogeneous media, for which ar is greater at high frequencies. The
inclusion of heterogeneities adds an extra level of complexity to the wave
propagation, due to reflection phenomena and cumulative transmission loss at the
layer interfaces. In layered media, Yp(r,w) still decreases with the offset, albeit
with remarkable oscillations (Figure 3-18b). The geometry of the oscillations
depends on the medium characteristics and also on the frequency — at high
frequencies, cycles elongate and assume a larger relative amplitude.
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Figure 3-18. a) Comparison between the geometrical attenuation (black line) and the
intrinsic attenuation for a homogeneous halfspace (grey lines), computed from the
geometric spreading function and Eq. 3.53, respectively. Data refer to frequencies equal
to 10 Hz, 30 Hz, 50 Hz, and 70 Hz (from thick to thin grey line). b) Comparison between
the geometrical attenuation (black lines) and the intrinsic attenuation for a normally
dispersive medium, computed from the geometric spreading function and Eq. 3.53,
respectively. Data refer to frequencies equal to 10 Hz, 30 Hz, 50 Hz, and 70 Hz (from
thick to thin grey line). Information about the soil model is available in Badsar (2012).

Finally, amplitude changes in real media are also an effect of scattering of
energy at local heterogeneities (e.g., inclusions) or to lateral variability in the
mechanical properties of the soil deposit. This mechanism is sometimes termed as
extrinsic attenuation or apparent attenuation (O'Doherty and Anstey, 1971). As in
the geometric attenuation, the overall energy of the wavefront is conserved — at
least, in an elastic medium — but it diffuses inside the medium, which is perceived
as an energy loss on the surface ground motion (Stein and Wysession, 2003;
Zalachoris and Rathje, 2015). In this sense, geometric and apparent attenuation
share common features because, at least theoretically, they represent the effect of
identical physical phenomena. For instance, Rayleigh wave amplitude changes in
layered media — described through the geometrical spreading function — can be
interpreted as a form of apparent attenuation. However, apparent attenuation is
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conventionally linked to local fluctuations and lateral variability in the soil
deposit, especially in the near-surface characterization. The proposed approaches
rely on an indirect modeling of the phenomenon, for instance introducing a
frequency-dependent equivalent damping ratio (Wu, 1985).
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Chapter 4
Experimental methods

Many approaches currently adopted for the estimation of the small-strain damping
ratio are based on the interpretation of laboratory tests or in situ geophysical
surveys.

On the one side, laboratory tests are carried out on small-size soil specimens
by applying an imposed stress/strain history with known hydro-mechanical
boundary conditions. In this way, there is full control on the response of the
geomaterial and a rigorous estimate of the mechanical parameters is possible.
However, the sample preparation may damage the soil microstructure, thus
affecting the resulting estimates. Besides, obtained parameters may not be
representative of the actual behavior of the soil deposit at the site scale.

Geophysical seismic tests are generally classified as invasive and non-
invasive, and they are a common tool for site characterization, due to limited costs
and the rapidity of execution. However, in situ tests require peculiar care in their
interpretation and data quality is highly sensitive to the operator and to external
perturbations (e.g., background incoherent noise). On the other side, all the
geophysical methods investigate the medium in its undisturbed natural state,
sampling a soil volume much larger than the size of a laboratory specimen.
Specifically, they often return a layered earth model, wherein Vs and Ds are
estimated for individual layers — instead, laboratory tests measure these quantities
from a single sample, hence they provide a point measurement. Therefore, they
can provide a reliable estimate of geotechnical parameters for design purposes, as
they assess the soil behavior in undisturbed conditions at a spatial scale
compatible with the geotechnical application of interest.

Geophysical seismic tests are widely adopted for the in situ determination of
the shear modulus G. On the other hand, some methods have been proposed also
for the estimation of the small-strain shear damping ratio Dso. The technical
literature also includes some case studies of parameter estimation based on the
interpretation of downhole arrays, hereafter labeled as “DH-arrays”. This
approach is less common, as it requires instrumented boreholes with seismic
records, but it provides useful data for the assessment of the soil behavior in
seismic conditions. Although parameters obtained in this way may be interpreted
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as in situ estimates, DH-arrays will be addressed in a devoted section, as they are
not a common site characterization tool and have a role in the validation of
theoretical models of ground motion amplification.

This Chapter starts with a description of typical laboratory tests, that currently
represent the most common way for estimating dissipative parameters of
geomaterials. The second part focuses on approaches returning damping ratio
values from in situ observations, based on invasive and noninvasive geophysical
tests and DH-arrays. Finally, a brief comparison of results from laboratory and in
situ tests is reported.

4.1 Laboratory tests

Laboratory tests are often carried out to obtain dynamic properties of soils. The
different tests can be grouped into two main categories: cyclic tests, performed at
low frequencies, and dynamic tests, carried out at higher frequencies. The most
common cyclic tests are the Cyclic Triaxial (CTx) test, the Cyclic Torsional Shear
(CTS) test and the Cyclic Direct Simple Shear (CDSS) test, along with its Double-
Specimens (CDSDSS) variant. The stress-strain loops are directly used in cyclic
tests to obtain the dynamic properties of the soil. On the other hand, a dynamic
Resonant Column (RC) test can be performed to obtain stiffness and damping
estimates analyzing the resonant conditions of the soil sample. Finally, some
Authors investigated the possibility of measuring small-strain parameters through
bender element tests (e.g., Karl, 2005; Karl et al., 2008; Cheng and Leong, 2018),
although no further details on this will be provided in this dissertation.

In the following, the main features of the tests are firstly described, along with
critical issues associated with the experimental measurement of Dsy. Part of this
Section has already been published in Foti et al. (2021).

4.1.1 Resonant column test

The Resonant Column (RC) test (ASTM D4015-15¢1) is based on the theory of
torsional waves propagation in the medium. The test is performed under loading
control, applying torque loadings with increasing amplitudes at the free top of the
sample, whereas the bottom is fixed (Figure 4-1a). For a given loading amplitude,
several cycles are applied for variable frequencies over a wide range, to clearly
identify the resonance condition of the first torsional mode of the specimen and
the corresponding frequency fy, associated to the cyclic shear strain reached. The
soil response is tracked by measuring its rotation . The test is able to investigate
cyclic shear strain amplitudes ranging from 10 to 0.5%.
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Figure 4-1. a) Basic scheme of a RC test device, modified from Woods (1978); b-c)
Typical results of a RC test: (b) output rotation amplitude || vs frequency f curve; (¢)
free-vibration decay plot (modified from Foti et al., 2021).

The response of the soil to the dynamic excitation can be represented in terms
of 4 vs. frequency curve, where the frequency associated with the maximum
amplitude $.ax 1s the fy of the sample. The S-wave velocity Vs of the soil is then
obtained via the equation of motion for torsional vibrations (Richart et al., 1970):

Q:Z”foh-mn(mfoh} (4.1)
Ji Vs Vs
where Jy is the mass polar moment of inertia of the specimen, J; is the driving
system polar moment of inertia and /4 is the height of the specimen (Figure 4-1a).
The Gs can then be obtained from the mass density of the soil, through Eq. 3.6.
Three different methods can be applied to define the S-wave damping ratio
Ds, namely the half-power bandwidth, the free-vibration decay method, and the
resonance factor method (Drnevich et al., 1978), although the latter is rarely used.
In the half-power bandwidth method, the connection between the shape of the
frequency response curve and the dissipated energy is exploited (Figure 4-1b). It
can be shown that, for small values of Ds, the latter can be evaluated as:
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pg=L2"h 4.2)

21y
where f; and f> are the frequencies associated with a 3 amplitude equal to
2/28,,. (Figure 4-1b).

Alternatively, the free-vibration decay method can be used to obtain the
damping ratio from the amplitude decay of the torsional free oscillations, after the
application of the forced vibrations. By knowing two successive peak amplitudes
(9. and $,+; corresponding, respectively, to the n-th and n+i-th cycle; Figure
4-1c), the logarithmic decrement J,+; can be computed as:

3
8 =In2 (4.3)

n+

n+l

The logarithmic decrement is computed for different successive cycles, then
an average value 0 is used to obtain the damping ratio as:
_0
Y

The two methods are characterized by different advantages and
disadvantages. When the free-vibrations method is used in the small-strain range,
the background noise recorded by the accelerometer is not negligible and a
filtering procedure has to be applied to the output signals prior to amplitude
interpolation (Figure 4-1c). Moreover, given the small values of Dsy, the

Dy (4.4)

difference between two consecutive peaks can be rather small, hence the
variability in estimated values may be large. On the other side, RC measurements
of Ds from forced vibrations are affected equipment-generated damping (e.g.,
Kim, 1991; Hwang, 1997; Cascante et al., 2003; Meng and Rix, 2003; Wang et
al., 2003). The bias can be substantial, especially in the small-strain range where
small values of Ds are expected. Different studies suggested correcting the results
of the RC test by subtracting the equipment generated damping, obtained through
a calibration procedure of the apparatus (e.g., Kim, 1991; Hwang, 1997; Wang et
al., 2003). However, the extent of the bias is not yet totally understood.

Besides, the influence of the loading frequency on Ds, (see Chapter 2) might
be critical for RC tests. Indeed, these tests are usually carried out at variable
frequencies, according to the resonance conditions at different strain amplitudes,
beyond the typical seismic bandwidth. Ciancimino et al. (2020) proposed a
procedure to correct results of a laboratory test by taking into account the loading
frequency. Alternatively, an elegant strategy to deal with the frequency-
dependence of cyclic parameters is given by the so-called Non-Resonance
Column (N-RC) method (Lai and Rix, 1998a; Lai et al., 2001; Rix and Meng,
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2005; Lai and Ozcebe, 2015). The method directly measures the complex-valued
S-wave velocity Vs(w) of a soil specimen, idealized as a linear viscoelastic
medium, by solving the following equation:

T it R4

¢ IR _PY ot wh — Jiw? 4.5)

95(00) 2 Vs(w) " Vs(a)
where Tye'' is the driving harmonic torque, $(0,7) is the measured angle of twist at
the top of the specimen, R is the radius of the specimen, and p is the mass density

of the specimen (Figure 4-1a). Vs(w) is then used to compute consistently Vs
(hence, G) and Ds (Figure 4-2), based on Eq. 3.14. Thus, the soil is assumed to be
a dispersive medium and the frequency-dependence is inherently taken into
account by the method, without prior assumptions on such dependence and in a
fully coupled way. The application of the method in the current practice is anyway
still limited by the complexity of the approach.
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Figure 4-2. Results of a N-RC test: a) Estimated shear modulus G and b) small-strain
shear damping ratio Ds, as a function of the loading frequency f for a remolded kaolinite
sample (after Rix and Meng, 2005).

4.1.2 Cyeclic tests

Despite the different configurations, cyclic tests are all based on the same concept,
1.e., to measure soil parameters directly from the stress-strain response of the soil.
The G is obtained as the average slope of the loop, while D can be computed from
the energy dissipated Wp and the maximum elastic strain energy Wk for a given
loading-unloading cycle, according to Eq. 2.6.

In Cyclic Triaxial (CTx) tests (ASTM D3999/D3999M-11el and ASTM
D5311/D5311M-13), a cyclic deviator stress is applied to a cylindrical specimen
by keeping constant the cell pressure and changing the axial stress cyclically with
a low loading frequency (about 1 Hz). The stresses and the strains are used to
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compute G and Ds (Figure 4-3a). The applicability of the CTx test is generally
restricted to relatively high shear strains (greater than 102%) because of bedding
errors and system compliance effects (Kramer, 1996). However, local strain
measurements can produce an increase of the accuracy of the device (e.g.,
Burland and Symes, 1982; Ladd and Dutko, 1985; Goto et al., 1991).

Cyclic Torsional Shear (CTS) tests can be performed in the same device used
for RC tests (Figure 4-1a). The driving system applies a fixed number of cycles
for a given amplitude with a fixed loading frequency (usually between 0.1 Hz and
0.5 Hz). The rotation of the specimen is measured through a couple of
displacement transducers connected to the top cap. The shear strain is then
obtained from the rotation and, by knowing the input applied, it is possible to
draw the loading-unloading loops, from which G and Ds are then estimated
(Figure 4-3b).

Finally, in a Cyclic Direct Simple Shear (CDSS) test, a cylindrical specimen
is cyclically loaded under displacement control by a horizontal piston. The
stresses and the strains are then used to compute G and Ds. The applicability of
the test in the small-strain range is limited mainly because of frictional problems.
The range can be increased using the Cyclic Double-Specimen Direct Simple
Shear (CDSDSS) device. The CDSDSS adopts a double specimen configuration,
able to capture the soil behavior also at very small strains (Doroudian and
Vucetic, 1998).

The main issue regarding cyclic tests is related to the measurement of the
loops in the small-strain range. For example, Figure 4-3c shows a loop measured
during a CTS test, for a y below the linearity threshold (i.e., in the almost linear
branch of the stress-strain response). Although the definition of G from the slope
of the loop is quite straightforward, the small area inside the loop can be affected
by the accuracy of the measurement. Consequently, the experimental relative error
on Dg, can be, again, substantial.
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4.2 In situ geophysical tests: invasive methods

Invasive tests are a family of geophysical seismic tests for which part of the
instrumentation is installed in the ground. Typical methods are the Cross-Hole test
(CHT; ASTM D4428/D4428M-14), Down-Hole test (DHT; ASTM D7400-17),
and the P-S suspension logging test (Nigbor and Imai, 1994). Other techniques are
the Seismic Cone Penetration Test (SCPT; Campanella, 1994), the Seismic
Dilatometer Test (SDMT; Marchetti et al., 2008), the vertical seismic profiling
(Balch and Lee, 1984), that are variants of the DHT, and the direct-push cross-
hole test (Cox et al., 2018), that follows a scheme similar to the CHT.

The data acquisition in invasive tests requires great care, especially when
attenuation measurements are carried out. The main issue related to invasive tests
is linked to the sensor-ground coupling, which is crucial for an accurate tracking
of the particle motion. Indeed, when using a borehole, there is no direct contact
between receivers and the ground as the borehole is supported by a lining covered
by a grouting layer. As the grouting may not be perfectly homogeneous, the soil-
receiver interaction may be variable with depth (e.g., Lo Presti et al., 1997). SCPT
and SDMT are effective in overcoming this limitation because the instrumentation

75



is pushed in the ground without any casing, hence good coupling between soil and
sensors is achieved. Furthermore, recorded data should have reasonably high
signal-to-noise ratio in the frequency band of interest (e.g., Sun, 2000) and the
quality of the seismogram should be good enough. This allows an accurate
identification and isolation of the body wave of interest (either the P- or the S-
wave), otherwise the estimated attenuation data would be corrupted.

The technical literature proposes many robust approaches for the
determination of Vs from the interpretation of the measured data. Conversely, the
techniques aimed at estimating the in situ small-strain damping ratio Dy are

limited to few attempts for CHT and DHT (and SCPT), that will be addressed in
the following sections. Note that these techniques return an estimate of DS ;

however, the following Sections will denote the identified value as Ds, for
simplicity. Part of this Section has already been published in Foti et al. (2021).

4.2.1 Cross-hole testing

In CHT, the source and the receivers are installed in boreholes and measurements
are performed at different depths (Figure 4-4a). The test measures the travel time
of body waves generated by the source and propagating along the direct path to
the receivers. Thus, knowing the source-receiver distance, the body-wave velocity
V, (where y = P or S) can be estimated. Prescriptions about data acquisition and
procedures for an accurate estimation of V), are described in ASTM
D4428/D4428M-14. Techniques for the estimate of Ds from CHT data are the
random decrement approach (Aggour et al., 1982), the attenuation coefficient
method (Hoar and Stokoe, 1984; Mok et al., 1988; Michaels, 1998; Hall and
Bodare, 2000) and the causal dispersion approach (Crow et al., 2011; Lai and
Ozcebe, 2015; Lai and Ozcebe, 2016).

A popular approach is the attenuation coefficient method, proposed by Hoar
and Stokoe (1984) and Mok et al. (1988). Its framework is based on the spatial
decay of the wave amplitude (Eq. 3.22), and it compares the measured spectral
amplitudes of the signal S; and S> at two receivers at distances R; and R> from the

1n{fhléﬁ(f)l}
b _ R2|Sz(f)| v,
2 f

This approach provides a frequency-independent estimate of D,, which is
reliable in the absence of receiver-coupling or casing effects and there are not

source (Figure 4-4a):

(4.6)
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reflected or refracted waves induced by nearby layers of high velocity, that may
affect measured amplitudes (Hall and Bodare, 2000).

However, many existing methodologies rely on the hypothesis of frequency-
independent (i.e., hysteretic) damping or on enforcing a specific constitutive
model in the interpretation of attenuation measurements. Moreover, they usually
perform an uncoupled estimate of the low-strain parameters by using incompatible
constitutive schemes: V), is obtained according to a linear elastic model, whereas
D, estimates are based on inelastic models. Therefore, these approaches may
return inconsistent and biased estimates. Instead, an effective strategy to
overcome those limitations should accommodate rate-dependent behavior. For
this reason, some Authors measured the body wave dispersive behavior from the
unwrapped phase of the cross-power spectrum Gip, of the corresponding signal,

detected at the two receivers (Hall and Bodare, 2000; Lai and Ozcebe, 2015; Lai
and Ozcebe, 2016):
R, —R
v, (@)= “’(2—11) (4.7)
argGR1 R,

Then, Lai and Ozcebe (2015) and Lai and Ozcebe (2016) proposed a smart
technique for estimating D, from the computed dispersion curves, by applying the
solution of the Kramers-Kronig relation, that relates stiffness and attenuation
characteristics in a linear viscoelastic medium (Christensen, 2012):
20V, (a)) .J-OO(VZ (0) . dr ]

2

7V, (0) 0|V, (7) -w
Za)VZ(a)). % VI(O)‘ dr 2_
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This interpretation method only requires measurements of velocity for
determining both the stiffness and the damping parameters of the material, hence

D (w)=

(4.8)

where VZ(O): limV, (o).

o—0 x

an accurate tracking of particle motions is unnecessary. Moreover, the processing
does not require a priori assumptions about the specific rheological behavior or
the frequency-dependent nature of D,. On the other side, broadband seismic
sources are required to generate a wave signal with a wide frequency range,
otherwise waveforms generated by usual sources restrict the ability to resolve the
damping ratio at low frequencies, including the seismic band. If not possible,
some assumptions about the dispersive behavior of the soil parameters are
necessary to extrapolate the available data, introducing uncertainties in the
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estimate linked to the way with which the extrapolation is performed (Figure
4-4b). Furthermore, an accurate estimation of both phase velocity and damping
requires a preliminary step of windowing of the seismogram in the time-domain,
to isolate the portion of interest (i.e., the signal corresponding to the arrival of the
P- or the S-wave) and limit the influence of reflected waves (Hall and Bodare,
2000).
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Figure 4-4. a) Scheme of the CHT layout; b) resulting S-wave velocity Vs and damping
ratio Ds curves versus frequency f from the interpretation of CHT data (modified from
Lai and Ozcebe, 2015).

4.2.2 Down-hole testing

In DHT and SCPT, the source is located at the ground surface, whereas the
receiver/s is/are installed in boreholes or pushed together with the cone probe
(Figure 4-5). The test measures the travel time of body waves generated by the
source and propagating to the receivers. The propagation occurs along slanted
paths, that may be affected by refraction occurring at the layers’ interfaces. The
travel time (hence, V) can be estimated by means of various techniques, such as
interval methods, direct methods and raytracing algorithms. A detailed description
about these procedures for an accurate estimation of V) is available in ASTM
D7400-17. Instead, the estimate of D, in DHT and SCPT is theoretically more
complex since it should account for the reflection and refraction phenomena at the
layer interfaces in the computation of the attenuation. Some pioneering
interpretation schemes rely on data processing in the time domain, such as the
rise-time method (Gladwin and Stacey, 1974; Kjartansson, 1979) and the pulse-
broadening method (Kjartansson, 1979; Liu et al., 1994). Alternative schemes are
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based on the attenuation coefficient method (Hoar and Stokoe, 1984; Mok et al.,
1988) or on a simulation of the downwards wave propagation in the DH testing
(modified SHAKE method; Stewart and Campanella, 1991). Campanella and
Stewart (1991) reported several issues in the application of such approaches, due
to large variability in results and the need of correcting factors to model the effect
of layer interfaces.

Figure 4-5. a) Scheme of the DHT layout; b) Scheme of the SCPT layout, using a dual
cone.

A popular approach is the spectral ratio slope (SRS) method (Redpath et al.,
1982; Mok et al., 1988; Lo Presti et al., 1997; Crow et al., 2011). The approach
provides a frequency-independent estimate of D, at depth z; by computing the 2™
order derivative of the wave amplitude spectral ratio (i.e., the ratio of the spectra
of the signals S; and S; recorded at the 1% and the i-th receiver) with respect to the

depth and the frequency:
v 2 S
D,= _Z.a_]n u
2r of oz |S,~|

This formula is valid for multichannel acquisition setups, whereas it simplifies
for two-sensor schemes (e.g., SCPT; Toksoz et al., 1979; Liu et al., 1994; Karl et
al., 2006). However, Badsar (2012) questioned the reliability of the SRS method
in the determination of the D, profile, especially in the presence of complex
stratigraphy. Indeed, this technique models the vertical propagation of shear
waves by assuming the geometrical damping as in a homogeneous medium.
Therefore, the effect of reflected and refracted waves on measured wave
amplitude is not properly accounted for. Thus, although the average of results is
close to the theoretical value, the estimated D, is affected by strong variability,

(4.9)

z=z,
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especially close to layer interfaces (Figure 4-6; Karl, 2005). The large scatter
together with erratic values prevent a clear and accurate estimation of the Dg’y
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Figure 4-6. Results from a SCPT survey: a) estimated S-wave velocity profile Vs; b)
estimated S-wave small-strain damping ratio profile Dsy, according to the SRS method
(after Karl et al., 2006).

A more robust approach is based on the spatial decay of the Arias intensity,
developed by Badsar (2012). The Arias intensity l4p (Arias, 1970) is a ground
motion parameter defined from the acceleration time history ap(z;f) at the i-th
receiver (where S labels the motion component) or the corresponding spectrum:

+00 +00
Tap (Z,'):% J- az’(zi’t)dt:é J- apg (Z,‘,a))-a;;’ (zi,a))dco (4.10)

The method calibrates the D, profile through an optimization algorithm
minimizing the difference between the experimental evolution of 74 4(z), computed
from the horizontal component of the acceleration, among the receivers and the
theoretical one, computed for a vertical point force (Figure 4-7). The estimation of
Ds is based on the horizontal component of the acceleration (i.e., f = x), whereas
Dp is obtained from the vertical one (i.e., f = z). The forward modeling relies on
appropriate numerical schemes to model the wave propagation in layered media
(e.g., the stiffness matrix approach; Thomson, 1950), hence this method properly
considers all the phenomena of reflection and refraction at the layers’ interfaces.
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On the other side, its application requires an accurate modelling of the Vs profile,
due to the remarkable sensitivity of the Arias intensity to this parameter, and long
computational time due to the multiple forward analyses.
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Figure 4-7. Application of the fitting of the Arias intensity on a synthetic case to derive
the damping ratio profile: a) S-wave velocity profile Vs; b) Original (thick grey curve)
versus calibrated (thin black curve) damping ratio profile Ds; ¢) Comparison between the
experimental (thick grey curve) and the theoretical (thin black curve) normalized Arias
intensity, i.e. ratio Arias intensity-experimental Arial intensity (modified from Badsar,
2012).

4.3 In situ geophysical tests: non-invasive methods

Non-invasive tests are geophysical seismic tests employing a set of receivers and
a source (when required) on the ground surface. They include the seismic
reflection survey (ASTM D7128), the seismic refraction survey (ASTM D5777),
surface wave testing (Foti et al., 2014) and the horizontal-to-vertical spectral ratio
(SESAME, 2004). This section will focus on techniques based on the
measurement of surface waves. Furthermore, although surface wave testing can
interpret various types of surface waves (e.g., Rayleigh waves, Love waves,
Scholte waves), this section will address only methods based on the measurement
of propagation characteristics of Rayleigh waves. Indeed, these techniques are the
most used in ordinary engineering applications.

Surface Wave Methods (SWM) rely on the dispersive behavior of Rayleigh
waves in layered media, for which the phase velocity V'z and the phase attenuation
ar exhibit a dependence on frequency. The frequency-dependence of propagation
parameters is a combined effect of geometric dispersion, which results from the
variation of mechanical properties with depth, and intrinsic dispersion, due to the
constitutive behavior of linear viscoelastic media. The standard testing procedure
can be divided into three main steps (Figure 4-8):

e Acquisition of the particle motion;
e Processing of measured data to derive the experimental Rayleigh-wave
dispersion curves Vz(w) and attenuation curves or(w);

81



e Inversion: estimation of the Vs and the D§s profile with depth through an

inversion scheme, where a theoretical soil model is calibrated to match the
experimental Vz(w) and ar(w).

Data acquisition consists in recording the particle motion induced by a
propagating waveform on a single or multiple sensors (typically, geophones). The
impinging wave is generated by an artificial source (e.g., a sledgehammer) or
induced by ambient vibrations. The origin of the recorded wavefield is the basis of
a key classification of SWM techniques: active methods, that use a source to
generate the wavefield; and passive methods, that record ambient noise.
Remarkable differences characterize the acquisition scheme and the techniques
for data processing in these two families. On the one side, active methods often
measure the wavefield by using a couple or a linear array of geophones and
estimate the Rayleigh wave propagation parameters by means of a modeling or
transformation of the recorded signal. Instead, passive methods record ambient
vibrations on single receivers or 2D arrays of sensors and they adopt statistical
tools to process the acquired data. In addition, these two categories of testing
procedures are complementary in terms of resolution. Indeed, passive methods
allow to resolve long wavelengths, whereas active data provide useful information
in the high-frequency range, where ambient vibrations are typically corrupted by
incoherent noise. For this reason, the current trend in site characterization consists
in combining both approaches, to obtain high-quality profiles down to great
depths (Tokimatsu, 1995; Rix et al., 2002; Foti et al., 2018). This task is possible
because, although the two procedures rely on different acquisition and processing
schemes, results can be combined in a single inversion scheme.
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Figure 4-8. Main steps of a SWM survey (after Foti et al., 2014; Passeri, 2019)

SWM have always been considered an appealing site characterization tool,
especially for ordinary design applications, thanks to their cost-effectiveness and
limited time consumption. However, the interpretation of experimental data is a
challenging task because the inference of material parameters requires the use of
advanced processing techniques. For this reason, some expertise from the operator
is requested in order to achieve reliable results. On the other side, the gradual
introduction of accredited guidelines for the execution of this kind of surveys
(e.g., SESAME, 2004; Socco and Strobbia, 2004; Socco et al., 2010; Foti et al.,
2018) allowed a remarkable reduction of interpretation ambiguities, with a
significant gain in confidence in SWM in the earthquake engineering community.
Furthermore, it has been demonstrated that SWM provide results that are as
reliable as those of invasive techniques, both in terms of accuracy and precision
(e.g., Garofalo et al., 2016a). However, a key difference is that invasive
techniques provide a local estimate of material parameters, which is representative
of a small portion of soil around the borehole(s) (Figure 4-9). Instead, SWM
investigate a large volume of the medium, whose size depends on the array
geometry, and it returns an average measure of material properties in the reference
volume of the soil deposit (Comina et al., 2011; Passeri, 2019). Therefore, SWM
tend to provide data estimates at a scale compatible with those of the geotechnical
system.
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The next sections describe in more detail some applications of the active and
the passive methods for the in situ estimate of Vs and Ds. The most relevant
features in the data acquisition are addressed and some common algorithms for
retrieving Vz(w) and ar(w) are introduced. However, additional information about
the acquisition and the processing stage can be retrieved in the devoted textbooks
and guidelines (e.g., Foti et al., 2014; Foti et al., 2018). A thorough description of
the inversion stage is provided in Chapter 8.

CH test PS suspension

DH test ;
Non-invasive test / logging test
AALAAAL

Figure 4-9. Investigated volumes in invasive tests and SWM (after Passeri, 2019)

4.3.1 Multichannel Analysis of Surface Waves (MASW)

The acquisition and processing of active-source data relies on various techniques.
One of the pioneering applications of this approach is the Steady-State Rayleigh-
wave Method by Jones (1958), which employs a single sensor to measure the
wavefield generated by a monochromatic source. Then, Nazarian and Stokoe II
(1984) exploited advanced digital signal processing schemes to derive Rayleigh
wave parameters, developing the Spectral Analysis of Surface Waves. This
technique uses an impulsive source to generate the wavefield, which is recorded
by a pair of receivers, whose relative distance is gradually changed to investigate
a broad range of wavelengths. Nowadays, the most popular testing configuration
is the Multichannel Analysis of Surface Waves (MASW), which measures the
wavefield on a linear array of receivers aligned with the source (Nolet and Panza,
1976; McMechan and Yedlin, 1981; Gabriels et al., 1987; Park et al., 1999; Foti,
2000). Typically, the recorded output is the vertical displacement at each sensor
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u:(r,t) (or its spectrum u-(r,w)) with offset », whereas the source can be described
as a harmonic vertical force source Fe'® in the frequency domain (Figure 4-10).
This setup allows a fast and robust estimate of Rayleigh wave propagation
characteristics, even in sites with complex stratigraphy. For these reasons, the next
Section will address processing techniques relying on MASW data.

The data acquisition in MASW testing requires great care, especially when
attenuation measurements are carried out. The main issue is linked with the
sensor-ground coupling, which is crucial for an accurate tracking of the particle
motion. Furthermore, recorded data should have reasonably high signal-to-noise
ratio in the frequency band of interest (e.g., Sun, 2000) and the quality of the
seismogram should be good enough.

Processing schemes aimed at estimating Rayleigh wave dispersion and
attenuation curves from MASW data can be clustered as regression techniques,
maximum likelihood parameter estimation procedures, and transform-based
techniques. On the one side, regression approaches infer the R-wave propagation
parameters by fitting a theoretical model describing the particle motion with the
experimental data. On the other side, transform-based techniques interpret the
recorded wavefield in a transformed domain, where the desired parameters can be
identified from the spectral maxima.

Feiwt
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Figure 4-10. Scheme of the MASW setup, where the vertical displacement u. induced by
an input force (e.g., a harmonic force Fe'™) is recorded by various sensors with varying
distance 7.

4.3.1.1 Regression techniques

Regression techniques are the most commonly used category of processing
techniques for the derivation of the attenuation parameters of the Rayleigh wave.
Their principle consists in solving a problem of model identification, by fitting
experimental data with a theoretical model, typically given by the equation
describing the spatial attenuation of the displacement field due to a harmonic
point force (Eq. 3.35; Lai and Rix, 1998a).

First applications of regression techniques estimated R-wave attenuation by
comparing wave spectra recorded at different locations (e.g., Barker and Stevens,
1983), although they did not properly model the geometrical spreading. However,
this scheme has been later adopted in more advanced techniques (e.g., Xia et al.,
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2002; Gao et al., 2018; Mun and Zeng, 2018). Instead, Rix et al. (2000) estimated
ar(w) based on the regression of the displacement amplitude versus offset data,
accounting for uncertainties in the geometrical spreading function. For this
purpose, they performed a preliminary characterization of the Vs profile, to obtain
an approximate estimation of this function, which was then included in the
regression to obtain the attenuation curve. However, the amplitude-offset
regression provides an uncoupled estimate of the dispersion and attenuation data,
which is not mathematically robust and ignores the intrinsic relationship between
velocity and attenuation in a linear viscoelastic material (Lai and Rix, 1998a).

An upgrade of the approach is the transfer function method (TFM; Rix et al.,
2001a; Lai et al., 2002). The technique is a multistation approach based on the
estimate of the experimental displacement transfer function 7(r,w), i.e. the ratio
between the measured vertical displacement at each sensor u.(7,@) and the input

harmonic source Fe' in the frequency domain:

u, (r,o)
F_eia)t
The TFM is based on the theoretical formulation of the particle vertical

T(r,0)= (4.11)

displacement induced by a propagating Rayleigh wave (Eq. 3.40), under the
simplifying assumption the wavefield is dominated by a single Rayleigh mode of
propagation, for which the complex-valued phase angle F.(r,w) becomes linearly

dependent on the offset » through the complex wavenumber Rr(w) (Lai and Rix,
1998a):
T(r,0)=Y (r,0) e Fire) —smglemde ST (r,0)=V. (r,a))-efik”(“’)’ (4.12)

Based on Eq. 4.12, the TEM estimates Rr(w) through a nonlinear fitting of the
experimental data, from which Vz(w) and ar(w) are then derived (Eq. 3.28-29).
However, the geometrical spreading function Y.(r,w) is not known a priori, as it
depends on the mechanical characteristics of the soil deposit. Therefore, it is
usually assumed as equal to 7 ”* (e.g., Lai et al., 2002; Foti, 2003). The fitting of
T(r,w) can be performed in an uncoupled way, based on the separate fitting of its
amplitude and phase (Lai et al., 2002). However, a coupled fitting of the transfer
function in the complex domain is mathematically more robust (Foti, 2003; Figure
4-11).

Foti (2003, 2004) proposed a generalized version of the TFM by removing the
effect of the input force, as its measurement is nontrivial and requires controlled
sources, that are often unavailable in ordinary applications. For this purpose, the
Author reformulated the displacement transfer function in terms of deconvolution
of the seismic traces. The principle of this method consists in computing the
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experimental transfer function adopting the response of the closest receiver as the
reference trace. Under this assumption, the theoretical transfer function modifies
as follows:

u, (r,@) _ Y (r,o) o Kelor)
(1) W(r0)

As in the TFM, Eq. 4.14 is the basis of a nonlinear regression procedure to

T(r,0)= (4.13)

compute Rp(w) and derive the phase velocity curve and the phase attenuation
curve.

The main limitation of the TFM is the assumption that the wavefield is
dominated by a single Rayleigh mode of propagation. This approach may lead to
wrong results when the effect of modal superposition is relevant. Indeed, the
result is an estimate of apparent Rayleigh phase dispersion and attenuation curves,
that can be affected by modal superposition when multiple propagation modes are
relevant (Foti et al., 2014). Furthermore, the theoretical model relies on the far-
field approximation of the displacement field induced by Rayleigh waves.
Therefore, estimated value may be less reliable at low frequencies, where the
corresponding wavelength becomes comparable with the offset of the closest
receiver. Finally, an additional source of uncertainties derives from the
simplification of the geometrical spreading function. A possible solution may
consist in determining approximate profiles of Vs and Ds through coupled
inversion of the experimental curves and setting an iterative procedure where the
geometrical spreading function is updated according to the resulting profiles and
new models are extracted until convergence. In this case, the processing and the
inversion stages would be performed simultaneously and results would be more
accurate. However, this procedure is time-consuming.
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Figure 4-11. Regression of the experimental transfer function 7(r,w) with the distance »
for the coupled computation of dispersion and attenuation curves: (a) phase; (b)
amplitude; (c) real part; (d) imaginary part. Data refer to the Pisa Leaning Tower site, at
the frequency of 11.5 Hz (modified from Foti, 2003).

4.3.1.2 Maximum likelihood parameter estimation procedures

A promising approach able to overcome limitations in the modeling of
multimode Rayleigh waves is the Wavefront Decomposition (WaveDec, hereafter
labeled as “WD”) technique. The method was originally designed for passive
measurements (Marano et al., 2012) and then extended for active measurements,
by modeling the propagation of a cylindrical wavefield including spatial decay
(Marano et al., 2017; Bergamo et al., 2018; Bergamo et al., 2019). The WD relies
on quite a general framework, which makes it usable even in the presence of 2D
arrays. The approach interprets measured three-component displacement data to
jointly estimate the Rayleigh wave parameters, i.e., the complex wavenumber
kr(w) and the ellipticity angle (), which is the arctangent of the ratio between
the horizontal and the vertical component of the displacement field. These
parameters are clustered in an unknown parameter vector 8 = (Rr(®); &(w)). The

WD approach returns a maximum likelihood estimation of 0, labeled as 6, where
the likelihood function is defined as follows:

88



(yﬁ,n,m “Upnm )2

A 3 M 1
O=argmax f(0), f(0)= exp| —
/@) 70) g”‘lg\/z”aém [ 205 ] (4.14)

where ygnm 1s the measured displacement, whereas ug,n 1s the predicted
displacement according to Eq. 3.34 (f is the component index, n is the receiver
index, and m is the sample index). Instead, V is the number of receivers, M is the
number of samples and o, represents the standard deviation of the signal noise of
the displacement component at the sensor. This approach accommodates for the
presence of multiple modes of propagation in the recorded wavefield by
performing multiple fittings of the experimental wavefield, assuming different

number of modes in the predicted displacement. The selection of the most suitable
number of modes to describe the recorded wavefield represents a problem of
model selection, for which an effective indicator is the Bayesian Information
Criterion (BIC; Schwartz, 1978). The Authors adopted a penalized version of
BIC, defined as follows:

BIC, ==2£(6)+yN,In(3N-M) wis)
where N, denotes the number of parameters calibrated in the fitting model (hence,
it is linked to the assumed number of modes) and y is a control parameter ranging
between 0 and 1, that allows to control the complexity of the model and the fitting
quality — specifically, at smaller y, the algorithm returns a larger number identified
propagation modes and it tends to overfit experimental data. Given the large
number of evaluations of the likelihood function, the approach does not carry out
a direct computation but it models it by means of a factor graph (Loeliger et al.,
2007), achieving more efficient computation.

Figure 4-12 shows the application of WD on a synthetic case, where a linear
and a 2D survey were simulated. For both arrays, this approach returns reliable
estimates of Vr(w) and ar(®w) and the ellipticity angle, for both the fundamental
mode and the first higher mode. Furthermore, the fitting quality is good also at
low frequencies, because the method models the cylindrical shape of the Rayleigh
wavefront, thus mitigating near-field effects.
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Figure 4-12. Application of the WaveDec approach for a synthetic case: a-b) S-wave
velocity Vs and small-strain damping ratio Dsy profiles; c) Acquisition layout; d)
Estimated dispersion curves; e) Estimated attenuation curves; f) Estimated Rayleigh wave
ellipticity (after Bergamo et al., 2019).

4.3.1.3 Transform-based techniques

Transform-based techniques rely on the application of appropriate transformations
to the recorded wavefield to retrieve the R-wave propagation parameters. These
techniques map the time-space seismograms into spectra defined in alternative
domains, for instance the frequency-wavenumber (f-k) domain. A significant
advantage is the capability of these approaches to separate the different
components of the wavefield (i.e., different modes), although the possibility of
isolating modes also depends on the spatial resolution of the array. For this
reason, dispersion analysis is often carried out by interpreting the transformed
wavefield, e.g. by means of a double Fourier transform, the frequency-domain
beamformer (Lacoss et al., 1969), the high-resolution frequency-wavenumber
approach (Capon, 1969), the linear Radon transform (McMechan and Yedlin,
1981; Luo et al., 2008), the phase-shift (Park et al., 1999), the multiple signal
classification (Iranpour et al., 2002), and the frequency decomposition and slant
stack (Xia et al., 2007).
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Only few applications of transform-based techniques to retrieve attenuation
data can be identified. One of the first attempts is attributed to Yoon (2005), who
proposed a hybrid scheme for the attenuation estimate, combining a regression
method and the double Fourier transform. Indeed, the algorithm derives Vz(w)
from the location of peaks of the f~k spectrum, whereas ar(w) is obtained through
nonlinear regression of an equivalent displacement field, derived from the
amplitude of the spectral peaks. More recent approaches relying on the
interpretation of f-k spectra have been proposed by Badsar et al. (2010) and
Verachtert et al. (2017). In both cases, the Authors generalized modal
identification techniques commonly used in structural engineering to the
characterization of R-waves. Further details on these techniques will be provided
in the following. Instead, other Authors tried to extend dispersion analysis
schemes into dissipative media (e.g., Misbah and Strobbia, 2014).

Badsar et al. (2010) proposed a simplified method for the estimate of the
ar(w), based on a generalization of the half-power bandwidth method (Chopra,
2017). This method is hereafter referred as Generalized Half-Power Bandwidth
(GHPB). The GHPB is able to reduce the interpretation complexity and capture
the propagation characteristics of multiple Rayleigh modes. The GHPB provides
an uncoupled estimate of Vz(w) and ar(w), from the interpretation of the f-k
spectrum of the experimental displacement transfer function 7(r,w). The
transform is calculated through a Hankel transformation, to account for the
cylindrical shape of the wavefront (Forbriger, 2003):

T(k,0)= % [T (r,0)J (k) (4.16)

where Jo(kr ) is the zeroth-order Bessel function of the first kind and kg, is
the (trial) wavenumber at which the transform is computed. The dispersion curves
of each mode of propagation are first identified as spectral peaks of the f-k
spectrum. Then, for each propagation mode, the GHPB derives ar at every
frequency from the width of the corresponding peak. At each frequency, the
bandwidth Akr;(w) is the width of the f-k spectral peak of the j-th mode, measured
at an amplitude level equal to a fraction y of the peak value (Figure 4-13a). Then,
ar(w) is derived as follows:
a, (0)=2Lesl®)
2y -1

The amplitude decay parameter y equals V2/2 in the half-power bandwidth,
whereas a much larger value is recommended in the GHPB, to avoid mixing of
adjacent peaks and modal interference in the estimated phase attenuation (Figure

(4.17)

4-13b). In this way, the approach is not sensitive to multiple Rayleigh modes. The
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parameter y should be tuned up as a function of the soil deposit characteristics and
the testing setup, although a value equal to 0.99 is suitable in various conditions.
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Figure 4-13. Generalized half-power bandwidth method: a) Definition of the reference
bandwidth Akg; from the spectrum of the experimental displacement transfer function
T(r,w); b) Performance of the classical half-power bandwidth vs. GHPB in the presence
of multiple propagation modes.

However, the estimated Vz(w) and ar(w) depend on two control parameters,
that are the amplitude decay parameter y and the quantity ¢. The latter controls the
spatial window applied to the recorded wavefield, to minimize truncation effects
in the computation of the f~k spectrum according to Eq. 4.17, that might induce an
overestimation of ar(w). In general ¢ is typically equal to 10, although it should
be calibrated based on in situ conditions.

Instead, Verachtert et al. (2017) proposed an alternative methodology for the
determination of multimodal R-wave dispersion curves and attenuation curves,
namely the Circle Fit Method (CFM). The CFM is intimately connected with the
GHPB as it uses the corresponding Vz(w) and ar(w) estimates as starting point.
The principle of the CFM relies on an alternative representation of the f-k
spectrum of the displacement transfer function, based on the Nyquist plot, which
compares the real and the imaginary part of a complex number. From the analogy
between the spectral shape of the R-wave spectrum at each frequency and the
frequency response function of a Multiple-Degree-Of-Freedom (MDOF) system,
it can be demonstrated that the Nyquist plot of the f~k spectrum is a combination
of circles, each one corresponding to a single Rayleigh mode (Ewins, 1984;
Figure 4-14b). The CFM estimates Vz(w) and ar(w) based on the geometry of the
circles. Specifically, the modal wavenumber kgj(w) corresponds to the value
where the angular sweep at the center J(k.w) is maximum and it is obtained
through a search method. The phase attenuation, instead, is computed by
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combining the wavenumber sample points k;, and k;» and the corresponding
angles close to the modal wavenumber (Figure 4-14b):

2 2
kR,b - kR,a

\sj (k,,,,,a))‘

()= (4.18)

9 (kw ’ a))‘

2ky, ()| tan +tan

Verachtert et al. (2017) demonstrated that the CFM provides more accurate
estimates of Vz(w) than the peak picking of the f~k spectrum (Figure 4-14a) and it
is more reliable at deriving ar(w) than the GHPB, for both the fundamental mode
and higher modes. Furthermore, estimated data span a broader frequency range.
Indeed, the CFM exploits all the information provided by the f~k spectrum,
whereas the GHPB focuses only on its amplitude. However, both GHPB and CFM
depend on two parameters (i.e., y and ¢) that depend on the soil deposit
characteristics and on the layout of the survey. Although some indicative values
are prescribed, a proper application of these methods would require a site-specific
calibration of these quantities, to avoid biased estimates. Furthermore, both
methods tend to overestimate ar(w) at low frequencies (less than about 15 Hz),
due to leakage. Therefore, they are less reliable at long wavelengths.
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Figure 4-14. Application of the CFM scheme to identify the modal wavenumber kg,
(hence, V) and ar for a synthetic case, with a focus on the dominant mode: a) f~k
spectrum of the particle displacement function, for a given frequency; b) Nyquist plot of
the f-k spectrum of the particle displacement function. The dominant mode corresponds to
the greatest circle and kz.; is identified as the k; value at which the relative distance
between subsequent points in the Nyquist plot is maximum. The plot highlights values
corresponding to two wavenumber sample points &, and 4, that are used to compute .
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The corresponding angles $(k;,) and 9(k;») are computed from the line connecting kg.,
and the circle center, and they increase according to the direction of growing 4.

4.3.2 Ambient vibration analysis

Passive methods derive propagation characteristics of the seismic ambient noise,
which is mainly composed by surface waves generated by anthropic activities or
natural events. The measurement of ambient vibrations is possible through single-
station measurements or multiple-station measurements. Multichannel
measurements might employ linear acquisition arrays of receivers, which forms
the basis of the ReMi™ technique (Refraction Microtremors; Louie, 2001;
Zywicki, 2007; Strobbia and Cassiani, 2011). However, the current trend relies on
2D acquisition arrays, termed as Ambient Vibration Arrays (AVA; Tokimatsu et
al., 1992; Okada and Suto, 2003). Indeed, the related measurements provide more
reliable and robust measurements of dispersion characteristics of surface waves
(Cox and Beekman, 2010; Foti et al., 2018). The optimal scheme is based on
circular arrays, although other geometries (e.g., L-shaped, triangles) are often
adopted, especially in the presence of external constraints (e.g., in the urban
environment). During the acquisition stage, a proper ground-sensor coupling
should be guaranteed, due to the sensitivity to wind conditions (e.g., Foti et al.,
2018). Furthermore, recorded ambient vibrations may be corrupted by the
presence of nearby structures (e.g., forests and infrastructures). Finally,
measurements should be carried out according to adequately long time windows,
to acquire a statistically significant number of propagating waves (SESAME,
2004).

The processing of acquired data is based on statistics computed on multiple
time windows extracted from the recorded signals. However, the technique used
to interpret data of each window depends on the acquisition scheme.

For single-station methods, the Horizontal to Vertical Spectral Ratio (HVSR;
Nogoshi and Igarashi, 1970; Nakamura, 1989) is used, which provides an estimate
of the fundamental resonance frequency of the soil deposit (SESAME, 2004;
Bonnefoy-Claudet et al., 2008). Furthermore, HVSR data provide useful
indications about the location of strong impedance contrasts, they may provide an
additional constraint in the inversion of surface wave data, allowing for better
defined soil models or even extending the investigated depth range (e.g., Arai and
Tokimatsu, 2005; Parolai et al., 2005; Passeri, 2019). Also, HVSR data allow to
assess for the spatial variability of the investigated site (e.g., Vantassel et al.,
2018; Cheng et al., 2021). In some cases, single station measurements have also
been used for soil damping characterization. However, the proposed techniques
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identify a characteristic damping value, representing a global, equivalent value
that reflects the overall response of the soil deposit (e.g., Yang et al., 1989; Huerta
et al., 1994; Huerta et al., 1998; Mucciarelli and Gallipoli, 2006; Fernandez-
Heredia et al., 2012; Castellaro, 2016).

Array-based methods rely on multistation measurements of the ambient noise.
The processing techniques may be clustered into two major families: transform-
based approaches and spatial correlation methods.

On the one side, transform-based approaches (or f-k methods) interpret
recorded data after applying a proper transformation, in which wave parameters
are identified as spectral maxima. Several techniques have been developed for the
dispersion estimate, as the conventional frequency wavenumber (Burg, 1964;
Lacoss et al., 1969), high resolution frequency wavenumber (Capon, 1969), and
the MUSIC approach (Iranpour et al., 2002). However, no attempt to estimate
dissipation parameters is currently available.

On the other side, spatial autocorrelation (SPAC) methods rely on the link
between the spatial correlation of the recorded wavefield with the Green’s
function of surface waves. These techniques include the traditional SPAC (Aki,
1957), the extended SPAC (Ling and Okada, 1993), the modified SPAC (Bettig et
al., 2001), the two-site SPAC (Morikawa et al., 2004), and the multi-mode SPAC
(Asten et al., 2004). The SPAC method is a regression-based approach that
measures the ambient noise on a circular (or pseudo-circular) array with a central
sensor. Sensors position is described by the distance » and the azimuth angle ¢
with respect to the central sensor (Figure 4-15). Then, it computes the azimuthal
average of the spatial correlation of the noise across each couple of sensors, which
is related to the Green’s function of surface waves. By virtue of this relationship,
the SPAC method is capable to provide a measure of the dispersion curve,
frequency by frequency.

Figure 4-15. Acquisition layout for the SPAC method.
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The SPAC technique has also been applied to retrieve the dissipative
parameters of surface waves. For instance, Albarello and Baliva (2009) estimated
attenuation data through a linear fit of the time derivative of the noise cross-
correlation. However, several studies rely on the modification of the Aki’s SPAC
function proposed by Prieto et al. (2009), whose validity has been demonstrated
theoretically by Nakahara (2012) and numerically by Lawrence et al. (2013):

p(r,w)=J, [ p ()7 ] e nlr (4.19)

Therefore, dispersion and attenuation data are estimated through an uncoupled
fitting of the experimental correlation data with the theoretical model, described
by the right term in Eq. 4.19. The fitting procedure is carried out within a proper
wavelength range, so that the inter-receiver distance is bounded with one or two
times the investigated wavelengths. Indeed, due to the attenuation, coherence is
lost after short propagation distance and the fit beyond this limit would lead to
unstable and unreliable estimates of wave parameters (Parolai, 2014). This
scheme was also used for the derivation of dissipative characteristic in seismic
interferometry (e.g., Weemstra et al., 2012; Weemstra et al., 2014; Magrini and
Boschi, 2021). Figure 4-16 reports some results of the fitting procedure at a site in
Italy (Parolai, 2014). Interestingly, the quality of the fit dramatically improves
with respect to the elastic model, as a scheme closer to the actual behavior is used
(Figure 4-16d-f; Prieto et al., 2009). However, although estimated Vz(w) are quite
well constrained, the phase attenuation is affected by large uncertainties, with
standard deviation increasing with the investigated frequency. This is also an
indirect effect of the smaller accuracy in the estimated ar(w) attenuation with
respect to Vr(w), which is visible by the shape of the normalized misfit in Figure
4-16a-c (Boxberger et al., 2017).

Lawrence et al. (2013) observed that the SPAC method provides reliable
attenuation estimates in the presence of far-field sources with reasonable
azimuthal distribution and well-distributed receivers. Furthermore, the fitting
model is valid for a single mode of propagation with small attenuation levels and
large separation distance (i.e., the argument kzr in Eq. 4.23 is much larger than the
unit; Nakahara, 2012). Therefore, it returns only an apparent mode of R-wave
propagation.

96



a) b) C)

0.06 L . 1 .
s | i 1.0
004 - | i
g 0.03 _— ,é e
® g.02- - - - B .
=
0.01 - # - & - : -
0.00 . - r
500 1000 500 1000 500 1000
Velocity [m/s] Velocity [m/s] Velocity [m/s]
d) e) f)
1‘0 1 L 1 L \h 1 1 L 1 - 1 1 1 1
0.8 E E g
0.6 \1% - 4% - :
02 ] I W N L ;
o g 1 » . AN N & o fodfaEe L 1
= 02 %.-,..;s., | et o N [N
0,44 EE L. & ) L ] % 3
0.6 F E g
_?‘g- [ ] B 5 [
‘ 0 2I0 4I0 BIO BIO 100 0 2ID 4I0 6[0 SIU 100 0 2I0 4l[] BIO BIO 100
Distance [m] Distance [m] Distance [m]
g h)
600 ————— 0.05 +————— !
£ 500 - 0.04 o f
el i [ e ) . [
= 400 - £ 0.03 | - -;@Mg o
'O - 1 %
B =i ™~ ;5 B2~ A
g 200 5 ooo.oof 0.01 - E
100 T T ——— .00 +————r—r—r—i
4 6 8§ 10 5 10
Frequency [HZz] Frequency [Hz]

Figure 4-16. a-c) Results of the grid search procedure in the velocity-attenuation domain,
represented as pseudocolor plot mapping the normalized fit value, measured as
RMSE,.;/RMSE, where RMSE is the root mean square error. White triangles identify the
best fit values. Data refer to frequencies of a) 3.25 Hz, b) 5.61 Hz, and ¢) 10.16 Hz. d-f)
Measured SPAC values (black dots) versus best-fitting functions considering attenuation
(solid line) and ignoring attenuation (dashed line). Grey dots denote the SPAC values
discarded in the fitting procedure. Data refer to frequencies of d) 3.25 Hz, ¢) 5.61 Hz, and
f) 10.16 Hz. g) Obtained Rayleigh wave dispersion curve Vzx(w). h) Obtained Rayleigh
wave attenuation curve. Grey dots denote the theoretical or(w) resulting from an
inversion procedure, which has not been reported for simplicity (after Parolai, 2014).
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4.4 Back-analysis of downhole arrays

Downbhole arrays, hereafter referred as DH-arrays, are boreholes equipped with an
array of seismometers located at different depths, recording earthquake-induced
ground motion. Their aim is to measure variations in the ground shaking as
seismic waves propagate from depth up to the surface. DH-arrays represent a
valuable tool for understanding the physics of seismic amplification. Therefore,
they represent the basis for verification and for the development and calibration of
predictive tools for the estimate of ground motion amplification (Elgamal et al.,
2001).

On the one side, DH-array data highlighted issues due to the erroneous or
coarse estimates of material parameters (e.g., Assimaki et al., 2008; Régnier et al.,
2018) or induced by simplifying assumptions about the soil constitutive behavior
(e.g., Kwok et al, 2008; Kaklamanos et al., 2013a), thus motivating the
development of more advanced models for predicting site amplification (e.g., Shi
and Asimaki, 2017). Besides, they demonstrated the limitations of classical
propagation models (i.e., the 1D scheme) in some sites (e.g., Thompson et al.,
2012).

Furthermore, DH-array data can be exploited for characterization purposes, as
the back-calculation from observed weak motions can be an effective tool for the
calibration of mechanical parameters of the soil deposit, with a particular focus on
material dissipative characteristics, provided that 2D/3D resonance phenomena do
not occur. However, it should be remarked that the high installation costs and the
need of earthquake records do not allow their use for common applications.

The technical literature reports various attempts of in situ characterization of
the soil deposit, based on DH-arrays. In general, DH-arrays can be interpreted by
means of a large variety of techniques. In order to simplify the description, a basic
and non-exhaustive classification is proposed: waveform inversion techniques,
amplification analysis and x-informed damping estimation. This partition refers to
the quantity that is adopted as reference to constrain Dgs data. Waveform

inversion techniques deal with time histories recorded in the DH-array sensors,
whereas amplification analysis calibrates D3 based on synthetic ground motion

parameters. Similarly, x-informed damping estimation exploits another parameter,
1.e. the high-frequency spectral decay x (e.g., Ktenidou et al., 2014). However,
being this approach mostly used in seismological studies rather than for site
characterization purposes, it will be addressed separately.

Part of this Section has already been published in Foti et al. (2021).
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4.4.1 Seismogram inversion methods

Seismogram inversion methods provide a coupled estimate of stiffness and
dissipation parameters based on low-amplitude motions recorded in DH-arrays.
The principle of these techniques consists in calibrating ground models to achieve
an acceptable degree of compatibility between predicted and measured ground
motion, typically checked in the time domain. The calibration may also include
results from other geophysical surveys, that provide additional data to better
constrain the inferred model. In some cases, such integration is carried out in a
uncoupled way, where geophysical data provide a starting model to be refined
with ground motion records (e.g., Assimaki et al., 2006; Parolai et al., 2010).
However, newly developed schemes implement a joint inversion scheme, where
both data types simultaneously contribute to constrain the soil model (e.g., Seylabi
et al., 2020).

Assimaki et al. (2006) implemented an elegant seismic waveform inversion
algorithm for the estimate of the small-strain parameters from weak motion
records in DH-arrays. The procedure estimates the mechanical parameters, i.e. Vs,
Dg’s (hereafter simply labeled as Ds) and density through a two-step optimization

algorithm, consisting of a genetic algorithm in the wavelet domain and a nonlinear
least-squares scheme in the frequency domain. The stochastic optimization
minimizes the misfit between theoretical and observed acceleration time histories,
represented in the wavelet domain — rather than in the time domain — to ensure
equal weighting of the information across all frequency bands. The corresponding
objective function is the normalized correlation between observed and synthetic
seismograms and synthetic ones, which should be maximized. On the other side,
the local search process is a nonlinear least-squares optimization algorithm in the
frequency domain, minimizing the energy error between the empirical and
theoretical transfer function (TF; see Section 2.4.1 for the definition). The
combination of a stochastic search algorithm with a local search one results in a
fast and robust model identification scheme.

Assimaki et al. (2006) tested this approach with reference to a borehole
station of the Kik-Net Strong Motion Network (Figure 4-17). The resulting soil
models are quite comparable with the profiles inferred from the available
geotechnical information, although discrepancies are observed at great depths.
The matching with observed S-wave travel time data is sensibly improved,
meaning that the estimated average Vs is now reliable. A possible reason behind
such improvement could be the high resolution of the stratigraphy adopted in the
inversion, that overcomes the limitations of the coarse description of the soil
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profile in the available information. Furthermore, the D¢ profile exhibits strong

variability in the shallow layers. The Authors interpreted the large variability as a
side effect of the modeling the 3D propagation of waves in a heterogeneous
medium into a 1D layered medium, where they synthetized the intrinsic
attenuation and scattering energy redistribution into a single, frequency-
independent parameter.
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Figure 4-17. a-c) Obtained soil profiles in terms of S-wave velocity Vs (a), small strain
damping ratio Ds (expressed as the reciprocal of the quality factor Q, namely 1/Q = 2Dy),
(b) and mass density p (c) in Asimaki et al. (2008). The dotted lines are the profiles
obtained from geotechnical data, whereas the solid lines represent the results of the
inversion procedure. d-g) Matching between observed and simulated time histories.

Instead, Seylabi et al. (2020) combined information from DH arrays and
geophysical surveys into an ensemble Kalman inversion scheme, to estimate the
Vs and the Ds profile at the Garner Valley site, in California. This inversion
scheme has been proposed as a possible strategy for mitigating the solution non-
uniqueness that characterizes the inversion problem in SWM (more details on this
will be addressed in Chapter 8). This issue is usually tackled by adding
complementary information, e.g. HVSR data. Seylabi et al. (2020) demonstrated
the effectiveness of integrating DH-array data in the inversion problem, as they
allow a remarkable constraint of the inferred soil models. Specifically, synthetic
tests demonstrated the effectiveness of the joint inversion with respect to using
different data types separately. Besides, tests on real data resulted in ground
models with amplification features perfectly compatible with observed data.
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4.4.2 k-informed damping estimation

The spectral decay parameter x has been introduced by Anderson and Hough
(1984), who observed that the high-frequency amplitude spectrum of acceleration
data induced by S-waves exhibits an exponential decay, independently from the
specific event considered or the location of the sensor (Figure 4-18a):

A(f)oce™ , fo<f<fy (4.20)

where fr and fx denote the boundaries of the frequency range in which this
trend is observed.
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Figure 4-18. a) Definition of the spectral decay parameter, including the boundaries fz and
fx of the reference frequency range (after Askan et al., 2014); b) Variation of the spectral
decay between surface and borehole measurements (after Cabas et al., 2017).

The x can be estimated by a robust linear fitting of the amplitude decay in the
high frequency range in a log-linear space. Ktenidou et al. (2013) and Ktenidou et
al. (2014) provide useful prescriptions for an accurate estimation of this
parameter. The x increase as the epicentral distance grows (Figure 4-18b;
Anderson and Hough, 1984; Ktenidou et al., 2015). The increase with the distance
represents a path effect of regional attenuation, whereas the intercept at zero
distance, labeled as xy, is a function of geological conditions close to the site.
Indeed, ko has been used in several seismological studies to infer the attenuation
structure of the Earth (e.g., Cormier, 1982; Hough and Anderson, 1988;
Campbell, 2009). Alternatively, in the presence of records on outcropping
bedrock close to the investigated site, the damping structure of soil deposits can
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be inferred, by assuming that the corresponding xp only incorporates the
sedimentary component (e.g., Chapman et al., 2003; Campbell, 2009).

When interpreting DH-arrays, x data from surface and borehole records at a
specific site tend to align along two parallel lines, as the sensors share the same
path terms (Figure 4-18b; Douglas et al., 2010; Ktenidou et al., 2013; Ktenidou et
al., 2015). The constant difference Ax provides a measure of the attenuation along
the borehole and it is related to the small-strain parameters of the soil deposit,
under the assumption of frequency-independent damping ratio (Hough and
Anderson, 1988; Cabas et al., 2017; Xu et al., 2019):

Ax=[ =Sz 4.21)

Given the Vs profile, the x-informed damping estimation consist in calibrating
Dsy so that the theoretical Ax matches the corresponding observed value, thus
suiting the observed high-frequency attenuation (e.g., Cabas et al., 2017; Afshari
and Stewart, 2019; Xu et al., 2019). For instance, Figure 4-19 shows the resulting
soil model at a site characterized by complex stratigraphy, where the Ds profile
was calibrated starting from laboratory-based values (Afshari and Stewart, 2019).

Notwithstanding the apparent simplicity of these approach, the relation
between xp and Ds is not always straightforward, due to wave scattering
phenomena that may be relevant in presence of complex stratigraphy (Ktenidou et
al., 2015).
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Figure 4-19. Example of S-wave velocity Vs profile and x-informed damping ratio Ds
profile (after Afshari and Stewart, 2019).

4.4.3 Amplification analysis

A quite popular approach of Ds estimation is based on site-amplification synthetic
parameters. Similar to the x-informed damping estimation, the strategy calibrates
Ds to obtain a good level of compatibility between the predicted and the observed
amplification response, described by means of a synthetic parameter. Although
this procedure is computationally intensive, as multiple GRAs are required, the
resulting Ds 1s consistent with the ground response in seismic conditions, and it
can be used for GRAs. Conventional approaches rely on frequency-domain
parameters, that capture variations in both amplitude and frequency content of the
waveform while propagating in the soil deposit. Typical proxies are the transfer
function TF (Figure 4-20; Pecker, 1995; Tsai and Hashash, 2009; Thompson et
al., 2012; Kaklamanos et al., 2013b; Yee et al., 2013; Zalachoris and Rathje,
2015; Tao and Rathje, 2019) or the amplification function AF (e.g., Thompson et
al., 2012), the definition of which is available in Section 2.4.1. The description
might refer also to time-domain parameters, as the peak values of acceleration and
velocity and the Arias intensity (Tao and Rathje, 2019).
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A critical issue in the amplification analysis is the choice of an appropriate
goodness-of-fit metric. This applies especially when dealing with frequency-
domain data. Indeed, TFs and AFs are oscillating functions usually spanning over
a broad range of frequencies and the various peaks and troughs may be of
different orders of magnitude. Most studies rely on misfit magnitude-based
estimates, because a deviation between theoretical and experimental data may be
interpreted as an effect of biased material parameters or modeling errors, e.g.
linked with lateral variability of the soil deposit (Thompson et al., 2009). Valid
indicators of closeness between target and predicted data are the mean-squared
error (MSE), the corresponding root (RMSE; Zalachoris and Rathje, 2015), or the
coefficient of efficiency (Legates and McCabe Jr, 1999). An alternative family of
goodness-of-fit statistics focuses on the shape similarity between target and
theoretical data. An example is the Pearson’s sample correlation coefficient, that
provides a direct measure of similarity, e.g. in terms of the peak alignment
(Thompson et al., 2012). However, Legates and McCabe Jr (1999) questioned the
high sensitivity of the correlation coefficient to extreme values in the target or in
the experimental data. To overcome this limitation, a more robust metric is the
index of agreement (Legates and McCabe Jr, 1999; Tao and Rathje, 2019).
Furthermore, the assessment of the degree of fit is restricted within a moderately
narrow frequency range, typically between the first and the fourth peak of the
observed TF, to avoid biased estimates (Thompson et al., 2012).

On the other side, the choice of an adequate fitting metric is even more
complex when focusing on time-domain data. For instance, Tao and Rathje (2019)
adopted a simple strategy as they focused on peak values of time histories (e.g.,
peak ground acceleration PGA) or the Arias intensity, for which the misfit
estimation is immediate. Other studies (e.g., Shi and Asimaki, 2017), instead,
adopt more refined approaches already used in seismological simulations, e.g. the
Anderson (2004) criteria and the GOF method (Kristekova et al., 2006; Olsen and
Mayhew, 2010).
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Figure 4-20. Application of the amplification analysis at the Garner Valley site: a) S-
wave velocity Vs profile; b) Calibration of the small-strain damping ratio D5, profile; c)
Comparison between theoretical and observed transfer function TF (after Tao and Rathje,
2019).

4.4.4 Issues in the interpretation of downhole arrays

The DH-array data processing is not straightforward and it incorporates some
drawbacks.

Firstly, DH-arrays are installed at a limited number of sites, hence these
approaches cannot be easily applied in ordinary site characterization projects.
Furthermore, the computation of the empirical site response requires the selection
of an adequate number of ground motion records (Assimaki et al., 2008). Only
weak motions should be included, to avoid the rise of nonlinear phenomena
(Beresnev and Wen, 1996; Thompson et al., 2012; Zalachoris and Rathje, 2015;
Cabas et al., 2017; Tao and Rathje, 2019; Xu et al., 2019). For this reason,
processing should rely on seismic records with PGA smaller than 0.05+0.1g (e.g.,
Zalachoris and Rathje, 2015; Tao and Rathje, 2019) or with a shear strain index 7,

105



i.e. the ratio between the peak ground velocity and the equivalent S-wave velocity
Vs 30 (Idriss, 2011; Kim et al., 2016), smaller than 0.1% (e.g., Cabas et al., 2017).

A critical issue is the ambiguity about wavefield conditions at the downhole
sensors. Indeed, these sensors record both the upgoing incident wavefield and
downgoing waves that are reflected off of the free surface. This condition is
conventionally labeled as the “within” assumption (e.g., Zalachoris and Rathje,
2015), to make a distinction from sensors on the free surface, where the
downgoing and upgoing waves are equal (“outcrop” assumption). Due to the
impossibility of separating them, the modelling of such conditions is complex
(e.g., Shearer and Orcutt, 1987; Steidl et al., 1996; Bonilla et al., 2002; Cadet et
al., 2012). However, in deep borehole sensors, the contribution of the downgoing
wave might be negligible as its energy rapidly decays with depth, due to intrinsic
attenuation and wave scattering. In this case, the upgoing component should be
only considered in the estimate of the experimental TF. Therefore, particular care
should be devoted in the assignment of proper boundary conditions at the
downhole sensors, as a function of the depth and the mechanical characteristics of
the medium (e.g., Bonilla et al., 2002; Stewart and Kwok, 2008; Thompson et al.,
2009).

Finally, the quality of the estimate strongly depends on the reliability of the
available geotechnical information and the absence of lateral variabilities or
2D/3D resonance phenomena (Thompson et al., 2012). For instance, Assimaki et
al. (2008) and Kaklamanos and Bradley (2018) pointed out that the coarseness in
the provided information may result in apparent drifts between theoretical and
effective data, that may be erroneously interpreted as other effects such as wave
scattering.

A special remark about the role of the ground motion parameter adopted for
measuring the site response should be pointed out. The approaches listed above
rely on different descriptors of the ground motion amplification: frequency-
domain parameters (e.g., TF, AF, k) and time-domain parameters (e.g., PGA, I).
There is no consensus about the best reference parameter, also because only a few
studies carried out a comparative analysis to investigate the influence of the
amplification descriptor. For instance, Tao and Rathje (2019) calibrated a
multiplying factor of the laboratory-based Ds to derive the in situ Dg’§ profile in

4 sites with different geology, each equipped with a DH-array. As reported in
Figure 4-21, the calibrated factor is site-dependent and it is remarkably sensitive
to the reference parameter. For instance, the multiplier derived from the TF
oscillates between 3 and 6 and it is larger than the one obtained from the AF (its
range is 1 to 5.5). Instead, constraining the ground model to time-domain data
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leads to more scattered multiplier values, due to the request of matching a time
instant parameter. Finally, the x-informed estimate is close to 3.3, regardless the
site conditions. The Authors suggest keeping the time domain parameters as
reference, since they capture the overall response of the site. On the other side, the
calibration in the frequency domain may lead to an overestimation of the damping
due to the necessity of reducing the high-amplitude peaks of the theoretical
estimate to match the empirical data, especially for the TF-based estimate.
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Figure 4-21. Obtained damping multipliers in Tao and Rathje (2019), at four sites: Garner
Valley (GV), EuroseisTest (EST), Treasure Island (TI) and Delaney Park (DP).
Multipliers are estimated based on the transfer function TF, the amplification function
AF, the peak ground acceleration PGA or velocity PGV, the Arias intensity Ia, the high-
frequency attenuation Ax.

An additional source of uncertainties in the in situ Dg§ estimates from DH-

arrays is the starting damping ratio profile, together with the correction applied in
the calibration procedure. The trial values of Dg’s can be assumed a priori

(Thompson et al., 2012), on the basis of seismological relationships (Cabas et al.,
2017) or from laboratory results (e.g., Zalachoris and Rathje, 2015). Dg% is often

obtained from laboratory-based empirical relationships and updated through a
multiplicative factor or an additive term, which is calibrated based on observed
data. Cabas et al. (2017) highlighted the influence of the starting value of D

and of the type of correction.
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4.5 Laboratory vs. in situ estimates

The description of the current techniques deemed to estimate the small-strain
damping ratio ends with an inter-method comparison, aimed at understanding the
relative differences between Ds values obtained through laboratory testing and
the D§¢ measured in situ (from geophysical tests or DH-arrays). Indeed, the

different disturbance degree, boundary conditions and representative scale result
into a discrepancy in measured parameters, especially for those linked to the
cyclic behavior of geomaterials. For instance, several studies (e.g., Stokoe and
Santamarina, 2000) demonstrated that laboratory tests tend to underestimate Vs of
the geomaterial, probably because of perturbations in the soil microstructure
during the sampling stage.

As for geophysical testing, for instance, Rix et al. (2000) compared Ds,o with
D¢’ values obtained through CHT and SWM at the Treasure Island site, in

California. While SWM data are quite similar to laboratory-based values, CHT
tends to provide estimates of Dg§ larger than Dso. The Authors justify such

difference in terms of investigated volumes, as CHT provide a local measure
whereas SWM yield results that are averaged over a much large volume.
Furthermore, CHT measures high-frequency waveforms, which are more sensitive
to local variations in material properties and falling in a range where material
damping tends to be significantly rate-dependent. Foti (2003) compared the
SWM-based Dgs and Ds, at the well-known site of the Pisa Leaning Tower. He
observed that the in situ value slightly overestimates the laboratory-based Ds,
due to the presence of additional attenuation mechanisms other than geometric
and intrinsic attenuation, especially at shallow layers (Figure 4-22). Finally, Karl
et al. (2006) carried out a characterization study at a site in Belgium, through
laboratory tests and a SCPT survey. In this case, Dg’s slightly overestimates Ds,o,
although the remarkable variability in the in-situ estimated values does not allow
drawing general conclusions (Figure 4-22).
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Figure 4-22. a) Comparison between the SWM-based and the laboratory-based small-
strain damping ratio Dsy profile at the Pisa Leaning Tower site (modified from Foti,
2003); b) Comparison between the SCPT-based (black circles) and the laboratory-based
(hollow symbols) Ds, profile at a site in Belgium (after Karl et al., 2006).

Numerous studies based on DH-arrays observed high Dy values compared

with laboratory data (e.g., Tsai and Housner, 1970; Dobry et al., 1971; Tsai and
Hashash, 2009; Yee et al., 2013). The difference is remarkable especially in soft
shallow layers, that usually exhibit strong heterogeneities resulting in relevant
scattering phenomena (Assimaki et al., 2006; Zalachoris and Rathje, 2015). For
instance, Ktenidou et al. (2015) observed that the x-informed Dg’§ significantly

overestimates both laboratory-based Dso and Dso data obtained from the
interpretation of surface waves. The reason behind this discrepancy is the
presence of additional wave attenuation due to scattering, which is not accounted
for in laboratory data and has less impact on the horizontal propagation of
Rayleigh waves compared with the vertical propagation of S-waves.

In summary, part of the differences in the various estimation techniques is
linked to disturbance effects and the sampled soil volume, for which they might
provide different results, as a function of the degree of heterogeneity of the soil
deposit (Foti et al., 2014). However, one of the most important factors affecting
Dg's estimates is the presence of wave scattering phenomena, which is an

additional dissipation mechanism not accounted in the laboratory measurements.
Seismic wave scattering is a phenomenon characteristic of the wave propagation
in heterogeneous media, where the multiple reflections and refractions lead to a
non-planar propagation and to the diffusion of the seismic energy. This
component typically affects in situ estimates, due to the difficulty in separating
geometric and intrinsic attenuation, i.e. the energy loss due to wavefront
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expansion and to wave scattering in heterogeneous media, on one side, and the
one due to intrinsic material attenuation, on the other.
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Chapter 5
Novel processing approaches

This Chapter describes a novel methodology, that aims at extending the
framework of dispersion estimation techniques to obtain the R-wave phase
attenuation. The principle of this approach consists in applying a transformation to
the wavefield, whose resulting function may be interpreted as a pseudo-wave. It is
demonstrated that the phase attenuation can be derived through the dispersion
analysis of the obtained pseudo-wavefield. In addition, a new modal filtering
scheme is proposed, with the aim to isolate the contribution of each Rayleigh
propagation mode. In this way, the quality and robustness in the modal dispersion
and attenuation estimates can be improved.

This Chapter starts by introducing a suite of synthetic waveforms, that
represent the benchmark for the validation of the proposed techniques. The second
part provides a detailed description of the proposed methods, that are firstly
applied to simple wave models, to be then generalized to the analysis of surface
wave data. Then, the inclusion of the modal filtering technique is reported. The
Chapter ends with an assessment of the performance of the proposed technique on
more complex wavefields, in which the Rayleigh wave is corrupted by the
presence of body waves and incoherent noise.

5.1 Synthetic wavefields

The reliability of the proposed approach is tested with reference to a set of
synthetic wavefields, each characterized by a different degree of complexity. On
the one side, a collection of simplified waveforms, consisting of plane and
cylindrical waves, is considered. The choice of focusing on idealized plane or
cylindrical waves aims at providing an effective benchmark for testing the
proposed algorithms, as the influence of model incompatibility effects (e.g., near
field effects) is minimized. Then, realistic datasets of surface wave data are
considered. These are obtained by simulating results of MASW surveys carried
out on idealized soil models. Selected soil models are compatible with the
stratigraphy of typical soil deposits in engineering practice and the generated
wavefields are characterized by a different degree of complexity.
The first synthetic wavefield (SW1) is a planar wave:
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u, (r) =e e (5.1)
The displacement field u,(r) is computed at 100 equally spaced receiver
locations, with spacing equal to 1 m, by setting k& equal to 0.1 rad/m and o equal to
0.0015 rad/m (Figure 5-1). The simulated wavefield may be representative of the
vertical displacement field induced by Rayleigh waves due to a monochromatic
vertical point force, according to the asymptotic expansion of the Lamb solution
and normalized by »” (other normalization constants are not reported, in this
case). For instance, this may correspond to a R-wave with Vz approximately equal
to 315 m/s and Dr equal to 0.015, at a frequency of 5 Hz.
Besides, this study focuses on another synthetic wavefield (SW2), that models
the propagation of a cylindrical wave, which is computed from the Hankel
function for fixed values of wavenumber k& and attenuation a:

u, (r)=HY (kr)=H{ [ (k—ia)r ] (5.2)

The displacement field u.(r) is computed at the same locations of the planar
wave, adopting the k£ and a values defined above (Figure 5-1). The simulated
wavefield may be representative of the vertical displacement field induced by
Rayleigh waves due to a monochromatic vertical point force, according to the far-
field solution of the Lamb problem for a homogeneous halfspace (other
normalization constants are not reported, in this case).

Being k& moderately small, u,(r) and u(r) do not exhibit identical spatial
variation in the amplitude and in the phase. On the one side, the amplitude decay
of the two waves is not the same, because of the different geometrical attenuation
mechanism affecting the displacement field. Furthermore, the error introduced by
the asymptotic solution increases at small kr values. For this reason, the two
modeled waves diverge close to the location of the ideal source, i.e., for r close to
0. The deviation can be immediately noticed by visual inspection the displacement
phase (Figure 5-1b).
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Figure 5-1. Simulated planar and cylindrical waves (labeled as SW1 and SW2,
respectively), described in terms of particle displacement: spatial variation of a)
amplitude |¢| and b) phase argu.

The wavefield SW3 simulates results of a MASW survey carried out on a
normally dispersive soil deposit (Table 5.1; Figure 5-3a-b). In this case, the
Rayleigh wavefield is multimodal, although the fundamental mode of propagation
is dominant for a broad range of frequencies. For this reason, SW3 allows to
investigate the performance of the proposed methods in the presence of a
wavefield mostly composed by a single mode. The final synthetic example
(labeled as SW4) is obtained from the simulation of a MASW survey on an
inversely dispersive profile (Table 5.2; Figure 5-4a-b). In this case, higher modes
significantly contribute to the simulated wavefield SW4. Therefore, the
performance of the novel approaches in the presence of a multimodal wavefield
can be addressed. In both models, constant values of v = 0.33 and p = 1800 kg/m’
are kept throughout the layers, whereas Dp is assumed as equal to Ds.

Table 5.1. Ground model parameters adopted to generate the synthetic wavefield SW3.

Thickness (m) S-wave velocity, Vs (m/s) S-wave damping ratio, Ds (%)
5 200 3.5

10 300 3

10 400 2.5

- 500 2

Table 5.2. Ground model parameters adopted to generate the synthetic wavefield SW4.

Thickness (m) S-wave velocity, Vs (m/s) S-wave damping ratio, Ds (%)
5 250 2.5

3 150 4

- 350 1
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SW3 and SW4 are computed by means of the ElastoDynamics Toolbox
(EDT; Schevenels et al., 2009). EDT estimates the displacement transfer function,
i.e. the displacement induced by a vertical point load at the surface, by means of
the direct stiffness method (Kausel and Roésset, 1981). Actual displacement data
are the result of the multiplication between the transfer function and a loading
function F(#), representing the force applied by the source onto the ground. The
selected loading function is a Ricker wavelet, which reproduces the typical
frequency content of an impulsive source, e.g., a sledgehammer (Figure 5-2):

F(t)H@T _l}erm (53)

D

The parameter ¢ is a time shift, whereas 7p is the characteristic period of the
wavelet. In this study, # is assumed equal to 0.05 s and 7p equal to 0.03 s, as
proposed by Badsar (2012). SW3 and SW4 include vertical displacement data
computed at 48 evenly spaced locations on the surface of the model, with spacing
equal to 2 m. Thus, the offset from the source ranges between 2 m and 94 m. Both
the number of receivers and the receiver spacing are consistent with the
acquisition layout of MASW surveys for near-surface site characterization (Foti et
al., 2018). The investigated frequency range spans between 1 Hz and 100 Hz.

The resulting waveforms are plotted in Figure 5-3 and in Figure 5-4, both in
terms of seismic traces defined in the time domain and of the f-k spectrum,
computed by means of a 2D Fourier transform. As expected, the wave energy of
SW3 is mostly carried out by a single mode (Figure 5-3f), whereas SW4 exhibits
a remarkably strong multimodal propagation, with the dominant mode shifting to
high-order propagation modes for increasing frequency (Figure 5-4f). Figure 5-3c-
d and Figure 5-4c-d report the theoretical phase velocity curves Vr(w) and phase
attenuation curves ar(®@) corresponding to the models, as computed through EDT.

1 T 0.015
0 N 0.01f
= I
< E
u =
-1 L 0.005
-2 . 0 N
0 50 100 0 50 100
Time (ms) Frequency (Hz)

Figure 5-2. Ricker pulse simulating the input force for SW3 and SW4: a) time history; b)
Frequency content.
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Figure 5-3. Main characteristics of the synthetic wavefield SW3: a-d) Reference ground
model, described in terms of the S-wave velocity (a) and damping ratio (b); R-wave phase
velocity curves (c) and phase attenuation curves (d); Time-domain traces (e) and f-k
spectrum, where each mode is identified by the white patterns (f). To better visualize
spectral peaks corresponding to each propagation mode, the f~k spectrum is normalized
frequency by frequency.
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Figure 5-4. Main characteristics of the synthetic wavefield SW4: a-d) Reference ground
model, described in terms of the S-wave velocity (a) and damping ratio (b); R-wave phase
velocity curves (c) and phase attenuation curves (d); Time-domain traces (e) and f-k
spectrum, where each mode is identified by the white patterns (f). To better visualize
spectral peaks corresponding to each propagation mode, the f~k spectrum is normalized
frequency by frequency.
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5.2 Processing methods

This section starts with an overview of the frequency-domain beamforming
approach, as it represents the basis of the approach proposed in this study. Then,
the frequency-domain beamforming — attenuation is described, with reference to
the synthetic wave models SW1 and SW2. This section ends with the definition of
an algorithm that applies this method for the analysis of surface wave data.

5.2.1 The frequency-domain beamforming technique

The Frequency-Domain BeamForming (FDBF; Lacoss et al., 1969) technique is a
transform-based method, that interprets measured waveform data in the
frequency-wavenumber (f~k) domain (or alternatively the frequency-velocity
domain), where R-wave propagation parameters can be identified as maxima of
the amplitude spectrum. A significant advantage of this approach is the capability
to identify the contribution of different modes of the Rayleigh wavefield as
separate spectral peaks, although the actual possibility of isolating modes depends
on the spatial resolution of the array.

The FDBF approach estimates kz (hence, V'z) under the assumption that the
recorded wavefield is composed by Rayleigh waves, propagating according to
planar wavefronts. The description of the method herein provided assumes that
the measured wavefield consists of recorded particle displacement spectral data in
the vertical direction u(r,w) along a linear array, where 7 is the sensor offset from
the active source. However, the method can be easily generalized to 2D
acquisition setups, with single- or three-component data (e.g., Zywicki and Rix,
2005; Wathelet et al., 2018).

The FDBF technique combines recorded spectra into the spatio-spectral
correlation matrix R(w), which is a Hermitian-symmetric matrix where each
element is the cross-power spectrum between the m-th and the n-th sensors,
defined as follows:

R, (®)=u(r,,0)u (r,, o) (5.4)

The components of R(w) carry information about spatial properties of the
wavefield (Zywicki, 1999), as they contain the phase change between sensors.

To exploit the phase change information contained in R(w), the FDBF applies
a linear phase shift to the recorded traces, as a function of a trial wavenumber £,
and it stacks the slanted traces. When the total energy is maximum, the steered
traces are in equal phase and the corresponding k; equals the true wavenumber kg.
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From the mathematical viewpoint, this operation is equivalent to compute the so-
called pseudopower Pzr(k:, w):

Py (k,o)=e"(k,)R(w)e(k,) (5.5)
where H denotes the Hermitian transpose, and e(k;) is the planar steering
vector, that is the mathematical representation of the linear phase shift:

e(k)=[e", . e (5.6)
The location of the peak of the Ppr(k;, @) in the f~k domain corresponds to the
actual wavenumber kg, from which ¥z can be derived (Figure 5-5). If the recorded
wavefield includes multiple plane waves (e.g., multimode Rayleigh waves),
Pk, @) exhibits several peaks, each corresponding to a single wave component.
The investigation of Pprk;, ) is carried out on an adequate search domain,
where the boundaries of k; are compatible with spatial sampling capability of the
array. The search domain should account for the effects of limited spatial
sampling on the spectral estimates (Foti et al., 2002). On the one side, spatial
aliasing limits the investigation range to a maximum k; value equal to n/d in
uniformly spaced arrays with spacing d, according to the Nyquist-Shannon
theorem. In addition, a fine discretization of the search domain is helpful for a
more precise estimation of kz. Theoretically, a refined mesh would allow for
easier identification of different wave components in measured data (e.g.,
different Rayleigh propagation modes). However, the actual wavenumber
resolution depends only on the array length D, as it equals 2z/D. Therefore, the
increased accuracy obtained with a finer &; grid is only apparent, as the actual
resolution is unchanged.

Figure 5-5. Application of the FDBF for the dispersion analysis of SW3: a) pseudopower
Ppr(k,w) in the f-k spectrum domain; b) Cross-section of Pzr(k,w) at the circular
frequency wo.
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One of the basic assumptions of the FDBF is that the recorded wavefield is
composed by plane waves. However, in MASW tests, Rayleigh waves spread
from the source with cylindrical wavefronts and modeling their propagation as
plane waves might result in biased estimates of the wavenumber, especially for
the usually adopted offsets. For this reason, Zywicki and Rix (2005) introduced a
modified version of the FDBF, that accounts for the cylindrical wavefield. The
Cylindrical FDBF (CFDBF; Zywicki, 1999) shares a similar scheme to the
conventional FDBF, as it computes the pseudospectrum Pcar(k;, w) from R(w) as:

Py (k,,0)=h" (k)R (w)h(k,) (5.7)

However, the cylindrical steering vector h(k/) depends on the trial
wavenumber k; by means of the Hankel function, which is a descriptor of the
propagation of cylindrical waves:

—iargH(()z)(k,rl) —iargHéz)(/ﬂm) !
h(k)=|e e (5.8)

Note that H{”(+) should be replaced by H{*(+) when processing radial

displacement data.

The steering vector h(k;) ensures that the sensors are aligned with the Hankel
function phase, so that the maxima of Pcpr(k, @) provide an estimate of the wave
parameters of the cylindrically spreading wavefield (Figure 5-6). As it properly
models the cylindrical wavefield, the CFDBF entails major computational
complexity (Zywicki and Rix, 2005). On the other side, this method improves the
quality and reliability in the estimated dispersion data, with respect to the planar
wavefield.

Figure 5-6. Application of the CFDBF for the dispersion analysis of SW3: a)
pseudopower Pcsrki, ) in the f~k spectrum domain; b) Cross-section of Pcar(k, ) at the
circular frequency wo.

119



5.2.2 Frequency-Domain BeamForming — Attenuation (FDBFa)

The Frequency-Domain BeamForming — Attenuation (FDBFa), proposed in
this dissertation, is a transform-based approach that seeks to provide robust and
reliable attenuation estimates. The FDBFa approach estimates a under the
assumption that the recorded wavefield is composed by a single planar wave (e.g.,
a Rayleigh wave with a dominant propagation mode, recorded in the far field).
The principle of this approach consists in applying a transformation to the
recorded wavefield, such that the resulting function may be interpreted as a
pseudo-wave, with dispersion characteristics corresponding to the attenuation of
the original one. Thus, a can be derived by estimating the wavenumber of the
pseudo-wavefield, for which a broad variety of tools is currently available. In this
study, the wavenumber estimate is carried out by means of the FDBF method,
hence the FDBFa may be interpreted as a generalization of the FDBF for the
attenuation estimate. Indeed, the FDBF scheme is computationally fast and robust.
Furthermore, the FDBF allows an immediate generalization to non-planar waves,
as the inclusion of geometric effects due to the cylindric shape of the Rayleigh
wavefront is straightforward.

The FDBFa method is based on the following wavefield transformation:

v(r):[up (r)]i (5.9)

is the imaginary unit. If the recorded wavefield is a plane wave
inducing the displacement field uy(r), it can be demonstrated that resulting
function v(r) can be interpreted as a planar pseudo-wave, whose wavenumber
corresponds to the attenuation of uy(r). Indeed, the application of the
transformation (5.9) to u,(r) returns the following function:

v(r)z[up (r)]i =ee (5.10)

Comparing Eq. (5.10) with (5.2), v(r) can be interpreted as a plane wave,
whose displacement amplitude varies across space as €

[13%3]
1

where

with harmonic
oscillations according to e . Therefore, a is the wavenumber of the “pseudo”-
wavefield v(r), whereas k controls the spatial variation of the particle
displacement amplitude (Figure 5-7a-d). Thus, a of the original planar wave u,(r)
can be retrieved by searching for the wavenumber of v(r).

In this study, the FDBF technique is adopted to carry out the wavenumber
analysis of v(r). Therefore, v(r) data across all the receivers are first combined
into the spatio-spectral correlation matrix R. Then, the pseudospectrum Ppr.(o) 1s
obtained by combining R with a planar steering vector e(a,) (defined as in Eq.
5.6), as a function of the trial attenuation value o
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P, (a,)zeH (al)R(a))e(at) (5.11)
Ideally, Pgra(a:) exhibits a single peak, with location a. (i.e., the estimated

attenuation) corresponding to the actual attenuation a of the recorded wave
(Figure 5-7e).
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Figure 5-7. a-b) Original planar wave u,(r), in terms of a) log-amplitude and b) phase; c-
d) Transformed wave, in terms of c¢) log-amplitude and d) phase; e) Pseudospectrum of

the transformed wave v(r), where the location of the spectral maximum . is compared
with a.

However, the resulting pseudospectrum often exhibits side lobes together with
the main peak. Differently from the FDBF, the presence of multiple waves in the
recorded wavefield does not result in multiple local maxima in Pgra(a,) because a
single peak still appears, as it will be addressed in the Section 5.3.1. Instead, side
lobes may partially be the effect of spectral leakage, induced by windowing of the
pseudo-wave. This perturbation can be mitigated by applying an appropriate

tapering to w(r) prior the computation of Pgru(as), €.g. by means of a Hanning
window (Figure 5-8).
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Figure 5-8. Effect of the tapering window on the pseudospectrum Pzr.(a;), computed for
SW1. The tapering is carried out by means of a spatial Hanning window. The plot also
includes a zoomed view to show the comparison between the peak location (the grey
circle) and the theoretical attenuation o = 0.0015 rad/m.

On the other hand, side peaks are artifacts induced by the spatial variation of
the amplitude of v(r). Indeed, the corresponding amplitude usually assumes a
sawtooth-like shape, where each segment increases according to an exponential
function. This peculiar trend is due to the strategy used for the numerical
computation of wavefield data. Indeed, although the phase of up(r) is linear with
the distance, numerically it is wrapped. Thus, it appears as a sawtooth signal
bounded between —m and +n and varying as —k» in each segment. Due to the
transformation (5.9), the phase of u,(r) becomes the exponent governing the
amplitude of v(r), with opposite sign. Therefore, such amplitude assumes a
piecewise exponential trend, with “jump” discontinuities. It can be demonstrated
that the presence of these discontinuities in v(r) maps into a set of equally spaced
side lobes inside Pgr.(as), with spacing equal to the wavenumber k (Figure 5-9).
The demonstration is provided in the Appendix A. To avoid confusion in the
identification of the peak of Pzra(as), a possible strategy consists in normalizing
v(r) by its amplitude, so that the discontinuities cancel out, prior to the tapering.
Alternatively, the transformation (5.9) may be applied only to the |u(r)|, discarding
the phase contribution. In both cases, the discontinuities in v(r) cancel out, and
Pgra(as) exhibits a single peak.
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Figure 5-9. Effect of phase wrapping on the pseudospectrum Psr.(0), computed for SW1:
a-b) Original planar wave uy(r), in terms of a) log-amplitude and b) phase; c-d)
Transformed wave v(r), in terms of ¢) log-amplitude and d) phase; ¢) Pseudospectrum of
the transformed wave. The plot also includes a zoomed view where the location of the
spectral maximum a. (the grey circle) is compared with the theoretical attenuation a =
0.0015 rad/m.

5.2.3 Cylindrical Frequency-Domain BeamForming —Attenuation
(CFDBFa)

The FDBFa method relies on a key assumption, namely the recorded wavefield is
composed by a single, plane wave. For this reason, the application of the FDBFa
method to retrieve the phase attenuation of Rayleigh waves might lead to biased
estimates, as they propagate according to a cylindrical wavefront. A potential
solution to mitigate this problem consists in processing recorded traces after
having scaled them according to »”. Indeed, cylindrical waves asymptotically tend
to be described as a spatially harmonic function (i.e., plane waves), but with
amplitude scaled down by »”2. However, this strategy does not model properly the
geometrical characteristics of the wavefront, as it relies on an asymptotic
approximation which, by definition, is valid only at great distances from the
source. Therefore, the resulting attenuation estimates may still not be accurate
enough.

For this reason, the FDBFa method is modified to introduce an explicit
modeling of the cylindrical shape of the wavefront. The proposed scheme is
hereafter termed as Cylindrical FDBFa (CFDBFa), which can be seen as a
generalization of the CFDBF technique.
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In this case, the application of the transformation (5.9) to the displacement
field uc(r) returns a function v(r), for which the derivation of the expression is not
straightforward, because a closed-form formulation for the Hankel function is not
currently available. However, based on an analogy with the application of (5.9) to
a plane wave, an intuitive description of v(») assumes that it represents a pseudo-
wavefield, whose phase variations reflect spatial changes of the amplitude of the
Hankel function and amplitude is linked to the corresponding phase of the original
wavefield (Figure 5-10a-d). Therefore, the attenuation o can be retrieved by
exploiting the phase information carried in v(r). For this purpose, the CFDBFa
follows a procedure similar to the CFDBF, where it computes the pseudospectrum
Pcara(Ry) from the spatio-spectral correlation matrix R of v() as:

P, (R)=2"(k)Ra(k) (5.12)

The steering vector a(R;) is defined as follows:

a(ﬁ ) _ [e—iarg{ho(éﬁ)}’ . e—iarg{ho(énv)} T (5.13)

+ ey

where the function 4y is the power of the Hankel function to the imaginary
unit:

hy(o)=[ (o) ] (5.14)
Note that H{”(+) should be replaced by H”(+) when processing radial

displacement data. In Eq. 5.13, R, is a trial complex wavenumber. The reason
behind the use of this quantity is discussed below.

The steering vector a(R;) stretches the pseudo-wavefield according to phase
variations of the power of a Hankel function to the imaginary unit, thus
accounting spatial changes in phase of v(r) in a proper way. In this way, the
pseudo-cylindrical wavefield is converted into an equivalent plane wavefield, and
attenuation of the cylindrical wave is properly estimated. Pcsra(R:) ideally
exhibits a main peak with location a. coincident with a (Figure 5-10e). However,
actual data may provide side lobes in the pseudospectrum, that may corrupt the
correct identification of the peak. Their presence can be mitigated by normalizing
the pseudo-wavefield by its amplitude and applying a proper tapering, as in
FDBFa.
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Figure 5-10. a-b) Original cylindrical wave u.(r), in terms of a) log-amplitude and b)
phase; c-d) Transformed wave v(r), in terms of c¢) log-amplitude and d) phase; ¢)
Pseudospectrum of the transformed wave, where the location of the spectral maximum a.
is compared with a.

Differently from FDBFa, the argument of a(R) is a trial complex

wavenumber R, which, by definition, includes both the real wavenumber and the
phase attenuation term. Indeed, the estimate of the attenuation for a cylindrical
wave should also account for the real wavenumber, as it affects spatial variations
of the wave amplitude.

As the CFDBFa searches for a, the real wavenumber has to be fixed to a value
krer, whereas trial values o, for the attenuation are adopted. However, the choice of
krer 1s not arbitrary, as it should be as close as possible to the actual wavenumber &
characterizing the measured wavefield. Figure 5-11 describes the influence of ker
on the estimated attenuation, with reference to SW2. If ks > k, the resulting
attenuation a. would underestimate a. Furthermore, for increasing ks, a. tends to
decrease down to a stable value. Instead, when ks < k, a. overestimates a (Figure
5-11a). An interpretation of the discrepancy in the attenuation estimate is provided
in Figure 5-11b-c, that compares the original wavefield SW2 with two cylindrical
waves, with the same wavenumber k.. > k and attenuation equal to o and a,
respectively. These waves are hereafter labeled as uc(k,a), uc(krer,00) and uc(krer,0te),
respectively. Figure 5-11b shows the corresponding the spatial variation of wave
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amplitude, whereas Figure 5-11c reports the spatial variation of the cylindrical
wave amplitude corrected by the geometrical spreading factor »”* and converted in
logarithmic scale. According to this representation, each curve tends to become
linear at great » values, with a slope equal to the corresponding attenuation, by
virtue of the asymptotic approximation of the Hankel function. Thus, a visual
inspection of the slope of the modified amplitude at far offsets allows an
immediate visualization of the fitting of a. Note that in Figure 5-11c, curves
corresponding to uc(krer,00) and uc(krer,0e) are shifted by a quantity A so that they
share the same end point, to facilitate the visual comparison of the slopes. When
krer < k, the wave uc(krs,0) matches the slope of SW2 at great offsets but the
predicted amplitude significantly overpredicts SW2 close to the source. In order to
improve the fitting by keeping a similar shape (which is controlled by k), a
reduction of o, is required. Figure 5-11d-e report an equivalent comparison for ks
< k. In this case, although wuc(ki,c) is compatible with SW2 at great r, it
systematically underestimates SW2 amplitude at short distances. An improvement
in the fitting quality is obtained by increasing a.. In summary, the sensitivity of ae
to ks is the result of the nonlinearity of the shape of spatial variations of the
Hankel function amplitude with the offset and its sensitivity to this parameter.
Due to the nonlinear variation, it is also believed that the entity of divergence
between a. and o for ks # k depends on the array geometry, namely the range of
investigated spatial coordinates. In plane waves, instead, there is no influence of
the wavenumber characteristics on the attenuation estimate, as the amplitude
variations only depend on the attenuation itself.

Therefore, the CFDBFa should be combined with a robust method for
estimating k prior to the derivation of a. For this purpose, the CFDBF represents
an effective strategy because of its accuracy and robustness. Furthermore,
combining the CFDBF and the CFDBFa provides a physically consistent
approach for estimating wave parameters, as both of them model the propagation
of the wavefield according to a cylindrical scheme.
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Figure 5-11. a) Influence of the chosen wavenumber £.r on the estimated attenuation o, in
the CFDBFa; b-c) Amplitudes of the cylindrical waves corresponding to three different
krr values, represented in terms of b) amplitudes and c) logarithmic amplitudes
normalized by the geometrical spreading factor. The parameter A shifts the curves in ¢)
and e) so that they share the same end point, thus facilitating the comparison of relative
variations in the space. Data refer to SW2.

5.2.4 Applications

The application of the FDBFa and of the CFDBFa for retrieving Rayleigh wave
parameters from the interpretation of surface wave data is quite straightforward.
Indeed, although both methods have been introduced with reference to
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monochromatic planar or cylindrical waves, the generalization to nonharmonic
signals can be easily achieved by means of the Fourier decomposition of the
wavefield. In this way, each frequency component of the recorded wavefield is
separated and it may be processed according to these techniques. The resulting
wave parameters are then combined frequency by frequency to obtain the
experimental dispersion and attenuation curves.

Although Rayleigh waves propagate with cylindrical wavefronts, using a
planar model for estimating propagation parameters is often a valid choice,
because the influence of this approximation on the quality of results is moderately
small. This is valid especially when waveform data are recorded moderately far
from the active source. Furthermore, techniques based on this assumption are
computationally fast. However, an accurate processing requires a preliminary

scaling of recorded data by Jr, to remove the influence of geometric damping
effect that characterizes cylindrical waves. When using a planar model, the
FDBFa method provides an attenuation estimate that is independent from the
wavenumber, entailing that dispersion and attenuation analysis of the wavefield
can be carried out separately. Therefore, the algorithm adopted in this study first
estimates dispersion curves by means of the FDBF approach, which also relies on
a planar scheme. Then, attenuation data are obtained through the FDBFa method.
The main steps of this algorithm are listed in Algorithm 1.

Algorithm 1 Frequency-Domain BeamForming — Attenuation (FDBFa) algorithm for MASW
processing

Input: {uz (Fsts )}NilNi"l : particle displacement recorded at N sensors with offset 7,, at Ny time
samples ¢

1: Compute frequency spectra {uz (r,,,a),- )}nNzljv:l , for N, frequencies w;

2: . . . N N, N N,
Geometrical spreading removal: {uz (7, )}nzl_/’: < {uz (7, )}nzl_/':l N

3: fori=1:N,do

4: Compute pseudopower spectrum Pgr(k:, w;) through FDBF

5: Identify wavenumber kr.(w;) (hence, the phase velocity Vze(w;)) of the

dominant peak of Ppr(k:, ;)
6 Calculate v.(r,,w;) from Eq. 5.9
7: Remove the amplitude term vA#,,;) «— Va(#n,@:)/|V(¥n, ;)|
8: Apply the window v.(74,0;) <— W(Fu,@:)v:(rm,w;)
9 Compute spatiospectral correlation matrix Ry, () = v-(ru,:) [V-(rn,0:)]"
1

Construct steering vector with trial attenuation a;: e(a, ) = [e’i"‘/" s, ey JT
11: Calculate pseudospectrum for varying a.: Pgr.(a,m;) = e™(a)R(w;)e(ar)
12: Peak picking of Pgri(as,w;): or(w;) < argmaxPsr.(o,w;)
13: end for
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Instead, when an explicit modeling of the cylindrical wavefield is considered,
the coupling between dispersion and attenuation estimates becomes more relevant.
For this reason, the adopted algorithm first estimates dispersion curves by means
of the CFDBF approach. Then, the attenuation analysis is carried out by means of
the CFDBFa method. In this step, wavenumber data returned by the CFDBF are
plugged into the steering vectors used in the CFDBFa, frequency by frequency.
The main steps of this algorithm are listed in Algorithm 2, which assumes that the
recorded motion is the particle displacement in the vertical direction. Note that

HY (+) should be replaced by H ) (+) when processing radial displacement data.

Algorithm 2 Cylindrical Frequency-Domain BeamForming — Attenuation (CFDBFa) for MASW
processing

Input: {uz (7.t )}N ]N"l : particle displacement recorded at N sensors with offset r,,, at Ny time
n=1s=

samples #

Compute frequency spectra {uz (r,, , @ )}

fori=1:N,do
Compute pseudopower spectrum Pcpr(ki, ;) through CFDBF
Identify wavenumber kg.(w;) (hence, the phase velocity Veed(w;)) of the
dominant peak of Pcgr(ki, ;)
Calculate v.(r,,w;) from Eq. 5.9
Remove the amplitude term v.(r,,w;) < v(r1,)/|v(7sn,))|
Apply the window v.(74,@;) <— W(Fu,@:)v:(rm,w;)
Compute spatiospectral correlation matrix Ry, () = va(¥m,@;) [VA(¥m0i)]*
Construct ~ steering vector with trial complex wavenumber R

. . T
a(l)=|e e | with &= ko)~ ia

N N, .
", for N, frequencies w;
n=1j=1

R

A AN

10: Calculate pseudospectrum for varying a;: Pcgra(Riw:) = a"(R)R(w))a(R,)
11: Peak picking of Pcgra(Ri,w)): are(w;) < argmaxPcgra(Ri,w;)
12: end for

A potentially critical step is the definition of the grid of trial attenuation
values a;. Indeed, the search domain should include a broad range of trial
attenuation values, up to the limit value provided by the Nyquist-Shannon
theorem. However, in usual acquisition setups for near-surface characterization
(where the geophone spacing d is generally 1+5 m), the maximum investigable o,
is 0.6=3 rad/m. On the other side, typical attenuation values in Rayleigh waves
range between 10 and 3x10"! rad/m. Therefore, the grid of o, should be
adequately refined, otherwise the attenuation estimate would be biased because of
the coarseness of the grid. For instance, if the Nyquist limit is equal to 3.14 rad/m
(i.e., d = 1 m) and the a, grid has spacing equal to 7.7x10™* rad/m (i.e., it includes
8192 data points), the maximum error due to the grid discretization might be
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quantified as Aa = 3.8x10* rad/m. Thus, the corresponding relative error
Aa/ar(w) may rise up to 4% when ar(w) = 102 rad/m and up to 40% when or(w)
=107 rad/m. The grid coarseness may result in biased estimates of the attenuation
curves especially at low frequencies, where ar(w) is small, thus reducing the
quality in estimated dissipation parameters at greater depths. Note that the
influence of the grid sampling is much less relevant on the estimate of kr(w),
being this quantity usually one or two orders of magnitude greater than ar(w). On
the other side, a refined discretization of the search domain would require an
overwhelmingly large number of grid points, entailing a remarkable increase in
computation time. This aspect is relevant when processing surface wave data, as
the computation of the pseudospectra has to be carried out at each investigated
frequency. A reasonable tradeoff between refined discretization and computation
speed can be achieved by investigating a narrower range of a,, which is limited to
a maximum value which represents an upper bound in the usual range of ar(w) in
near-surface applications, compatibly with the constraints by the Nyquist-
Shannon theorem. For instance, a reasonable value for such upper bound may be
an attenuation equal to 0.5 rad/m, which may be lowered when investigating low-
frequency Rayleigh waves. However, a narrower range may be adopted as search
domain, by combining typical values of kz(w) and of ar(w) (or phase damping
ratio). For instance, MASW surveys for ordinary applications usually investigate
frequencies ranging between 1 Hz and 100 Hz and the retrieved Vz(w) ranges
between 100 m/s and 1000 m/s. Therefore, kr(w) typically lies between 107 rad/m
and 10! rad/m. Recalling that ar(w) = kr(w)Dr(w) and that Dg(w) usually varies
between 10 and 107!, then a suitable range of variation for ar(ew) is 10 + 10°
rad/m. The range of ar(w) can be also reduced, by exploiting the variation of this
parameter with the frequency (Figure 5-12). Specifically, ar(w) usually ranges
between 10 rad/m and 10 rad/m at 1 Hz, 10” rad/m and 10! rad/m at 50 Hz,
and 10* rad/m and 10° rad/m at 100 Hz. This strategy allows a reduction in
computation time and to obtain good quality estimates. However, these
boundaries only represent suggested values valid for generic site conditions, that
can be tightened in the presence of site-specific information. Furthermore, the
maximum value is bounded to comply with the restrictions by the Nyquist-
Shannon theorem.

The application of the proposed algorithms to SW3 and SW4 will be
addressed in the next Section, as it will be useful to highlight some drawbacks of
the FDBFa and the CFDBFa approaches in processing measurements of surface
wave data.
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Figure 5-12. Typical ranges of the a) R-wave wavenumber kz(w) and b) R-wave phase
attenuation ar(w) as a function of the frequency.

5.3 Dealing with multiple modes

In this Section, an application of the FDBFa and the CFDBFa algorithms to
synthetic MASW data (i.e., SW3 and SW4) highlights that they tend to provide
estimates of the dispersion and attenuation, that may not be coincident with modal
curves. To achieve reliable estimates of modal data, the contribution by each
propagation mode needs to be separated. For this reason, this study proposes a
filtering technique, that exploits basic principles of digital signal processing. This
section describes the novel filtering scheme and how it is incorporated in the
reference algorithms.

5.3.1 Application to synthetic models

A fundamental assumption of the FDBFa and of the CFDBFa methods is that the
recorded wavefield should consist of a single wave or, in surface wave analysis,
that a single Rayleigh mode is dominant (generally, the fundamental mode).
When this hypothesis is violated, both methods tend to return biased estimates of
the attenuation.
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To understand the reasons behind the unreliability of such approaches in the
presence of multiple waves, let us consider a simple case, where the wavefield
upp(r) 1s the composition of two plane waves u,;(7) and u,2(r):

u,, (r)=u, (r)+u, (r)=Aee™ + 4™ (5.15)

In this specific case, the wavenumbers k; and k> are equal to 0.1 rad/m and 0.4
rad/m; the attenuations a; and a2 are equal to 0.0015 rad/m and 0.0028 rad/m,
respectively; the amplitudes 4; and 4> are both unitary. The resulting wavefield
assumes an irregular variation of the amplitude with the offset, with complex
patterns (Figure 5-13a). Indeed, the resulting amplitude is the weighted sum of the
amplitudes of each wave component, plus an additional term depending on the
phase lag between them, that incorporates the effect of constructive or destructive
interferences occurring between u,;(r) and uy2(r) (Misbah and Strobbia, 2014).
Instead, the phase assumes some oscillations, but it tends to match that of u,(r)
(Figure 5-13b). Indeed, u,i(r) slightly dominates the simulated wavefield,
especially at large offsets, because it undergoes less spatial attenuation. This
behavior is also visible in the spectral domain, as Ppr(k;) exhibits two peaks
located at k; and k> (hence, it properly identifies the two waves), but the first one
has greater amplitude (Figure 5-13c). However, the application of the FDBFa to
upp(r) returns an estimate of attenuation which is not consistent with a; nor a2, and
it falls between these values (Figure 5-13d). The resulting o. is an apparent
attenuation, that depends both on the propagation parameters of the wave
components and on the acquisition scheme, being a local quantity. In some cases,
even zero or negative a. values might be identified, when constructive
interference is dominant.

Similar considerations are valid when considering a wavefield wuc(7)
composed by a combination of two cylindrical waves uc;(r) and u.2(r), with the
same parameters of up;(r) and up2(r) (Figure 5-14a-b). However, the application of
the CFDBFa is not straightforward as a reference wavenumber is required to
obtain a.. A reasonable approach may refer to the wavenumber of the dominant
wave, which is the one with larger spectral amplitude, i.e. k;. (Figure 5-14c¢). In
this specific case, a. is quite close to a;, but it is not coincident with it because it
is an estimate of the apparent attenuation (Figure 5-14d).
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Figure 5-13. Application of the FDBFa to the wavefield u,,(r): a-b) Wave components
up1(r) and upx(r) and total wavefield u,,(r), in terms of a) amplitude and b) phase; c)
Pseudopower spectrum of u,,(7), obtained by means of the FDBF; d) Pseudopower
spectrum of u,,(r), obtained by means of the FDBFa.

At this point, it is possible to describe the application of the FDBFa and of the
CFDBFa to the synthetic wavefields SW3 and SW4, thus assessing their
performance in the presence of a wavefield composed of Rayleigh waves. As they
model the propagation of Rayleigh waves in layered media, the wavefield is the
composition of several Rayleigh modes. In other words, recorded data are the
superposition of multiple waves, interfering with each other. Instead, the FDBFa
and of the CFDBFa model the wavefield as a single wave. Therefore, these
approaches theoretically return a single dispersion curve and a single attenuation
curve, that may not coincide with any modal curve. Specifically, estimated data
correspond to the dominant component of the wavefield. This aspect is crucial
especially for CFDBFa, as it requires the specification of a reference dispersion
curve, in this case assumed to be coincident with the effective dispersion curve,
1.e., the dominant one in the CFDBF spectrum. Thus, the proposed algorithms
tend to return the dominant wave components, that are representative of the
effective dispersion and attenuation curve.
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Figure 5-14. Application of the CFDBFa to the wavefield u..(r): a-b) Wave components
u.1(r) and ucx(r) and total wavefield wu..(r), in terms of a) amplitude and b) phase; c)
Pseudopower spectrum of u..(r), obtained by means of the CFDBF; d) Pseudopower
spectrum of u..(7), obtained by means of the CFDBFa.

Figure 5-15 and Figure 5-16 report the estimated Vz(w) and ar(w) for SW3
and SW4, according to the FDBFa and the CFDBFa schemes, respectively.
Results were sampled with a sampling frequency of 1 Hz, across the frequency
band ranging between 3 Hz and 100 Hz. For comparison purposes, the theoretical
modal curves are included. Although synthetic data virtually enable the
investigation of a broad frequency range, a proper investigation of the
performance of each processing scheme should account for the restrictions due to
the limited spatial sampling in the acquisition layout. Therefore, data above the
maximum investigable wavelength 4. = D (where D = 100 m is the array length)
and below the minimum one Anin = d (Where d = 2 m is the receiver spacing) — if
any — are included in the comparison, but a different coloring is adopted to
highlight their peculiar condition.
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Figure 5-15. a-b) Application of the FDBFa algorithm to SW3: a) Estimated phase
velocity curve; b) Estimated phase attenuation curve; c-d) Application of the FDBFa
algorithm to SW4: c) Estimated phase velocity curve; d) Estimated phase attenuation
curve. Estimated data points beyond the array resolution limits — i.e., the grey areas in a)
and c) — are colored in grey.

The application of the FDBFa algorithm to SW3 provides an estimated
dispersion curve that matches the one corresponding to the fundamental mode,
except at low frequencies (Figure 5-15a). Indeed, the Rayleigh wavefield in
normally dispersive media is typically governed by the fundamental mode, as
highlighted in Figure 5-3e. However, the resulting attenuation curve equals the
fundamental mode only at intermediate frequencies, whereas it tends to
underestimate it at /> 30 Hz (Figure 5-15b). At this frequency, higher modes start
to contribute to the wavefield, thus the estimated attenuation is partially affected
by them.

As for SW4, the wavefield is the combination of multiple Rayleigh modes,
each one providing a different degree of contribution as a function of the
frequency. This situation is quite usual in inversely dispersive media. Therefore,
the estimated dispersion curve gradually shifts from the fundamental mode up to
the second higher mode (Figure 5-15¢). In a consistent way, the estimated
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attenuation curve tends to follow the corresponding modal ones, and each
transition occurs at the same frequency of the passages in the dispersion data
(Figure 5-15d). However, estimated data do not exactly match modal curves,
especially at moderately low frequencies (i.e., f < 30 Hz), where the estimated
attenuation data lie between the fundamental mode and the first higher mode
attenuation curves. This means that the wavefield amplitude is affected by both
components, although its phase variations mainly depend on the fundamental
mode. However, if the comparison is restricted to Anax = 30 m, then the deviations
in the low-frequency range are negligible. This /1 value represents the upper
boundary of the range of wavelengths needed to fully resolve the layers’
interfaces of the medium, as the deepest one is located at 10 m depth (Figure 5-4).
Therefore, if SW4 represented the output of a survey deemed to characterize the
corresponding soil profile, this would represent the range of interest. On the other
side, the drift at higher frequencies is still relevant due to the influence of higher
modes.
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Figure 5-16. a-b) Application of the CFDBFa algorithm to SW3: a) Estimated phase
velocity curve; b) Estimated phase attenuation curve; c-d) Application of the CFDBFa
algorithm to SW4: c) Estimated phase velocity curve; d) Estimated phase attenuation
curve. Estimated data points beyond the array resolution limits — i.e., the grey areas in a)
in (a) and c) — are colored in grey.
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Similar results are observed in the application of the CFDBFa on SW3 and
SW4 (Figure 5-16), although a slight improvement in the quality of the estimated
Vr(w) occurs at low frequencies. The reasons behind discrepancies in the very
low-frequency range (i.e., f < 10 Hz) will be addressed in Section 5.4.

In summary, the algorithms based on the FDBFa and on the CFDBFa tend to
return estimates of the effective dispersion and attenuation curves, that may not be
coincident with modal curves. Even when a single dominant mode characterizes
the wavefield, the estimated attenuation data may not match the corresponding
modal values at all the frequencies. Indeed, the amplitude of the Rayleigh
wavefield is dramatically sensitive to constructive and destructive interference
among different propagation modes. Therefore, ignoring the influence of this
mutual interaction may lead to attenuation estimates that, when misinterpreted as
modal values, might return biased estimates of the Ds profile in the inversion
stage. For this reason, both the FDBFa and the CFDBFa are modified to account
for the presence of multiple propagation modes, by including an additional step.
This further step aims at isolating each propagation mode by means of an
appropriate filtering technique, that exploits basic principles of digital signal
processing.

5.3.2 Proposed filtering technique

This study proposes a novel filtering technique, that seeks to isolate a single wave
in multicomponent waveforms or a single R-wave propagation mode from
waveforms recorded in multilayered media. In this way, the main hypothesis of
the FDBFa and of the CFDBFa is satisfied, and these techniques can be
effectively applied to obtain reliable estimates of the wave attenuation. Some
algorithms have already been applied in seismological studies and in geophysical
prospecting, based on the time-variable filter (Pilant and Knopoff, 1964; Karray
and Lefebvre, 2009) or relying on the high-resolution linear radon transform
(HRLRT; Luo et al.,, 2008; Gao et al., 2018). However, an effective modal
separation in recorded waveform data is a nontrivial task (Ivanov et al., 2005).

The proposed technique is based on a complex, bandpass and linear-phase
Finite Impulse Response (FIR) filter. A complete description of their features and
the relevant parameters is provided in Appendix A. The filter operates along the
spatial direction, and the input sequence is the vector of the traces in the
frequency domain of the recorded wavefield, in which the sample points
correspond to the receivers locations. Although usual filtering schemes apply for
time-domain signals, they are also valid also for data defined in the space domain.
In this case, the frequency variable w is replaced by the wavenumber k.
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The adopted filter is a bandpass filter that isolates the wavenumber
component corresponding to the target wave, thus limiting the contribution of
additional components to the wavefield. The chosen filter is a FIR-type system,
because they are stable and they represent the optimal choice when the linearity in
the phase response is crucial (Mitra, 2006). In this case, the phase-linearity is
strongly desired as any distortion in the target wave component may affect the
estimated attenuation. Finally, the filter has complex-valued coefficients because
it operates with complex-valued wavefield traces, for which the wavenumber
spectrum is not an even function. In these conditions, the application of a real
bandpass filter would enhance spectral components that are outside the desired
target. Instead, a complex FIR filter with passband centered at the target
wavenumber is guaranteed to select and favor only the investigated wave
component.

Designing complex FIR filters is usually a nontrivial task, because the
frequency response is a non-symmetric function and the number of design
parameters (i.e., the filter coefficients) is twice the ones of a real filter of the same
order, as both real and imaginary values need to be calibrated. However, being a
bandpass filter, the wavenumber response (hereafter labeled as k-response) has to
be symmetric around the target wavenumber k. This constraint allows to exploit
a simplified algorithm for designing the desired complex FIR filter 4[n], namely
the modulation method, starting from a real filter g[#] as follows:

h[n]:eig’gﬂg[n] (5.16)
where n labels the spatial sample. The system g[#] is a lowpass real filter whose .-
response is an even function, and it exhibits a passband centered at the zero

wavenumber. The factor ¢"*" is a modulation term, that shifts the passband of the
filter in correspondence of the target wavenumber k. Indeed, the parameter 9;¢ 1s
linked with % as follows:

(T

The subtraction accounts for the different spectral coordinates in the f-k

27 (2ky, ~k,) (5.17)
Nyg

spectrum and in the Fourier transform, whereas the factor 2z/2kn,, scales the
range of wavenumbers from [—kwnyq; knyg] to [—27; 2x], i.e. the domain where the
transfer function of the filter is defined (equal to the range of the DTFT). In this
way, the lowpass real filter g[n] is converted into the bandpass complex filter A[n]
(Figure 5-17).

This design approach has multifold advantages. Firstly, the modulation
method allows to shift the design problem of a complex filter into the design of a
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real filter, for which a broad variety of reliable and fast algorithms is available.
Furthermore, the modulation of the symmetric filter g[n] returns a symmetric
filter, hence A[n] is a linear-phase filter that, by consequence, does not introduce
any phase distortion to the signal. A more detailed explanation on this is provided

in Appendix A.

a) ' b)

o o S elm

= = i

< < ]

T T

0 0 Kk
C) k (rad/m) ' d) k (rad/m)
[—= ®hn) —= s(hinp]
= ettt =
= g
< <
0 N +1 0 N+ 1

n(-) n(-)

Figure 5-17. Steps of the modulation algorithm for constructing a N-order bandpass
complex FIR filter: a-c) Real lowpass FIR filter in terms of a) k-response and ¢) impulse
response; b-d) Complex bandpass FIR filter in terms of b) k-response and d) impulse
response.

Thus, the design of /4[n] can be achieved by designing the lowpass real filter
g[n]. The key steps in the design of g[n] consist in specifying the desired k-
response Ga(e'¥) and in estimating an adequate filter order N, so that the effective
k-response G(e) adequately matches the theoretical one. Then, the estimation of
the filter coefficients is carried out by means of the frequency sampling approach
(Gold and Jordan, 1969). This algorithm is implemented in the MATLAB
function £ir2.

The desired k-response of g[n] should be compatible with both the desired
magnitude specifications and with the constraints of the physical realizability of
the filter. Therefore, the definition of G4(e*) should involve the specification of an
adequate passband together with an adequate transition band to control the decay
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in the response magnitude (Figure 5-18). On the other side, the definition of the
filter order is a critical task. High-order filters are desirable because they well
reproduce Gu(e”) and they manage to realize narrow transition bands. Instead,
low-order filters only approximate Ga(e’), as the corresponding transition bands
are broader, entailing a partial loss in the filtering capability (Figure 5-18).
However, high-order filters require long computation time. Besides, the stationary
response is shorter, as it includes only n-N samples. The stationary portion is
crucial because it represents the “true” output of the filter, and it contains the
desired signal. Therefore, N should be adequately less than n to allow processing
of filtered values (see Appendix A). This issue may be critical when dealing with
spatially sampled data, especially in geophysical applications. Indeed, each spatial
sample corresponds to a physical sensor and usual acquisition setups employ a
small number of sensors because of logistical issues, hence recorded signals only
include a few tens of samples. Therefore, N has to be bounded within a proper
maximum value, so that the number of samples in the stationary response is large
enough to allow a robust estimate of wave parameters from the filtered signal.

Finally, the filter response specifications (i.e., the definition of Ga(e'*)) and the
assignment of the filter order are not two independent steps. Indeed, narrow
bandpass filters are effective in isolating the desired component of the wavefield,
although such behavior can be achieved only with high-order filters. Instead, if
Ga(e'") assumes smoother variations between the passband and the stopband, the
separation capability of wave components is reduced but low-order filters can
adequately reproduce the target response. Furthermore, low-order filters are
preferred when dealing with spatially sampled data. Therefore, the definition of
the design parameters is not straightforward, and it should achieve a trade-off
between filter separation capability, feasibility and data availability.
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Figure 5-18. Magnitude response specifications, with an explanation of parameters &, and
ks and a visualization of the influence of the filter NV on the fitting of the desired response.
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For this reason, a calibration study is carried out, to investigate the influence
of both target response specifications, in terms of the passband and the stopband,
and the order of the filter. In this study, the boundaries of the transition band are
quantified as kpkres and kgkres, where kres = 2n/D is the wavenumber resolution of
the sensor array (Figure 5-18). Parameters &, and k; are constants that allow to
select a range of wavenumbers around the target wavenumber k., and they need to
be calibrated. Specifically, the following sets of parameters [kp; ks] are
investigated: [1; 2], [2; 4], [3; 10]. Each couple describes a different specification
of Ga(e'™), with different size of the passband and of the transition band. The
choice of referring to ks is not casual, as it describes the width of the spectral
mainlobe of a wavefield composed by a single propagating wave (Zywicki, 1999).
Thus, by setting the passband larger than k. (as k, >= 1), the filter tends not to
alter spectral information related to the target wave. As for the filter order, the
following N values are considered: 10, 20, 30, 40 and 80. Only even N values are
considered, so that the filtered signal is exactly a shifted version of the desired
wave component (see Appendix A). Alternative values of [4,; k5] and of N can be
considered, however results undergo only small variations because the actual filter
response is almost the same when design parameters are slightly modified.

Figure 5-19 shows results of this calibration study for the wavefield wu,,(7)
(see Section 5.3.1), where the modal filtering technique aims at extracting the two
plane waves u,;(r) and u,2(r). Specifically, it reports the estimated wavenumber ke
and attenuation a. of each isolated wave, computed according to the FDBF and
the FDBFa, respectively. For comparison purposes, the theoretical values &; and o;
(i =1, 2) are reported. Besides, Figure 5-19b-c include the estimated attenuation
according to the FDBFa from the total wavefield, labeled as a¢ rpsra. In this way,
the influence of the filter on the attenuation estimate is addressed. The calibration
study highlights that the geometry of the transition band (i.e., [kp; ks]) does not
have remarkable influence on the resulting wave parameters, when the band is
quite narrow around k. Instead, the quality of estimates drops for [kp; ks] = [3;
10]. Indeed, this range identifies a filter where the stopband is quite far from kg,
hence the capability of removing the contribution of other wave components is
reduced. Furthermore, the filter order dramatically affects a.. When N is low, a. is
quite close to aerpara, hence the filter is not significantly changing the shape of
the waveform, which 1is still close to uy(r). Instead, high-order filters tend to
provide more precise estimates, and the discrepancy from the theoretical value
becomes almost negligible already for N = 30. On the converse, k. is not sensitive
to N, except for [kp; ks] = [3; 10], for the reasons stated before.
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Similar considerations are valid when cylindrical waves are investigated, i.e.
with uc(r) (see Section 5.3.1; Figure 5-20). In this case, the influence of
calibration parameters was analyzed considering k. and a. for each wave
component, by means of the CFDBF and CFDBFa, respectively. Differently from
the plane wave case, it appears that the quality of the estimated parameters for
up2(r) 1s worse than the one for u,;(r). Indeed, up:(r) is the dominant component
inside u.(r), hence the modal filter does not manage to completely remove it
when isolating uc2(r). This issue is highlighted when inspecting k. for the
corresponding wave component (Figure 5-20c¢), as low-order filters or filters with
broad transition range tend to return k. = k;. Besides, the resulting a. is quite
sensitive to N, especially when focusing on uc>(r). In general, high-order filters
tend to return an overestimation of the attenuation, and the best matching is
achieved by using N = 20+50 with a moderately narrow transition band (i.e., [£p;
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Figure 5-19. Influence of filter calibration parameters in extracting wave parameters for
the two-component plane wave u,,(r): a-b) Wave u,:(r); c-d) Wave u,2(7). The labels on
the y axis identify different sets of [£,; k], that control the passband and the stopband of
the filter. The estimated attenuation through the FDBFa . rpsr, is also reported, for
comparison purposes.
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Figure 5-20. Influence of filter calibration parameters in extracting wave parameters for
the two-component cylindrical wave u..(r): a-b) Wave u.;(r); c-d) Wave u.»(r). The labels
on the y axis identify different sets of [k,; k], that control the passband and the stopband
of the filter. The estimated attenuation through the CFDBFa a.,crpsr. is also reported, for
comparison purposes.

5.3.3 Applications

The inclusion of the modal filtering step inside the FDBFa and CFDBFa
algorithms for processing results of MASW surveys is quite straightforward.

The principle of the updated workflows consists in performing a preliminary
dispersion analysis, aimed at identifying different Rayleigh modes contributing to
the recorded wavefield. This stage identifies the modes from the peaks of the f-k
spectrum, computed through the FDBF (or the CFDBF). Then, each mode is
isolated and extracted from the wavefield, by applying the modal filter to the
recorded displacement. The filter is defined by Eq. 5.16-17, by setting ks equal to
the wavenumber of the investigated mode. In this way, the recorded wavefield is
transformed into a set of displacement data, each representative of a single
Rayleigh mode. Thus, the application of the FDBFa algorithm (or CFDBFa
scheme) to filtered data will return the modal phase velocity and the modal phase
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attenuation, for each considered propagation mode. Note that a preliminary
estimate of the phase velocity is available from the initial stage of identification of
Rayleigh modes, however this quantity is updated posterior to the filtering, also to
assess the effectiveness of the modal extraction.

The FDBFa algorithm with Modal Filtering will be hereafter labeled as
FDBFaMF, and a complete description is provided in Algorithm 3. Instead, the
CFDBFa algorithm with Modal Filtering will be denoted as CFDBFaMF and a list
of the main steps is provided in Algorithm 4. The latter assumes that the recorded

motion is the particle displacement in the vertical direction. Note that Héz) (+)

should be replaced by H 1(2) (+) when processing radial displacement data.

Algorithm 3 Frequency-Domain BeamForming — Attenuation with Modal Filtering (FDBFaMF)

Input: {uz (7.t )}Llﬁl : particle displacement recorded at N sensors with offset 7, at N7 time

samples ¢
1: Compute frequency spectra {uz (rn,a)i )}nN:1],V:1 , for N,, frequencies w;
2: . . . N N, N N,
Geometrical spreading removal: {u (7, )}n: o € {uz (. o )}nzljzl Jr

3: fori=1:N,do

4: Compute pseudopower spectrum Ppr(ki,w;) through FDBF

5: Identify peaks {kRe,_/' (e )}fjW: (laz) of Pyr(ky,m;), for M(w;) modes

6: forj=1: M(w;) do

7 Define filter 4[n] from Eq. 5.16-17, based on kg, j(w;)

8: Mode extraction {uz’j (7, )}nN:1 <« {uz (7, )}nN:1 ®h[n]

9: Compute pseudopower spectrum Pgr(k;, w;) through FDBF

10: Peak picking of Pari(ar,wi): or () < argmaxPgr.(0r ;)

11: Calculate v j(ry,w;) from Eq. 5.9

12: V2 j(Fns@i) = V2 j(Fn,@i)/| V2 (1, 0)|

13: Apply the window v j(r4,@;) «— W(#n,@i)v:{(Fn,0;)

14: Compute spatiospectral correlation matrix Rya(@i) = v j(Fm,w;)
[z (o))’

15: Construct  steering  vector  with  trial  attenuation o
e(a,) = [eii”’r‘ s, @ ]T

16: Calculate pseudospectrum for varying ogr:  Ppra(Orn,wi) =
e(ar )R(w))e(ar,)

17: Peak picking of Psru(ar,w:): orje(w;) < argmaxPprq(0r ,0;)

18: end for

19: end for
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Algorithm 4 Cylindrical Frequency-Domain BeamForming — Attenuation with Modal Filtering
(CFDBFaMF)

Input: {uz (73,8 )}ivzli\:l : particle displacement recorded at NV sensors with offset r,, at N7 time

samples #
N N,

Lo for N, frequencies w;
n=1j=

Compute frequency spectra {uz (7, )}

3: fori=1:N,do

4: Compute pseudopower spectrum Ppr(k;, w;) through CFDBF

5: Identify peaks {kRe,_,. (o )}iw: (laz) of Pcpr(ks,;), for M(w;) modes

6: forj=1: M(w;) do

7: Define filter 4[n] from Eq. 5.16-17, based on kg, i(w;)

8: Mode extraction {uz,j (7, )}HN:I « {uz (rn, )}nN:I ®h[n]

9: Compute pseudopower spectrum Pcgr(k, ;) through CFDBF

10: Peak picking of Pcgr(ki,w;): kr(w;) < argmaxPcpr(ki,w;)

11: Calculate v. /(7,w;) from Eq. 5.9

12: V2 j(#0,0:) <= V2 j(#0,00)/| V= f(F,0) |

13: Apply the window v. j(r,@;) «<— W(Fu,)Vz(F,®;)

14: Compute spatiospectral correlation matrix Ruya(@i) = v j(Fm,wi)
[v=(rmi)]”

15: Construct  steering  vector  with  trial  attenuation  ag;:

iar, K —iar Iy T .

a(@ ) = [ef'dg{h‘)(é ‘)}, ...e (v )}J , with R, = ke(@;) — ioy

16: Calculate pseudospectrum for varying agr: Pcprd(or,mi) =
e(ar)R(w))e(ar,)

17: Peak picking of Pcara(0r,,wi): arje(w;) <— argmaxPcpra(or ;)

18: end for

19: end for

As in the simplified examples SW1 and SW2, a calibration study is carried
out also for SW3 and SW4, to identify optimal filter parameters that allow to
properly capture modal parameters. Differently from the previous cases, the
wavefield in SW3 and SW4 exhibits complex features. Indeed, the number of
waves (i.e., R-wave modes) varies with the investigated frequency and their
amplitude and relative distance in terms of &k range are not a constant. Therefore, it
1s expected that the most appropriate filter parameters for SW3 and SW4 might
not match those obtained in the analysis of SW1 and SW2.

The calibration study investigated the same sets of parameters [k,; k5] used for
SWI1 and SW2, whereas the following N values are considered: 10, 20, 30, and
40. Indeed, the number of available spatial samples, i.e. 48 data points, does not
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allow to apply higher order filters. For the sake of brevity, only results for the
parameter set [kp; ks] = [1; 2] and N = 20 are herein reported, as they provided the
best-quality estimates. Indeed, the calibration study demonstrated that filters with
order N = 1/2+2/3 times the number of receivers may be considered as a valid
reference for applying the FDBFaMF and CFDBFaMF in various site conditions.
Furthermore, the following discussion focuses on results for the CFDBFaMF, as
similar results are observed in the application of the FDBFaMF to SW3 and SW4.
A complete overview of results is available in Appendix A.

Figure 5-21 compares resulting dispersion and attenuation estimates obtained
through the CFDBFaMF algorithm for the first three modes for SW3, labeled as
RO, R1 and R2, respectively. Reported data are sampled with a sampling
frequency of 1 Hz, across the frequency band ranging between 3 Hz and 100 Hz.
Furthermore, the regions associated with wavelengths beyond the resolution limits
of the simulated array are highlighted, as the corresponding results should be
interpreted with care. Interestingly, reliable estimates of ar(w) for RO can be
obtained regardless N, even at high frequencies, where the CFDBFa-based
attenuation estimate diverges from modal values. In addition, the estimated Vz(w)
well matches the RO dispersion curve, as demonstrated by the low estimation
error. This result is not surprising, being the fundamental mode the dominant
component of SW3, whereas higher modes provide a small contribution.
Therefore, isolating the fundamental mode by removing other components is an
easy task, that can be achieved even with smooth filters. The converse occurs
when dealing with higher modes, because of the higher difficulties in extracting
the desired mode, especially with low-order filters. For instance, the application of
a filter with N = 10 to isolate R1 returns a wavefield where the fundamental mode
is still dominant. Therefore, the estimated ar(w) does not tend to match the
corresponding modal value, except at higher frequencies. A similar result is
observed for R2, where the degree of fit is improved at high frequencies (Figure
5-21e-f). When using the parameter set [kp; k] = [2; 4], the quality of the
estimated Vr(w) and ar(w) is still good and even less sensitive to N, although
some oscillations in or(w) are observed at the low-frequency range. These
oscillations become more relevant when higher modes are investigated. Finally,
results obtained by setting [kp; ks] = [3; 10] exhibit some instability both in Vz(w)
and ar(w), especially when N is large.

Instead, Figure 5-22 represents the calibration results of the CFDBFaMF
algorithm for SW4. Similar to SW3, the estimated Vz(w) and ar(w) consistently
match the corresponding modal values for all the considered propagation modes,
regardless N. However, this result is valid mainly in the frequency ranges where
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each mode dominates the wavefield. Instead, at other frequencies, the filter has to
isolate a wave component which is not dominant and quite close to other modes,
as the relative distance in the wavenumber domain is quite small. Therefore, the
estimated Vr(w) and ar(w) are sensitive to filter characteristics and they do not
tend to match the corresponding modal curves, entailing that the filter does not
completely remove undesired wave components. This issue is even more evident
when setting larger values of [ky; &s].

Finally, estimated Vz(w) and ar(w) for SW3 and SW4 systematically differ
from the corresponding modal values at low frequencies, for both FDBFaMF and
CFDBFaMF. The factors behind such discrepancy will be addressed in Section
5.4.
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Figure 5-21. Application of the CFDBFaMF algorithm on SW3, with a focus on the first
three modes: a-b) Estimated dispersion curves (a) and attenuation curves (b) for the
fundamental mode, labeled as RO; c-d) Estimated dispersion curves (¢) and attenuation
curves (d) for the first higher mode, labeled as R1; e-f) Estimated dispersion curves (¢)
and attenuation curves (f) for the second higher mode, labeled as R2. Results correspond
to the set of parameters [kp; k] = [1; 2] and N = 20. Results of the CFDBFa are also
reported, for comparison purposes. Estimated data points beyond the array resolution
limits — i.e., the grey areas in (a), (c), and (¢) — are colored in grey.
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Figure 5-22. Application of the CFDBFaMF algorithm on SW4, with a focus on the first
three modes: a-b) Estimated dispersion curves (a) and attenuation curves (b) for the
fundamental mode, labeled as RO; c-d) Estimated dispersion curves (¢) and attenuation
curves (d) for the first higher mode, labeled as R1; e-f) Estimated dispersion curves (¢)
and attenuation curves (f) for the second higher mode, labeled as R2. Results correspond
to the set of parameters [kp; k] = [1; 2] and N = 20. Results of the CFDBFa are also
reported, for comparison purposes. Estimated data points beyond the array resolution
limits — i.e., the grey areas in (a), (c), and (¢) — are colored in grey.
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5.4 Influence of near- and far-field effects

The FDBFa and the CFDBFa techniques rely on the hypothesis that the recorded
wavefield consists in an idealized planar or cylindrical Rayleigh wave,
respectively. However, in situ recorded data are more complex and the
simplifying assumptions about geometrical attenuation might introduce some bias
in the estimated values. The collection of mechanisms that are responsible of
discrepancies between estimated and expected R-wave parameters due to
modeling issues is conventionally labeled as near-field effects. Furthermore,
incoherent noise in recorded data may affect the quality of the estimated
parameters, introducing a bias termed as far-field effects.

The main source of near-field effects is the model incompatibility. Indeed,
usual processing schemes rely on the hypothesis that the recorded wavefield
consists solely of Rayleigh waves. Furthermore, some techniques assume that
Rayleigh waves propagate according to planar wavefronts. However, the
application of a point force onto the surface generates both surface waves and
body waves, and surface waves propagate according to cylindrical wavefronts.
The discrepancy between the modeled behavior and the actual recorded wavefield
leads to adverse effects in the quality and reliability of the estimate. On the one
side, the schematization of Rayleigh waves as planar waves results in a drift in the
estimated phase velocity, usually with an underprediction (Sanchez-Salinero et al.,
1987; Zywicki and Rix, 2005) but sometimes with a positive error (Yoon and Rix,
2009). Furthermore, the lack of an explicit modeling of body waves introduces a
perturbation in the recorded data, that maps into oscillations in the low-frequency
phase velocity (Rahimi et al., 2021). Actually, such oscillations may also be the
effect of Gibbs’ phenomenon (Park and Carnevale, 2010). Hopefully, the assumed
displacement field well compares with the effective one at moderately far
distances from the sources, with respect to the investigated wavelength. Indeed,
the cylindrical shape of the wavefront can be approximated by a plane wave
model in these conditions, and the contribution of body waves is negligible as
they undergo stronger spatial amplitude decay than surface waves. Therefore, the
resulting wave parameters gradually acquire reliability as the array distance from
the source increases. For this reason, the bias introduced by the plane wave
estimator is negligible with increasing frequency (Zywicki, 1999). On the other
side, recorded data at great distances from the source are affected by incoherent
noise, whose contribution may dramatically alter the estimated wave parameters.

Several numerical and experimental studies addressed near-field effects on
dispersion data, with the primary aim to quantify them, for both SASW and
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MASW surveys. In general, MASW surveys tend to be less sensitive to near-field
effects than the SASW processing (Tokimatsu, 1995; Foti, 2000; Rix et al.,
2001b; Foti, 2004). Furthermore, Rahimi et al. (2022) observed a dependence on
the acquisition setup and on the number of receivers, as well as the investigated
wave, site conditions and the source type. As a result, they proposed criteria to
identify a critical condition wherein the related error becomes relevant. These
criteria rely on statistical tests (Strobbia and Foti, 2006) and on wavelength-based
normalized distances, referred or to the closest sensor to the source (Sanchez-
Salinero et al., 1987; Tokimatsu, 1995) or the average location of the array (Li
and Rosenblad, 2009; Yoon and Rix, 2009; Rahimi et al., 2021; Rahimi et al.,
2022). On the other side, only few studies investigated the influence of near-field
effects on the R-wave phase attenuation. Yoon (2005) observed that they induce
an overestimation in the low-frequency attenuation, mostly due to the inaccurate
modeling of the geometry spreading. Besides, the magnitude of the estimation
error is much greater than the bias in the phase velocity. Yoon (2005) also
attempted to define a criterion to identify when the effect of the near-field on
attenuation data becomes significant, based on the normalized average location of
the array. However, the lack of a consistent and clear trend in the estimated
attenuation did not allow to identify a threshold value, especially in inversely
dispersive media.

This Section aims at understanding the influence of the modeling of the
geometrical spreading on the estimated R-wave parameters, with a focus on the
phase attenuation. For this purpose, the performance of both the planar-based
scheme (i.e., the FDBFa technique) and the cylindrical-based approach (i.e., the
CFDBFa technique) are tested in different conditions, with increasing complexity.
Specifically, the two methods are applied to interpret an ideal cylindrical wave,
also when corrupted by body waves and incoherent noise.

5.4.1 Influence of the cylindrical shape of the wavefront

A useful example to understand the influence of assumptions about the shape of
the wavefront on the estimated R-wave parameters is represented by the synthetic
dataset SW2 (see Section 5.1). Indeed, SW2 is an ideal cylindrical wave which
may be interpreted as a “pure” Rayleigh wave (i.e., no body waves are included)
generated on a homogeneous halfspace due to a monochromatic, unit-amplitude
vertical force. The corresponding wave parameters are extracted by means of the
FDBFa and the CFDBFa approaches, that model waveform data as a plane wave
and as a cylindrical wave, respectively. Estimated wave parameters are listed in
Table 5.3.
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Table 5.3. Estimated wavenumber and phase attenuation from SW2 data, according to the
FDBFa and the CFDBFa approaches. The values in brackets are the ratio between
estimated and true values, that provide a measure of the entity of the error.

FDBFa CFDBFa True value
Estimated wavenumber k. (rad/m) 0.1009 0.1000 kr = 0.1 rad/m
[ke / kr] [1.0085] [0.9999]
Estimated attenuation a. (rad/m) 0.0013 0.0015 ar=0.0015 rad/m
[ae /! ar] [0.8564] [1.0000]

An explicit modeling of the cylindrical wavefield leads to an almost exact
estimate of the wave parameters, whereas the use of a planar scheme results in
some discrepancies between theoretical and estimated values. On the one side, the
FDBFa tends to slightly overestimate kz — although the error is less than 1%. This
bias is consistent with various studies on surface wave testing, that claimed that a
planar propagation model often underestimates dispersion data (i.e., the resulting
wavenumber is excessively large), especially at low frequencies (e.g., Zywicki
and Rix, 2005). Instead, ar is significantly underestimated when using the FDBFa,
with a relative difference around 15%.

The error in both kz and or estimates rises from the simplifying assumptions
introduced by the planar model, that ignores the actual shape of the wavefront.
Indeed, planar and cylindrical waves exhibit significant differences in the spatial
variation of the amplitude and phase of the displacement field. Figure 5-23
provides an example on this, comparing SW1 (i.e., a planar wave) and SW2 (i.e.,
a cylindrical wave). On the one side, the displacement phase of planar wavetfield
undergoes a linear variation with the offset. Instead, the phase of the cylindrical
wavefield does not linearly change with space. As for the displacement amplitude,
an effective comparison refers to an alternative metric, equal to the logarithm of
the magnitude scaled by the square root of the distance (i.e., |u|lc = log(r"|ul)).
According to this specific representation, the |u|c of a plane wave is linear with the
distance. Conversely, in the presence of a cylindrical wavefield, |u|. is strongly
nonlinear with the distance. At short distances, this quantity is monotonically
increasing from 0 up to a maximum. At large distances, the modified
displacement amplitude is monotonically decreasing, and it gradually assumes a
linear behavior as the distance is larger. The slope associated with the linear trend
equals the exact attenuation, by the virtue of the asymptotic expansion. This result
also applies for the displacement phase. Therefore, cylindrical waves are
associated with a nonlinear change in both the displacement amplitude and phase
with the distance, and this effect is more relevant at low 4z (hence, low-frequency
R-waves).
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Figure 5-23. Planar wave vs. cylindrical wave, labeled as SW1 and SW2, respectively:
amplitude and phase.

By definition, the cylindrical model inherently incorporates the spatial
variations in the displacement amplitude and phase linked with cylindrical
spreading (Zywicki and Rix, 2005), hence wave parameters are correctly
estimated. Instead, interpreting cylindrical wave data according to a planar model
returns a plane wave best matching actual displacement data. In other words, the
resulting wave exhibits a slope in both the modified displacement amplitude and
phase that averages the actual ones. As the actual phase variation with the distance
is a convex function, the use of a linear model returns an average slope greater
than the slope of the final portion, entailing an overestimation of kz. Instead,
spatial changes in the modified amplitude occur according to a concave shape,
hence constraining observed data with a linear model induces an underestimation
of ar. Furthermore, as the degree of nonlinearity in the displacement phase is not
significant, the wavenumber estimation error introduced by the planar scheme is
generally small. Instead, the discrepancy in the estimated attenuation values is
much greater, due to the remarkable nonlinear variations in the modified
displacement amplitude.

As an additional consequence of the nonlinear spatial changes in the
amplitude and the phase of the displacement field with the offset, the estimated
plane-wave parameters are dependent on the considered distance range. Indeed,
acquisition setups located far from the source tend to return similar estimates of
wave parameters both with the planar and the cylindrical estimators, as the
displacement exhibits a quasi-linear variation with the offset. On the converse, at
short offsets from the source, the strong nonlinearity results in large differences
between the estimates.
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Thus, modeling the propagation of R-waves as plane waves would disregard
actual shape of the wavefront, entailing a bias in the estimated phase wavenumber
and the attenuation, especially for the usual offsets adopted in active-source
SWM. This may dramatically alter the resulting damping ratio profile at greater
depths. For this reason, an accurate modeling of the geometric spreading is crucial
to achieve robust and reliable estimates of dispersion and attenuation data. For
this reason, an explicit modeling of the geometry of the cylindrical modeling has
been strongly recommended by several Authors, as a tool to mitigate near-field
effects, due to the proper modeling of geometric spreading (Rahimi et al., 2021).
Thus, the CFDBFa is a superior technique with respect to the use of a planar
model.

5.4.2 Influence of body waves: results for SW3 and SW4

A more thorough investigation of the differences induced by the planar model
and the cylindrical model on the estimated wave parameters requires a
comparison on a more realistic wavefield. For this purpose, the synthetic
wavefields SW3 and SW4 are an additional benchmark to address the role of the
geometric spreading assumptions on the derived R-wave parameters. Indeed, both
wavefields mimic the output of a usual MASW survey, carried out on realistic soil
profiles. Furthermore, the study of these wavefields includes additional elements
of complexity with respect to SW2, as they combine multiple R-wave propagation
modes, as well as body waves.

Figure 5-24 compares the estimated dispersion and attenuation curves for
SW3 and SW4, computed through the FDBFaMF and the CFDBFaMF
techniques. Reported data are sampled with a sampling frequency of 1 Hz, across
the frequency band ranging between 3 Hz and 100 Hz. The graph includes
estimated wave parameters for the fundamental mode only, for simplicity.
However, the following considerations are also valid for higher modes.
Furthermore, the regions associated with wavelengths beyond the resolution limits
of the simulated array are highlighted, as the corresponding results should be
interpreted with care. The discussion reported in this section does not focus on the
compatibility between estimated and theoretical wave parameters, as a more
detailed description on this is provided in Chapter 7. However, the target mode
obtained from the solution of the Rayleigh eigenvalue problem is represented, as a
reference. Instead, the differences between the FDBFaMF and the CFDBFaMF
estimates are addressed, to focus on the influence on the effect of the geometric
spreading assumption.
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For both SW3 and SW4, the FDBFaMF and the CFDBFaMF return rather
similar estimates of dispersion data and attenuation data. Furthermore, derived
dispersion curves almost equal the corresponding theoretical ones especially at
high frequencies. Instead, low-frequency data undergo some oscillations around
the target value. This oscillation might be an artifact introduced by other wave
components (e.g., body waves), whose contribution is usually significant in this
range (Rahimi et al., 2021). As for ar(w), the FDBFaMF and the CFDBFaMF
underestimate the phase attenuation close to 10 Hz, perhaps due to some influence
of the first higher mode, whose contribution to the wavefield might not have been
completely removed by the modal filter. At lower frequencies, they tend to
overestimate it, with a relative error which is on average much greater than the
corresponding one on dispersion data. Specifically, at low frequencies, the
estimation attenuation can be even tens or even hundreds of times greater than the
theoretical value.

In summary, the performance of the two schemes on SW3 and SW4 is almost
identical, hence the cylindrical and the planar model return similar results,
regardless the investigated frequency (or wavelength) range. Furthermore, both
approaches undergo similar errors in both dispersion and attenuation in the low-
frequency range. This result contradicts the findings obtained from the analysis of
SW2, that demonstrated the superiority of the explicit modeling of the cylindrical
wavefield to reliably derive R-wave parameters. However, such conclusion is
valid for a rather simplified case, where the recorded wavefield consists in a
unique cylindrical wave, that may be interpreted as an ideal Rayleigh wave.
Instead, SW3 and SW4 are a superposition of multiple Rayleigh propagation
modes, where also body waves contribute to the simulated particle displacement.
Actually, the influence of the multimodal nature of the wavetfield should not be
significant at low frequencies, as the displacement field mostly depends on the
fundamental mode, especially for SW4. Therefore, the influence of body waves in
the recorded wavefield may be the reason for which a more accurate modeling of
the geometrical spreading of the wavefield is not sufficient to improve the quality
of the estimated R-wave parameters, especially at low frequencies. Even, it
appears that the improvement introduce by an explicit model of the cylindrical
wavefront is canceled by the effect of body waves. A more detailed study on the
influence of body waves in the estimated R-wave parameters is presented in the
next Section.
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Figure 5-24. Extracted fundamental-mode dispersion and attenuation curves for SW3 and
SW4, for the FDBFaMF and the CFDBFaMF: a-b) Estimated dispersion curves (a) and
attenuation curves (b) for SW3; c-d) Estimated dispersion curves (c) and attenuation
curves (d) for SW4. Results refer to the fundamental mode only. Estimated data points
beyond the array resolution limits — i.e., the grey areas in (a), (c), and (e) — are colored in

grey.
5.4.3 Influence of body waves: parametric analysis

To better understand the influence of body waves on estimated R-wave
parameters, the wavefield SW2 is modified to include their contribution. The new
synthetic wavefield (hereafter labeled as SW2-B) is the solution of a boundary
value problem, which models the response (in terms of vertical displacement on
the free surface) of a homogeneous half-space to a vertical, unit-amplitude,
harmonic force applied onto the free surface. The direct stiffness approach was
adopted to solve the problem, by means of the EDT software (Schevenels et al.,
2009). In this way, the corresponding wavefield is the combination of both body
and Rayleigh waves. The mechanical properties of the medium are the following:
Vs is 336 m/s, Vp is 698 m/s, Ds and Dp both equal 0.015, and p is 2,000 kg/m?.
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The adopted values are the result of a calibration study, so that the solution of the
R-wave eigenvalue problem returns wave parameters identical to those of SW2.
Thus, SW2-B is equivalent to SW2, but it includes the additional contribution of
body waves.

Table 5.4 compares the estimated R-wave parameters for SW2-B, obtained by
means of the FDBFa and the CFDBFa approaches. This result provides useful
insights about the relative performance of the planar and the cylindrical
beamformer in the combined presence of body waves and cylindrically-spreading
surface waves. As in SW2 (Table 5.3), the FDBFa and the CFDBFa tend to return
quite similar results. However, both the planar and the cylindrical model slightly
overestimate kg, with a relative error of about 4.5%. Besides, the CFDBFa returns
a slightly more reliable estimate. Conversely, both approaches strongly
overestimate ag, as they return a value which is some 5.5 times greater than the
theoretical one. Even, the error associated with the cylindrical model is a bit larger
than the one obtained according to the planar scheme.

Table 5.4. Estimated wavenumber and phase attenuation from SW2-B data, according to
the FDBFa and the CFDBFa approaches. The values in brackets are the ratio between
estimated and true values, that provide a measure of the entity of the error.

FDBFa CFDBFa True value
Estimated wavenumber k. (rad/m) 0.1052 0.1041 kz=0.1 rad/m
[ke ! kr] [1.0520] [1.0410]
Estimated attenuation a. (rad/m) 0.0085 0.0088 or = 0.0015 rad/m
lae ! ar] [5.6667] [5.8667]

The reason behind the biased velocity and attenuation estimates derives from
the discrepancies between the planar or cylindrical model and the actual spatial
changes variation of the amplitude and phase of the displacement field of SW2-B
(Figure 5-25). On the one side, the displacement phase of SW2-B occurs with a
steeper slope than SW2, thus resulting in a slight overestimation of kg.
Furthermore, the inclusion of body waves dramatically affects the spatial variation
of the displacement amplitude. With a focus on the corrected amplitude |u|c, this
quantity is much greater than the one obtained for SW2 at short offsets, and it
exhibits more complex changes. Besides, the amplitude undergoes large changes
over a moderately narrow range of distances. This is a clear footprint of the
presence of body waves, as they are affected by stronger geometric attenuation
than surface waves. The combination between the different shape — the corrected
amplitude tends to behave as a convex function — and the broader range of
encompassed amplitudes result in a strong overestimation of ar, when SW2-B is
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modeled according to a planar or a cylindrical scheme (i.e., according to the
FDBFa and the CFDBFa, respectively).
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Figure 5-25. Cylindrical wave and body wave: amplitude and phase.

Results reported in Table 5.4 provide a first insight on the influence of near-
field effects on the estimated R-wave parameters. However, this result does not
have general validity. Indeed, due to the complexity and the remarkable
nonlinearity in the amplitude and phase variation of the displacement field with
the offset, the entity of the estimation error introduced by the planar and of the
cylindrical estimators is sensitive to the investigated offset range. On the one side,
the interpretation of waveform data recorded quite close to the source tends to
return moderately biased estimates, because of the relevant contribution of body
waves, that are not modeled. As body waves strongly attenuate with the distance,
data acquired far from the source tend to return more accurate estimates of wave
parameters, asymptotically matching the exact values at very large distances.
Actually, this result is valid only on a theoretical basis, because real data are
corrupted by incoherent noise, that mostly affects at great distances.

The influence of the average distance on the quality of the estimated R-wave
parameters is addressed in a parametric study, where SW2-B is assumed to be
recorded according to different acquisition layouts. The simulation considers
different ideal uniformly-spaced sensor arrays, the geometry of which can be
described by three parameters: the number of sensors #, the inter-receiver spacing
o0, and the offset between the source and the closest receiver ;. The adopted »
were equal to 12, 24, 48, and 100, as they are compatible with the number of
geophones usually adopted in ordinary MASW surveys. As for J, several values
were included, namely 0.3 m, 0.5 m, I m, 1.5m,2m, 2.5 m,3 m, 5m, 10 m, 15
m, 20 m, and 30 m. The large number of values attempts to model different
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acquisition geometries, and the maximum inter-receiver spacing complies with
limitations by the Nyquist-Shannon theorem, to properly process SW2-B without
undergoing aliasing. Finally, 7; is chosen as an integer multiple of the sensor
spacing, where the multiplying factor equals 1, 3 and 5, respectively. Thus, a total
of 144 ideal acquisition geometries is modeled.

For the sake of simplicity, each idealized testing setup is synthetically
described in terms of the normalized array center distance (NACD; Yoon and Rix,
2009). This quantity is defined as the ratio between the gravity center of the array
(i.e., the average between the sensors’ locations) and the investigated R-wave
wavelength:

N
12

R
In this case, Az equals 62.8 m as kg is 0.1 rad/m in SW2-B. The NACD
combines both information about the MASW acquisition geometry and the target
R-wave, the latter expressed in terms of the wavelength. Large NACD values are

NACD =

(5.18)

representative of array setups that, on average, are far from the source, with
respect to the investigated wavelength. The usefulness of this parameter is
twofold, as it condensates the whole array geometry into a single parameter and it
is effective in describing discrepancies due to model incompatibility issues.

For each acquisition setup, SW2-B data are processed both with the FDBFa
and the CFDBFa, thus obtaining estimates associated with the planar and the
cylindrical estimator. To address the reliability of the estimators, a comparison
between the resulting R-wave parameters and the corresponding theoretical values
takes place by considering the normalized estimates (Yoon and Rix, 2009). Each
of these quantities is defined as the ratio between the estimated R-wave
wavenumber (or attenuation) and the corresponding ideal value. Figure 5-26
summarizes the results of the parametric analysis, reporting the normalized wave
parameters as a function of the NACD. Note that results also include values
obtained from rather short arrays compared to the investigated wavelength, with
the aim to investigate this condition. Indeed, in this case the wavenumber
resolution is not an issue being the wavefield composed by a single Rayleigh
mode. However, as these data points are representative of conditions not usually
investigated in MASW surveys, they are highlighted with a transparent layer.
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Figure 5-26. Results of the parametric analysis to assess the influence of body waves on
the estimated R-wave parameters, represented in terms of normalized values vs.
normalized array center distance NACD: a) Wavenumber; b) Attenuation. Results for the
planar beamformer (i.e., FDBFa) and the cylindrical beamformer (i.e., CFDBFa) are
reported. The annotations denote the points specifically analyzed in Figure 5.27.

Both the planar and the cylindrical model return identical and reliable
estimates of the wavenumber and the attenuation when the NACD is large, i.e.
when the acquisition is carried out at large distances from the source. As the
NACD reduces down, both the wavenumber and the attenuation are
overpredicted, with a gradually increasing estimation error. However, the entity in
the discrepancy in the wavenumber estimate is sensibly different from the one for
the attenuation. As for the wavenumber, the estimators tend to slowly diverge
from the unit value at NACD less than 3. Specifically, the planar scheme returns
monotonically increasing wavenumber estimates, and the normalized value grows
up to 1.2. When referring to the cylindrical model, the normalized value is quite
smaller and slightly oscillates around a center point close to 1.1. This oscillatory
behavior in the estimated dispersion data is a direct effect of body waves, as
confirmed by various in-situ observations (Rahimi et al., 2021). Notwithstanding
these differences, the bias introduced in dispersion estimates by not properly
incorporating body waves is less than 10%, and it becomes negligible at
normalized distances greater than 1. When focusing on the attenuation, instead,
the entity of the estimation error dramatically changes. Indeed, both schemes tend
to significantly overpredict the attenuation at short NACD values, with a sudden
deviation of the normalized value from the unit at NACD close to 2. Besides, at
shorter distances, they return attenuation estimates even 10+100 times greater than
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the theoretical one. Furthermore, the difference in both models is qualitatively
negligible. Although the drop in the bias magnitude as NACD increases is steeper
than the one in the wavenumber, the error in the attenuation estimate is relevant
even at moderately large distances. Indeed, the error starts to be negligible only at
normalized distances greater than 2, and it still assumes some minor oscillation at
even greater distances.

To identify the reasons behind such discrepancies, Figure 5-27 reports some
results of the processing, with reference to three different arrays, representative of
increasing NACD values and highlighted in Figure 5-26. For each acquisition
setup, the graphs represent both the displacement field induced by SW2-B (i.e.,
the combination of body and Rayleigh waves) and the one associated with SW2
(i.e., R-waves only). The latter represents the theoretical Rayleigh wavefield.
Furthermore, the actual wavefield is overlapped with the displacement field
obtained according to the estimated parameters. Interestingly, the displacement
phase of SW2-B is almost linear throughout the whole range of investigated
distances. Therefore, both the planar and the cylindrical estimators return similar
wavenumber data, that are rather close to the theoretical one for any considered
array. Instead, the spatial variation of the modified amplitude |u|. exhibits a
strongly nonlinear trend, which is sensibly different from the one ideally assumed
by a cylindrical wave or a planar wave, especially at short NACD (i.e., less than
1+2). In this case, the contribution of body waves on the wave amplitude is
overwhelming. As a consequence of the incompatibility between the modeled and
the actual spatial variation of the amplitude, both the planar and the cylindrical
beamforming strongly overpredict the attenuation. Indeed, these schemes interpret
the combined amplitude decay of body waves and surface waves as only an
amplitude decay of a cylindrical (or planar) wave, thus overestimating the wave
attenuation. As the NACD increases, the spatial variation of the amplitude is still
not fully compatible with the one of a pure cylindrical wave. Specifically, the
amplitude undergoes some oscillations, perhaps induced by some destructive
interference between the body and the surface waves. However, the average slope
approaches the one of the corresponding R-wave (i.e., SW2). Therefore, the
estimated wave attenuation gradually approaches the expected value. Similarly, at
great distances some oscillations in the amplitude trend are still noticeable, but the
strong linearity and the closeness to the ideal trend results in attenuation estimates
rather close to the theoretical value.
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Figure 5-27. Spatial variation of the displacement measured in three virtual arrays (rows
of the grid of plots), the location of which (in terms of NACD) is represented in Figure
5.26. The displacement is represented in terms of amplitude (left column) and phase
(right column).

In summary, the improvement in the quality of the estimated parameters
introduced by an explicit modeling of the geometric spreading is partially
balanced by the presence of body waves. In this condition, both the planar and the
cylindrical scheme return similar estimates of wave attenuation when the
wavefield includes body waves. On the other side, the use of a cylindrical
beamformer still improves the quality in the dispersion estimate, as the bias
affecting the estimated wavenumber is smaller with respect to the planar model.
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5.4.4 Influence of incoherent noise

The investigation of the influence of near-field effects on the estimated phase
velocity and phase attenuation highlighted that the lack of an explicit modeling of
the contribution of body waves in the displacement field results in a slight
deviation in the wavenumber and in a strong overestimation of the attenuation.
The entity of the bias decreases as the average distance of the acquisition array is
moderately large compared to the investigated wavelength, and it becomes
negligible at NACD greater than 2. In ideal conditions, as body waves strongly
attenuate with distance, data acquired far from the source tend to return more
accurate estimates of wave parameters, asymptotically matching the exact values
at very large distances. Actually, this result has only theoretical validity because
the modeled displacement data include only the contribution of the true wavefield,
not accounting for incoherent noise which affects field data. In fact, ambient
random noise may dramatically affect estimated wave parameters. Furthermore,
the influence of noise is most relevant at sensors far from the source, due to the
amplitude decay of the signal. For this reason, any perturbation in the resulting
wave parameters due to incoherent noise is usually labeled as “far-field effects”.

The influence of incoherent noise on the quality of the estimated R-wave
parameters is investigated in a similar parametric analysis to the previous one,
where a wavefield composed by the combination of SW2-B and white noise is
assumed to be recorded according to different acquisition layouts. This study
adopts the same suite of ideal acquisition geometries used to inspect near-field
effects. Thus, the influence of body waves and of incoherent noise are jointly
involved and investigated, as a function of the average array location — expressed
in terms of NACD.

The noise modeling requires a Monte Carlo procedure to simulate its random
nature. This study adopts a white gaussian noise model, where the noise assumes
a normal distribution. The selection of an adequate power level of the noise is
critical, in order to reproduce noise conditions usually affecting in situ recorded
data. A valid reference might consist in comparing the noise level with the ground
force applied by the active source. For instance, the noise amplitude measured at
the Garner Valley Downhole Array and the Hornsby Bend sites equals 107 -+ 10
m/s (this value is compatible with the common noise range identified by Peterson,
1993), whereas the force magnitude ranges between 10° N (for light sources) and
10* N (for vibrators). Therefore, a realistic noise level can be obtained by scaling
down the input force by a factor equal to 1072, This assumption reproduces
typical signal-to-noise conditions when a mechanically-controlled source is used.
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In the Monte Carlo procedure, recorded data are simulated as the sum of the
“true” signal (i.e., SW2-B) and the gaussian noise. The simulation involves 50
random samples, namely 50 noisy signals. The number of generated signals
adequately reproduces the stochastic process, as it allows to achieve a stable
estimate of the mean value and the standard deviation of both the displacement
amplitude and phase, regardless the location of the virtual sensor. Figure 5-28
represents the simulated waveforms in the stochastic procedure, in terms of
displacement amplitude and phase, compared with SW2-B. On average, the
displacement phase well matches the theoretical one, whereas the amplitude
exhibits a gradually increasing positive deviation at great distances from the
source. At these locations, the noise becomes gradually relevant in the recorded
data, due to the attenuation of SW2-B, and the average amplitude converges
towards the noise level. As for the data variability, the coefficient of variation
(CoV) of the amplitude exhibits a quasi-linear increase with the distance, that
asymptotically converges at 0.7, which is associated with the predominant noise
level. Instead, the phase CoV is almost null across a broad range of distances, and
it starts increasing only at » > 500 m, due to the strong influence of noise in this
range.
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Figure 5-28. Results of the Monte Carlo procedure to simulate the presence of incoherent
noise in the recorded signal: a-b) Randomized signals, represented in terms of amplitude
(a) and phase (b); ¢) Variability in the amplitude; d) Variability in the phase. The sample
signals in a-b) are overlapped by the noiseless signal (thick black line) and by the
intervals defined by the mean and one standard deviation (thin red lines).

Waveform data for every stochastic signal are processed both with the FDBFa
and the CFDBFa, thus obtaining estimates associated with the planar and the
cylindrical estimator, for each acquisition setup. As in the previous Section, the
geometry of each array layout is described in terms of NACD, whereas the
normalized wavenumber and the normalized attenuation are used as metric to
assess the reliability of the estimated R-wave parameters. Every virtual array is
associated with a collection of normalized wave parameters, each obtained from a
single randomized signal. As an effect of incoherent noise, these data are
randomly distributed along a certain range. Figure 5-29 reports the resulting
normalized wave parameters as a function of the NACD, in which the statistical
distribution is synthetically described by errorbars, centered at the median value
and with extent equal to the logarithmic standard deviation. Indeed, the variability
in the estimated wave parameters due to incoherent noise can be modeled as a
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lognormal distribution (Figure 5-30a-b). This kind of model well describes the
statistical distribution of attenuation data, as it well captures the skewness and it
ensures that negative values have no probability of occurrence. However,
wavenumber data are also well matched by the gaussian model, consistently with
other studies (e.g., Lai et al., 2005b).
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Figure 5-29. Results of the parametric analysis to assess the influence of body waves and
incoherent noise on the estimated R-wave parameters, represented in terms of normalized
values vs. normalized array center distance NACD: a-b) Normalized wavenumber and
attenuation estimates for the planar beamformer (i.e., FDBFa); c-d) Normalized
wavenumber and attenuation estimates for the cylindrical beamformer (i.e., CFDBFa).
The errorbars denote the interval defined by the mean and one standard deviation for each
simulated acquisition layout. Results obtained from the parametric analysis on SW2-B are
included, as a reference.

When using the planar or the cylindrical scheme under the combined presence
of body and cylindrical waves and incoherent noise, an excellent degree of
matching occurs for the wavenumber along the whole investigated NACD range.
Besides, the variability in the estimated data is generally small (i.e., om less than
0.02) and it slowly decreases at greater NACD values (Figure 5-30c). However, at
rather small NACD, the cylindrical scheme tends to systematically underestimate
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the wavenumber. As this deviation does not occurs when analyzing SW2-B data,
the loss of reliability of this scheme is an effect of the incoherent noise. Therefore,
the cylindrical beamformer appears to be not robust in the presence of incoherent
noise. On the other side, this issue is observed only at rather small NACD values,
that are not usually involved in usual MASW processing, as beyond the typical
resolution limits. At NACD > 0.3, the drift is negligible and the average nrmalized
wavenumber is smaller than the one obtained according to the planar beamformer.
Therefore, the cylindrical model is still effective, when focusing on a range of
investigated wavelengths, compatible with the array resolution limits.
Furthermore, the variability in the estimated wave parameters is almost identical
for the two schemes (Figure 5-30c).

When focusing on the attenuation, instead, the mean normalized attenuation
starts to deviate from the deterministic trend at moderately large NACD values,
1.e. NACD > 5, and the inclusion of noise generally induces a significant
underestimation of the true attenuation. Indeed, in arrays quite far from the
source, the noise level is a relevant component in the recorded signal and the ideal
spatial decay is partially masked by the noise, whose spatial stationarity induces a
reduction in the estimated attenuation. Furthermore, the wvariability in the
normalized attenuation is much larger than the corresponding o1, for the
wavenumber, and it exhibits a nonlinear increase with the NACD, up to 1 at
NACD close to 3 (Figure 5-30d). The large variability in the estimated attenuation
is a direct consequence of the broad range encompassed by the simulated
displacement amplitude data, the variability of which gradually increases as the
NACD grows (Figure 5-28). Finally, no significant influence of the geometrical
spreading model on the estimated attenuation is observed, as the corresponding
reliability and variability are identical.

In summary, the presence of incoherent noise in the recorded wavetield
implies a significant drop in the accuracy of conventional schemes to infer R-
wave parameters, relying on the planar and the cylindrical scheme. Besides, this
affects also the reliability in the estimated attenuation. On the one side, the
addition of incoherent noise does not significantly affect the quality of the
estimated wavenumber, as the average does not drift from the value obtained in
noiseless conditions. Furthermore, the accuracy in the estimate is rather high, due
to the small ain. Instead, the influence of incoherent noise on the inferred phase
attenuation is highly dependent on the NACD. Indeed, at short distances, only a
slight reduction in accuracy occurs. For increasing NACD, instead, the incoherent
noise induces a significant loss in the accuracy, combined with a reduction in
reliability, due to the drift of the mean value at great NACD values. Therefore, the
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presence of incoherent noise in the recorded wavefield exerts a twofold negative
effect on the quality of the estimated attenuation at great distances, with a loss of
both reliability and accuracy. This result also highlights that good quality
attenuation estimates can be achieved only at a limited range of distances from the
sources, where both the influence of body waves and incoherent noise are
minimized. In this specific case, the optimal range of NACD varies between 2 and
4. However, a proper analysis of the wave attenuation must not disregard the
strong variability intrinsically affecting the estimate, which is a direct effect of
noise. These issues are much less relevant in the dispersion analysis, as
conventional estimators usually return reliable and accurate estimates of the R-
wave wavenumber, at almost all the NACD values and noise levels.
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Figure 5-30. Results of the parametric analysis to assess the influence of body waves and
incoherent noise on the estimated R-wave parameters. a-b) Comparison between the
theoretical distribution, according to the normal and the lognormal model, and the
empirical one: a) Estimated wavenumber; b) Estimated attenuation. c-d) Variability in the
estimates: c¢) Variability in the estimated wavenumber; d) Variability in the estimated
attenuation. Results in a-b) refer to NACD = 2.
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5.5 Summary

This Chapter presented a novel family of techniques, named as FDBFa and
CFDBFa, for the estimation of the Rayleigh wave dispersion and attenuation data.
Both techniques rely on a transformation of the wavefield, that allows to obtain
the phase attenuation by carrying out a dispersion analysis on transformed data. In
this way, a robust estimate of the phase attenuation can be achieved, by using a
computationally fast algorithm. As the FDBFa and CFDBFa assume that the
recorded wavefield consists of a single mode, they theoretically return an estimate
of the effective phase velocity and phase attenuation, that might not be coincident
with modal values. Therefore, an additional step has been included in the
proposed algorithms, in which each propagation mode is isolated to fulfil the main
assumptions of the FDBFa and CFDBFa. The modified algorithms are named
FDBFaMF and CFDBFaMF, respectively. The extraction of each wave
component is carried out by applying a bandpass filter to the recorded wavefield,
that preserves the mode of interest and removes additional waves. However, the
design of an effective filter is nontrivial because the capability to separate the
desired component depends on a suite of parameters, for which an a priori choice
is often impossible. For this purpose, a calibration study has been carried out, to
address the influence of filter parameters on the estimated wave parameters. In
general, moderately narrow, intermediate-order filters allow to obtain reliable
estimates of the modal dispersion and attenuation curves. For instance, filters with
order N = 1/2+2/3 times the number of receivers, passband extended up to kves
(i.e., the resolution wavenumber of the array) and stopband starting from 2/kes
may be considered as a valid reference for applying the FDBFaMF and
CFDBFaMF in various site conditions. Indeed, the corresponding estimates of
Rayleigh wave parameters are almost identical to the theoretical values, especially
when the target mode is dominant. Thus, the modal filtering technique can be an
effective tool for a broad variety of surface wave applications. However, this
technique can only be applied to uniformly sampled spatial data, whereas it is not
compatible with waveforms measured in irregular arrays. Furthermore, it is less
effective when data include a small number of spatial samples, as the usable filter
order is so low that it cannot effectively isolate the desired wave component.
Specifically, the filtering procedure is valid when at least 2024 receivers are
available. These issues will be addressed in future studies, to generalize the modal
filtering technique and improve its robustness also in these cases.

The last section of this Chapter addressed the influence of alternative models
of the geometric spreading (i.e., the planar and the cylindrical beamformer) on
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synthetic cases, each representative of a measure of a harmonic Rayleigh wave in
different conditions. When the recorded wavefield consists of a pure, cylindrical
R-wave, the cylindrical beamformer (hence the CFDBFa algorithm) perfectly
matches the desired wave parameters. Instead, the use of a planar scheme would
result in an overestimation of the wavenumber and an underestimation of the
attenuation. On the other side, the inclusion of body waves and incoherent noise
in the recorded wavefield implies a significant drop in the performance of both
estimation procedures. Specifically, both the reliability (i.e., the capacity of
returning estimates close to the true value) and the accuracy (i.e., the capacity of
returning lowly variable estimates) are negatively affected by these two elements.
As for the wavenumber, the presence of body waves induces a slight loss in the
reliability of the estimated data at small NACD values, whereas the addition of
incoherent noise mainly results in a slight loss in the accuracy, due to the small
CoV. Focusing on the attenuation, the inclusion of body waves determines a
dramatic drop in the reliability of the resulting values, due to the strong
overestimation at small NACD values. Furthermore, for increasing NACD, the
incoherent noise induces a significant loss in the accuracy, combined with a
reduction in reliability, due to the drift of the mean value at great NACD values.
Therefore, the presence of incoherent noise in the recorded wavefield exerts a
twofold negative effect on the quality of estimated attenuation at great distances,
with a loss of both reliability and accuracy. For this reason, a reliable and
moderately accurate estimate of attenuation data can be achieved only at a limited
range of distances from the sources, where both the near-field and the far-field
effects are minimal. In this specific case, the optimal range of NACD varies
between 2 and 4. Finally, the planar and the cylindrical beamformer have a rather
similar performance, although the latter tends to return slightly more reliable
wavenumber estimates at low NACD values. For this reason, the CFDBFa
algorithm will be the preferred choice in the processing stages reported in the next
Chapters.
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Chapter 6
Surface wave datasets

This Chapter describes a series of experimental surveys devoted to the collection
of high-quality surface wave data at two different sites in the United States. On
the one hand, the Garner Valley Down-Hole Array is a site located in Southern
California. The purpose of the field survey is the characterization of the velocity
and damping structure of the site. The reliability of the estimated ground models
is then tested, by comparing the expected ground motion amplification with
observed data extracted from a seismic monitoring system herein installed. On the
other hand, Hornsby Bend is a site close to Austin, Texas, in which waveforms
generated by different sources were acquired in arrays with different layouts.
Thus, the influence of the source characteristics and of the array geometry on the
estimated R-wave parameters can be addressed. Besides, an innovative acquisition
setup has been employed to carry out the MASW survey, based on utilizing a
fiber-optic cable rather than geophones. Therefore, this field test allows to
investigate the capability of this new system in retrieving attenuation data. In
summary, the result of both experimental surveys is a valuable dataset that can
represent an effective benchmark for investigating issues and uncertainties
affecting the estimate of the R-wave parameters, with a focus on the derivation of
the phase attenuation and the consequent profile of S-wave damping ratio.
Besides, the resulting S-wave velocity and damping ratio profiles allow to address
the impact of the uncertainties of in situ estimates in the ground motion
amplification, and to assess the reliability of such estimates, in the case of the
Garner Valley Down-Hole Array.

This Chapter first describes the survey carried out at the Garner Valley Down-
Hole Array, then it focuses on Hornsby Bend. For each site, a brief overview of
the geological layout and of the available geophysical information is provided.
Then, it describes in detail the acquisition setup of each MASW survey.
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6.1 Garner Valley Downhole Array

6.1.1 Site description

The Garner Valley Down-Hole Array (GVDA, 33°40.127'N, 116°40.427'W — in
the WGS84 Datum) is located in a narrow valley in Southern California, USA.
The site stratigraphy is characterized by three main geological units. The top unit
is composed by soft silty and sandy alluvial soil, interbedded with some clay
layers and lenses (Hill, 1981). The water table oscillates between the ground
surface down to 1+3 m depth. At about 20 m depth, the alluvium transitions into a
layer of gravelly sand resulting from weathered granite, which overlies a
competent granite bedrock at around 90 m depth (Figure 6-1b). However, the
depth of the interface between alluvium and weathered granite is variable in
space.

The presence of stratigraphic units with sharp variations in dynamic
impedance results in a complex site response to ground motions, with multifold
amplification peaks. Indeed, the site exhibits a moderately low resonance
frequency, equal to 1.7 Hz (e.g., Chandra et al., 2015), combined with higher
amplification peaks at 3, 6, 8, and 12 Hz. Furthermore, the combination between
this peculiar stratigraphy, the near-surface water table and the site vicinity to
seismically active faults (e.g., the San Jacinto fault and the San Andreas fault) has
generated great interest of the earthquake engineering community. For this reason,
the GVDA has become a reference site for ground motion amplification,
liquefaction and soil-foundation-structure interaction (Archuleta et al., 1992).

The GVDA site has been characterized by several geotechnical and
geophysical tests, that will be described in the next Section. Furthermore, this site
is instrumented with a seismic monitoring system, which has been installed in
1989 as a cooperation of the French Institute de Protection et de Stireté Nucléaire
and the U.S. Nuclear Regulatory Commission. The system is currently managed
by the George E. Brown, Jr., Network for Earthquake Engineering Simulation at
the  University = of  California, Santa  Barbara  (NEES@UCSB;
http://nees.ucsb.edu/facilities/GVDA). The site is instrumented with surface and
borehole accelerometers, as well as with a ground water monitoring system. The
equipment includes a one-story soil-foundation-structure-interaction (SFSI)
structure for the study of dynamic response of this structure during earthquakes
(Figure 6-la). The surface equipment is a 244-m long array of five
accelerometers, labeled as S-01, GL-0, S-02, S-03, and S-04. The array is aligned
in the NW-SE direction, with the sensor spacing being equal to 61 m. The Down-
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Hole array of accelerometers consists of a system of sensors, with one surface
accelerometer and five downhole accelerometers, at depths of 6 m, 15 m, 22 m, 50
m, 150 m, and 220 m — however, the latter is no longer operational. The
equipment was upgraded in 1995 by including a deep bedrock borehole, with
accelerometers installed at 500 m and 501 m depth. The sensors of the vertical
seismic array are labeled as GL-i, with i being equal to the corresponding
installation depth (Figure 6-1b). The sensors are installed in a 3x3 m area, and
GL-0 is aligned with the array of surface sensors (Figure 6-1a). Finally, the site
includes a small group of borehole and surface sensors installed on the
outcropping bedrock, 3 km far from GVDA (Steidl et al., 1998).
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Figure 6-1. a) Plane view of surface and borehole accelerometers locations at the Garner
Valley site, California. The figure includes a zoomed view of the sensors installed at the
GVDA, as well as of the SFSI; b) Simplified geological cross section of the Garner
Valley site, including a representation of the depth location of borehole sensors. Sensors
GL-220 and GL-501 are not reported.
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6.1.2 Previous geophysical studies

Due to the high interest of the earthquake engineering research community on
measuring site effects at the GVDA, several geophysical and geotechnical studies
have been carried out to define a complete and precise model of the ground
conditions. Figure 6-2 reports some significant results in terms of velocity and
damping ratio structure estimated in past studies, as well as the locations of past
surveys.

The surveys include a seismic refraction survey (Pecker and Mohammadioun,
1991), a DH survey that explored down to 100 m of depth (Gibbs, 1989) and two
PS suspension logging tests, that investigated a 50-m borehole in 1994 and a 100-
m borehole in 1996 (Steller, 1996). In general, the estimated velocity structure is
consistent with the local geology. Indeed, it involves a surface alluvium layer,
with Vs around 220 m/s and Vp increasing from 400 m/s to 1200 m/s, although the
latter estimate is less reliable due to the limited number of measured data.
Furthermore, other studies showed Vs values close to 100 m/s in the uppermost
layer (Chandra et al., 2015). Then, after a 4-m thick transition zone, Vs rises to
450 m/s and it increases up to 1200 m/s with depth, whereas Vp ranges from 1700
m/s to 2400 m/s. This portion corresponds to the layer of weathered granite. The
velocity characteristics of the competent granite at 100 m depth have not been
directly characterized yet. However, a Vs value equal to 2500 m/s is usually
assumed, based on the extrapolation of the Vs structure of a close-by site sharing
similar crystalline rocks with the bedrock itself (Coutant, 1996). However,
ultrasonic measurements with a 15-kHz signal in a 500-m borehole returned much
higher values of Vs, equal to 3150 m/s. In summary, the site profile includes two
main impedance contrasts, namely the interface between soft alluvium and
weathered rock and the transition to competent rock, and the latter is believed to
mainly control the ground motion amplification at the site (Bonilla et al., 2002).

In addition, several noninvasive geophysical surveys have been carried out,
based on the measurement of both ambient noise (Liu et al., 2000) and active-
source data (Brown et al., 2002; Stokoe II et al., 2004). Moreover, Teague et al.
(2018b) carried out an extensive survey involving both active-source MASW and
passive ambient noise acquisition, considering linear and circular arrays located at
three different locations, each on the vicinity of an accelerometer of the surface
array. These studies observed that the Rayleigh wavefield at GVDA is mostly
controlled by the fundamental mode of propagation of Rayleigh waves.
Furthermore, they confirmed the velocity structure obtained from invasive
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surveys. However, resulting profiles exhibit slightly different variations of Vs with
depth, which can be an effect of lateral variability at the GVDA site.

This reference velocity structure has been gradually modified, based on
observations of the ground motion at the GVDA alone or combined with other
surveys (e.g., Seylabi et al., 2020). For instance, Bonilla et al. (2002) inferred a
detailed velocity model down to 500 m depth, trying to match the arrival time and
the amplitude of a target weak-motion. They also derived a preliminary damping
structure, in terms of Dp and Ds. Instead, Chandra et al. (2015) carried out a
seismic interferometry study, combining weak motion records to obtain the Vs
profile. The resulting velocity structure is quite compatible with other studies in
the uppermost 50 m of the soil deposit, whereas it tends to provide lower values of
Vs at greater depths. This discrepancy could be a side effect of using the
interferometry in the presence of strong impedance variations, as in this case.
Finally, Tao and Rathje (2019) interpreted recorded seismic data in the DH-array,
according to the amplification approach (see Section 4.4.3) and they provided an
alternative estimate of the Ds structure, whereas they referred to DHT results for
the Vs profile.

These studies also highlighted some pitfalls in adopting a 1D ground model to
describe the seismic amplification at the GVDA. On the one side, Bonilla et al.
(2002) noticed that the synthetic model does not capture late arrivals especially in
the shallow sensors. Indeed, these events are likely the effect of surface waves and
scattered waves generated by the three-dimensional geometry of the transition
between weathered and competent material at around 90 m depth and by
inhomogeneities in the alluvium (Coutant, 1996). In addition, anisotropy in the
velocity structure has been identified, even in the shallow layers. The anisotropy
in rock layers may be an effect of oriented cracks in the material (Nur, 1971;
Kelner et al., 1999; Chandra et al., 2015), whereas in soil layers this could be the
result of spatially variable mechanical properties (Coutant, 1996). The anisotropy
may be a source of complexity in the ground motion amplification (e.g., Bonilla et
al., 2002). Therefore, Fathi et al. (2016) attempted to obtain a 3D estimate of the
velocity model of the GVDA down to 40 m depth, by interpreting active-source
data measured on a spatial array by means of a full wave inversion algorithm. The
identified Vs and Vp well compare with results from a SASW survey carried out
inside the acquisition area, except at greater depths. However, some lateral
variations in Vs are highlighted, especially in the shallow portion (Figure 6-3).
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Figure 6-2. a) Plane view of the GVDA, showing the location of some invasive and non-
invasive surveys carried out at the site. As for the active-source (SASW and MASW) and
passive measurements (MAM), the lines and the circles denote the shape underlying the
sensors’ setup; b) Estimated S-wave velocity profiles from various studies carried out at
the GVDA; c) Estimated S-wave damping ratio profiles from various studies carried out

177



at the GVDA. In the figure, DHT stands for results from the DHT by Gibbs (1989);
Shallow PS and Deep PS report results from Steller (1996); SASW-1 labels results from
the SASW survey by Brown et al. (2002); SASW-2 and SASW-3 label results from the
SASW survey by Stokoe II et al. (2004); MASW+MAM labels results from the survey by
Teague et al. (2018b); AA-1 denotes results from the fitting of DH-array data by Bonilla
et al. (2002); IF labels results from the interferometry study by Chandra et al. (2015);
AA-2 identifies results of the amplification analysis of DH-array data by Tao and Rathje
(2019); and MASW+MAM+DHa denotes results from the combined inversion of SWM
data and DH-array data by Seylabi et al. (2020). Only the first 150 m of depth are
represented.
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Figure 6-3. Three-dimensional velocity structure reconstruction by full waveform
inversion: a) Acquisition setup; b) Estimated S-wave velocity model (after Fathi et al.,
2016).

6.1.3 MASW survey

The investigation of the small-strain parameters of the soil deposit at the GVDA
site was carried out by means of a MASW survey. The testing involved two two-
dimensional arrays. One array consisted of a regular, square grid of 196
geophones, with a uniform inter-receiver spacing equal to 5 m and a total extent
of 65 m for each side (Figure 6-4). The grid orientation was from North-West to
South-East and the base lines are orthogonal with each other. This testing setup is
hereafter labeled as GV-H5. The second array was an irregular grid of 196
sensors, with spacing equal to 5 m in the paracentral region and 10 m in the
peripheral portion. Thus, the total extent was 100 m in the North-West to South-
East direction and 90 m in the perpendicular one (Figure 6-5). This testing setup is
henceforth identified as GV-HN. The investigated areas by the two arrays are
adjacent to or they partially contain the GVDA and they include the central
portion of the surface array of accelerometers.

The receivers were Magseis Fairfield Nodal ZLand 3C nodes. These
instrumentations are all-in-one nodes, including both a sensor, a built-in
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datalogger and a power supply. The nodes are cable-free, and the time
synchronization is guaranteed by onboard GPS time. The sensor unit is a three-
component geophone, with passband corner frequency equal to 5 Hz, viscous
damping ratio of 70% and a sensitivity of 1.95 Volts/in/s, namely 76.7 Volts/m/s.
This kind of equipment is suitable for both active and passive surveys. The data
acquisition system continuously recorded the particle velocity with a sampling
rate of 200 Hz, storing data in an internal unit. Receivers were buried in the
ground, to limit the influence of undesirable noise on the measured waveifeld and
ensure adequate coupling with the ground, as suggested by the InterPACIFIC
guidelines (Foti et al., 2018).

Waveforms were generated through a vibrating source, namely the
NHERI@UTexas Thumper vibroseis truck (Stokoe II et al., 2020) and an
impulsive source. In both cases, various shot points were employed, with variable
offsets from the closest receiver. In this way, thanks to the multiple-source offset
technique (Cox et al., 2014), the influence of near-field effects on the estimated R-
wave parameters can be mitigated, and the corresponding uncertainties can be
rigorously quantified.

The impulsive source was a 20-1b instrumented sledgehammer striking on a
metal plate, at different locations both inside and outside the spatial array. An
accelerometer installed inside the sledgehammer allowed to record the force
transmitted onto the ground. Internal shots points were located at the midpoint
between each couple of sensors inside alternate NE-to-SW grid lines, whereas
external shot points were placed at 5 m and 15 m off both ends (Figure 6-4a). At
each shot point, five repetitions were run.

The vibrating source generated a 12-s long sweep signal, namely a
nonstationary signal whose frequency linearly increases with the time, shifting
from 5 Hz to 30 Hz. The input force was recorded by an accelerometer installed
on the base plate. When possible, two external shot points were employed for
each side, with offsets from the closest sensor ranging between 2 m and 5 m, and
30 m and 35 m, respectively. Instead, internal shot points were applied at the
midpoint of specific couples of sensors. However, some shot points were non-
symmetrical or even missing, mostly due to logistic issues linked with the
accessibility of the vibroseis truck (Figure 6-4b). At each shot point, three
repetitions were performed, whereas the number was increased to ten at the
farthest source-offsets.

The peculiar acquisition setup adopted in this survey primarily aims at
developing a three-dimensional model of the soil deposit at the GVDA, by
exploiting a full waveform inversion algorithm. However, measured data can be
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still effectively interpreted according to canonical MASW processing schemes, by
extracting information from each linear sub-array of sensors. Furthermore, the
comparison of the experimental Rayleigh dispersion and attenuation curves at
each sub-array might provide a valuable insight on spatial variations of the near-
surface velocity and dissipation structure of the soil deposit. Finally, the closeness
between both arrays and the GVDA allows to carry out a consistent comparison
between the resulting soil model and the information provided by borehole data,
thus assessing the reliability of the estimated Vs and Ds profiles.

6.2 Hornsby Bend

6.2.1 Site description and previous geophysical studies

The site of Hornsby Bend (HB, 30°13.918'N, 97°38.631'W — in the WGS84
Datum) is located on the outskirts of the city of Austin, Texas. The site is a flat
area next to the Colorado River, owned by the City of Austin. The site
stratigraphy 1s mostly characterized by layered alluvial soils. Specifically, a
moderately stiff 15 m thick clayey layer overlies a loose-to-medium dense layer
with fine sands. At greater depths, stiff clays are found (Figure 6-6c¢).

The site has been object of geophysical investigations by Van Pelt (2010),
who carried out CHT and SASW measurements quite close to Hornsby Bend, in
his study about the influence of soil dynamic parameters on foundations
settlements. Kallivokas et al. (2013) attempted to develop a 2D velocity model of
the site from measured active-source data on a spatial grid of sensors, by
exploiting the full waveform inversion algorithm. The resulting velocity structure
exhibits some lateral variations, although the deviation from the one-dimensional
geometry is not significant (Figure 6-6b). Indeed, results were compatible with the
Vs profile resulting obtained from a SASW survey carried out at the same
location. Observed discrepancies were attributed to both lateral variability and
limitations of the layered model used in the SASW-based estimate, that tends to
return a coarse velocity model not representative of the actual, smooth variations.
In general, near-surface layers exhibit moderately low Vs values, ranging between
200 m/s and 250 m/s, with moderately large variability. At depth, instead, Vs
gradually increases up to 400 m/s, in correspondence of the shale layer (Figure
6-6d).
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Figure 6-4. Acquisition setup of GV-HS5 at the GVDA site: a) Location of sledgehammer
shot points; b) Location of shaker shot points.
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Figure 6-5. Acquisition setup of GV-HN at the GVDA site: a) Location of sledgehammer
shot points; b) Location of shaker shot points.
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Figure 6-6. a) Hornsby Bend site. The map also reports the location of the SASW surveys
by Van Pelt (2010) (SASW-1) and Kallivokas et al. (2013) (SASW-2), together with the
location of the MASW surveys herein discussed, namely HB-HS5, HB-HN, HB-GP, and
HB-DAS; b) Two-dimensional velocity model along the SASW-2 line, developed by
Kallivokas et al. (2013); ¢) Simplified geological cross section along the SASW-2 line; d)
S-wave velocity profiles, estimated by Van Pelt (2010) (SASW-1) and Kallivokas et al.
(2013) (SASW-2).
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6.2.2 MASW survey

The geophysical investigation at the HB site was carried out by means of various
MASW surveys, held at different stages. In all the cases, the investigated area is
rather close to the location of the survey by Kallivokas et al. (2013). Differently
from GVDA, all the surveys collected active-source data on linear arrays of
sensors, albeit with different geometries, source types and receivers. Part of the
in-situ tests used two arrays of geophones with variable geometry, and different
sources generated the acquired waveforms. This survey aims at assessing the
influence of two main acquisition parameters (i.e., the array geometry and the
source characteristics) on the estimated R-wave parameters. Furthermore, an
additional surface wave dataset collects waveform data by both an array of
geophones and a fiber-optic device, thus allowing to address the influence of the
receiver characteristics. This represents one of the first applications of fiber-optic
data to retrieve the R-wave phase attenuation. As these surveys will focus on
different factors affecting estimated R-wave parameters, they will be treated
separately.

6.2.2.1 First round of testing

The first round of testing involved two one-dimensional arrays, both aligned along
the North-West to South-East direction (Figure 6-7). The first layout was an array
of 46, regular-spaced geophones. The inter-receiver spacing was equal to 5 m,
hence the total extent of the array is 225 m. This testing setup is hereafter labeled
as HB-HS5 (Figure 6-7a). The second array was an irregular grid of 46 sensors,
with spacing gradually increasing from 1 m to 8 m while moving towards North-
West, with doubling steps. Thus, the array length was 192 m. This testing setup is
henceforth identified as HB-HN (Figure 6-7b).

The receivers were GeoSpace GS-11D 4.5-Hz vertical geophones, that are
sensors suitable for active surveys, with passband corner frequency equal to 4.5
Hz, viscous damping ratio of 70% and a sensitivity of 2.54 Volts/in/s, namely
97.4 Volts/m/s. Receivers were coupled with the ground by means of 7.6-cm
metal spikes. Data were recorded by two interconnected 24-channel Geometric
Geode seismographs, with a sampling time of 0.03125 ms. The remaining two
channels were used to record source data. One recorded the drive signal from the
shaker, when used, whereas the other recorded the actual input force, by means of
an accelerometer installed on the base plate.

Part of the waveforms recorded in HB-H5 and HB-HN were generated
through the NHERI@UTexas Thumper vibroseis truck (Stokoe II et al., 2020).
The vibrating source applied a 20-s chirp, with a log-linear increase of the
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characteristic frequency between 3 Hz and 100 Hz. In addition, the vibroseis
generated a stepped sine signal, i.e. a sequence of monochromatic signals with
different frequencies. Also in this case, the frequency shifted logarithmically
between 3 Hz and 100 Hz in 51 steps, and 50 harmonic cycles were applied in
each step. In this specific case, the data acquisition system returned frequency-
domain data, where each frequency is associated with an average value of the
spectral ground velocity at the corresponding stage. Waveforms were generated at
five external shot points at the South-East side, with offsets from the closest
sensor equal to 10 m, 20 m, 30 m, 40 m, and 50 m. Recorded data in HB-H5
include also waveforms generated on reversed shot points (Figure 6-7a). As for
HB-HN, additional shot points were included inside the array, next to locations
where the receiver spacing changes (Figure 6-7b). The internal shot points seek to
isolate sub-sections of the array, thus improving the quality of high-frequency
estimates of R-wave parameters.

Besides, waveforms in HB-HN were also generated by a 20-1b instrumented
sledgehammer striking a metal plate lying on the ground. Waveforms were
generated at three external shot points at the South-East side, with offsets from the
closest sensor equal to 3 m, 7 m, and 10 m. Offsets were smaller than those of
shaker shots to preserve the high-frequency components of the impulsive source.
However, some internal shot points were included as well (Figure 6-7b).

The main purpose of this survey is the assessment of the influence of the
acquisition geometry and of the source characteristics on the estimated R-wave
parameters, in terms of investigated frequency range and related uncertainties. As
for the geometry, due the moderately large receiver spacing, HB-HS is suitable for
investigating the soil deposit structure at large depths. Indeed, the maximum
resolvable wavelength approximately equals the array length, i.e. 225 m, thus the
survey can potentially reconstruct the velocity and damping structure down to
75+110 m depth. Instead, the HB-HN acquisition setup seeks to fulfil a trade-off
between two opposing needs, namely accurate resolution of shallow layers and
extended investigation at great depths. On the one side, the portion with small
inter-receiver distance allows to obtain a significantly small minimum resolvable
thickness, which is about 0.3+0.5 m — at least theoretically. On the other side, the
maximum resolvable wavelength approximately equals 192 m, thus HB-HN can
reconstruct the velocity and damping structure down to 65+95 m depth. In this
way, HB-HN array should contribute to investigate at greater depths, while
preserving good resolution at shallow depths. As for source characteristics, the
application of a stepped sine is more time-consuming, but it guarantees very high
signal-to-noise ratio, hence it is expected that the quality of estimated R-wave
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parameters will be excellent. However, sweep signals still provide high-quality
data covering a broad range of frequencies in a single application (Foti et al.,
2014).
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Figure 6-7. a) Acquisition setup of HB-H5 at the HB site; b) Acquisition setup of HB-HN
at the HB site.

6.2.2.2 Second round of testing
The second round of testing involved two one-dimensional arrays, investigating
an area next to the one explored with HB-HS5 and HB-HN. Specifically, both

186



arrays developed on the side of a small unpaved road, along the South-West to
North-East direction (Figure 6-6a).

The first layout was an array of 48, regular-spaced vertical and horizontal
geophones. The inter-receiver spacing was equal to 2 m, hence the total extent of
the array equaled 94 m. This testing setup is hereafter labeled as HB-GP (Figure
6-8). The receivers were GeoSpace GS-11D 4.5-Hz vertical geophones, whereas
four interconnected 24-channel Geometric Geode seismographs recorded
waveform data, with a sampling rate of 1 kHz.

The second acquisition scheme was a distributed acoustic sensing (DAS),
fiber-optic array. DAS technology measures the axial strain of the fiber-optic
cable induced by external perturbations (e.g., mechanical waves), using the phase
interferometry principle (Hartog, 2017; Bakulin et al., 2020). Specifically, an
interrogator unit measures variations in phase of a laser pulse traveling inside the
cable over a reference length, called gauge length, that are linked with variations
in relative distance, whence the axial strain is derived. This survey utilized a 200-
m long NanZee Sensing Technology (NZS-DSS-C02) fiber-optic cable, which
was installed adjacent to HB-GP. The cable was buried inside a trench, backfilled
with compacted soil to ensure an appropriate coupling of the cable with the
ground. In this way, the measured axial strain along the cable corresponds to the
actual strain experienced by the ground. Axial strain data were recorded by the
ODH4 OptaSense Interrogation Unit, according to a gauge length equal to 2.04 m
and a channel separation of 1.02 m, i.e., measurements of the wavefield were
provided approximately every 1 m along the cable. However, each measured
value represents an average cable response over the gauge length (i.e., 2.04 m)
surrounding each channel location, at 94 locations, over a total length of 94 m.
The interrogator unit returned data sampled at 100 kHz rate, that were then down
sampled at 1 kHz and high-pass filtered above 3 Hz to remove artifacts at low
frequencies linked with the acquisition. This testing setup is hereafter identified as
HB-DAS (Figure 6-8).

HB-GP and HB-DAS simultaneously recorded waveforms generated through
different sources, namely an instrumented sledgehammer, the NHERI@UTexas
Thumper vibroseis truck and the three-dimensional T-Rex vibroseis truck (Stokoe
IT et al., 2020), that were applied at different locations. External triggering was
used to synchronize the source and both acquisition systems. However, this study
focuses on waveforms generated by the Thumper truck, which generated a 12-s
long chirp signal, with frequency shifting from 5 Hz to 200 Hz. Furthermore, this
study will address only data associated with the source locations on the North-
East side, with offsets equal to 5 m, 10 m, 20 m, and 40 m from both HB-GP and
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HB-DAS. At each shot point, three repetitions were run. Only the vertical motion
data are considered for the HB-GP array.

The choice of using different acquisition layouts aimed at investigating the
influence of the array geometry and the equipment type onto the estimated
dispersion and attenuation data. A 94-m section of the fiber-optic cable, which is
adjacent to HB-GP, is selected in this study.
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Figure 6-8. Acquisition setup of HB-DAS and HB-GP at the HB site.
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Chapter 7
Uncertainties in dispersion and
attenuation estimates

The interpretation of MASW surveys should account for the sources of
uncertainties that might affect the estimated R-wave parameters. Specifically, all
the uncertainty components must be correctly identified, properly modeled and
finally quantified (IQM procedure; Passeri, 2019). As uncertainty components
have various nature, an effective taxonomy distinguishes between epistemic
uncertainties and aleatory variability. Epistemic uncertainty rises from the lack of
knowledge about the phenomenon under investigation and it incorporates all the
features that appear as unexplained by the model that is adopted for the
interpretation. Their quantification is a complex task; however, they can be
theoretically removed by adopting more refined and complete interpretation
models. Instead, aleatory variability clusters all the mechanisms linked with the
natural randomness affecting measured data of the phenomenon under
investigation. Aleatory variability cannot be reduced to zero, although the
repetition of measurements may provide a reliable estimate. Besides, the
quantification of the related magnitude can be achieved through statistical tools.

In SWM surveys, the separation between epistemic uncertainties and aleatory
variability is not trivial, as they often appear as lumped together. For instance,
variations in the estimated R-wave parameters due to different source-receiver
configurations are usually an effect of lateral heterogeneities of soil deposits,
which is a combination of aleatory variability and epistemic uncertainty. On the
one side, standard surface wave testing intrinsically assumes 1D modeling for soil
stratigraphy, hence the scatter in estimated data might be interpreted as an
epistemic uncertainty. However, in sites where lateral variations are negligible,
this uncertainty can be modeled as an aleatory variability (Foti et al., 2018).

A critical epistemic uncertainty is related to the so-called near-field effects.
They are the result of model incompatibility issues, as usual processing schemes
rely on the hypothesis that the recorded wavetfield consists solely of planar
Rayleigh waves, whereas actual waveforms include both surface waves and body
waves, and surface waves propagate according to cylindrical wavefronts. The
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influence of near-field effects on the estimated R-wave phase velocity and phase
attenuation has been addressed in Chapter 5. Furthermore, the recorded wavefield
data may be corrupted by the presence of reflected or refracted body waves, back-
scattered waves, other surface waves (e.g., Lamb waves) and the air blast.
Typically, all the wave components other than the target one (i.e., Rayleigh
waves) are labeled as coherent noise (Strobbia, 2003). An additional source of
epistemic uncertainty is linked with the specific processing scheme adopted to
interpret waveform data. Indeed, each approach relies on specific modeling
assumptions of the wavefield, hence the degree of consistency with real data is
variable. For instance, some algorithms include an explicit modeling of the
cylindrical shape of the Rayleigh wavefront (Zywicki, 1999; Zywicki and Rix,
2005; Marano et al., 2017), hence they mitigate the influence of near-field effects.
Furthermore, each processing scheme relies on different computation algorithms,
with variable degree of sensitivity to incoherent noise and capacity of identifying
different wave components (i.e., Rayleigh propagation modes). The mode
separation itself represents another relevant source of epistemic uncertainties, as
the recorded Rayleigh wavefield is typically multimodal and the correct
identification of each mode depends on the adopted processing technique, on site
conditions and on the acquisition geometry. The mode misidentification might
result in physically unrealistic soil profiles, far from the actual stratigraphy of the
investigated soil deposit.

In SWM, aleatory variability is usually associated with lateral variations in
the soil stratigraphy and incoherent noise. The influence of local heterogeneities
and lateral variability in the soil deposit is a well-known source of uncertainty, as
it introduces a perturbation into the Rayleigh wavefield. The resulting variability
in the estimated R-wave parameters can be interpreted as aleatory variability,
when deviations from the 1-D model are not relevant. The related influence
depends also on the acquisition layout, because long receiver arrays sample a
rather large portion of the soil deposit, and the probability of finding significant
lateral variability is greater. As for incoherent noise, this represents the
perturbations in the wavefield due to ambient vibrations, that are not generated by
the active source. Due to the random nature of this component, the effect of
incoherent noise on the estimated R-wave parameters represents an excellent
example of aleatory variability. Its presence is usually tackled by a stacking
procedure, that allows to increase the signal-to-noise ratio and to reduce the
influence of noise on experimental data. However, incoherent noise has a
significant impact on the estimated wave attenuation, as it has been demonstrated
in Chapter 5.
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The first part of this Chapter addresses some relevant sources of epistemic
uncertainties affecting the estimated phase velocity and phase attenuation. On the
one side, this study assesses the role of the processing technique on the quality of
derived R-wave parameters, with reference to both synthetic cases and field
surveys carried out at Hornsby Bend (HB) and Garner Valley (GV). Furthermore,
the influence of source characteristics on the experimental data is investigated, by
adopting the wavefield data recorded at the HB site as the experimental dataset.
The overview of epistemic uncertainties ends with a comparison between the
derived phase velocity and attenuation values obtained from geophone and fiber-
optic data at the HB site, thus investigating the capability of this new system in
retrieving attenuation data. This assessment also allows to understand the
sensitivity of the estimated R-wave parameters to the specific acquisition device.
The final part of this Chapter focuses on the aleatory variability, introducing a
statistical model to jointly describe the variability of the experimental dispersion
and attenuation data.

7.1 Inter-method differences

This Section addresses the epistemic uncertainties linked with the specific
methodology to process surface wave data, by inspecting the inter-method
differences in the estimated phase velocity and phase attenuation data. The
analysis is firstly carried out on synthetic wavefields (SW3 and SW4; see Section
5.1), to assess the performance of each processing technique in ideal, noiseless
conditions. Furthermore, the solution of the Rayleigh eigenvalue problem
provides theoretical estimates of the R-wave parameters, that represent a
benchmark for checking the reliability of each technique. Then, the inter-method
comparison is carried out on in situ recorded data, in which the influence of
incoherent noise is fundamental. This study focuses on results of the surveys
performed at GV and HB sites. Indeed, the recorded wavefield at the former site is
dominated by a single Rayleigh propagation mode, hence it can be used to
simultaneously compare techniques providing modal estimates of the R-wave
parameters (e.g., the CFM) and methods providing an effective value (e.g., the
CFDBFa). Instead, the multimodal nature of the wavefield recorded at HB allows
to investigate the effectiveness of various processing techniques in capturing
different propagation modes, with a focus on the modal phase attenuation. For the
same reason, this site represents a potential application to assess the capability of
the proposed modal filtering techniques in extracting R-wave modes from real
data.
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In general, the inter-method comparison focuses on different features
describing the quality of the estimated R-wave parameters, namely the reliability,
the accuracy and the capability of each scheme of returning acceptable data over a
broad range of frequencies.

7.1.1 Synthetic data

In this study, the investigation of the epistemic uncertainties linked with the
specific methodology to process surface wave data is carried out by inspecting the
inter-method differences in the estimated wave parameters, for the synthetic
wavefields SW3 and SW4.

This study investigates the inter-method differences in terms of both the
investigated frequency range and the reliability. For each methodology, the
reliability is quantified by measuring the relative error between the estimated
dispersion and attenuation data — Vze(w) and agr.(®), respectively — and the
theoretical Vz(w) and ar(w) values, for each synthetic soil profile (e.g., Badsar et
al., 2010; Verachtert et al., 2017; Bergamo et al., 2019). However, the considered
processing techniques rely on different modeling of waveforms composed by
multiple propagation modes. Some methods include an explicit modeling of
multiple propagation modes (namely, GHPB, CFM, WD, FDBFaMF, and
CFDBFaMF), hence they ideally provide estimates of the modal dispersion and
attenuation curves. In this case, the reliability of each approach is addressed by
comparing estimated modal data with the corresponding ones obtained from the
solution of the R-wave eigenvalue problem. Other methods, instead, return
estimates of effective dispersion and attenuation curves (i.e., TFM, FDBFa, and
CFDBFa). In this case, a comparison with the modal values would be misleading,
as the intrinsic discrepancy between effective and modal data might be
misinterpreted as a source of bias. Thus, the study of inter-method differences
should rely on a comparison between estimated and theoretical values of the
effective dispersion and attenuation data. However, this section focuses on the
performance of modal-based estimation techniques, whereas the reliability of the
TFM, FDBFa, and CFDBFa will be addressed on real-case data, as it will be
shown in the next Section. Furthermore, this study does not report results from the
GHPB because of the almost equivalent performance compared with the CFM
(see Appendix B). For the same reason, the FDBFa and the FDBFaMF are not
considered either.

For each synthetic wavefield and each processing technique, results were sampled
with a sampling frequency of 1 Hz, across the frequency band ranging between 3
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Hz and 100 Hz. The comparison takes place both by superimposing estimated
data with theoretical curves, and by inspecting the relative error, expressed in
terms of normalized phase velocity Vz./Vr (i.e., the ratio between the estimated
and the theoretical modal value) and normalized phase attenuation ar./ar. This
ratio equals the unity when the estimates are identical, whereas a value greater
than 1 denotes an overestimation of the modal value. In addition, a quantitative
measure of the relative differences is provided in terms of root mean square error
AV and Aa, for the phase velocity and phase attenuation data respectively:

AV = \/%ZN:(IH Ve —anR)2 Ao = \/%ZN:(ln r. —In i )2 (7.1)

where N is the number of samples. This quantity is computed over the
frequency range wherein all the considered techniques return wave parameters.

Furthermore, a synthetic graph highlights the investigated frequency range, to
allow an immediate comparison in terms of relative performance. Although

synthetic data virtually enable the investigation of a broad frequency range, a
proper investigation of the performance of each processing scheme should
account for the restrictions due to the limited spatial sampling in the acquisition
layout. Therefore, data above the maximum investigable wavelength Anwx = D
(where D = 100 m is the array length; however, this criterion is a conservative
choice, see for instance Socco and Strobbia, 2004) and below the minimum one
Amin = d (Where d = 2 m is the receiver spacing) — if any — are included in the
comparison, but a different coloring is adopted to highlight their peculiar
condition. In a similar way, data beyond the resolution limits of the simulated
array are not included in the computation of AV and Aa.

7.1.1.1 Results for SW3

Figure 7-1 compares estimated and theoretical fundamental-mode (labeled as RO)
R-wave parameters for SW3 data. Results on the first two higher modes (i.e., R1
and R2) are reported in synthetic way in Figure 7-2. The corresponding AV and
Aa are reported in Table 7.1.

The resulting dispersion curves are rather close to each other and match the
theoretical one, for almost each approach, as demonstrated by the similar AV
values (Figure 7-1a). This is valid especially at high frequencies, whereas some
discrepancies are observed at low frequencies. Specifically, all the methods tend
to underestimate Vz(w) at f< 15 Hz, with a significant deviation at /< 10 Hz (i.e.,
A > 25 m; Figure 7-1c). The maximum error is about 10%, which is consistent
with other studies (Figure 7-1; e.g., Bodet et al., 2009). The main source of such
divergence is near-field effects, especially the model incompatibility effect due to
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the contribution of body waves. However, there are some exceptions. On the one
side, WD returns a dispersion estimate perfectly compatible with Vz(w) even at
frequencies between 10 Hz and 15 Hz. Instead, the CFDBFaMF returns
oscillating estimates of dispersion data at low f values, and the error magnitude is
bounded between 5% and 10%. This oscillation might be an artifact introduced by
the modal filtering procedure, which may have returned a mixture of the
fundamental-mode R-wave and body waves. Indeed, this erratic behavior in
Vre(w) is typical of a wavefield corrupted by strong body waves (e.g., Rahimi et
al., 2021).
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Figure 7-1. Assessment of the inter-method differences for the fundamental mode R-wave
dispersion and attenuation curve, with reference to SW3: a) Theoretical vs. estimated
dispersion curves; b) Theoretical vs. Estimated attenuation curves; ¢) Normalized phase
velocity Vz./Vz (i.e., the ratio between the estimated and the theoretical phase velocity),
as a function of the frequency; d) Normalized phase attenuation az./ar (i.e., the ratio
between the estimated and the theoretical phase attenuation), as a function of the
frequency; and normalized phase attenuation og./or. The vertical axis is represented in
logarithmic scale as arc./or spans multiple orders of magnitude. Estimated data points
beyond the array resolution limits — i.e., the grey areas in a) — are colored in grey.
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As for attenuation data, all the approaches agree quite well at high frequencies
and the estimation error is negligible in this range (Figure 7-1b-d). On the other
side, they tend to overestimate ar(w) at low frequencies, with a much larger drift
than what observed for dispersion data. As a result, Aa is generally quite large.
Specifically, the estimated value can be even several orders of magnitude larger
than ar(w). For all the considered methods, differences are moderately small at />
15 Hz (i.e., 4 < 13 m) and they slowly increase up to /= 10 Hz (i.e., A = 20 m).
This trend is not exactly matched by the CFDBFaMF, as the corresponding ar e/ar
undergoes oscillations that are compatible with those observed in the dispersion
data. Furthermore, the CFM tends to overestimate high-frequency attenuation
data. At lower f values, the estimated attenuation increases monotonically and
arelar rises up to 3 for the CFDBFaMF and up to 10 for the CFM, whereas the
overestimates ar by a factor of 5, at = 6 Hz. Beyond the resolution limits of the
array, only CFDBFaMF data are available, and the divergence from Vr(w) is
moderately low, whereas ar./or slowly grows up to 10. Interestingly, the drift in
dispersion and attenuation data occurs at wavelengths greater than 10 m, which is
consistent with similar findings on near-field effects. For this reason, both the drift
in dispersion and in attenuation data may be linked with near-field effects, that are
not modeled in an explicit way, especially in terms of the body-wave contribution.

Table 7.1. Estimated root mean square error for the phase velocity AV and for the phase
attenuation Aa for the circle fit method (CFM), the wavefield decomposition approach
(WD), and the cylindrical frequency-domain beamforming-attenuation with modal
filtering (CFDBFaMF). The total error AV + Aa is included in brackets. Residuals are
computed with reference to the lowest-order three propagation modes (labeled as RO, R1
and R2, respectively) of the synthetic wavefield SW3.

Mode AV; Aa (AV+Aa)

CFM WD CFDBFaMF
RO 0.023; 0.43 (0.46) 0.0060; 0.22 (0.22) 0.015; 0.36 (0.20)
R1 0.015;0.16 (0.18) 0.010; 0.37 (0.38) 0.020; 0.35 (0.20)
R2 0.0059; 0.23 (0.24) 0.0083; 2.62 (2.64) 0.031; 0.12 (0.16)
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Figure 7-2. Assessment of the inter-method differences for the R-wave dispersion and
attenuation curves, with reference to SW3. Each plot contains bars spanning along the
frequency range at which each method returned estimates of R-wave dispersion data (top
row) and attenuation data (bottom row). The color scale is a function of the magnitude of
the normalized phase velocity Vz./Vz (i.e., the ratio between the estimated and the
theoretical phase velocity), or the normalized phase attenuation ar./ar (i.e., the ratio
between the estimated and the theoretical phase attenuation): a-d) Fundamental mode; b-
e) First higher mode; c-f) Second higher mode. The numeric values in brackets denote the
maximum and the minimum detected wavelength.

A synthetic description of results is reported in Figure 7-2, for RO (Figure
7-2a-d), R1 (Figure 7-2b-e), and R2 (Figure 7-2c-f). For each investigated mode,
the figure represents the frequency range at which each method returned
dispersion and attenuation data, at the boundaries of which are included the
wavelength limits. Besides, each bar includes a pseudo-color scheme that
indicates the Vz./Vr and arc/or. As for RO, all the considered techniques return
estimates across a broad range of frequencies. Focusing on higher modes, the
overall quality in the estimated data is lower than what observed for the
fundamental mode. Indeed, the contribution of R1 and R2 in SW3 is less relevant
than RO, and it becomes even negligible across a broad frequency range.
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However, the investigated methods are still able to identify the corresponding
modal parameters. All the methods successfully identify the R1 dispersion curve,
at moderately high frequencies, although the CFM tends to overestimate Vz(w) at
low frequencies because of the influence of other modes on the correct definition
of the spectral peak. In the same range, the CFDBFaMF significantly
underestimates Vg(w), due to the inability of the modal filter in effectively
separating the weak target mode from the dominant one (i.e., RO). If the degree of
matching in terms of dispersion is acceptable at high frequencies, the fitting
quality of ar(w) is generally poor and the estimated value is often erratic, for all
the considered methods. The only exception is the CFDBFaMF, which achieves a
good level of compatibility at /> 50 Hz, and the WD at intermediate frequencies.
Similar results apply for the R2. In this case, the WD identifies this propagation
mode just over a narrow frequency range, whereas the CFDBFaMF is quite
effective in characterizing the corresponding modal parameters. Specifically, the
CFDBFaMF well captures Vz(w) above 50 Hz, whereas a good level of fitting
with ar(w) is achieved above 70 Hz, which is the frequency range where Vz(w) is
exactly matched.

7.1.1.2 Results for SW4

In the inversely dispersive medium, characterized by the wavefield SW4, all the
methods tend to return reliable estimates of both Vz(w) and ar(®) for RO, R1, and
R2, as shown in Figure 7-3, Figure 7-4, and Table 7.2. This result is not
surprising, as SW4 is a remarkably multimode wavefield, where the contribution
of each propagation mode is dominant at specific frequency ranges. Thus, being
each frequency component of SW4 mainly dominated by a single propagation
mode (either RO, R1, or R2), the investigated methodologies successfully retrieve
the corresponding modal wave parameters.
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Figure 7-3. Assessment of the inter-method differences for the fundamental mode R-wave
dispersion and attenuation curve, with reference to SW4: a) Theoretical vs. estimated
dispersion curves; b) Theoretical vs. Estimated attenuation curves; ¢) Normalized phase
velocity Vz./Vr (i.e., the ratio between the estimated and the theoretical phase velocity),
as a function of the frequency; d) Normalized phase attenuation az./ar (i.e., the ratio
between the estimated and the theoretical phase attenuation), as a function of the
frequency; and normalized phase attenuation ogr./or. The vertical axis is represented in
logarithmic scale as ar./ar spans multiple orders of magnitude. Estimated data points
beyond the array resolution limits — i.e., the grey areas in a) — are colored in grey.

With a focus on RO (Figure 7-3a-b), all the estimators tend to match Vz(w)
and ar(w) at moderately high frequencies, up to 30 Hz — above this value, the
contribution of RO in SW4 becomes negligible and it becomes no longer
detectable. On the other side, Vz(w) is slightly underestimated at low frequencies
(i.e., at < 10 Hz, corresponding to 4 > 22 m), with a difference bounded within
10% (Figure 7-3c), as demonstrated by the low A} values. In the same frequency
range, all the considered methods dramatically overestimate the low-frequency
ar(w), due to the unmodeled contribution of body waves (Figure 7-3d). However,
if the comparison is restricted to Amax = 30 m, then the relative differences are
negligible and the overall performance of all the processing schemes is good. This
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A value represents the upper boundary of the range of wavelengths needed to fully
resolve the layers’ interfaces of the medium, as the deepest one is located at 10 m
depth. Therefore, if SW4 represented the output of a survey deemed to
characterize the corresponding soil profile, this would represent the range of
interest. On the other side, some divergence is observed at high frequencies (f' ~
40 Hz), because SW4 is here dominated by both R0 and R1.
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Figure 7-4. Assessment of the inter-method differences for the R-wave dispersion and
attenuation curves, with reference to SW4. Each plot contains bars spanning along the
frequency range at which each method returned estimates of R-wave dispersion data (top
row) and attenuation data (bottom row). The color scale is a function of the magnitude of
the normalized phase velocity Vz./Vz (i.e., the ratio between the estimated and the
theoretical phase velocity), or the normalized phase attenuation ar./or (i.e., the ratio
between the estimated and the theoretical phase attenuation): a-d) Fundamental mode; b-
e) First higher mode; c-f) Second higher mode. The numeric values in brackets denote the
maximum and the minimum detected wavelength.

Figure 7-4 provides an overview on the quality of the estimated R-wave
parameters for R1 and R2. As for R1, Vr(w) and ar(®) are generally obtained
for a rather narrow range of frequencies, and the quality of the estimates is
generally poor (Figure 7-4b-e). Indeed, R1 is dominant across a narrow frequency
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range, where the contribution of RO and R2 is also significant. The interference of
other wave components does not affect the dispersion estimate. For instance, in
transform-based methods, the location of the corresponding spectral peak in the f-
k representation of SW4 is generally not sensitive to the presence of other modes.
However, ar (@) is highly biased because the interference on the amplitude due to
other wave components cannot be successfully removed, in this case. In the CFM,
the presence of multiple R-wave modes with similar wavenumbers results in a
superposition of the related f~k spectral peaks. In the CFDBFaMF, the filtering
procedure does not effectively remove the contribution by RO and R2, thus
returning a corrected wave with amplitude variations not reflecting those linked
with R1. Similar considerations are valid for R2 at low frequencies, due to the
interference by R1 (Figure 7-4c-f). However, the CFDBFaMF and the CFM
manage to identify reliable Vz.(w) across a broad frequency, down to 30 Hz,
where the contribution of R2 to SW4 is less significant. In that range, however,
the resulting ar (@) is quite erratic, due to the strong interference by R1.

Table 7.2. Estimated root mean square error for the phase velocity AV and for the phase
attenuation Ao for the circle fit method (CFM), the wavefield decomposition approach
(WD), and the cylindrical frequency-domain beamforming-attenuation with modal
filtering (CFDBFaMF). The total error AV + Aa is included in brackets. Residuals are
computed with reference to the lowest-order three propagation modes (labeled as RO, R1
and R2, respectively) of the synthetic wavefield SW4.

Mode AV; Aa (AV+Aa)

CFM WD CFDBFaMF
RO 0.018; 1.32 (1.34) 0.020; 0.41 (0.43) 0.020; 0.52 (0.53)
R1 0.007; 0.060 (0.07) 0.003; 0.09 (0.094) 0.06; 0.40 (0.45)
R2 0.007; 0.060 (0.07) 0.003; 0.11 (0.12) 0.010; 0.20 (0.20)

7.1.2 Field data: Garner Valley Downhole Array

The investigation of the influence of the processing technique into the estimated
R-wave parameters from real data, i.e. in situ recorded wavefields, starts with an
application at the GVDA site. Indeed, the recorded wavefield is expected to be
mainly governed by the fundamental mode, whereas the contribution of higher
propagation modes is negligible, as demonstrated in previous geophysical studies.
Therefore, this site represents a benchmark for comparing different processing
techniques when the influence of modal superposition is not relevant.

For simplicity, this study reports results obtained from on the South-East line
of the GV-HS5 testing setup, which is a linear array composed by 14 geophones,
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with inter-receiver distance equal to 5 m (Figure 7-5). Furthermore, the
assessment only focuses on waveforms generated by the chirp signal applied by
the VibroSeis truck, at two shot points with reversal. The source-offsets of road-
side shot points are 4.5 m and 35.5 m respectively, whereas the ones on the
parking side are 2.5 m and 33.5 m far from the closest sensor.

Legend

& Gamer Valley Downhole Array
@ Receivers

®  Shaker shot points
@ Sledgehammer shot points

Figure 7-5. MASW array setup. The larger circles represent the receivers belonging to the
GV-HS array, analyzed in this study. The blue area identifies the Garner Valley
Downhole Array, where the instrumented boreholes are located.

The wavefield recorded at GV-HS5 is dominated by a single propagation
mode, which is expected to be the R-wave fundamental mode, labeled as RO. This
feature is apparent in Figure 7-6, which reports the f-k representation of the
recorded wavefield at one of the selected sub-arrays, obtained by applying the
spatial Fourier transform to recorded data. Spectral peaks are related to R-wave
propagation modes that characterize the recorded wavefield. In this case, one
dominant mode can be identified in the whole investigated frequency range.
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Figure 7-6. Frequency-wavenumber representation of the wavefield recorded at GV-HS.

Therefore, the inter-method comparison at GV-HS5 focuses on the TFM, the
WD, the CFM and the CFDBFa. Indeed, all these approaches can be tested
simultaneously, as both modal techniques and those returning effective wave
parameters should provide comparable results, in this case. Furthermore, as the
array includes a moderately small number of sensors, this precludes a successful
application of modal filtering techniques to well isolate the propagation features
of the fundamental mode. Indeed, the modal filter effectively extracts information
on the target mode when the number of sensors is greater than 20+24, as
demonstrated in Chapter 5. Therefore, the inter-method comparison for this site
does not include results from the CFDBFaMF, as it returns identical results to
CFDBFa. Finally, this study does not report results from the GHPB and the
FDBFa, because of their equivalence with the CFM and the CFDBFa,
respectively. The comparison includes data from multiple shots, for which
statistics are computed by combining results from different source offsets and
different sub-arrays, in consistency with the multi-offset approach (Wood and
Cox, 2012), assuming a bivariate lognormal distribution of the experimental data.
The reason behind the choice of using a lognormal distribution in this analysis and
in the following will be discussed in Section 7.4.

Figure 7-7 compares the estimated dispersion and attenuation curves obtained
for each method. On the one side, the investigation of inter-method differences
compares the lognormal statistics (i.e., median and logarithmic standard
deviation) of Vrze(w) and ore(w), computed from the elementary R-wave
parameters corresponding to the 4 shot locations. Given the small size of the suite
of elementary data, the inferred statistics are only indicative of the actual data
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distribution. This comparison investigates both the reliability of each processing
technique, by assessing the behavior and the presence of anomalous drifts in the
median, and their accuracy, expressed by the variability in the estimated R-wave
parameters. Besides, Figure 7-8 compares the frequency ranges wherein each
method successfully identified the R-wave parameters, simultaneously reporting
the number of elementary data points available at each frequency. This
information helps in understanding the effectiveness of each processing technique
in extracting R-wave parameters from each sub-array. Furthermore, it allows to
assess the reliability of data statistics. In this case, all the considered techniques
identify R-wave parameters in the frequency range between 5 Hz and 35 Hz (i.e.,
A=5+90m), and they return a similar number of elementary data points for each
frequency. Besides, the number of attenuation data points is usually smaller than
the corresponding dispersion data, because of the higher difficulties in retrieving

reliable values.
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Figure 7-7. Assessment of the inter-method differences for the fundamental mode R-wave
dispersion and attenuation curve, with reference to GV-H5: a) Median estimated
dispersion curves; b) Median estimated attenuation curves; c) Logarithmic standard
deviation of the estimated dispersion curves; d) Logarithmic standard deviation of the
estimated attenuation curves.
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In general, the dispersion curves are rather close to each other and affected by
low variability. Specifically, the corresponding standard deviation omyr varies
from 0.02 at high frequencies, up to 0.03+0.05 at longer wavelengths. The only
exception is the CFM technique, with a data scatter uniformly equal to 0.05. As
for the estimated ar(w), all the approaches agree at short wavelengths. On the
other side, the TFM matches the average values of all the other methods, even
with less variability. However, it tends to overestimate ar(w) at greater
wavelengths, probably because of near-field effects due to model incompatibility,
that are not modeled in this case. Finally, the CFM and the CFDBFa methods
provide similar results, though the former is affected by rather large variability
both on Vz(w) and ar(w). In general, estimated attenuation data at this site exhibit
increasing variability as the wavelength is longer, with a variation from 0.3 and
0.4, whereas CFM data assume standard deviation omar oscillating around 0.75.
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Figure 7-8. Assessment of the inter-method differences for the fundamental mode R-wave
dispersion and attenuation curve, with reference to GV-HS5. Each plot contains bars
spanning along the frequency range at which each method returned estimates of R-wave
dispersion data and attenuation data. The color scale is a function of the number of
elementary data points returned at each frequency: a) Phase velocity; b-d) Phase
attenuation. The numeric values in brackets denote the maximum and the minimum
detected wavelength.

This result demonstrates, on the one hand, the reliability of the CFDBFa in
retrieving dispersion and attenuation parameters, when the wavefield is mostly
controlled by a single propagation mode. The reliability is demonstrated both in
terms of strong compatibility in averaged terms as well as the similar degree of
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variability. On the other hand, some remarks on other techniques should be
pointed out. The WD approach returns robust and consistent estimates of R-wave
parameters, with small variability for the attenuation and almost no variability for
the dispersion, except at low frequencies. This positive result is also a
consequence of the specific fitting procedure adopted to infer R-wave parameters,
as the maximum likelihood approach ensures their retrieval across the whole
investigated frequency range, although it may be affected by overfitting and it
requires an a priori specification of the number of target waves. Furthermore, the
CFM technique provides consistent dispersion and attenuation estimates, although
with dramatically larger data variability. The strong scatter is an indicator of a
possible instability of this approach, maybe linked with perturbations of the
spectral shape of transformed data, as well as drawbacks linked with the need of
adopting site-specific calibration parameters.

7.1.3 Field data: Hornsby Bend

In this study, the investigation of the influence of the specific processing
technique adopted to derive R-wave parameters referred to results of the HB-HN
array (see Chapter 6). Indeed, the extent of this array is moderately short, thus
limiting the influence of lateral variations in soil stratigraphy, that might introduce
additional variability into the results, which is external to intrinsic epistemic
uncertainties. However, the receiver spacing in HB-HN is not constant. Therefore,
the CFDBFaMF technique cannot be applied as the modal filter requires
uniformly sampled data to isolate the contribution of each R-wave propagation
mode. Therefore, the analysis focuses on three sub-arrays extracted from HB-HN,
with uniform spacing equal to 2 m, 4 m and 8 m, respectively (Figure 7-9).
Ideally, also a 1 m-spacing array could have been included in the analysis.
However, as it will be shown below, the recorded wavefield is multimodal and the
interpretation of this array did not produce accurate results, due to the rather small
number of sensors combined with the short length. Therefore, it was ignored. The
isolation of subarrays also allows to exploit waveforms generated from internal
shot locations. The resulting information will represent an additional reference to
assess the relevance of lateral variations along the investigated array. Then, results
are averaged and represented in terms of sample statistics, in consistency with the
multi-offset approach (Wood and Cox, 2012).

For simplicity, the inter-method comparison only focuses on waveforms
generated by the stepped sine signal applied by the VibroSeis truck. Indeed, the
corresponding records are the most energetic ones, hence the influence of
incoherent noise is minimized.
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Figure 7-9. Selected sub-arrays in HB-HN. The figure includes the original array, as a
reference.

The wavefield recorded at HB exhibits a remarkably multimodal propagation.
This feature is apparent in Figure 7-10a, which reports the f~k representation of the
recorded wavefield at one of the selected sub-arrays, obtained by applying the
spatial Fourier transform to recorded data. Spectral peaks are related to R-wave
propagation modes that characterize the recorded wavefield. In this case, two
dominant modes can be identified in the investigated frequency range. The highest
wavenumber mode (which is expected to be the R-wave fundamental mode,
labeled as RO) tends to disappear at > 20 Hz. The strong decay of RO in the high-
frequency range may be an indicator of large ar(w) characterizing such
component, for which the corresponding high-frequency waves rapidly decay with
the offset, becoming almost negligible at short distances. Instead, the second
component of the wavefield (which may be representative of the first higher
mode, labeled as R1) is relevant in the amplitude throughout the whole
investigated frequency range. Figure 7-10b provides a clearer picture about the
role of each propagation mode as a function of the frequency. In this case, the
relevance of each component is quantified in terms of frequency-dependent
relative energy, measured as the ratio between the squared amplitude of the
corresponding spectral peak and the overall squared amplitude at each frequency
band. Specifically, the wavefield is dominated by RO at f'less than 10 Hz, whereas
high-frequency components are only dependent on R1. In the intermediate
frequency range (i.e., f= 10 + 20 Hz), both propagation modes contribute to the
wavefield, although the influence of RO rapidly decays as f increases. Therefore,
the wavefield recorded at HB is quite complex, as the contribution of higher
propagation modes is significant, across the whole frequency range. Furthermore,
the modal superposition is relevant at low frequencies. Thanks to the multimodal
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nature of the wavefield, the HB site is an appealing case study for the application
of the CFDBFaMF technique and to assess the effectiveness of the modal filtering
on real-site conditions.
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Figure 7-10. a) Frequency-wavenumber representation of the wavefield recorded at HB;
b) Energy repartition between the fundamental and the first higher mode. Data refer to
sub-array HB-HN-4m, with the source-to-receiver distance equal to 7 m.

As in SW3 and SW4, the inter-method comparison at HB focuses on the WD,
the CFM and the CFDBFaMF, because they incorporate an explicit modeling of
multiple propagation modes and return modal R-wave parameters. Furthermore,
this study does not report results from the GHPB and the FDBFaMF, because of
their equivalence with the CFM and the CFDBFaMF, respectively. In both cases,
the comparison includes data from multiple shots, for which statistics are
computed by combining results from different source offsets and different sub-
arrays, in consistency with the multi-offset approach (Wood and Cox, 2012),
assuming a bivariate lognormal distribution of the experimental data.

Figure 7-11 compares the estimated modal dispersion and attenuation data for
RO, according to the WD, the CFM and the CFDBFaMF techniques. On the one
side, the investigation of inter-method differences compares the lognormal
statistics (i.e., median and logarithmic standard deviation) of Vz (@) and ag ().
Given the relatively small size of the suite of elementary data, the inferred
statistics are only indicative of the actual data distribution. This kind of
comparison investigates both the reliability of each processing technique, by
assessing the behavior and the presence of anomalous drifts in the median, and
their accuracy, expressed by the variability in the estimated R-wave parameters.
Besides, Figure 7-13a-c compares the frequency ranges wherein each method
successfully identified the R-wave parameters, simultaneously reporting the
number of elementary data points available at each frequency. This information
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helps in understanding the effectiveness of each processing technique in
extracting R-wave parameters from each sub-array. Furthermore, it allows to
assess the reliability of data statistics.
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Figure 7-11. Assessment of the inter-method differences for the fundamental mode R-
wave dispersion and attenuation curve, with reference to HB-HN: a) Median estimated
dispersion curves; b) Median estimated attenuation curves; c) Logarithmic standard
deviation of the estimated dispersion curves; d) Logarithmic standard deviation of the
estimated attenuation curves.

In general, RO data are estimated across a moderately narrow range of
frequencies and agrc(w) exhibit moderately large variability, regardless the
considered method. Specifically, estimated R-wave parameters are defined at f
from 5 Hz up to 30 Hz, as a consequence of the strong decay in the contribution of
RO to the wavefield at high frequencies. Furthermore, all the techniques return up
to 20 + 25 data points and resulting dispersion data are strongly similar to each
other, whereas slightly larger differences characterize the attenuation data (Figure
7-11a-b). Indeed, the CFM tends to return slightly smaller ar.(w), whereas the
WD and the CFDBFaMF are moderately compatible with each other, with
moderately small relative differences. Inter-method differences tend to be
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significant at /< 10 Hz. On the one side, the attenuation estimates provided by the
CFM start increasing as f gets smaller, with an apparent reversal in the trend. This
sharp change in the behavior could be an effect of the influence of R1 in the
wavefield, that induces a broadening in the f~k spectral peak, resulting in an
increase in the low-frequency are(w). On the other hand, the CFDBFaMF
undergoes some oscillations at low f, linked with the influence of R1 and of body
waves, as highlighted by some variations in the corresponding Vz o(®).

Data variability is both dependent on the frequency range and on the specific
processing technique. Dispersion data are affected by moderately low variability,
with omyr mostly ranging between 0.05 and 0.1. The variability associated with
the CFM is almost frequency-independent, with a constant value around 0.07.
Instead, the oz related with the CFDBFaMF and WD ranges about 0.03 at high
frequencies, whereas it grows up to 0.15 at low frequencies. This is an effect of
the difficulties of correctly separating the target mode (i.e., RO) from the influence
of R1 and body waves. Attenuation data, instead, are affected by large variability.
The omar associated with intermediate-to-high frequencies is slightly smaller, and
it ranges between 0.3 for the CFDBFaMF and WD and 0.5 for the CFM, whereas
it dramatically rises up to 1 at f ~ 10 Hz, with the CFM showing the highest
values.

When focusing on R1, inter-method differences sensibly drop down, in terms
of discrepancy between mean estimates (Figure 7-12a-b) and covered frequency
range (Figure 7-13b). Specifically, all the considered techniques identify R-wave
parameters in the frequency range between 9 Hz and 60 Hz (i.e., A =5 + 55 m),
and they return a similar number of elementary data points for each frequency.
Besides, this number is generally greater than the one for RO. Mean values of
Vre(w) and are(w) stick well at low-to-intermediate frequencies, although the
CFM slightly underestimates the phase attenuation at > 30 Hz. Furthermore, the
variability in the estimated wave parameters is much smaller than the one
affecting RO data, for both dispersion and attenuation curves (Figure 7-12c-d).
The anrr 1s about 0.02 at all the frequencies, except an increase up to 0.05 for the
CFM at /< 30 Hz. Instead, the omqr decreases from 0.75 down to 0.1 for the WD,
whereas it is frequency-independent for the CFDBFaMF and the CFM, with
values equal to 0.4 and 0.65, respectively. Actually, a slight increase of oinar
occurs at high frequencies (i.e., f> 50 Hz), probably due to the smaller signal-to-
noise ratio.
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Figure 7-12. Assessment of the inter-method differences for the first higher mode R-wave
dispersion and attenuation curve, with reference to HB-HN: a) Median estimated
dispersion curves; b) Median estimated attenuation curves; c) Logarithmic standard
deviation of the estimated dispersion curves; d) Logarithmic standard deviation of the
estimated attenuation curves.
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Figure 7-13. Assessment of the inter-method differences for the R-wave dispersion and
attenuation curves, with reference to HB-HN. Each plot contains bars spanning along the
frequency range at which each method returned estimates of R-wave dispersion data (top
row) and attenuation data (bottom row). The color scale is a function of the number of
elementary data points returned at each frequency: a-c) Fundamental mode; b-d) First
higher mode. The numeric values in brackets denote the maximum and the minimum
detected wavelength.

Interestingly, the quality of results as well as the relative performance of each
processing technique strongly depend on the investigated mode. On the one side,
RO data are estimated across a moderately narrow range of frequencies and the
related variability is rather large, regardless the considered method. Instead, R1
wave parameters can be tracked more easily along a broad frequency range, as
highlighted by the low variability. This divergence reflects the energy repartition
of the wavefield across the propagation modes (Figure 7-10b). Indeed, a broad
frequency range of the wavefield is strongly controlled by R1 and the contribution
of RO is only relevant at low frequencies, although the influence of the higher
mode is still significant. Therefore, estimating RO attenuation data in this site is a
challenging task, due to the strong influence of the other mode on the amplitude-
offset changes. As a result, the corresponding ar.(®) is highly variable and
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sensitive to the specific processing technique, because of the different capability
in extracting and isolating information about the target mode. The CFM directly
extracts attenuation from the shape of the spectral transform of the wavefield, but
the combined presence of two vibration modes that are moderately close with
each other results in an apparent broadening of the spectral peak, that is not only
related to the attenuation, thus resulting in an overestimation of ar«(®). The WD
technique relies on a fitting procedure that explicitly models the contribution of
different propagation modes; hence it is expected to provide reliable estimates of
modal parameters. Finally, the CFDBFaMF tends to isolate quite well information
related to RO. However, the modal filtering is not completely effective because of
the strong contribution of the R1, that cannot be fully removed. This results in in
an erratic and highly variable are(w) at low frequencies, where the modal
separation is more challenging. Conversely, retrieving R1 wave parameters is less
complex, and all the considered methods provide consistent and accurate
estimates of the R1 wave parameters because it is the dominant component of the
wavefield, hence its characterization is easy. Some divergence is only observed at
lower frequencies, as an effect of the increased role of RO into the overall energy
of the wavefield, for which the proper extraction of ar.(®w) becomes more
challenging. It is interesting to notice that the influence of multiple modes in the
wavefield is different between attenuation and dispersion estimates. On the one
side, reliable and well-defined dispersion values can be retrieved for both
propagation modes, almost regardless the considered method. On the other hand,
attenuation data are strongly sensitive, and the modal superposition dramatically
affects the possibility of properly extracting correct modal attenuation values,
especially when the target mode is not dominant or the energy is equipartitioned
across different modes.

7.2 Influence of source characteristics

The source effect is critical in active-source characterization techniques. Indeed,
the active source directly controls the frequency and amplitude characteristics of
the recorded wavefield, especially the signal-to-noise ratio. It is highly desired
that the source be capable of generating high-quality waveforms, with enough
large amplitudes so that the influence of external, incoherent noise is negligible
and the frequency and the amplitude components reflect the wave component that
i1s under examination. In this way, additional sources of epistemic uncertainties,
linked with the wrong modeling of the recorded wavefield according to an
idealized scheme that is uncorrupted by noise, are significantly reduced. For this
purpose, an ideal strategy may consist in generating waveforms by means of high-
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energy, controlled sources, e.g., by shakers and vibrators. As these devices can
apply high-magnitude ground forces, the quality of the resulting signal will be
excellent, and the influence of external noise sources will be negligible. This
aspect is crucial especially for amplitude data, which are even rather sensitive to
ground noise than the phase, as demonstrated in Chapter 5. However, an
alternative, smart technique relies on weak-energy sources, where the lack of
energy is compensated by a stack averaging procedure, which increases the
signal-to-noise ratio (Foti et al., 2014). Furthermore, a proper source
characterization is crucial to avoid the inclusion of additional epistemic
uncertainties. Indeed, some processing techniques (e.g., the TFM, the GHPB and
the CFM) require a direct measure of the ground force, which needs specific
instrumentation, and its quantification may be affected by imperfect coupling
between the plate and the ground.

This Section investigates the influence of the specific source type on the
reliability and the accuracy of the estimated R-wave parameters, by adopting the
experimental data acquired at the HB-HN array as a reference. Indeed, the
waveforms recorded in this array of sensors were generated by three different
types of sources, with a different energy level and different frequency content. A
more detailed description about the main features of the active sources is provided
below. Due to the multimodal nature of the Rayleigh wavefield recorded at this
site, wavetfield data were interpreted according to the CFDBFaMF. Indeed, this
technique returned reliable estimates of dispersion and attenuation data, compared
with other approaches. As this technique requires uniformly sampled data to
isolate the contribution of each R-wave propagation mode, the analysis focuses on
three sub-arrays extracted from HB-HN, with uniform spacing equal to 2 m, 4 m
and 8 m, respectively. The analysis of each sub-array focused on waveforms
generated by different types of active source, with shared location. Specifically,
wavefield data with active source located at 3 m, 7 m, and 10 m far from the
closest sensor were considered, without reversal. In this way, the inter-source
comparison is carried out by keeping the strongest equivalence in terms of
boundary conditions.

7.2.1 Source characteristics

Figure 7-14 represents some examples of wavefield generated by all the types of
active source. Data refer to the sub-array with spacing equal to 4 m, and a source
located 7 m far from the closest sensor (Figure 7-14a). Furthermore, Figure 7-15
provides a frequency-domain representation of the ground force, together with a
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pseudo-color plot mapping the signal-to-noise ratio as a function of the frequency
and the receiver location, for each source type. As the noise power derives from
the pre-trigger and the post-trigger time windows only, this estimate may not be
fully representative of the actual noise level. Indeed, the resulting signal-to-noise
ratio is here represented for illustration purposes.

Part of the recorded wavefield was generated by an instrumented sledgehammer
(Figure 7-14b-c). This source applies a pulse-like signal, and most of the energy is
carried by moderate-to-high frequency harmonics, with /= 30 ~ 80 Hz (Figure
7-15a). The average energy transmitted onto the ground is moderately low,
especially compared with mechanically-controlled sources. Furthermore, the
applied energy level is quite variable, as it is sensitive to the operator and not
perfectly reproducible. The low energy entails a strong relevance of incoherent
noise in the wavefield, especially when dealing with sensor data recorded at
moderately large distances from the source itself, as highlighted by the moderately
low signal-to-noise ratio (Figure 7-15d).

The remaining waveforms were generated by means of a high-energy, vibroseis
truck, that allows to apply high-energy signals, with an accurate control of the
frequency content. The shaker was used to generate two different types of signals,
namely a chirp and a stepped sine. The chirp appears as a non-stationary signal,
with a linear increase of the frequency with time (Figure 7-14d). The
corresponding frequency-domain representation results in a flat spectrum, with the
largest amplitude at /= 5 + 30 Hz, namely the frequency range encompassed by
the sweep (Figure 7-15b). Instead, the stepped sine is a multi-stage signal that
applies a sequence of harmonic cycles, in which the ground response is measured
by the acquisition device directly in the frequency-domain (Figure 7-14f; Figure
7-15¢). This acquisition scheme shares some similarities with an ideal acquisition
scheme, wherein a harmonic time history is applied onto the ground and the
corresponding response is measured. In both cases, the energy of the input signal
is large and lowly-variable, and the signal-to-noise ratio is moderately high
(Figure 7-15e-f). Furthermore, the use of the stepped sine ensures a less
pronounced decay of the signal-to-noise ratio with the offset and the frequency,
compared with the chirp. Indeed, the stepped sine is capable to generate high-
frequency signals preserving their characteristics even at moderately large
distances from the source itself. This result does not strictly depend on the energy
generated by the source, as it is the same for both signal types, but on the
frequency content. Indeed, the sweep is a nonstationary signal, where the
frequency content constantly changes with time, hence each frequency is not
sustained and tends to damp more rapidly (Rahimi et al., 2022).
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Figure 7-14. Recorded wavefield at HB-HN. The left column represents the input force,
whereas the right column reports the recorded particle velocity data: b-¢) Sledgehammer;
d-e) Chirp; f-g) Stepped sine.
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Figure 7-15. Frequency-domain data. The top row represents the input force, with the
interval defined by one standard deviation, whereas the bottom row includes pseudo-color
maps of the signal-to-noise ratio: a-d) Sledgehammer; b-e) Chirp; c-f) Stepped sine.

7.2.2 Source comparison

Figure 7-16 compares the statistics of the estimated dispersion and attenuation
curves for RO. Data are clustered as a function of the specific source type under
examination (i.e., sledgehammer, chirp and stepped sine) and, for each one, the
corresponding statistics are obtained by combining results from different source
offsets and different sub-arrays, in consistency with the multi-offset approach
(Wood and Cox, 2012). Note that, given the small size of the suite of elementary
data, the inferred statistics are only indicative of the actual data distribution. As in
the inter-method comparison, the influence of the source type on the estimated R-
wave parameters focuses on both the reliability and accuracy in the estimates —
expressed by the median and the logarithmic standard deviation, respectively — as
well as the covered frequency range and the number of elementary data points
available at each frequency (Figure 7-18a-c). This information provides further
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insight about the effectiveness of each source type in extracting R-wave

parameters from each sub-array, as well as the reliability of data statistics.
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Figure 7-16. Influence of the source type on the fundamental mode R-wave dispersion
and attenuation curve, with reference to HB-HN: a) Median estimated dispersion curves;
b) Median estimated attenuation curves; ¢) Logarithmic standard deviation of the
estimated dispersion curves; d) Logarithmic standard deviation of the estimated
attenuation curves.

On the one side, the investigated frequency range does not strongly depend on
the source type (Figure 7-18a-b). Indeed, the upper boundary of the available
frequencies is about 30 Hz (i.e., 4 = 5 m) for both the sledgehammer and the
stepped sine, whereas the use of the chirp signal limits the characterization of the
fundamental-mode R-wave at 20 Hz (i.e., A = 8 m). At higher frequencies, no data
are available because of the strong decay in the contribution of RO to the
wavefield at high frequencies. On the other side, shaker data extend at lower
frequencies (down to 5 Hz), whereas sledgehammer-based data stop at /= 7 Hz.
However, the maximum identified 4 varies between 50 m and 60 m, entailing an
almost identical level of investigated depth for all the considered source types.
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As for the quality of the estimated R-wave parameters, resulting dispersion
data are strongly similar to each other, in terms of both the mean values and data
variability. Specifically, oz is close to 0.02 at /> 10 Hz, whereas it increases up
to 0.1 = 0.15 at low frequencies. No significant influence of the source type is
observed, although sledgehammer-based data exhibit slightly larger variability at
high frequencies. Instead, larger differences characterize the estimated attenuation
curves. Deviations are not significant when focusing on the median value, except
some divergence at /< 10 Hz. The related variability is large, with oz ranging
between 0.3 at intermediate-to-high frequencies and 0.5 + 0.7 at /< 10 Hz. In
general, sledgehammer-based data exhibit larger variability, especially at lower
frequencies, because of the sensibly lower signal-to-noise ratio in this range. The
negative influence of incoherent noise into the quality of the estimates also
emerges in the small number of data points associated with this kind of source
(around 5 + 6), whereas other techniques provided up to 9 values.
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Figure 7-17. Influence of the source type on the first higher mode R-wave dispersion and
attenuation curve, with reference to HB-HN: a) Median estimated dispersion curves; b)
Median estimated attenuation curves; ¢) Logarithmic standard deviation of the estimated
dispersion curves; d) Logarithmic standard deviation of the estimated attenuation curves.
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When focusing on R1, the influence of the source used to generate
experimental data on the estimated R-wave parameters is negligible, in a similar
way to what occurred to the inter-method differences. Specifically, both the mean
estimates (Figure 7-17) and the covered frequency range (Figure 7-18c-d) closely
match with each other. Regardless the source type, R-wave parameters are
identified at frequencies between 9 Hz and 70 Hz (i.e., A = 3 + 60 m). Besides, the
number of elementary data points is similar.

As for data variability, omyr ranges on average around 0.02 at all the
investigated frequencies. Instead, omar grows from 0.25 at high frequencies up to
0.5 at low frequencies. Interestingly, data scatter is poorly sensitive on the source
type. A potential reason behind the high quality in results and the limited
influence of source characteristics in R1 data may be its dominant role in the
recorded wavefield, for which even low-energy sources are capable of properly
exciting it with small noise levels.
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Figure 7-18. Assessment of the inter-source differences for the R-wave dispersion and
attenuation curves, with reference to HB-HN. Each plot contains bars spanning along the
frequency range at which each method returned estimates of R-wave dispersion data (top
row) and attenuation data (bottom row). The color scale is a function of the number of
elementary data points returned at each frequency: a-c) Fundamental mode; b-d) First
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higher mode. The numeric values in brackets denote the maximum and the minimum
detected wavelength.

In summary, the use of different source types returns, on average, equivalent
dispersion and attenuation estimates. However, the use of high-energy controlled
sources rather than a sledgehammer allows to investigate a slightly broader range
of frequencies or wavelengths. Most of all, sledgehammer-based data tend to
exhibit higher levels of variability. A potential reason behind such discrepancy
can be linked with the energy level associated with each source mechanism
combined with the incoherent ambient noise that characterizes the site, that results
in different frequency characteristics of recorded data and in a different quality
level. Indeed, the sledgehammer is not a high-energy source and the signal-to-
noise ratio of recorded traces might be low. Thus, the traces amplitude might be
corrupted by noise. However, the mean trend in the attenuation curve can still be
captured. This result positively contributes to the capability of the sledgehammer
for the attenuation estimate. This is helpful for ordinary applications, where high-
energy sources are not typically available.

7.3 Influence of receiver characteristics: geophones vs.
distributed acoustic sensing

7.3.1 The DAS technique

The distributed acoustic sensing (DAS) records perturbations induced on a fiber-
optic cable by the propagation of mechanical waves in the ground.

Pioneering applications of the DAS technology were mainly for industrial
purposes, as perimeter security (Choi et al., 2003) and railroad and pipelines
monitoring (Strong et al., 2008; Costley et al., 2018). Then, several studies
demonstrated the efficiency of this technology for seismological studies (e.g., for
the structural and dynamic characterization of earthquake sources; Jousset et al.,
2018), borehole monitoring (e.g., Mestayer et al., 2011; Daley et al., 2013; Parker
et al., 2014), landslide monitoring (Lancelle, 2016), traffic monitoring (Lancelle,
2016), and invasive geophysical tests (e.g., Mateeva et al., 2014; Kuvshinov,
2016). Furthermore, this system has been widely used to measure ambient noise
vibrations for near-surface characterization (e.g., Hornman et al., 2013; Freifeld et
al., 2016; Yavuz et al., 2016; Ajo-Franklin et al., 2017). As for active-source
SWM, only a few studies focused on the monitoring the quality of surface waves
generated by active sources (Daley et al., 2013) and addressed the application of
the DAS acquisition system to SASW surveys (Costley et al., 2018) and MASW
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testing (Galan-Comas, 2015; Lancelle, 2016; Costley et al., 2018; Song et al.,
2018).

In MASW testing, the main advantage of the DAS technology with respect to
conventional acquisition devices is the enhanced spatial resolution using low-cost
instrumentation. Indeed, the fiber-optic allows dense spatial sampling of the
wavefield, potentially along a broad array extent. Thus, this device can return
spatially un-aliased strain data over a broad frequency band useful for both
seismological and geophysical studies. Conversely, achieving the same spatial
resolution with ordinary receiver arrays would require a large number of sensors,
entailing severe economic and logistic issues. Furthermore, high quality
measurements can be even obtained from conventional fiber-optic cables, that are
not specifically designed for seismic investigation and already deployed in the
ground (e.g., the telecommunication infrastructure; Jousset et al., 2018).
Therefore, the per-channel cost is moderately low. Finally, this technology is less
sensitive to the ground coupling than geophones (Bakulin et al., 2020).
Applications of this technology to MASW surveys demonstrated that the
dispersion estimates well match those obtained from geophone measurements
(Galan-Comas, 