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Abstract 

This dissertation deals with the in situ characterization of the small-strain shear-

wave velocity and damping ratio from the interpretation of Multi-channel 

Analysis of Surface Waves (MASW) surveys. Indeed, low-strain parameters 

dramatically affect the ground response under dynamic loading. Due to their 

remarkable role, an in-situ estimate of these quantities is highly recommended. A 

promising way to obtain soil stiffness and dissipative parameters relies on the 

MASW scheme. This approach is based on the interpretation of the propagation 

characteristics of Rayleigh waves, namely the phase velocity and the phase 

attenuation. 

The first goal of this research was to identify and quantify uncertainties 

affecting the estimated Rayleigh wave parameters, with a focus on phase 

attenuation. For this purpose, a suite of synthetic wavefields and in situ 

measurements were considered, thus obtaining a benchmark for understanding the 

issues in the estimate. 

The study focused on modeling epistemic uncertainties affecting the Rayleigh 

phase attenuation. On the one side, the influence of the processing technique was 

addressed. In this context, a novel technique (named Frequency-Domain 

BeamForming-attenuation, FDBFa) is proposed. This technique incorporates an 

explicit modeling of the geometry of the wavefield, and it allows to isolate 

different Rayleigh propagation modes, through a filtering scheme. Therefore, it 

returns reliable attenuation estimates even in the presence of multi-mode 

wavefield, which is typical of complex stratigraphy conditions. Then, the study 

focused on the sensitivity of the Rayleigh wave parameters to the acquisition 

setup, in terms of the type of the active source and the recording device. As for 

source characteristics, results show that low-energy sources (e.g., a 

sledgehammer) return reliable estimates of the phase velocity and attenuation, 

albeit with larger variability. This result demonstrates the possibility of retrieving 

reliable attenuation data also in ordinary MASW surveys, in which the 

sledgehammer is commonly used. As for the sensing device, estimated phase 

velocity and phase attenuation data obtained from geophone and fiber-optic DAS 

data were compared. The latter represents an innovative technology in seismic 

measurements and monitoring, of which use in geophysics is still limited but 

promising. Indeed, also existing fiber-optic networks for telecommunication can 

be used for the acquisition of seismic data. The high degree of matching between 

observed data demonstrated that the DAS technology can be successfully used to 

jointly estimate the phase dispersion and attenuation data, obtaining the same 

level of reliability as an “ordinary” geophone array. 
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Furthermore, this dissertation proposed a statistical scheme to model aleatory 

variabilities in the estimated phase velocity and attenuation data. Indeed, various 

models have been proposed to quantify the dispersion variability, whereas no 

scheme was explicitly demonstrated for attenuation data. The model describes the 

variability in experimental data according to a bivariate lognormal distribution, 

although the observed low correlation allows using lognormal marginals for the 

statistical characterization. The lognormal scheme is preferred to the Gaussian 

model to describe highly variable data (as the phase attenuation) without 

including negative values. This assumption ensures greater consistency, from the 

physical point of view. 

Then, the research focused on mapping the experimental Rayleigh wave 

parameters into soil models describing the profiles of shear-wave velocity and 

damping ratio with depth. A robust inversion algorithm was developed for this 

purpose. This technique is a Monte Carlo, global search algorithm, which 

implements a smart sampling procedure. This scheme exploits the scaling 

properties of the solution of the Rayleigh eigenvalue problem to modify the trial 

earth models and improve the matching with the experimental model. Thus, a 

reliable result can be achieved with a moderately small number of trial ground 

models. In general, estimated soil models exhibit well-defined shear-wave 

velocity profiles, whereas the damping ratio profile is affected by remarkably 

large scatter, although a trend can still be identified. This difference is the effect 

of the high variability characterizing experimental attenuation data, the limited 

wavelength range at which reliable values of these parameters can be retrieved, 

and the sensitivity of attenuation data to both damping ratio and the S-wave 

velocity. However, the resulting response to the ground motion is affected by 

moderately small variability, and it consistently matches in situ observed data. 

The result stresses the effectiveness of using damping ratio estimates from in situ 

surface wave data, as an alternative to other characterization techniques. 

Overall, this research shows the feasibility of retrieving both stiffness and 

attenuation parameters from surface wave testing, highlighting also the issues 

related to the uncertainties and the different level of reliability affecting these two 

quantities. In general, great care is required when modeling the geometric features 

and the multi-mode nature of the wavefield, as well as model incompatibility 

effects. Indeed, these features dramatically affect the estimated attenuation. On 

the other side, under proper modeling of wavefield conditions and adopting robust 

inversion procedures, a reliable and accurate prediction of the actual behavior can 

be achieved.  
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Chapter 1 

Introduction 

1.1 Motivation 

The characterization of soil response to dynamic loading has great relevance in 

geotechnical earthquake engineering. In these conditions, the actual stress-strain 

response of soils depends on various quantities, which describe dynamic 

properties. Key parameters are the small-strain shear-wave velocity and the 

damping ratio, which quantify the stiffness and the internal energy dissipation by 

the soil at low strains, respectively. Although the uncertainties related to the 

small-strain damping ratio are usually referred as secondary (Idriss, 2004; Rathje 

et al., 2010; Cabas and Rodriguez-Marek, 2018), the choice of adequate values 

can strongly influence the soil response, especially in the small-strain field (e.g., 

Thompson et al., 2012; Tao and Rathje, 2019). Indeed, this quantity plays a key 

role in understanding low-intensity shaking (Schevenels, 2007; Tao and Rathje, 

2019; Rodriguez-Marek et al., 2021) and anchoring soil nonlinear behavior when 

strong shaking is involved (e.g., Stewart et al., 2014b; Foti et al., 2021). 

Many design applications rely on estimates of the small-strain damping ratio 

obtained through laboratory testing or empirical relationships, although some 

studies have inferred in-situ estimates of this quantity. The in-situ values are 

typically larger than the ones obtained through laboratory tests (e.g., Stewart et 

al., 2014b; Tao and Rathje, 2019). Indeed, at the site scale, complex wave 

propagation phenomena (e.g., wave scattering) induce additional energy 

dissipation besides material dissipation that cannot be captured by laboratory 

tests. Therefore, an in-situ estimate of this quantity should be adopted in ground 

response simulations. A promising technique for obtaining soil dissipative 

parameters relies on the Multichannel Analysis of Surface Waves (MASW; Foti, 

2000). The MASW-based estimate of the small-strain damping ratio usually refers 

to the measurement of the spatial attenuation of Rayleigh waves along linear 

arrays with active sources (Foti et al., 2014). In this case, the S-wave velocity and 

damping ratio profiles are jointly estimated through an inversion scheme, where a 

theoretical soil model is calibrated to match the experimental dispersion and 

attenuation data. 
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However, the estimation of the dissipation parameters is a nontrivial task, 

especially in the presence of complex stratigraphy, and large uncertainties affect 

the estimated values. On the one side, various studies attempted to develop robust 

procedures for the estimate of the S-wave velocity and statistical models to 

quantify the related uncertainties (e.g., Foti et al., 2018; Passeri et al., 2020; Hallo 

et al., 2021). Instead, only a few methods for deriving the small strain damping 

ratio are available, and they often rely on limiting assumptions about the geometry 

and the composition of the recorded wavefield (e.g., Lai et al., 2002; Badsar et al., 

2010). Furthermore, there is still a lack of knowledge on the uncertainties 

affecting the resulting damping ratio. A proper modeling is instead crucial when 

investigating the soil behavior in dynamic conditions, as the complex response 

does not allow the a priori choice of conservative values for the mechanical 

parameters. Instead, data uncertainties should be considered in an explicit way, 

within a probabilistic framework in order to Identify, Quantify, and Manage (i.e., 

IQM method; Passeri, 2019) all the uncertainties and variabilities involved in the 

analyses, to obtain reliable and accurate estimates of the actual response. 

1.2 Research objectives and achievements 

The main purpose of this research is the assessment of the reliability and the 

uncertainties that characterize the estimated shear-wave velocity and small-strain 

damping ratio from the interpretation of MASW surveys. However, the main 

focus will be the derivation of the damping ratio, as only few studies addressed 

this parameter (e.g., Lai and Rix, 1998b; Foti, 2003; Misbah and Strobbia, 2014). 

On the one side, the research addresses the estimation of the propagation 

characteristics of Rayleigh waves from measured waveform data, both in terms of 

velocity and attenuation. For this purpose, a vast dataset of synthetic seismograms 

and high-quality, in situ surface wave data were acquired in massive site 

characterization campaigns at two locations in the United States, where 

seismograms generated by artificial sources were recorded on arrays composed by 

receivers of different types. Besides, a novel technique (named Frequency-

Domain BeamForming-attenuation, FDBFa) to estimate Rayleigh wave 

attenuation data is proposed. This technique relies on a wavefield transform, that 

allows to reduce the problem of the attenuation estimate into a dispersion analysis 

of the transformed data. Furthermore, it incorporates an explicit modeling of the 

geometry of the wavefield and it allows to isolate different Rayleigh propagation 

modes, through a filtering scheme. Furthermore, the research includes a thorough 

analysis of some sources of epistemic uncertainties affecting the estimated R-

wave parameters, with a focus on the influence of modeling assumptions (that is, 
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near- and far-field effects; Foti et al., 2014), the adopted processing scheme, the 

type of active source, and the acquisition device (i.e., the sensors). Specifically, 

the study addresses the sensitivity of the derived velocity and attenuation data to 

perturbations in the recorded Rayleigh wavefield, due to body waves and 

incoherent noise. Furthermore, it assesses the quality of experimental data as a 

function of different interpretation techniques and various source types, 

quantifying the performance in terms of the reliability and the accuracy of the 

estimated propagation parameters. Finally, the analysis of the influence of the 

acquisition device compares geophone versus fiber-optic data, to investigate the 

sensitivity of estimated parameters to the receiver type. This study also aims at 

understanding the potential of the fiber-optic device in retrieving dissipation 

parameters. The research also addressed aleatory variability, by proposing a 

statistical model to jointly describe the variability in derived phase velocity and 

attenuation data. 

On the other side, experimental Rayleigh-wave data need to be mapped into 

earth models that capture the stiffness and damping ratio variations with depth, by 

means of an inversion procedure. To address this topic, a robust inversion 

algorithm is proposed, which is based on a Monte Carlo procedure. The developed 

algorithm is based on a smart sampling technique of the model parameter space, 

by exploiting the scaling properties of the Rayleigh wave parameters in linear 

viscoelastic media. These properties are introduced in this study and they allow a 

significant saving in computation time, preserving the quality of the resulting 

ground models at the same time. Finally, the reliability of the derived earth 

models is assessed, by comparing them with the available information and by 

assessing the reliability in terms of the measured response to ground motion, 

compared with in situ observed data. The comparison highlighted an acceptable 

level of compatibility between estimated and empirical amplification, which 

stresses the effectiveness of using damping ratio estimates from in situ data. 

1.3 Dissertation outline 

The dissertation starts with a literature review on the small-strain damping ratio, 

providing a definition of this parameter and an overview on the methods used for 

its derivation. 

Specifically, Chapter 2 provides a quick overview of the soil behavior under 

cyclic loading at small strain levels, according to the theory of linear, viscoelastic 

media. Then, the focus shifts to the small-strain damping ratio, with a description 

of the influence of loading conditions and mechanical parameters and a list of 

empirical relationships for its prediction. The chapter ends with a description of 
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the role of the small-strain damping ratio in various engineering applications, to 

highlight its relevance. 

Chapter 3 focuses on the propagation of body waves and Rayleigh waves in 

continuous media, both in linear elastic and in linear viscoelastic conditions. In 

particular, the governing equations and the relevant parameters are introduced. 

The chapter ends with a review of the main mechanisms of attenuation theory, to 

provide a list of the factors affecting the amplitude of perturbations propagating in 

a medium while moving away from the source. 

Chapter 4 summarizes the most common estimation procedures for the S-

wave small strain damping ratio. Specifically, the description focuses on 

laboratory tests and in situ characterization methods, based on invasive and 

noninvasive geophysical tests and down-hole arrays. Finally, a brief comparison 

of results from laboratory and in situ tests is reported. 

The second part of the dissertation focuses on the processing stage of surface 

wave data, which infers the Rayleigh wave parameters from recorded waveform 

data. 

Chapter 5 introduces the FDBFa algorithm, specifying the various 

modifications applied to accommodate for the geometrical shape of the Rayleigh 

wavefield and the presence of multiple propagation modes. The chapter ends with 

a parametric study on near-field effects and incoherent noise, to assess the 

performance of the proposed scheme in complex wave conditions and understand 

their effect on experimental data. 

Chapter 6 presents the experimental dataset, consisting of a suite of MASW 

surveys devoted to the collection of high-quality surface wave data at the Garner 

Valley Downhole Array (GVDA) and the Hornsby Bend (HB) sites, in the United 

States. 

Chapter 7 contains a thorough analysis of various sources of uncertainties 

affecting the estimated Rayleigh phase velocity and phase attenuation. On one 

side, epistemic uncertainties are addressed, by investigating the influence of the 

specific processing algorithm, the type of active source and the acquisition device 

on the estimated wave parameters. The investigation refers to both synthetic cases 

and to wavefield data extracted from in situ surveys. The overview of epistemic 

uncertainties ends with a comparison between the derived propagation parameters 

obtained from geophone and fiber-optic data at the HB site. The final part of this 

Chapter focuses on the aleatory variability, introducing a statistical model to 

jointly describe the variability of the experimental dispersion and attenuation data. 

The final part of the dissertation addresses the derivation of the earth models 

from experimental data, with a focus on the stiffness and attenuation structure. 
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Chapter 8 describes a new algorithm for the joint inversion of velocity and 

attenuation data to retrieve both stiffness and dissipation parameters, that relies on 

an improved Monte Carlo scheme. It also includes the application of this 

algorithm at the HB site. 

Chapter 9 contains a discussion of the retrieved earth models, obtained from 

the inversion procedure, with a focus on the related reliability and the implications 

of uncertainties in both the S-wave velocity and damping ratio on the predicted 

ground response. The discussion focuses on the experimental dataset collected at 

the GVDA. 

Finally, Chapter 10 summarizes and discusses the main conclusions of the 

research, along with some indications on possible future studies on the topic. 

Appendix A focuses on some technical aspects linked with the FDBFa 

procedure. 

Appendix B collects implementation details of various literature approaches 

to derive experimental Rayleigh wave parameters. 

Appendix C contains the mathematical demonstration of the scaling properties 

of the Rayleigh eigenvalue problem in linear viscoelastic media. 
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Chapter 2 

Small-strain damping ratio 

This Chapter addresses some key features of soil behavior, with a focus on the 

small-strain damping ratio. Specifically, a quick overview of the general behavior 

under cyclic loading is followed by a more detailed description of the response at 

small strain levels, according to the theory of linear, viscoelastic media. The main 

references for the description of this theory are the contributions by Kramer 

(1996), Ben‐Menahem and Singh (2012), Foti et al. (2014), and Kokusho (2017). 

Then, the Chapter focuses on the influence of loading and mechanical parameters 

on the small-strain damping ratio, including a physical interpretation of such 

dependencies. This is followed by a literature review of some empirical 

relationships for its prediction, that allow to define an order of magnitude of this 

parameter. The Chapter ends with a description of the role of the small-strain 

damping ratio in various engineering applications, to highlight its relevance. 

Part of this Chapter has been already published in Foti et al. (2021). 

2.1 Response of soils to cyclic actions 

2.1.1 Experimental evidence 

Many insights on the soil behavior under dynamic loads derive from experimental 

tests carried out in the laboratory, specifically from cyclic tests. Although the 

loading path does not perfectly simulate the actual action exerted by an 

earthquake (i.e., harmonic, cyclic loads instead of irregular, aperiodic load 

variations), the observed response allows to predict the soil response in seismic 

conditions. 

In general, soil behavior is strongly dependent on the norm of the deviatoric 

strain tensor (e.g., Foti et al., 2014). In the simplified case of uniaxial, shear 

loading, this general statement maps into a dependence of the soil response on the 

magnitude of the shear strain. 

Figure 2-1a shows a typical observed response of a soil sample to a given 

level of cyclic shear strain amplitude γc, corresponding to a specific cyclic shear 

stress amplitude τc. The response is usually investigated in the τ-γ domain, where τ 

and γ are the shear stress and the shear strain, respectively. This result could be 
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the output of a cyclic simple shear test (see Chapter 4 for further details). The 

response is characterized by strong nonlinearity and irreversibility in the loading-

unloading cycles, as the initial strain state (i.e., null strain) is not restored after 

unloading. The irreversibility results in energy dissipation during cycles, whose 

main mechanism can be linked to hysteretic damping. In addition, soil response 

strongly depends on the cyclic strain amplitude and this relationship is also 

reflected in variations in the geometry of the stress-strain loops (Figure 2-1b-d). 

Finally, soil behavior depends on the number of cycles, as more cycles induce a 

degradation in mechanical properties, although this effect is remarkable only at 

great strains (Figure 2-1d). 

Changes in soil behavior are not gradual and some threshold strain values can 

be identified (Vucetic, 1994). At very small strains, geomaterials exhibit a quasi-

linear response, hence the hysteretic component in the energy dissipation is 

negligible (Figure 2-1b). However, the energy dissipation is not zero because 

other mechanisms contribute to this, as explained in Section 2.2. The upper bound 

of the corresponding strain range is termed as linear cyclic threshold shear strain 

γl. For increasing cyclic strains, stress-strain loops become gradually flatter and 

broader (Figure 2-1c), implying a reduction in stiffness and an increase of 

dissipated energy. On the other side, volumetric changes in drained conditions or 

residual pore-water pressure in undrained samples are not observed. At very large 

strains, the soil behavior is strongly nonlinear, with severe stiffness and strength 

degradation as the strain level increases. Besides, the effect of the number of 

cycles becomes relevant on the soil response (Figure 2-1d). In these conditions, 

there is a relevant modification in the microstructure, resulting macroscopically in 

a permanent volume change accumulation in drained conditions or a permanent 

pore-water pressure build-up in undrained conditions. The strain level at which 

these phenomena start to become relevant is called volumetric cyclic threshold 

shear strain γv. 
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Figure 2-1. a) Example of stress-strain loops of a geomaterial under cyclic loading, 

represented in the τ-γ domain. b-d) Variations in the loop geometry at increasing level of 

cyclic strain amplitude γc and the number of cycles N (modified from Lanzo and Silvestri, 

1999). In the plots, γl is the linear cyclic threshold shear strain, γv is the volumetric cyclic 

threshold shear strain and N1 and N2 are two values for N. 

2.1.2 Models 

Modeling the nonlinear, degrading soil behavior under cyclic loading is not 

straightforward, due to its intrinsic complexity. However, an effective model for 

describing the cyclic behavior of geomaterials at low strain levels is the equivalent 

linear model, which relies on the theory of linear, viscoelastic media (Ishihara, 

1996). This model simplifies the various mechanisms responsible of the energy 

dissipation as a viscous damping. This assumption is necessary because the large 

number of mechanisms contributing to energy dissipation does not allow to 

represent them all with a single modification of the constitutive equations 
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(Ben‐Menahem and Singh, 2012). However, the linear viscoelastic model is quite 

effective in describing the actual response of soils under dynamic loading. 

Furthermore, this model can be adapted to predict soil behavior at moderately 

large strains, by means of the equivalent linear procedure (Seed and Idriss, 1970). 

A linear viscoelastic material satisfies two fundamental properties: 

• The stress components are linearly related to strain components at a given 

time; 

• The strain induced by two arbitrary, but different stress inputs applied at 

different times equals the sum of the strain states obtained from each of 

these stresses, acting separately. This property represents the principle of 

linear superposition (Ben‐Menahem and Singh, 2012). 

The models fulfilling the conditions of linear viscoelasticity rely on the 

superposition of two resisting mechanisms to deformation: linear elasticity and 

Stokes’ viscosity. These two components can be synthetically described according 

to specific mechanical analogs, namely the Hooke’s linear spring and the 

Newton’s viscous dashpot. Different combinations of these elements in series or 

in parallel generate various models, with increasing level of complexity and 

capability of reproducing the actual behavior of geomaterials. However, the linear 

viscoelastic theory often relies on basic models, that allow to capture the main 

features in the response of anelastic materials. Their description and the 

formulation of the constitutive laws refers to the specific case of cyclic uniaxial 

shearing (Figure 2-2a), to make a parallelism with the loading conditions typically 

investigated in soil characterization. 

On the one side, the Kelvin-Voigt model is rather popular in engineering 

mechanics. The mechanical analog is a system composed by a linear spring (with 

stiffness G) and a viscous dashpot (with viscosity η) connected in parallel (Figure 

2-2b). Therefore, this rheological model decouples the overall action into an 

elastic component, following the Hooke’s law, and a viscous component, 

following the Newton’s law. Thus, in cyclic uniaxial shearing, τ is balanced by the 

superposition of an elastic component, which is proportional to γ, and a viscous 

part, which is proportional to the strain rate. Therefore, the constitutive law for the 

Kelvin-Voigt solid under shearing is the following: 

 G
t


  


= +


 (2.1) 

Alternatively, the Maxwell model can be described as a composition of a 

linear spring connected in series with a viscous dashpot (Figure 2-2c). In this case, 

the two elements share the same stress state and the strain is the summation of the 
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corresponding strains. From these considerations, the following constitutive law 

can be derived: 

 
1 1

G t t

 




 
+ =

 
 (2.2) 

 

Figure 2-2. Mechanical model of the Kelvin-Voigt (b) and Maxwell (c) solid, to represent 

the behavior of a soil element under uniaxial shear loading, represented by the shear 

stress τ (a). The elastic component of the response is synthetized by a linear spring with 

stiffness G, whereas a viscous dashpot with viscosity η models the viscous component. 

However, the actual response of an isotropic, linear viscoelastic medium is 

provided by an integral relationship, linking the strain history to the stress history 

by means of a relaxation tensor function, which synthetizes the time-dependent 

behavior of the material (Christensen, 2012). In general, the derivation of the 

stress state is a nontrivial operation. On the other side, the constitutive relationship 

dramatically simplifies in the presence of uniaxial, harmonic loading. Specifically, 

the corresponding behavior is equivalent to the one provided by the Kelvin-Voigt 

model. For this reason, this section will continue referring to this simplified model 

for the description of the shear-stress response of isotropic, linear viscoelastic 

media. 

In the presence of a harmonic shear strain with amplitude γc, the stress-strain 

response of a Kelvin-Voigt solid is a rotated ellipse (Figure 2-3). The ellipse is 

centered at the origin of the τ-γ domain, i.e. the null stress-strain state, and the 

slope of the major axis with respect to the γ axis is equal to the stiffness G. 

Interestingly, this shape matches well the hysteresis loops that geomaterials 

exhibit under shear at a fixed level of γc (Figure 2-1a). For this reason, the linear 

viscoelastic scheme is effective in describing soil behavior under dynamic 

conditions, at least at small strains. 

Furthermore, the strong analogy between the response of the Kelvin-Voigt 

solid and geomaterials allows a synthetic description of the dynamic response at 

each strain level according to some parameters (termed as dynamic properties), 

extracted from the geometry of the loops and providing description of 

deformability and energy dissipation (Figure 2-3). 

G G

η

η

τ

τ

τ

τ

τ

τ
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On the one side, the major axis of the ellipse has a slope equal to G, that is the 

stiffness of the spring in the Kelvin-Voigt solid. Therefore, the stiffness behavior 

(which continuously changes due to nonlinearity) can be synthetized through an 

“equivalent” parameter that describes the average stiffness of the soil across the 

loop. This is equal to the secant shear modulus (also denoted as GS), which is the 

slope of the secant line at the two extreme points of the loop. 

 

Figure 2-3. Mechanical response under shearing of the isotropic, linear viscoelastic 

medium, represented in the τ-γ domain. At a fixed level of cyclic shear stress amplitude 

γc, the response can be modelled as an elliptical loop with maximum absolute ordinate 

equal to the cyclic shear stress amplitude τc. The average slope is the secant shear 

stiffness G. Instead, the area WD enclosed within the loop describes the dissipated energy 

and WE corresponds to the maximum elastic stored energy. 

The description of energy dissipation relies on the analogy between the stress-

strain response of the Kelvin-Voigt solid and the hysteresis loops that describe the 

behavior at resonance of an idealized Single-Degree of Freedom (SDOF) system 

composed by the linear spring and the viscous dashpot (Chopra, 2017). Therefore, 

a possible parameter to measure cyclic energy dissipation is the material shear 

damping ratio DS, defined as the fractional part of the elastic stored energy which 

is dissipated during each cycle: 

 
1

4

D
S

E

W
D

W
=  (2.3) 

The dissipated energy WD equals the work done by the stress (per unit volume 

of material) for an infinitesimal variation of strain and it is related to the size of 

the area enclosed within the loop (Figure 2-3): 
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The maximum elastic stored energy WE, instead, corresponds to the area of 

the triangle defined by the secant line at the cyclic strain amplitude (Figure 2-3): 

 
21

2
E cW G=  (2.5) 

Being the dissipated energy proportional to the excitation frequency ω, the 

damping ratio associated with the equivalent Kelvin-Voigt solid is frequency-

dependent. However, experimental observations demonstrate that the intrinsic 

energy dissipation in geomaterials is independent from the loading rate, at least in 

the frequency range of engineering interest (see Section 2.2). For this reason, a 

modified version of the Kelvin-Voigt solid is usually adopted for modelling soil 

response, where the viscous dashpot is replaced by a nonviscous element 

(Theodorsen and Garrick, 1940; Kramer, 1996). In this model, an equivalent 

viscosity Η is assumed, which is inversely proportional to the loading frequency. 

 



 =  (2.6) 

Thus, the corresponding damping ratio is independent of frequency, 

consistently with the observed behavior of geomaterials. 

The influence of γc on the soil mechanical behavior results in a strain-

dependence of G and DS (Figure 2-4). Indeed, for increasing γc, G becomes 

smaller because the average slope of the cycles decreases. Conversely, DS gets 

larger as the enclosed area becomes greater. Furthermore, the most relevant 

changes in these quantities are consistent with the cyclic strain thresholds 

(Vucetic, 1994). At very small strains, soil response is virtually linear, meaning 

that the cycles are regular and not sensitive to variations in the strain level. 

Therefore, G is constant and it assumes its maximum value, labeled as Gmax. On 

the other side, the energy dissipation is almost constant and DS equals the small-

strain material damping ratio (DS,0). At larger shear strains, exceeding the linear 

threshold γl, nonlinearity in the stress-strain soil behavior leads to flatter and 

broader loops, with an increase of the energy dissipation. This entails a gradual 

decay of G and an increase in DS. At high strain levels, the instability of stress-

strain loops results in a dependence of G and DS on the number of cycles. The 

variation of these quantities with γc is captured by the Modulus Reduction and 

Damping (MRD) curves, that provide G (or G normalized by Gmax) and DS as a 

function of γc. 
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Figure 2-4. Normalized modulus reduction and damping curves, describing variations of 

the normalized shear modulus G/Gmax and damping ratio DS as a function of the shear 

strain γ. The influence of the number of cycles N is included. The plot also highlights the 

location of the linear cyclic threshold shear strain γl, the volumetric cyclic threshold shear 

strain γv and the small-strain shear damping ratio DS,0 (modified from Lanzo and Vucetic, 

1999) 

2.2 Parameters affecting the small-strain damping ratio 

From this point onwards, the focus of the dissertation shifts to the small-strain 

range of the soil behavior and, specifically, on the small-strain shear damping 

ratio DS,0. The focus on this specific aspect is corroborated by the common 

practice in soil dynamics to decompose the damping ratio into a small-strain 

component and a nonlinear, strain-dependent element (e.g., Darendeli, 2001). This 

separation allows to isolate the linear range from the nonlinear part, thus 

simplifying the modeling. Also, the partition has a specific physical meaning, 

linked to the mechanisms of energy dissipation intervening at different strain 

levels. Indeed, geomaterials under high-amplitude cyclic loading undergo a 

remarkable energy dissipation due to plastic deformations, that are visible as 

hysteretic loops. At small strains, instead, this component becomes negligible in 

favor of other mechanisms, of frictional and viscous nature. 

The small-strain damping ratio depends both on material properties and on the 

loading conditions, e.g. the confinement level. Before addressing the role of soil 

mechanical parameters, the effect of the loading frequency on the small-strain 

damping ratio has to be investigated. The influence of these parameters is 
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assessed accounting for the physical phenomena occurring at the microstructural 

scale. 

2.2.1 Loading frequency 

The effect of the loading frequency – alternatively, the strain rate – on DS,0 

strongly depends on the material type. Indeed, the energy dissipation is the 

combined effect of different mechanisms taking place in geomaterials during 

cyclic loadings (e.g., Stoll and Bryan, 1970; Shibuya et al., 1995; d'Onofrio et al., 

1999). Part of the energy dissipation results from friction between soil particles, as 

they mutually slide to each other, and the anelastic behavior of the particles 

themselves. A relevant component of energy dissipation is linked to relative 

movement between the water and the soil skeleton, due to pore fluid viscosity – 

the corresponding viscous damping is frequency-dependent. The key role of pore 

fluid in the damping ratio at small strain levels is suggested by an observation that 

moonquakes, which occur in the vacuum environment presumably without any 

fluid, are known to keep vibrating for a much longer duration than earthquakes 

probably because of very low damping in small strain in the near-surface (Latham 

et al., 1970; Latham et al., 1971; Kokusho, 2017). 

In fine-grained soils, Shibuya et al. (1995) performed a dynamic 

characterization of normally consolidated clays at low frequencies, less than 0.1 

Hz. By merging results with those of other studies that investigated alternative 

frequency bands (Hara and Kiyota, 1977; Kim, 1991), they suggested the 

existence of three different branches (Figure 2-5a). At low frequencies (< 0.1Hz), 

DS,0 tends to decrease with increasing frequencies. In the medium range (between 

0.1 and 10 Hz, i.e., the typical seismic bandwidth) the damping is almost constant, 

irrespectively of the loading frequency. Finally, for higher frequencies DS,0 

increases with f because of viscous effects. The “U”-shaped dependence of DS,0 

with respect to the loading frequency has been also observed in other studies, 

although the trend displayed less sharp variations, entailing some influence of the 

loading frequency on DS,0 even in the seismic bandwidth (e.g., d'Onofrio et al., 

1999; Stokoe and Santamarina, 2000; Darendeli, 2001; Matešić and Vucetic, 

2003; Menq, 2003; Rix and Meng, 2005), as shown in Figure 2-5b. This effect is 

relevant especially in plastic soils (Stokoe and Santamarina, 2000; Darendeli, 

2001). For this reason, the actual dependency on the loading frequency within the 

typical seismic bandwidth is still controversial. Some effect of the loading 

frequency is also visible on G, although the relative variations are negligible 

(Figure 2-5b). On the other side, the influence of the frequency is less remarkable 
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at high strain amplitudes. Indeed, the frequency-independent, hysteretic damping 

increase due to plastic deformation partially covers these aspects. 

The motivation behind this behavior has to be found into the different 

mechanisms of energy dissipation taking place in cohesive soils during cyclic 

loadings (e.g., Shibuya et al., 1995; d'Onofrio et al., 1999). In fine-grained soils, 

indeed, dissipations are linked to complex phenomena occurring at the 

microstructure scale, controlled by electromagnetic interactions between water 

dipoles and microscopic solid particles (Foti et al., 2014). However, the degree of 

contribution of each component is not the same and it depends on the loading 

frequency, thus justifying the “U”-shaped trend of DS,0 with the frequency. A 

remarkable aspect is that dissipation due to frame inelasticity is dominant across a 

broad brand of frequencies, whereas fluid losses are negligible due to limited fluid 

mobility, except at high frequencies (Stoll and Bryan, 1970; Stoll, 1977). In the 

very low-frequency range, the application of the load is quasi-static and creep 

phenomena occur. Due to creep, indeed, the elastic limit shear strain (i.e., the 

maximum strain level at which the tangent stiffness equals the maximum one) 

decreases at small strain rates, thus the stress-strain loops are enlarged 

proportionally as the loading frequency decreases (Dobry and Vucetic, 1987; 

d'Onofrio et al., 1999). Therefore, the slower is the application of the load, the 

higher is DS,0. On the contrary, creep-induced energy dissipation becomes 

negligible at high frequencies. Instead, in the medium frequency range (i.e., the 

seismic band), energy dissipation is mainly the result of the anelastic soil 

behavior. At high frequencies, the DS,0 increase with growing f may be an effect of 

the relevant contribution of the pore fluid viscosity at high loading rates. 

 

Figure 2-5. a) Effect of loading frequency f on the small-strain damping ratio DS,0 of 

cohesive soils (modified from Shibuya et al., 1995); b) Effect of the loading frequency on 

the small-strain shear modulus Gmax and damping ratio DS,0 for cohesive soils, as a 

function of the plasticity index PI. To highlight the influence of f, these parameters are 

normalized by the corresponding values measured at f = 1 Hz, namely 
1 Hz

maxG  and 
1 Hz

,0SD  

(modified from Stokoe and Santamarina, 2000). 
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In coarse-grained soils, where gravity forces are governing the overall 

behavior, the main dissipative mechanisms are losses at contacts between soil 

particles (mainly with frictional nature), matrix anelasticity and fluid flow losses 

due to the relative movement between the solid and the fluid phase (e.g., Stoll and 

Bryan, 1970; Stoll, 1977). Being the fluid mobility significant, the frequency-

dependence of DS,0 strongly depends on the moisture content. In coarse-grained 

dry materials, the effect of loading frequency seems to be negligible in the 

frequency range of typical interest (Kim and Stokoe, 1994; Lo Presti et al., 1997; 

Menq, 2003). However, creep effects have been observed under quasi-static 

loading conditions (Di Benedetto, 1997). The moisture addition, instead, induces a 

remarkable dependence on the loading frequency, whereas G is almost constant in 

the seismic band (Figure 2-6). The variation is still described as a “U”-shaped 

trend, although the frequency boundaries differ from those identified in fine-

grained soils. On the one side, DS,0 increases as frequency decreases below 1 Hz, 

as a result of creep at such slow loading rates. Then, it does not remain constant 

along a given bandwidth, but it immediately increases at higher frequencies – 

however, the relative variation is not strong (Menq, 2003). This is an effect of the 

viscous damping generated by relative movement between water and the soil 

skeleton, which is comparable with frame losses (or even dominant) even at low 

frequencies due to higher mobility of the pore fluid (Stoll, 1977). 

 

Figure 2-6. Effect of the loading frequency f on the small-strain shear modulus Gmax and 

damping ratio DS,0 for saturated, gravelly soils, as a function of the plasticity index PI. To 

highlight the influence of f, these parameters are normalized by the corresponding values 

measured at f = 1 Hz, namely 
1 Hz

maxG  and 
1 Hz

,0SD  (after Menq, 2003). 

A similar behavior is observed in rock-like materials, as results from 

laboratory data typically show that this parameter is independent of the loading 

frequency in dry rocks (Johnston et al., 1979). Indeed, the energy dissipation 

results from the combined effect of several mechanisms that are linked with the 

microstructure of rocks, which are a composition of intact rock matrix and 

discontinuities – macroscopic fractures or small cracks. Therefore, part of energy 
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losses are an effect of rock matrix anelasticity (Walsh, 1966) and friction-based 

dissipation in relative motion along cracks and grain boundaries, that induce a 

frequency-independent energy loss. As in soils, the presence of fluid may induce 

additional energy dissipation, mainly through water wetting – it enhances friction-

like relative sliding – or complex phenomena linked to the interaction with small 

cracks, e.g. “squirting” type flow from small cracks to pores (Mavko and Nur, 

1975; O'Connell and Budiansky, 1977) in fully saturated rocks. In most scenarios, 

however, fluid losses seem not to dominate the frequency-independent losses 

induced by the remaining mechanisms, especially in shear at seismic frequencies 

(e.g., Paffenholz and Burkhardt, 1989). 

2.2.2 Material parameters 

As in the investigation of the frequency effect, the assessment of the role of 

material parameters on the small-strain damping ratio accounts for the soil type, 

due to the different mechanisms contributing into the energy dissipation. 

In fine-grained soils, DS,0 is mainly affected by the plasticity index PI, as 

highly plastic soils tend to be more dissipative than low plastic ones (Stokoe et al., 

1995; Stokoe et al., 1999; Darendeli, 2001; Roblee and Chiou, 2004; Zhang et al., 

2005; Figure 2-7), whereas the influence of confining pressure is secondary. The 

plasticity index also affects the sensitivity of DS,0 to the loading frequency. In 

highly plastic soils, in fact, there is an increase by 100% over a log-cycle increase 

in the frequency (Figure 2-5b). Specifically, variations become relevant at 

frequencies higher than 10 Hz (Darendeli, 2001). The small-strain damping ratio 

also depends on the overconsolidation ratio and the confining pressure (Hardin 

and Drnevich, 1972b; Darendeli, 2001), as their increase leads to a reduction in 

DS,0. However, the induced variation is a second order effect compared to changes 

in PI. 
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Figure 2-7. Relationship between plasticity index PI and small-strain shear damping ratio 
1 atm

,0SD  (normalized to the atmospheric pressure; after Zhang et al., 2005). 

In coarse-grained soils, instead, less case studies are available, due to issues in 

obtaining high quality measurements of the material damping ratio, especially for 

gravels. These difficulties stemmed from the rather low linear cyclic threshold 

(e.g., 10-4% in gravels), that force to investigate very low strain amplitudes, not 

easily achievable in laboratory testing (Menq, 2003). Nonetheless, DS,0 of coarse-

grained soils is strongly dependent on the confining pressure σ’
m (Figure 2-8a; 

Laird, 1994; Menq, 2003). Menq (2003) also highlighted a remarkable effect of 

the grain size distribution, in terms of the uniformity coefficient Cu and the 

equivalent particle diameter D50. Specifically, DS,0 decreases with increasing D50 

and decreasing Cu. He also noticed a direct relationship with the void ratio 

(similar to Laird, 1994), albeit less well defined than in Gmax. 

Furthermore, DS,0 in coarse-grained materials is remarkably sensitive to the 

degree of saturation. Indeed, the moisture addition exerts a twofold effect on the 

damping ratio (Menq, 2003). On the one side, DS,0 becomes rather sensitive to the 

loading frequency, as reported in Section 2.2.1. Furthermore, it induces a strong 

increase with respect to the values measured on dry specimens, more than 

doubling itself (Figure 2-8b). The increase in magnitude and the frequency-

dependence may be interpreted as the result of viscous damping caused by pore 

water movement in voids among soil particles. 
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Figure 2-8. a) Effect of the confining pressure σ’
m on the small-strain damping ratio DS,0 

in dry coarse-grained materials (after Laird, 1994); b) Effect of the moisture content on 

DS,0 in coarse-grained materials. The saturated stage corresponds to a water content equal 

to 14.4% (after Menq, 2003). 

Finally, material damping in rock-like materials exhibits similar behavior to 

coarse-grained soils, as similar mechanisms of energy dissipation are involved. 

Specifically, this parameter depends on the confinement level and it is remarkably 

sensitive to the saturation degree, because the introduction of fluid in cracks 

introduces a slight frequency-dependence of DS,0 together with the increase in its 

value (e.g., Gardner et al., 1964). 

2.2.3 Typical values of the small-strain damping ratio 

This section provides an overview of typical values of DS,0, to set an order of 

magnitude of this quantity as a function of the type of geomaterial. Furthermore, 

this section describes some of the most recent empirical relationships to estimate 

DS,0, that also explicit the role of soil parameters. However, it should be remarked 

that the relationships presented below derive from laboratory tests, unless 

otherwise stated. 

In fine-grained soils, the typical range of DS,0 is around 3÷5% (Kokusho, 

2017). Darendeli (2001) calibrated an empirical equation for predicting DS,0 in 

fine-grained soils, that incorporates the dependency of DS,0 from f in the range 

between 0.2 and 100 Hz: 

 ( ) ( )0 1069 0 2889
0 0 8005 0 0129 1 0 2919 ln. ' .

S , mD . . PI OCR . f− −= +      +     (2.7) 

where PI is expressed in percentage, f in Hz, and σ’
m in atm. This relationship 

was developed from experimental tests carried out at σ’
m ranging from 30 to 2,500 

kPa on soils characterized by PI ranging from 0 to 130% and OCR varying 

between 1 and 8. In addition, an estimation of the corresponding standard 
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deviation σD is provided, and the amount of variability depends on the mean 

estimate of DS,0 itself: 

 
,00.0067 0.78D SD = +  (2.8) 

Ciancimino et al. (2020) proposed a similar formulation for predicting DS,0 in 

fine-grained soils from Central Italy, in terms of the mean and σD: 

 
( ) ( )0 274

0

0 6243 1 5001
0

1 281 0 036 1 0 134 ln' .
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. .
D S ,

D . . PI . f

e e D





−

− −

= +    +   

= +
 (2.9) 

This relationship was developed from experimental tests carried out at σ’
m 

ranging from 30 to 440 kPa on soils characterized by PI ranging from 0 to 42%. 

However, both relationships for σD give only an estimation of the dispersion 

affecting the curves. Indeed, the adopted procedure does not propagate in a 

rigorous manner the uncertainties of the multiple variables related to the nonlinear 

relationships (Ciancimino et al., 2020). Furthermore, the dependence on the mean 

estimate of DS,0 was introduced mainly to account the increase in data uncertainty 

as the shear strain increases. 

Figure 2-9 reports the mean DS,0 and the related variability (expressed through 

the coefficient of variation, CoV, defined as the ratio between standard deviation 

σD and mean) for fine-grained soils, as a function of PI in the range from 0 to 

100%. Data were computed for three different confinement levels, i.e., σ’
m equal 

to 50 kPa, 300 kPa and 1,000 kPa, to simulate conditions ranging from shallow to 

deep soil deposits. The computation accounted for the applicability constraints of 

the considered empirical relationships. Generally, DS,0 ranges around 1÷2%, up to 

3% in plastic soils and the CoV varies between 0.5 and 1, meaning that the 

variability in the estimate is high. 
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Figure 2-9. a-c) Empirical estimates of the mean value of the small-strain damping ratio 

DS,0 as a function of the plasticity index PI, for confining pressures equal to 50 kPa (a), 

300 kPa (b) and 1,000 kPa (c); a-c) Empirical estimates of the coefficient of variation 

(CoV) of DS,0 as a function of PI, for confining pressures equal to 50 kPa (a), 300 kPa (b) 

and 1,000 kPa (c). 

In coarse-grained soils, instead, DS,0 typically ranges around 1% (Kokusho, 

2017). However, less case studies are available for gravels, due to difficulties in 

obtaining high quality measurements of material damping ratio at small strains 

(Menq, 2003). Menq (2003) proposed the following empirical relationship for dry 

coarse-grained materials, as a function of the uniformity coefficient Cu, the 

equivalent particle diameter D50 and the confining stress: 
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 (2.10) 

He also provided a measure of variability, with a constant σD equal to 0.1%. 

Figure 2-10 compares the mean DS,0 and the related CoV for sands and gravels, as 

a function of σ’
m. Data were estimated from Menq (2003) relationships by setting 

Cu = 20 and D50 = 8.0 mm for gravels and Cu = 1.5 and D50 = 0.5 mm for sands. 

Compared to fine-grained soils, there is a reduction both in DS,0, which is less than 

1%, and in the CoV, which ranges around 0.2÷0.4. 
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Figure 2-10. Empirical estimates of the mean (a) and the coefficient of variation (CoV - 

b) of the small-strain damping ratio DS,0 as a function of the mean confining stress σ’
m for 

gravels and sands. 

Finally, DS,0 estimates for rock-like materials or cemented soils are mainly 

available through specific laboratory tests, whereas empirical relationships for its 

prediction are currently not available. Table 2.1 lists some typical values extracted 

from technical literature. 

Table 2.1. Typical values of the small-strain damping ratio DS,0 for some dry rock-like 

materials or cemented soils. 

Rock type DS,0 

Tuffs (Choi, 2007) 0.4÷1% 

Sandstone (Gardner et al., 1964; Paffenholz and Burkhardt, 1989) 0.2÷1.2% 

Limestone (Paffenholz and Burkhardt, 1989) 0.1÷0.6% 

Dolomite (Paffenholz and Burkhardt, 1989) 0.25÷0.6% 

 

On the other hand, additional empirical relationships allow to infer DS,0 as a 

function of other mechanical parameters. A popular scheme relates the so-called 

“quality factor” QS (Carcione, 2007), which is an alternative dissipation parameter 

to DS,0 commonly used in seismology, with the S-wave velocity VS. Many 

proposed formulations assume a proportionality between these parameters (e.g., 

Olsen et al., 2003; Campbell, 2009): 

 
0

1

2
S S

S ,

Q a bV
D

= = +  (2.11) 

Note that these relationships do not derive from laboratory-based damping 

estimates, but they are inferred from observations on ground motion data (see 

Chapter 4 for further details). Therefore, they are they are proxies of the in-situ 
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damping ratio and they might not necessarily provide a measure of intrinsic 

dissipation only. 

2.3 Role of the small-strain damping ratio 

2.3.1 Seismic site response 

The proper prediction of the earthquake-induced ground motion is crucial for the 

seismic design of buildings and geotechnical systems. Typical design approaches 

do not model the complete propagation of seismic waves from the source (i.e., an 

active fault) to the target (e.g., a structure), as conventional ground motion 

prediction relies in a decomposition of the problem into three steps: source, path 

and site effects (Figure 2-11). Source effects analysis models the fault rupture and 

provides an estimation of the released energy, whereas path effects are linked with 

the propagation of seismic waves across the crust. Site effects, instead, represent 

alterations in amplitude and frequency content of seismic waves induced by local, 

near-surface geology. Modeling of source and path effects is typically carried out 

through Probabilistic Seismic Hazard Analyses (PSHA; Cornell, 1968). PSHA is 

performed for a reference geological condition, typically for rock-like outcropping 

formations. Therefore, site effects studies allow to map the ground motion from 

the reference conditions into a site-specific hazard estimate, that accounts for the 

site geomorphology. An effective indicator of variations in the ground motion 

characteristics due to local site conditions is the acceleration transfer function 

(TF), defined as follows: 

 
( )

( ),

,g

g o

u f
TF

u f
=

x
 (2.12) 

The TF measures relative variations between the Fourier spectrum of the 

ground acceleration üg(f,x) at the generic location x inside the soil deposit 

(typically, the free surface) and the Fourier spectrum of the ground acceleration 

üg,o(f) recorded in rock-like outcropping formation, i.e. the reference geological 

condition (Figure 2-11). An alternative indicator commonly used in engineering 

seismology is the spectral amplification function AF, defined as the ratio between 

the 5%-damped elastic response spectrum Se(T,x) in a location in the soil deposit 

and the reference one Se,o(T): 
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Figure 2-11. Distinction between source, path and site effects in propagating seismic 

waves (modified from Passeri, 2019). The plot highlights the motion recorded in the 

reference geological condition, represented in terms of the Fourier spectrum of the ground 

acceleration üg,o(f) and the elastic response spectrum Se,o(T), and the motion inside the soil 

deposit, represented in terms of üg(f,x) and Se(T,x). 

The modifications in ground motion characteristics are the result of the 

mechanical properties of the soil deposit and the geometry of stratigraphic 

interfaces and they are usually termed as stratigraphic amplification and 

topographic amplification. A detailed assessment of the modification of the 

ground motion should take into account all these factors, by carrying 2D or even 

3D analyses – typically termed as Site Response Analyses (SRAs). Yet, SRAs 

require a detailed geologic and geotechnical characterization of the location under 

examination for an adequate extent, able to cover the representative volume of 

interest. The large amount of investigations required and the necessity of 

sophisticated numerical codes make SRAs to be used only on specific project 

topics, e.g. for critical facilities. Ordinary design applications typically rely on 1D 

Ground Response Analyses (GRAs), that assume a 1D model for the site deposit 

and ignore the actual geometry (i.e., lateral variations, local heterogeneities, etc.) 

to focus on stratigraphic amplification. Even though this scheme is not applicable 

in every geological condition, GRAs have become very popular thanks to the 

limited amount of input parameters, the simplicity in the interpretation and the 

limited computational effort. In addition, GRAs have been proved to provide 

reliable estimates of site amplification in several cases. 

Notwithstanding their simplicity, GRAs are affected by uncertainties due to 

several factors. Following the scheme devised by Idriss (2004) and Rathje et al. 

(2010) and extended by Passeri (2019), the main sources of uncertainties are the 

shear-wave velocity (VS) profile, the MRD curves, the shear strength, the small-

( ),g ou f

( ),gu f x

( ),e oS T

( ),eS T x
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strain damping ratio, the input motions selection and the type of approach for 

modeling soil dynamic behavior. The choice of mechanical parameters is a 

nontrivial task, yet it is a critical step in conducting GRAs. Indeed, the key issue is 

the non-existence of a priori conservative values for the mechanical parameters. 

The reason of this difficulty is the coupled effect of the large amount of input 

information involved in GRAs, that may have mutual and/or opposite effects on 

the resulting amplification, and the remarkable nonlinearity that affects the 

problem. For this reason, GRAs should be carried out by considering the 

parameter uncertainties in an explicit way, within a probabilistic framework in 

order to Identify, Quantify, and Manage (i.e., IQM method; Passeri, 2019) all the 

uncertainties and variabilities involved in the analyses. A thorough discussion on 

the role of each parameter and the related uncertainties would be beyond the 

scope of this dissertation, which focuses on the effect of the small-strain damping 

ratio. A detailed overview of the remaining parameters is available in Foti et al. 

(2019a), Foti et al. (2019b), Passeri (2019), and Foti et al. (2021). 

Although the uncertainties related to DS,0 are usually referred as secondary 

(Idriss, 2004; Rathje et al., 2010; Cabas and Rodriguez-Marek, 2018), the choice 

of adequate values can strongly affect the soil response, especially in the small-

strain field (e.g., Thompson et al., 2012; Tao and Rathje, 2019). For instance, 

Field and Jacob (1993) observed that poorly constrained damping ratio values, 

together with uncertainties in the S-wave velocity of shallow layers, result in a 

large variability in simulated amplification data. Boaga et al. (2015) observed that 

DS,0 affects the 1-D amplification in presence of strong impedance contrasts and 

its effect is more relevant at high frequencies, whereas its impact is smaller in soil 

deposits with smooth variations of the mechanical properties. Indeed, in the 

presence of sharp variations in stiffness, the 1-D ground model exhibits a response 

closer to the theoretical case of a homogeneous medium over a rigid bedrock, 

where the entity of the ground motion amplification is inversely proportional to 

DS,0 (Kramer, 1996). 

Ordinary applications estimate DS,0 by means of specific laboratory tests or 

from in-situ surveys, based on seismological methods or geophysical testing – the 

different estimation methods will be addressed in Chapter 4. Alternatively, 

empirical models (e.g., Hardin and Drnevich, 1972a; Kokusho et al., 1982; Seed 

et al., 1986; Vucetic and Dobry, 1991; Ishibashi and Zhang, 1993; Darendeli, 

2001; Menq, 2003; Zhang et al., 2005; Senetakis et al., 2013; Vardanega and 

Bolton, 2013; Ciancimino et al., 2020) can be used to predict the soil behavior as 

a function of different variables (e.g., soil type, PI, mean confining pressure, 

OCR, loading frequency). The uncertainties on the empirical models related to the 
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experimental variability of MRD curves and possible experimental errors can be 

quantified through the standard deviation provided along with the mean values 

(e.g., Darendeli, 2001; Zhang et al., 2005; Akeju et al., 2017; Ciancimino et al., 

2020). Conversely, when laboratory tests are carried out, the main uncertainties 

are related to the experimental limitations and the natural randomness of soil 

properties at the site scale, associated with geological spatial variations (Park and 

Hashash, 2005). 

However, the applicability of DS,0 values obtained through laboratory tests for 

GRAs has been questioned by different Authors (e.g., Thompson et al., 2012; 

Stewart et al., 2014a; Zalachoris and Rathje, 2015; Xu et al., 2019). Indeed, 

experimental evidence from back-analysis of Down-Hole seismic arrays showed 

small-strain damping ratios in the field larger than the values obtained through 

laboratory tests (see Chapter 4). For clarity of interpretation, the small-strain 

damping ratio in field is hereafter referred as ,0
site
SD , while DS,0 is adopted for the 

material small-strain damping ratio measured in the laboratory. These differences 

have to be interpreted taking into account the energy dissipation mechanisms 

acting at the site scale. Wave scattering effects can modify the propagating 

seismic waves due to heterogeneities in the soil profile (Field and Jacob, 1993; 

Thompson et al., 2009). This phenomenon, which is relevant especially in the 

presence of large contrasts of mechanical properties (Zalachoris and Rathje, 

2015), causes additional energy dissipation to the material dissipation and cannot 

be captured by laboratory tests. As a consequence, the ,0
site
SD  should be adopted as 

small-strain damping when GRAs are performed. However, the proposed methods 

for estimating ,0
site
SD  rely on data and resources that are often not available in 

common engineering applications and there is no consensus about the best 

approach for its estimate. This difficulty has been highlighted by Stewart et al. 

(2014a), who suggested dealing the discrepancy between ,0
site
SD  and DS,0 as an 

epistemic uncertainty, when no measurements of ,0
site
SD  are available. Therefore, 

this uncertainty should be handled through a sensitivity study by assuming 

different ,0
site
SD  values, given as the sum of DS,0 and a depth-independent additional 

damping ΔD, ranging between zero (i.e., ,0
site
SD  coincides with DS,0) and 5%.  

Foti et al. (2021) investigated the influence of the uncertainties in DS,0 in the 

seismic ground amplification, mapping the variations of DS,0 on the stratigraphic 

amplification of generic soil models, extracted from a stochastic database of 

GRAs (Aimar et al., 2020). In this dissertation, only results from two subsets are 

presented: a group of relatively stiff ground models, characterized by time-

weighted average of the VS profile (VS,H) of 400÷450 m/s and bedrock depth close 
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to 40 m; a group of soft soil deposits, with VS,H close to 250 m/s and sediment 

thickness around 60 m. Following the recommendations prescribed in Stewart et 

al. (2014a), for each ground model multiple GRAs were performed, by computing 

for each layer ,0
site
SD  as the sum of DS,0, derived through literature models, and an 

additional depth-independent damping ΔD equal to 0%, 2.5% and 5%. 

Simulations were carried out with seismic input motions representative of small-

to-moderate and high seismicity levels. Figure 2-12a-b shows the mean AF for 

each group of soil models, for low and high seismicity. The impact of ,0
site
SD  

depends on the deformability of the ground model and on the level of seismicity. 

Variations in ,0
site
SD  have a strong influence on the seismic amplification in 

deformable soil deposits (Figure 2-12b), with a reduction of the AF up to 10% at 

resonance and 30% at high frequencies for ΔD = 5%. Similar features are 

observed under strong seismic input motions, even though the effect is less 

relevant. As for the variability in the stratigraphic amplification (Figure 2-12c-d), 

the increase of ,0
site
SD  induces a slight reduction in the variability of AF, especially 

at short vibration periods in soft soil deposits. This kind of ground models, indeed, 

usually exhibits local variations – i.e., thin layers, in 1-D conditions – that induce 

strong variability in the response. On the other side, increasing ,0
site
SD  leads to an 

overdamping of the high-frequency components of the wavefield, that are more 

sensitive to such variations. Furthermore, the effect of ,0
site
SD  on the response 

variability is observed on soft soil models under strong seismic inputs (Figure 

2-12d). A possible reason might be the shifting of the D curve towards higher 

values at large strains due to the increase of ,0
site
SD , resulting in an additional 

attenuation of the high-frequency components of the wave. 

In the same study, Foti et al. (2021) addressed the influence of DS,0 on a site-

specific amplification study, with reference to the site of Roccafluvione (Italy). 

The uncertainties of ,0
site
SD  were simulated through the approach suggested by 

Stewart et al. (2014a) also in this case, hence ,0
site
SD  was computed as the sum of 

DS,0 (derived from the model by Ciancimino et al., 2020) and an additional 

contribution ΔD, equal to 0%, 2.5%, and 5%. GRAs were performed with 

reference to two suites of input motions, compatible with the site-specific 

Uniform Hazard Spectra for the return periods of 50 and 475 years. 
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Figure 2-12. a-b) Mean amplification factor AF vs. period T for moderately stiff (a) and 

deformable (b) soil deposits, as a function of the additional damping contribution ΔD and 

seismicity level; c-d) Standard deviation (in logarithmic scale) of the AF σln(AF) vs. T for 

moderately stiff (a) and deformable (b) soil deposits, as a function of ΔD and the 

seismicity level (after Foti et al., 2021). 

They compared variations in the AF due to the epistemic uncertainty in DS,0 

with the variability due to VS and the MRD curves. Such variability was computed 

over a statistical sample of ground models generated through a Monte-Carlo 

simulation from results of the geophysical investigations by keeping ,0
site
SD  as equal 

to DS,0 in Foti et al. (2019a). The corresponding AF distribution is represented in 

Figure 2-13 by the interval defined by the mean and one standard deviation (in 

logarithmic scale), together with the curves obtained as a function of ΔD. A 

change in ,0
site
SD  leads to a variation in the amplification which is significant 

compared with the overall variability of the results. Indeed, for ΔD = 2.5%, the 

AF is close to the lower boundary of the distribution, whereas a value ΔD = 5% 

leads to a large reduction of the amplification, which lies completely below the 

bounds. This effect is relevant especially at high frequencies and close to the 

resonance peak, even when the soil profile is subjected to the higher seismicity 

level. This difference demonstrates than variations in ,0
site
SD  may have a 

considerable impact on stratigraphic amplification and its proper quantification is 

necessary for a good prediction of the ground response in seismic conditions. 
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Figure 2-13. Comparison between the distribution of the amplification factor AF 

(represented in terms of µ ± σ interval), obtained by varying the S-wave velocity VS and 

the MRD curves, and the AF curves as function of the additional damping contribution 

ΔD for (a) low-intensity motions and (b) high-intensity motions (after Foti et al., 2021). 

Finally, the recent study by Rodriguez-Marek et al. (2021) investigated the 

epistemic uncertainties affecting GRAs, with reference to a synthetic soil model. 

Differently from previous studies, they did not assess only the effect of variations 

in VS, but they performed a thorough investigation of the role of various soil 

deposit mechanical parameters, including ,0
site
SD  as well. Their study, indeed, is an 

attempt to overcome issues in modeling epistemic uncertainties that, according to 

the Authors, are the result of an oversimplified and incomplete definition of such 

uncertainties. The mapping of epistemic uncertainties into the ground motion 

amplification was carried out through a logic tree approach, where multiple 

scenarios (called “branches”) – each corresponding to a possible outcome for any 

input variable – are modelled (Figure 2-14). In this study, ,0
site
SD  was assumed to be 

proportional to the laboratory-based estimate DS,0 and the related uncertainties 

were introduced by setting various values on the multiplier. Logic trees allow to 

infer both the statistical dispersion of the amplification and the relative 

contribution of the epistemic uncertainties of each parameter. The latter is 

provided by sensitivity analyses on results, that compute the mean amplification 

conditioned on a specific branch (i.e., a specific value) for each parameter being 

true. The conditioned means can then be compared to the overall mean, in terms 

of relative difference (in logarithmic scale), called “sensitivity” (Figure 2-15). 

Interestingly, the multiplier of DS,0 is the most influencing parameter at short 

vibration periods, with an impact even more relevant than VS. This entails that the 

high-frequency amplification is strongly dependent on DS,0. Conversely, the long-



31 

 

period response is mainly affected by variations in the VS of shallow layers, 

whereas DS,0 plays a secondary role. 

 

Figure 2-14. Logic tree used for the analysis of the effect of epistemic uncertainties in 

GRAs (after Rodriguez-Marek et al., 2021). 

 

Figure 2-15. Sensitivity of the mean amplification factor AF to the various parameters 

involved in the logic tree (Figure 2-14), as a function of the investigated vibration period 

T: 0.1 s (a) and 1.0 s (b). The size of each symbol is proportional to the weight assigned 

to the corresponding branch (after Rodriguez-Marek et al., 2021). 

2.3.2 Ground vibrations 

The proper assessment and management of artificially induced vibrations has 

gained interest in the last decades, due to the growing environmental concern and 

a) b)
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the impact on acoustic comfort of people. Besides, at very high levels, vibrations 

might induce structural damage. Sources of vibrations can be clustered into three 

main categories: traffic, industrial activity and construction activity. The 

distinction is just indicative and not exhaustive, although each category is 

characterized by different levels of amplitude and frequency content. National and 

international guidelines set proper constraints, based on various kinds of 

parameters, threshold levels and frequency ranges, as a function of potential 

consequences of vibrations in building. The considered scenarios are 

malfunctioning of sensitive equipment (e.g., Gordon, 1991), discomfort to people 

(e.g., British Standard Institution, 1992; International Organization for 

Standardization, 1999) and structural damage (e.g., Deutsches Institut fur 

Normung, 1999). Generally, criteria rely on design parameters linked with the 

particle velocity field, hence this is the target quantity intervening in vibration-

based problems. 

The prediction of the entity of ground-borne vibration often relies on 

empirical approaches. However, the current trend is to perform a theoretical 

prediction to simulate the whole phenomenon of vibration propagation, based on 

physical modeling. From the physical viewpoint, vibrations are elastic waves that 

are generated by a source, which is simulated as a dynamic force applied onto the 

soil. These waves propagate inside the medium and they impinge on the receiver 

(e.g., the foundations of nearby buildings), thus generating structural vibrations 

and re-radiated noise (Figure 2-16). Typical modeling performs a decomposition 

of the problem into three subproblems, that are treated separately (e.g., Lai et al., 

2005a): the characterization of the source, the transmission of elastic waves from 

the source to the receiver under free-field conditions, and the interaction of the 

receiver with the incident wave field. The decomposition does not account for the 

mutual dependence of the solutions of each subproblem, however the 

approximation introduced by such separation is acceptable when the characteristic 

wavelength of the generated wavefield is small compared to the source-receiver 

distance. In this case, indeed, the presence of the target element does not 

significantly affect the incident wavefield. Not surprisingly, this partition recalls 

the source-path-site separation used in engineering seismology. Indeed, seismic 

hazard analysis and vibration studies both address the propagation of mechanical 

waves in the soil, albeit with some key differences. On the one side, ground-borne 

vibrations induce low strain levels, lying below the linear cyclic threshold shear 

strain, whereas seismic waves usually have large amplitudes, hence the 

nonlinearity may be relevant. Therefore, the transmission of ground-borne 

vibrations may be modeled using a linear soil constitutive model. Furthermore, 
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vibrations involve waves with frequencies (up to 200 Hz) that are an order of 

magnitude higher than those induced by earthquakes (up to 30 Hz; Pyl, 2004). 

 

Figure 2-16. Schematic representation of the propagation of ground-borne vibrations 

(after Lai and Özcebe, 2015). 

The soil model characteristics are relevant in the assessment of vibrational 

impact, as they affect both the source characterization, the propagation, and the 

interaction with the receiver. On the one side, the energy transmitted from the 

source into the ground is the result of an interaction among the source itself, the 

foundation and the soil, all of them affecting the entity of vibrations. Then, the 

energy spreads into the soil medium in free field conditions, undergoing changes 

in amplitude and frequency content as an effect of soil anelasticity. Finally, the 

ongoing wave impinges the receiver, and the induced motion is affected by the 

interaction between the foundation and the soil. This section focuses on key 

aspects about vibrations generation and propagation, whereas the interaction with 

the receiver is addressed in the next section, due to the remarkable analogies with 

the problem of seismic soil-structure interaction. Furthermore, several studies tend 

to couple the modeling of the source effects and the propagation of vibrations in 

the ground. 

Modeling of the source effects often relies on physically-based analytical 

models or numerical schemes that account for the mutual interaction between the 

source and the underlying structure and soil (e.g., Lombaert et al., 2000; Clouteau 

et al., 2001; Hussein and Hunt, 2007). The relevant role of soil model 

characteristics is evident when focusing on prediction accuracy of such theoretical 

models. Comparing predicted vibrations to experimental data often reveals good 

qualitative agreement, whereas it is challenging to achieve a good quantitative 

accuracy, as the prediction in common models error usually ranges around 10 dB 
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(Hunt and Hussein, 2007). Furthermore, the degree of fit strongly depends on the 

excitation frequency. For instance, Lombaert and Degrande (2003) and Lombaert 

et al. (2006) noticed that simulated and experimental data compare well when 

dealing with noise generated by road traffic, whereas the matching quality is poor 

if effects of rail traffic are investigated. The different performance is the coupled 

effect of uncertainties in the soil model and the frequency content of the vibration 

generated by the source. On the one side, the complete spatial variation of 

dynamic soil characteristics is impossible to identify, hence soil models are 

subject to uncertainty (Lai and Özcebe, 2015). Furthermore, road vehicles mainly 

generate a low-frequency signal that, having large wavelengths, is poorly sensitive 

to small variations and local heterogeneities in the soil. Notwithstanding several 

studies explicitly recognize the paramount role of soil dynamic parameters in the 

ground-borne vibrations (e.g., Kouroussis et al., 2011), only few cases performed 

a thorough parametric analysis on this purpose or used in situ estimates of soil 

parameters, especially for the dissipative ones (e.g., Dos Santos et al., 2016). 

Schevenels (2007) investigated in detail the influence of soil dynamic 

parameters on the free-field wave propagation. For this purpose, he carried out a 

parametric analysis on a homogeneous half space, by modifying each soil 

parameter separately and studying variations in the propagating wave. The 

variability in VS and DS,0 was modeled assuming a lognormal distribution, where 

the mean value and standard deviation are consistent with typical studies of 

stochastic soil dynamics. The coefficient of variation of DS,0 is equal to 0.4, which 

is much higher than the dispersion in the soil stiffness (as the corresponding value 

is 0.2), to account for the high uncertainties affecting in situ estimates of DS,0 

(Figure 2-17a-d; Karl, 2005). The vibration entity was measured through 

displacement transfer functions, that provide the displacement field due to a unit 

force applied on the surface of the medium. He noticed that variations in DS,0 

impact in a similar way to those in VS (Figure 2-17). Furthermore, the effect 

strongly depends on the investigated frequency, as the variability in the estimated 

transfer function exponentially increases with the frequency, especially at large 

distances from the source. For instance, the 95% confidence region of the transfer 

function estimated at high frequencies far from the source may span multiple 

orders of magnitude. This result demonstrates the strong impact of the 

uncertainties in DS,0 in the wave propagation at small strains. 
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Figure 2-17. a-c) Parametric study with reference to the shear modulus: a) Probability 

density distribution; Ten realizations (grey lines) and 95% confidence regions (shaded 

area) of the transfer function amplitude for a receiver located at 4 m (b) and 32 m (c) 

from the source; d-f) Parametric study with reference to the shear damping ratio: d) 

Probability density distribution; Ten realizations (grey lines) and 95% confidence regions 

(shaded area) of the transfer function amplitude for a receiver located at 4 m (e) and 32 m 

(f) from the source. Darker lines correspond to higher values of the investigated 

parameter (after Schevenels, 2007). 

Instead, Papadopoulos et al. (2019) investigated the effect of soil parameters 

uncertainties on the estimated transfer function for a real case. Specifically, they 

mapped soil uncertainties into the response of a real building, located in Belgium. 

Simulations considered a suite of representative soil profiles obtained from the 

interpretation of a MASW survey, with low-uncertainty VS data, whereas DS,0 is 

well constrained in the shallow layers, but it is affected by high variability at 

greater depths (Figure 2-18a-b). The parameter uncertainty results in broad 

variability in the theoretical transfer function and in the estimated displacements 

in the structure that, however, allow to achieve a good prediction of the in situ 

observed data (Figure 2-18c). 

a) b) c)

d) e) f)
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Figure 2-18. a-b) Representative S-wave velocity VS and small-strain damping ratio DS,0 

profiles; c) Measured (solid line) vs. predicted (dashed line) vertical displacement transfer 

function u at the ground floor of the target building. The grey solid lines denoted 

realizations for different soil profiles (after Papadopoulos et al., 2019). 

2.3.3 Dynamic soil-structure interaction 

The parameters describing the low-strain soil dynamic behavior are relevant also 

in problems of dynamic soil-structure interaction. Indeed, in the presence of 

dynamic loading, the deformability of the soil-foundation system affects the 

motion of the structure and, conversely, the motion of the structure itself affects 

the motion of the soil-foundation system. Therefore, there is a mutual effect of the 

components’ deformability on the overall response of the system. Variations in 

the dynamic response in the structures due to the interaction between the 

superstructure, the foundation and the underlying soil are termed as Soil 

Foundation Structure Interaction (SFSI). 

This kind of problem is relevant in all the geotechnical systems, and it is 

intrinsically complex. Indeed, the mechanisms involved in the dynamic 

interaction primarily depend on the foundation type because, for example, 

structures founded on footings or piles (e.g., Mucciacciaro and Sica, 2018) exhibit 

rather different responses. Furthermore, the characteristics of the superstructure 

itself affect the response of the system, as the interaction changes when dealing 

with isolated piers (e.g., Gaudio and Rampello, 2019), continuous-beam bridges 

or multi-storey buildings. Also, the boundary conditions of the system affect 

dynamic interaction. Typical examples are offshore systems, where water actively 

participates in the global response (e.g., Kementzetzidis et al., 2019), or earth-
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retaining walls (e.g., Argyroudis et al., 2013). Even the degree of contact between 

the foundation and the underlying soils may affect the overall response, e.g. in the 

presence of local scour at bridge piers (e.g., Ciancimino et al., 2021). 

Nonetheless, the global response of the soil-foundation-structure system 

involves some basic features, that are shared across different geotechnical 

systems. On the one side, the deformability of the supporting soil affects the 

dynamic response of the system, as the foundation is characterized by additional 

degrees of freedom in terms of translation and rotation. This interaction results in 

the lengthening of the fundamental period of the system and to an increase of 

energy dissipation, which is not only due to intrinsic structural damping, but it 

also occurs through wave radiation and hysteretic behavior of the soil (Veletsos 

and Meek, 1974). In most cases, the SFSI induces a reduction of the seismic 

demand in structures, hence a conservative design approach would disregard such 

effects. However, several Authors identified specific situations where SFSI could 

be detrimental to the dynamic response (e.g., Mylonakis and Gazetas, 2000). For 

instance, the period lengthening increases the seismic demand in stiff structures, 

whereas the SFSI might increase the displacement- and the ductility-demand in 

flexible structures. Furthermore, it could favor double resonance phenomena 

when the natural frequency of the whole system approaches the predominant 

frequency of the ground motion or the fundamental frequency of the soil deposit. 

Proper modeling of SFSI is crucial for estimating the structural response to 

ground borne vibrations, especially when modeling three-dimensional effects of 

traffic induced vibrations. This interaction is relevant especially when the ground 

and structural stiffnesses are comparable or when a deformable structure lies on 

stiff soils (François et al., 2007). Furthermore, dynamic SFSI may be relevant in 

spatially variable soil deposits, even if they are moderately stiff, especially at high 

frequencies (Papadopoulos et al., 2018). Yet, this kind of modeling is more 

challenging than seismic SFSI due to the broader frequency range investigated. 

Indeed, the prediction of the high frequency response is more sensitive to 

modeling errors and local variations in the model. 

Given the nature of the phenomenon, SFSI is strongly dependent on the 

geotechnical parameters of the soil deposit. The most relevant parameter is soil 

stiffness, as it governs soil deformability which, in turn, is responsible of the SFSI 

(Veletsos and Meek, 1974). Instead, the mapping of the soil dissipation 

characteristics into the SFSI is nontrivial. Indeed, energy dissipation in SFSI 

occurs as the composition of multifold phenomena, that combine geometrical and 

anelastic effects. Furthermore, different geotechnical systems involve different 

mechanisms of energy dissipation, where the role of soil damping can be variable. 
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For instance, in shallow foundations, energy dissipation is the result of three main 

mechanisms of energy dissipation. One component is dissipation due to inelastic 

phenomena occurring in the structure (termed as “structural damping”), which is 

usually modeled as equivalent viscous damping. Then, hysteretic dissipation in 

the soil deposit contributes to motion attenuation. Another component is radiation 

damping, which is the geometrical effect of radiation of waves emanated at the 

foundation-soil interface that, spreading outward, carry energy away from the 

foundation system. Radiation damping is highly dependent on the frequency, and 

it increases with the foundation width and embedment depth. However, it 

decreases when the soil deformability is lower, except in case of deep 

homogeneous soil deposits. In a completely different case, as in offshore 

structures and wind turbines, part of energy dissipation occurs geometrically 

through hydrodynamic damping, that mimics the energy carried away due to 

viscous drag exerted by water and wave radiation (e.g., Kementzetzidis et al., 

2019). 

Typical modeling assumes that the radiation damping represents the main 

mechanism of energy dissipation, especially at small strains. However, in stiff, 

slender structures with height-width ratios greater than one, large part of energy is 

dissipated by material damping (Ambrosini, 2006). Furthermore, Martakis et al. 

(2017) observed in centrifuge tests that the identified equivalent damping ratio in 

SSI is remarkably larger than the predicted one and it exhibits a strong 

dependence on the shaking intensity (hence, the strain level). The strain 

dependence supports the idea that the main dissipation mechanism is hysteretic 

and linked to soil intrinsic dissipation even at small strains, in contradiction with 

the common practice. However, most studies focused on the search for an 

appropriate modeling of soil nonlinearity and the choice of the constitutive model, 

whereas a specific study on the choice of soil parameters has not been carried out 

yet, especially in terms of dissipation at small-strains. 
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Chapter 3 

Wave propagation 

Mechanical waves represent the propagation in space of a perturbation of a 

physical attribute applied in a physical medium (Ben‐Menahem and Singh, 2012). 

The propagation only involves a transfer of energy, whereas there is no 

transportation of material, as particle movement occurs through small distances 

about the equilibrium point in an oscillatory way, without permanent 

displacement. 

In earthquake engineering, a basic classification of the mechanical waves of 

interest (also termed as seismic waves) distinguishes body waves and surface 

waves. Body waves are mechanical waves propagating within the body of the 

medium and many typical applications rely on two main classes: compression 

waves (or P-waves) and shear waves (S-waves). Surface waves, instead, exist 

when the medium includes a free surface. The attribute “surface” derives from the 

fact that the wave energy propagates only in the portion of the medium closest to 

the free surface. The most investigated surface waves are the Rayleigh waves, 

although some applications also involve Love and Scholte waves (e.g., 

Shinkarenko et al., 2021). Additional types of body and surface waves can carry 

energy inside a physical medium, depending on the specific boundary conditions 

or even the constitutive model (e.g., Biot, 1956). However, this dissertation will 

address only Rayleigh waves as they are widely used in site characterization 

studies. 

The wave propagation theory involves alternative criteria for the classification 

of mechanical waves. A relevant distinction separates hyperbolic waves and 

dispersive waves. Hyperbolic waves propagate in the medium according to 

hyperbolic partial differential equations and they travel at a fixed velocity, 

depending on the medium mechanical properties. Body waves propagating in an 

isotropic, linear elastic medium are an example of hyperbolic waves. Dispersive 

waves, instead, assume a complex behavior, because the propagation speed is a 

function of the wave frequency. As each frequency component travels at a 

different speed, nonmonochromatic signals change shape as they propagate 

(Figure 3-1a-b). Due to this dependence, the description of the wave propagation 

velocity is nontrivial and it refers to two parameters: the phase velocity and the 
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group velocity. Their definition relies on the solution for dispersive waves, here 

referred to the simplified case of one-dimensional propagation along the spatial 

coordinate x (e.g., Foti et al., 2014): 

 ( ) ( )
,

i kx k t
u x t Ae

−  =  (3.1) 

In the equation, u labels the displacement (but it can be any physical 

quantity), A is the wave amplitude and k is the wavenumber, which is a parameter 

characterizing the wave propagation, at the circular frequency ω. The phase 

velocity is the propagation speed of the wavefront, which is the locus of points 

with equal phase, i.e. 

 ( ) const.kx k t− =  (3.2) 

Therefore, the phase velocity is defined as follows: 

 
( )kdx

V
dt k


= =  (3.3) 

The group velocity, instead, represents the propagation speed of the wave 

energy (Figure 3-1c) and it is defined as follows: 

 
( )

g

d k
V

dk


=  (3.4) 

Rayleigh waves propagating in a vertically heterogeneous, elastic medium are 

an example of dispersive waves. 

 

Figure 3-1. a-b) Propagation of a nondispersive wave (a) and of a dispersive wave (b). c) 

Distinction between phase velocity V and group velocity Vg (modified from Foti et al., 

2014). 

The next sections provide some details about the propagation of body waves 

and Rayleigh waves in continuous media, with a description of the governing 

equations and the main parameters. Firstly, wave propagation in linear elastic 

media is addressed, to introduce the main features and properties of body waves in 
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a simplified manner. Then, the propagation is generalized into the case of linear 

viscoelastic media, which is the focus of this dissertation. The following schemes 

will be generalized to Rayleigh waves. Part of this Chapter is based on the book 

by Foti et al. (2014). 

3.1 Body waves 

3.1.1 Body waves in linear elastic media 

The wave propagation in a continuum body is described by the dynamic 

equilibrium equation, that prescribes the equilibrium conditions of an infinitesimal 

volume element in the presence of a dynamic excitation. The equation assumes a 

relatively simple form when introducing the hypothesis of small-strain levels and 

an isotropic, linear elastic and homogeneous behavior for the body. Under this 

assumption, the equilibrium equations degenerate in the Navier’s displacement 

equations of motion: 

 ( ) 2   +  +  =u u u  (3.5) 

The equation provides the space-time variations of the displacement field u, 

as a function of the relevant material parameters, that are the mass density ρ and 

the Lamé’s elastic parameters λ and µ. The Lamé parameters are an alternative 

description of the behavior of linear elastic and isotropic media, with respect to 

the engineering parameters – in soil dynamics, these are the shear modulus G and 

the Poisson’s ratio υ. 

The Helmoltz’s theorem allows to demonstrate that the wavefield is the 

combination of two uncoupled wave components. Specifically, a component gives 

rise to volumetric deformations only, hence the corresponding wave is termed as 

compression, longitudinal or primary (P) wave. The other component, instead, 

induces distortional deformations in the medium and the corresponding wave is 

labeled as shear, transversal or secondary (S) wave. Each wave propagates in the 

medium according to a propagation velocity VP (i.e., the P-wave velocity) and VS 

(i.e., the S-wave velocity), linked with the material mechanical properties as 

follows: 
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The propagation speeds are not identical, as P waves propagate faster than S 

waves. The ratio between these velocities is a function of υ: 

 
( )2

2

2 1

1 2

P

S

V

V





−
=

−
 (3.7) 

In typical geomaterials, where υ is close to 0.3, the P-wave velocity is around 

twice the S-wave velocity. However, in saturated soils, body wave propagation 

occurs in undrained conditions, where υ approaches 0.5 due to water (and soil) 

incompressibility (Figure 3-2a). In this condition, VP tends to be infinite. Instead, 

laboratory and field tests showed much lower VP values, around 1,500 m/s. In real 

geomaterials, indeed, water is compressible and intergranular voids always 

contain a small amount of air, that dramatically drops down the stiffness. For this 

reason, VP is highly sensitive to the saturation degree (Figure 3-2b). Furthermore, 

propagation velocities do not depend on the frequency, hence P and S waves in 

linear elastic, isotropic media are nondispersive. Therefore, VS can be viewed as a 

material parameter and as a proxy of the shear stiffness.  

Table 3.1. Typical values of the S-wave velocity VS for different geomaterials (after Foti 

et al., 2018). 

Geomaterial S-wave velocity, VS (m/s) 

Soft clay 80 ÷ 200 

Stiff clay 200 ÷ 600 

Loose sand 80 ÷ 250 

Dense sand 200 ÷ 500 

Gravel 300 ÷ 900 

Weathered rock 600 ÷ 1,000 

Competent rock 1,200 ÷ 2,500 

 

As for the displacement field induced by body waves, P waves induce a local 

displacement parallel to the direction of propagation, whereas S waves induce a 

particle displacement acting along a plane perpendicular to the direction of 

propagation. For simplicity, the S-wave motion is typically decomposed into a 

vertically polarized SV-wave and a horizontally polarized SH-wave. 
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Figure 3-2. a) Variation of the ratio between P- and S-wave velocities VP/VS as a function 

of the Poisson’s ratio ν; b) Variation of the P- and S-wave velocities in sandy specimens 

as a function of the saturation degree, quantified through the Skempton’s B-value (after 

Valle-Molina, 2006). 

Further insights on the propagation characteristics of body waves can be 

obtained by explicating the harmonic solution along the positive x direction for 

the specific case of 1D wave propagation: 

 ( ) ( )
,

i t k x
u x t Ae 



−
=  (3.8) 

The equation is valid both for P-wave or for S-wave propagation (i.e., χ = P, 

S), and uP denotes the axial displacement, whereas uS labels the transverse 

displacement. The wavefield is a two-dimensional harmonic function in the space-

time domain with amplitude A (Figure 3-3), where the wavenumber kχ describes 

the spatial variation and it is linked with the wave velocity as follows: 

 k
V






=  (3.9) 

The time variation at a specific point is described by a sinusoidal variation 

with oscillation period T, linked with ω as: 

 
2

T



=  (3.10) 

Alternatively, time variations of the wavefield can be described in terms of 

frequency f, equal to the reciprocal of T. The spatial oscillation at a fixed time 

instant is also sinusoidal and the length of a single cycle is named wavelength λ, 

which is linked with the wavenumber k as: 

 
2 V

k f








 = =  (3.11) 
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Figure 3-3. Space-time variation of the displacement field uχ(x,t) induced by a body wave 

with amplitude A propagating in an elastic body, in 1D conditions. The top portion shows 

the spatial variation of body waves, at a fixed time instant t0, characterized by the 

wavelength λχ. Instead, the left part represents the time variation, at a fixed location x0, 

characterized by the vibration period T. 

The wavefield solution in 1D conditions allows a simplified description of the 

behavior at the interface between materials with different mechanical properties. 

In this case, the interaction of an incident body wave with the interface generates 

one reflected wave and one transmitted wave (Figure 3-4a). The continuity of the 

displacement field and the equilibrium in the stress state set a constraint in the 

relationship between the amplitudes of the incident, reflected and transmitted 

wave, labeled as Ai, Ar and At respectively: 
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The parameter αz,χ is the impedance ratio, which is the ratio between the mass-

wave velocity product (i.e., the impedance) of the arrival medium and the one of 

the starting medium: 
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The effect of αz,χ on the amplitudes of the transmitted and reflected waves is 

shown in Figure 3-4b. When a body wave moves from a softer to a more rigid 

medium (i.e., ρ2Vχ,2 > ρ1Vχ,1 and αz,χ > 1), the reflected wave has a smaller 

amplitude than the incident wave, with amplitude reversal; instead, the transmitted 

wave is concordant with the incident wave but with smaller amplitude. When a 
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body wave moves from a more rigid to a softer medium (i.e., ρ2Vχ,2 < ρ1Vχ,1 and 

αz,χ < 1), the reflected wave has a smaller amplitude; instead, the transmitted wave 

is concordant with the incident wave but with greater amplitude. This aspect is 

relevant in the geotechnical earthquake engineering because seismic waves 

typically move from hard rock to soft soil deposits, thus undergoing a strong 

amplification. On the contrary, typical site characterization studies rely on waves 

generated on the free surface that propagate in materials with increasing 

impedance with depth, thus deamplifying. The deamplification limits the 

capability of investigating at large depths. 

In 3D conditions, the interaction of body waves with interfaces between 

material with different mechanical properties is more complex as different types 

of waves might interact with each other (“mode conversion” of P and SV-waves; 

Foti et al., 2014). In this case, the prediction of the amplitude of reflected and 

refracted waves is less trivial (Richter, 1958; Aki, 2002). 

 

Figure 3-4. a) Wave components involved in the interaction of a body wave with a 

material interface between two media characterized by mass density and S-wave velocity 

equal to ρ1 and Vχ,1, and ρ2 and Vχ,2. These components are represented in terms of their 

amplitudes: Ai (for the incident wave), At (for the transmitted wave), and Ar (for the 

reflected wave); b) Variations of Ar and At (normalized with respect to Ai) as a function of 

the impedance ratio αz,χ. 

The interaction of body waves with interfaces between material with different 

mechanical properties in 3D conditions follows similar rules as in the 1D case, 

although the phenomenon is more complex. In this case, the Snell’s refraction law 

and the Huygens’ principle state that an incident P-wave generates both two 

reflected and refracted P- and SV-waves and two refracted P- and SV-waves, as 

the incident wave generates both volume and distortion changes. Similarly, an 

incident SV-wave generates both two reflected and refracted P- and SV-waves 

and two refracted P- and SV-waves. This phenomenon of combination of P- and 
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SV-waves at media interfaces is called “mode conversion” (Foti et al., 2014). On 

the converse, incident SH-waves only generate one reflected SH-wave and one 

refracted SH-wave. In this case, the prediction of the amplitude of reflected and 

refracted waves is less trivial, as the equilibrium and compatibility conditions 

should account both for the ray path inclination and the mode conversion in P- 

and SV-waves. However, a prediction is possible when dealing with harmonic 

signals (Richter, 1958; Aki, 2002). 

3.1.2 Body waves in linear viscoelastic media 

A proper modeling of body wave propagation in a linear viscoelastic medium 

would require a workflow analogous to that illustrated for the linear elastic case. 

Specifically, new dynamic equilibrium equations should be built, in compliance 

with the new constitutive models, whence a solution is then derived. However, 

this operation is nontrivial as the dynamic equations in viscoelastic media assume 

a complex behavior and the identification of their solutions is not straightforward. 

An alternative way relies on the elastic-viscoelastic correspondence principle 

(Ben‐Menahem and Singh, 2012). This principle states that any solution of 

Navier’s equation in linear viscoelastic media is identical to the corresponding 

solution of Navier’s equation in linear elastic media, if the elastic parameters are 

replaced by complex-valued, frequency-dependent moduli. The correspondence 

principle allows an immediate derivation of the induced displacement field, as it is 

identical to the one in elastic conditions, but with mechanical parameters replaced 

by equivalent ones. Theoretically, the correspondence principle is valid only for 

time invariant boundary conditions and in the harmonic case. However, the 

Fourier synthesis allows the decomposition of any signal into its harmonic 

components, thus giving the possibility to extend the applicability of the principle 

also to arbitrary time functions (Foti, 2000). 

The relevant parameter to be used in the correspondence principle is the wave 

propagation velocity, that directly depends on the mechanical properties. 

Specifically, the complex-valued equivalent quantity Vχ(ω) is the following (Lai 

and Rix, 2002): 
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However, the following relationship is typically used: 

 ( ) ( ) ( )1V iD     =  + V  (3.15) 
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This formulation is an approximation that is valid in weakly dissipative 

media, where Dχ(ω) < 0.05, whereas it overestimates the magnitude of Vχ(ω) in 

strongly dissipative media (Figure 3-5a). Since the typical damping ratio value of 

geomaterials within the linear cyclic strain threshold range is smaller than 0.05, 

this approximation is acceptable (Foti et al., 2014). 

On the other side, viscoelastic quantities exhibit a remarkable frequency-

dependence. Indeed, mechanical parameters in viscoelastic media should fulfill 

the Kramers-Kronig relations, to comply with the causality principle (Christensen, 

2012). This principle states that Vχ(ω) and Dχ(ω) are mutually linked and, as a 

corollary, they are frequency dependent, hence body waves are dispersive. In 

practical applications, however, Dχ(ω) is typically assumed as constant, because 

experimental evidence shows that dissipative properties are not strongly sensitive 

to the loading frequency, at least over the seismic bandwith (i.e., between 0.1 Hz 

and 10 Hz – see Section 2.2). Under this hypothesis, the Kramers-Kronig relations 

provide an explicit solution for the phase velocity of body waves (Aki, 2002), that 

allows to predict the dispersion model of body wave velocities once the value at a 

reference frequency ωref (typically equal to 2π) is known: 
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 (3.16) 

This formulation provides an estimate of Vχ(ω), which grows both for 

increasing loading frequency or for increasing damping ratio. However, in weakly 

dissipative media under seismic loading, the frequency dependence of the phase 

velocity is weak, as variations range within 5% (Figure 3-5b). For this reason, the 

phase velocity is typically assumed as constant with the frequency and equal to 

the elastic value (e.g., Badsar, 2012). The main drawback of this approach is that 

a linear viscoelastic model with frequency-independent stiffness and damping is 

not transformable precisely in the time domain due to non-causality, hence this 

dissertation will focus on the wave propagation in the frequency domain. 

Furthermore, the application of the correspondence principle requires the 

definition of proper values of Dχ(ω). In soil dynamics, various empirical 

relationships for predicting DS,0(ω) are available, as seen in Section 2.2.3. As for 

the P-wave damping ratio, instead, only few studies focus on its estimation. In 

general, DP,0(ω) is close to DS,0(ω) in unsaturated conditions (e.g., Mavko et al., 

2005), whereas it might be greater in the presence of pore water (e.g., Winkler and 

Nur, 1982). 
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Figure 3-5. a) Ratio between viscoelastic and elastic velocities |Vχ/Vχ| computed 

according to the exact and approximate damping relationships, as a function of the 

damping ratio Dχ (modified from Foti et al., 2014); b) Dispersion relationship for the 

body wave velocity ratio Vχ(ω)/Vχ(ωref) in hysteretic media (i.e., frequency-independent 

damping ratio), as a function of Dχ and the frequency f. 

The description of the displacement field induced by the propagation of body 

waves in isotropic, linear viscoelastic and homogeneous media refers to the 

propagation in 1D conditions, for simplicity. In this case, the solution corresponds 

to the one for the elastic case, including a complex wavenumber kχ(ω), as it 

incorporates the constitutive parameters of the medium: 

 ( )
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 (3.17) 

Therefore, the displacement field is the following: 
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An intuitive interpretation of the wave equation can be obtained by separating 

the real and the imaginary part of the complex wavenumber: 
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The resulting wavefield induces a particle displacement according to an 

exponentially decaying harmonic function. The cyclic variations are linked with 

the real part of kχ(ω), whereas the spatial decay depends on the imaginary part 

(Figure 3-6). Therefore, the real part kχ(ω) is related to the phase velocity and the 

imaginary part αχ(ω) incorporates the material intrinsic dissipation: 
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 ( ) ( ) ( )k i     = −k  (3.20) 

The imaginary part αχ(ω) is called phase attenuation and it is related with 

Vχ(ω) and Dχ(ω) as follows (Lai and Rix, 2002): 
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Thus, the solution can be rewritten by explicating the components of the 

complex wavenumber: 

 ( ) ( ) ( )
,

i t k xx
u x t Ae e    



 −−  =  (3.22) 

 

Figure 3-6. Space-time variation of the displacement field uχ(x,t) induced by a body wave 

with initial amplitude A propagating in linear, viscoelastic medium, in 1D conditions. The 

top portion shows the spatial variation of body waves, at a fixed time instant t0, 

characterized by the wavelength λχ and amplitude decay 
xAe − . Instead, the left part 

represents the time variation, at a fixed location x0, characterized by the vibration period 

T and amplitude 0xAe − . 

3.2 Surface waves 

When the medium includes a free surface (or an interface with a change in the 

impedance), the dynamic equilibrium equation allows additional types of waves 

as a solution. In this kind of waves, the motion is mostly concentrated in the 

shallow portion of the medium, hence they are typically termed as “surface” 

waves. 

Different types of surfaces waves can be identified. However, in soil 

dynamics, the most relevant categories are the Rayleigh waves and the Love 
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waves (Figure 3-7). In Rayleigh waves, the particle motion develops along a 

vertical plane parallel to the direction of propagation, according to elliptical 

trajectories. Love waves, instead, induce a particle motion only in the transverse, 

horizontal direction. A peculiar feature of Love waves is that they exist only in 

media where the shallow portion is softer than the underlying material. Therefore, 

they can only propagate in layered media, whereas Rayleigh waves exist also in a 

uniform half-space. 

 

Figure 3-7. Rayleigh waves and Love waves. 

The next section provides a detailed description of Rayleigh waves, as they 

are widely used in ordinary applications for near-surface site characterization. In 

analogy with the description of body waves, Rayleigh wave propagation in 

isotropic, linear, elastic media is firstly addressed. Thus, the main features are 

discussed in a simplified way, without loss of generality. Then, the propagation 

characteristics are generalized into the case of isotropic, linear viscoelastic 

medium. Finally, the Lamb’s problem is described, as its solution represents the 

theoretical basis of several in situ characterizations techniques relying on the 

measurement of the Rayleigh waves propagation. 

3.2.1 Rayleigh waves in isotropic, linear elastic media 

Rayleigh or R-waves (Rayleigh, 1885) are surface waves generated from the 

interaction between P-waves and SV-waves at the free surface of a continuum 

body. These waves represent a solution of the Navier’s equations for dynamic 

equilibrium, under the constraint of null stress state at the free surface. 

Specifically, the corresponding solution can be searched using Helmholtz’s 

decomposition and assuming a decaying exponential form, to mimic the limited 

penetration depth of the surface wave motion amplitude. 

The solution assumes an intuitive form when considering wave propagation 

over a homogenous half-space, in plane strain field conditions. In this case, the 

propagation characteristics respect the so-called “characteristic equation of 
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Rayleigh waves” (henceforth termed only as “characteristic equation”), which 

links the Rayleigh wave velocity VR with body waves’ velocities: 

 ( ) ( )6 4 2 2 28 24 16 16 1 0B B R B R− + − + − =  (3.23) 

In the equation, parameters B and R are the ratios between Rayleigh and body 

wave velocities: 

 , SR

S P

VV
B R

V V
= =  (3.24) 

As the frequency does not appear in the characteristic equation, Rayleigh 

waves in isotropic, linear elastic and homogeneous media are nondispersive and 

their propagation speed only depends on the P- and S-wave velocities. Viktorov 

(1967) provides an approximate solution of the characteristic equation, from 

which the R-wave velocity depends on υ. However, the dependence is weak when 

considering the typical range of the Poisson’s ratio in geomaterials and VR 

typically ranges around 0.9 times the S-wave velocity: 
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



+
=

+
 (3.25) 

The induced displacement field lies in the plane of wave propagation and it 

involves a vertical and horizontal component that are out of phase of exactly 90°. 

Furthermore, the vertical component is generally larger in amplitude than the 

horizontal one. Therefore, the particle motion follows elliptical trajectories, whose 

geometry strongly depends on the depth and, secondarily, on υ (Figure 3-8). 

Indeed, the amplitude of both components exhibits an exponential decay with 

depth and it tends to vanish quite immediately, being negligible at a depth 

approximately equal to one-two wavelengths. Besides, the horizontal component 

changes its sign with depth, implying a reversal in the direction of particle 

rotation. The remarkable decay in the motion amplitude with depth is consistent 

with the definition of surface waves, as they induce a perturbation lying only in 

the near-surface portion of the medium. Furthermore, this allows to state that the 

wave propagation is mainly influenced by the mechanical parameters of the 

material down to around one wavelength depth, as deeper portions of the half-

space are not affected by the wave displacement field because it vanishes before. 
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Figure 3-8. Variation of the horizontal and vertical displacement amplitude |u(z)|, 

normalized with respect to the motion amplitude at the surface |u(0)|, as a function of the 

depth z (normalized with respect to the wavelength λ) and the Poisson’s ratio ν (modified 

from Richart et al., 1970). 

Real media, however, are not homogeneous as the mechanical properties 

exhibit a spatial variation, which is remarkable with changing depth. A typical 

scheme is the vertically heterogeneous and transversely isotropic linear elastic 

half-space with interfaces parallel to the free surface, where mechanical properties 

only depend on the depth z (hereafter mentioned as “layered” linear elastic 

halfspace; Figure 3-9). This scheme is compatible with the stratigraphy of several 

soil deposits. 

The solution linked with Rayleigh waves propagating in such media is now 

obtained from Navier’s displacement equations of motion, supplemented by the 

same boundary conditions as in the homogeneous half-space (i.e., null stress field 

at the free surface and vanishing of stress and displacement fields at infinite 

depth) together with the constraint of continuity of the stress and displacement 

fields at each layer interface. For each frequency ω, it can be demonstrated that 

the solutions linked with the Rayleigh wave are described by a differential 

eigenvalue problem, where the characteristic equation assumes an implicit form 

(Lai and Rix, 1998b): 

 ( ) ( ) ( ), , , , 0R S RV z z z k   =    (3.26) 
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Figure 3-9. Scheme of layered linear elastic halfspace. 

The functional form ΦR[‧] is named “secular function” and it is a highly 

nonlinear, transcendental function of the arguments. In the equation, the unknown 

is the wavenumber kR, that synthetizes the Rayleigh wave propagation 

characteristics. Differently from the homogeneous halfspace, the characteristic 

equation has multiple solutions, each one being frequency dependent. 

Each solution kR.j of the characteristic equation depends on the frequency ω. 

Therefore, the resulting wavefield is dispersive and the R-wave velocity VR 

(computed as VR(ω) = ω/kR.j(ω)) has to be interpreted as a phase velocity. The 

dependence of VR on the frequency in layered linear elastic media is termed 

“geometrical dispersion” because it is an effect of geometrical variations of 

mechanical parameters with depth (Foti, 2000). The variation of VR over the 

frequency is described by the so-called “Rayleigh wave dispersion curve” (or 

simply “dispersion curve”, hereafter labeled with the symbol “VR(ω)”). A physical 

interpretation of the dispersive nature of Rayleigh waves relies on the limited 

depth range at which the particle motion occurs, as its amplitude is negligible at 

depths larger than one wavelength (Figure 3-10). For this purpose, let us recall the 

link between propagation velocity and frequency, defined in Section 3.1.1: 

 R RV f =  (3.27) 

Due to the inverse proportionality between frequency and wavelength, high-

frequency waves typically correspond to short wavelengths and they only travel 

on the near-surface portion, hence their propagation mostly depends on the 

mechanical properties of the corresponding material. In the limit condition of f → 

∞, VR(ω) tends to a velocity value equal to the R-wave velocity of a homogeneous 
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medium composed by the near-surface layer only. Instead, low-frequency waves 

induce a significant particle motion at greater depths, hence their propagation 

depends also on mechanical properties of deeper layers. At very low frequencies, 

VR(ω) tends to the R-wave velocity of the bottom layer, computed as if it was a 

half-space. Therefore, the shape of dispersion curves is intrinsically connected to 

stiffness variations with depth (Foti, 2000). This feature represents one of the 

principles of geophysical characterization methods based on the measurement of 

Rayleigh waves. 

 

Figure 3-10. Physical interpretation of the geometrical dispersion of Rayleigh waves in 

layered linear elastic media: a) Qualitative sketch of the vertical displacement amplitude 

versus depth for three wavelengths λ1, λ2 and λ3 in a two-layer medium, with S-wave 

velocities VS,A and VS,B; b) Dispersion curve in the phase velocity-wavelength VR – λR 

domain; c) Dispersion curve in the phase velocity-frequency VR – f domain (after Foti et 

al., 2018). 

Furthermore, the characteristic equation has a finite set of possible solutions 

kR,j(ω), j = 1,…, M at each frequency – at least, beyond a well-defined cut-off 

frequency (Ewing, 1957). Instead, in a homogeneous half-space, a unique solution 

exists. Therefore, the Rayleigh wave propagation in layered media is 

characterized by a set of multiple and discrete dispersion curves and, 

correspondingly, by various displacement patterns, that are obtained by plugging 

each solution of the characteristic equation into the Rayleigh eigenvalue problem 

(Figure 3-11). Each solution is labeled as a mode of propagation of the R-wave, 

and they are characterized by different phase velocities. This difference can still 

be interpreted in the light of the penetration depth of the wave, as each mode 

assumes a specific displacement pattern whose amplitude decays quicker or 

slower with depth, thus sampling different portions of the medium, with different 

mechanical properties. Typically, the mode characterized by the lowest values of 

b)a) c)
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phase velocity at every frequency is termed “fundamental mode”, whereas the 

remaining are called “higher modes”. From the physical viewpoint, the existence 

of multiple vibration modes at each frequency is the result of constructive 

interference phenomena occurring among waves undergoing multiple reflections 

at the layers interfaces (Foti et al., 2014). 

 

Figure 3-11. Example of Rayleigh dispersion curves for a layered linear elastic medium: 

a) Layered model, represented as S-wave velocity profile VS with depth z; b) Dispersion 

curves for the model in a), represented as R-wave phase velocity VR vs. frequency f; c) 

Horizontal and vertical Rayleigh displacement eigenfunctions, at f = 20 Hz. Data reported 

in b) and c) refer to the first 4 modes, labeled as R0, R1, R2, and R3, respectively. 

The complexity in the investigation for solutions of the characteristic equation 

led to the development of several computational techniques to solve the Rayleigh 

eigenvalue problem. The most popular approaches are the transfer matrix method 

(Thomson, 1950; Haskell, 1953), the dynamic stiffness matrix method (Kausel 

and Roësset, 1981) and the method of reflection and transmission coefficients 

(Kennett, 1974). 

3.2.2 Rayleigh waves in linear viscoelastic media 

The modeling of Rayleigh wave propagation in a layered linear viscoelastic 

medium is straightforward when relying on the elastic-viscoelastic 

correspondence principle (Ben‐Menahem and Singh, 2012). The correspondence 

principle modifies the secular function inside the characteristic equation as the 

mechanical parameters are replaced by complex-valued, equivalent quantities. 

Therefore, each modal solution is characterized by a complex wavenumber 

kR,j(ω). The real part describes the dispersion relationship and it is comparable to 
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the wavenumber of the Rayleigh wave in an elastic medium, hence it is typically 

labeled as kR,j(ω) (Figure 3-12c). Instead, the imaginary part αR,j(ω) incorporates 

the material intrinsic dissipation and it is termed as “Rayleigh wave (modal) 

attenuation” because it controls the spatial decay in the displacement amplitude of 

the surface wave: 

 ( ) ( ) ( ) ( ) ( ), , , , ,Re ImR j R j R j R j R ji k i     = + = −k k k  (3.28) 

The R-wave attenuation variation with frequency is described by the modal 

attenuation curves (or simply “attenuation curves”, hereafter labeled by the 

symbol “αR,j(ω)”), that tend to increase with frequency (Figure 3-12d). The 

Rayleigh complex wavenumber can be related to material parameters, by referring 

to two quantities derived from the real part and the imaginary part of kR,j(ω), 

respectively. On the one side, the modal phase velocity (or simply “phase 

velocity”) VR,j(ω) is computed from the real part of kR,j(ω): 

 ( )
( )

,

,Re
R j

R j

V





=
k

 (3.29) 

The phase velocity exhibits a direct link with layer velocities through the 

geometrical dispersion, as in the elastic case (Figure 3-12e). Indeed, the related 

dispersion curves are approximately identical to those of the corresponding elastic 

medium, especially in weakly dissipative media. 

Then, the modal phase damping ratio (or simply “phase damping ratio”) 

DR,j(ω) is the ratio between the imaginary and the real part of the complex 

wavenumber (Misbah and Strobbia, 2014): 
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R j
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




  
=

  

k

k
 (3.30) 

The phase damping ratio exhibits a variation with the frequency that is related 

to layers’ S-wave damping ratios through the geometrical dispersion (Figure 

3-12f). The link is evident when considering the fundamental mode, as high-

frequency values almost equal the top layer DS, whereas the phase damping at low 

frequencies approach the DS of the deepest layer. For this reason, the phase 

velocity and damping ratio are often used in place of the complex wavenumber 

for their immediate interpretation and link with the material properties. 
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Figure 3-12. Solutions of the characteristic equation in a layered linear viscoelastic 

medium: a-b) Profiles of S-wave velocity VS and damping ratio DS with depth of z; c-d) 

Modal dispersion and attenuation curves in terms of real wavenumber kR and attenuation 

αR versus frequency f; e-f) Modal dispersion and attenuation curves in terms of phase 

velocity VR,j and phase damping ratio DR,j versus f. 

The solution of the characteristic equation in layered linear viscoelastic media 

is a nontrivial task, because the arguments of the secular function are complex-

valued. Some numerical approaches rely on an extension of computational 

methods for the elastic eigenvalue problem into the viscoelastic case (e.g., 
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Schevenels et al., 2009). Another strategy adopts the solution of the elastic 

eigenproblem as initial estimate of the viscoelastic Rayleigh eigenvalues (e.g., 

Schwab and Knopoff, 1971). This approach was questioned by Lai and Rix 

(2002), who proposed an elegant scheme, based on the Cauchy residue theorem of 

complex analysis, that works successfully both in weakly and strongly dissipative 

media. Under the assumption of weak dissipation, an alternative strategy relies on 

the Rayleigh variational principle to obtain a direct estimate of the dispersive and 

the dissipative properties, starting from the solution of the Rayleigh eigenproblem 

in elastic media (Aki, 2002). 

In general, the R-wave attenuation is the combined effect of P-wave and S-

wave dissipative characteristics. However, the two elements do not play the same 

role. For instance, Macdonald (1959) and Viktorov (1967) showed that the R-

wave attenuation in a homogeneous, linear viscoelastic, low-loss medium is the 

linear combination of the P-wave and S-wave attenuation: 

 ( ) ( ) ( ) ( )1R P SA A     = + −  (3.31) 

The quantity A depends on the Poisson’s ratio ν. However, A is less than 0.2 

in all geomaterials. Therefore, αR,j(ω) strongly depends on S-wave attenuation, 

whereas P-wave dissipation characteristics are less relevant. 

Finally, some remarks on the particle displacement are provided. In linear 

viscoelastic media, the phase difference between the vertical and the horizontal 

component is no longer equal to 90°, because the Rayleigh eigenfunctions are 

complex-valued. Therefore, the particle displacement occurs along ellipses whose 

principal axis is oblique with respect to the free surface (Figure 3-13; Borcherdt, 

1973). Furthermore, the degree of sloping and the semi-axes ratio varies 

independently with frequency, distance from the source and it depends on the 

mechanical properties of the medium (Foti et al., 2014). As for the motion 

amplitude, it decreases with the distance, with a stronger decay at high 

frequencies. Instead, the shape of the displacement profile with depth is 

compatible with the elastic case. 
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Figure 3-13. Rayleigh particle displacement orbits at the free surface of a layered, linear 

viscoelastic half-space, at given frequencies f and distances r (after Foti et al., 2014). 

3.3 The source problem 

The solutions described above deal only with one aspect of the dynamic 

problem, which is the propagation of Rayleigh waves under free vibration 

conditions, i.e., no external force is acting on the medium. However, near-surface 

characterization methods measure Rayleigh waves that are artificially generated 

from a source, hence the problem of forced vibrations has to be addressed. 

Lamb (1904) provided an estimate of the displacement field induced by a 

point harmonic force applied on the free surface of a homogeneous, isotropic, 

linear elastic half-space (Figure 3-14a). He demonstrated that this kind of source 

generates a complex wavefield, including both body waves (P and S) and 

Rayleigh waves. The surface wave is the slowest wave, but it produces the largest 

amplitude in the motion, especially far from the source. 

 

Figure 3-14. a) Scheme of the Lamb’s problem, specifying the input force Feiωt and the 

distance from the source r; b) Geometry of wavefronts of body and surface waves 

generated from a source on the free surface (modified from Miller and Pursey, 1955). 
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Indeed, Lamb observed that the amplitude of motion induced by body waves 

attenuates proportional to the distance, whereas the displacement due to Rayleigh 

waves decays only with the square root of the distance. The reason is that body 

waves generated from a point source on the free surface propagate along 

hemispherical wavefronts and the associated energy distributes along this surface. 

Surface waves, instead, propagate along cylindrical wavefronts, as they involve a 

portion of the half-space with limited depth (Figure 3-14b). Furthermore, Miller 

and Pursey (1955) investigated a similar problem, i.e. the estimation of vibrations 

induced by a circular plate on a half-space, and they demonstrated that the largest 

portion of energy generated by the source is transmitted by surface waves. 

Therefore, the wavefield is mainly governed by Rayleigh waves, especially at 

moderate-to-large distances from the source. 

The displacement field induced by the point source includes a vertical 

component uz and a radial component ur, being the problem axial symmetric. 

Many practical applications rely on the far-field approximation of the actual 

displacement field, comprising only the contribution of Rayleigh waves (Figure 

3-15; Lamb, 1904): 
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 (3.32) 

In the equations, Feiωt is the time-harmonic point force and r is the distance 

from the source. The quantity Μβ (β = z, r) depends on kR, derived from the 

frequency-independent VR (in turn obtained as the solution of the characteristic 

equation), and on the mechanical properties of the half-space. The terms ( )  2

0H  

and ( )  2

1H  denote the Hankel functions of the second kind of zero order and of 

first order, respectively. These functions are oscillatory functions that capture the 

cylindrical shape of the wavefront of the Rayleigh waves. 

However, the Hankel functions can be approximated as complex exponentials 

when the argument kRr is sufficiently large – typically, when r is on the order of 

one half of the R-wave wavelength (i.e., the far-field; Foti et al., 2014). Under this 

assumption, the displacement field assumes the following formulation: 

 ( ) ( )1
, Ri k ri tu r Fe e

r



 
−

=     (3.33) 

The quantity Νβ depends on kR and on the mechanical properties of the half-

space, whereas φz equals π/4 and φr equals -π/4. Interestingly, in the far-field, the 

Rayleigh wave is planar, i.e., it propagates with planar wavefront. 



61 

 

 

Figure 3-15. Amplitude |uz| and phase arguz of the vertical displacement field of Rayleigh 

waves in a homogeneous elastic medium, as a function of the distance r. 

In a linear viscoelastic medium, the correspondence principle allows an 

immediate derivation of the induced displacement field, by replacing the elastic 

parameters with the complex-valued equivalent ones: 
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and for the far-field approximation: 

 ( ) ( )1
, Ri ri tu r Fe e

r



 
−

=  
kN  (3.35) 

The terms Mβ and Nβ depend on kR and on the mechanical properties of the 

medium. 

By recalling the definition of kR (Eq. 3.28), a more intuitive expression is 

obtained, by separating the amplitude and the phase components: 

 ( ) ( )
,

R

R

r
i k ri t e

u r Fe e
r






 
−

−
=   N  (3.36) 

The amplitude component decays according to the square root and an 

exponent of the distance from the source. These components are the combined 

effect of the intrinsic attenuation and the geometric attenuation – linked with the 

spreading of energy across a cylindrical wavefront.  

The solution can be generalized to the case of layered linear viscoelastic 

medium. Similarly to the homogeneous case, an analytical solution can be derived 

at moderately large distances from the source, where the effect of body waves is 

negligible. Under this assumption, the displacement field induced by Rayleigh 

waves is the summation of a number of distinct Rayleigh modal displacements, 

each described by a Hankel function (Ben‐Menahem and Singh, 2012): 
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A more intuitive interpretation of the displacement field can be obtained for 

sufficiently large distances, where the Hankel functions can be approximately 

replaced by the complex exponentials, thus the displacement field modifies as 

follows: 

 ( ) ( ) ( ) ( ),,
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, , R jR j
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i k rri t

j
j
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=

 =   n  (3.38) 

These relationships account for the multimodal nature of the Rayleigh wave 

propagation in layered media, and the corresponding displacement field is 

computed through modal superposition. Indeed, each addendum represents the 

displacement field associated to a Rayleigh propagation mode, with wavenumber 

kR,j(ω) and attenuation αR,j(ω), which is weighted according to the corresponding 

amplitude function [nβ(r,ω)]j in the vertical and radial direction for the j-th mode. 

The modal amplitudes depend on Rayleigh wave parameters, obtained through the 

solution of the Rayleigh eigenvalue problem, and on the distance from the source. 

Furthermore, the formulation for the layered medium assumes general validity 

and it incorporates the Lamb’s solution as a special case. The corresponding 

expression can be obtained by setting the dispersion and attenuation 

characteristics derived for the homogeneous case and considering the contribution 

of a single mode. 

It can be demonstrated that the displacement field uβ(r,ω) can be rewritten as 

follows (Lai and Rix, 1998b): 

 ( ) ( ) ( ),
, ,

i ri tu r Fe r e  

  =  
FY  (3.39) 

Interestingly, the mathematical formulation describing the displacement field 

in a layered medium resembles the one valid in a uniform half-space. However, 

the phase term assumes a complex dependence over the distance, whereas it was 

linear in a homogeneous medium. Therefore, the “equivalent” or “effective” 

wavenumber (i.e., the one of the waveform composed by multiple Rayleigh 

modes) is no longer constant. Similarly, the amplitude term Yβ(r,ω) exhibits a 

complex behavior, which is no longer decaying according to the square root of the 

distance. The difference is significant both in normally and inversely dispersive 

media, especially at high frequencies. In layered media, indeed, the Rayleigh 

wavefield is the result of the superposition of multiple modes, that are caused by 
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the constructive interference among waves undergoing multiple reflections and 

refractions at the layer interfaces. The function Yβ(r,ω) is named Rayleigh 

geometric attenuation function (Lai and Rix, 1998b), as it models the geometric 

attenuation of Rayleigh waves in layered media (Figure 3-16). 

 

Figure 3-16. Geometrical spreading function Yz for the vertical displacement versus 

distance r, computed for different types of half-space at a frequency f equal to 7 Hz (a) 

and 90 Hz (b – after Foti et al., 2014). 

When dealing with surface waves generated by point sources, a remarkable 

concept is the apparent phase velocity and apparent phase attenuation – or 

effective phase velocity and effective phase attenuation: 
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These parameters describe the propagation of multi-mode Rayleigh waves in 

layered linear viscoelastic media, as they are linked with the slope of the phase 

and amplitude changes with the distance, at a fixed frequency (Figure 3-17a-b). 

Therefore, they represent the propagation velocity and spatial attenuation of a 

waveform composed by the superposition of multiple Rayleigh modes. The 

effective quantities can be estimated as a function of the solution of the Rayleigh 

eigenvalue problem. These parameters are dependent both on the frequency and 

the distance from the source, hence it is possible to describe the phase velocity 

and the phase attenuation variation with the frequency (i.e., the effective 

dispersion curve and the effective attenuation curve) only locally or globally 

Distance, r (m)

G
eo

m
et

ri
ca

l
sp

re
ad

in
g

fu
n

ct
io

n
, 

ϒ
z

(m
/k

N
)

Distance, r (m)

Homogeneous Normally dispersive Inversely dispersive

a) b)

f = 7 Hz f = 90 Hz



64 

 

through a Rayleigh dispersion surface. Furthermore, they vary between the radial 

and the vertical component, meaning that they travel at different phase velocities. 

The concepts of effective phase velocity and effective phase attenuation are of 

paramount importance in real testing. Indeed, site characterization methods 

measure the displacement field induced by a seismic source. Then, they infer the 

phase velocity from the phase lag and the phase attenuation from the spatial decay 

of the particle displacement, normalized to the geometrical damping. Therefore, 

these techniques measure the effective phase velocity and the effective phase 

attenuation. This aspect leads to two considerations. On the one side, field surveys 

might not estimate the modal dispersion curves, as the effective dispersion curve 

may not coincide with them. In normally dispersive media, where the impedance 

gradually increases with depth, the measured curve may be coincident with the 

fundamental mode dispersion curve in a broad frequency range, because the wave 

energy is mostly carried by the fundamental mode only. However, some deviation 

of the effective data might occur, especially in the low frequency range (Foti et 

al., 2014). The deviation becomes relevant in inversely dispersive media, i.e., 

half-spaces with impedance reversals, where higher modes highly contribute to 

the surface wave propagation. Therefore, the apparent dispersion curve does not 

follow a specific modal dispersion curve and it gradually shifts from one to 

another as a function of the frequency. Furthermore, the dominant mode cannot be 

predicted a priori. On the other side, the measured effective dispersion curve 

depends on the spatial configuration of the testing, due to the local nature of the 

effective quantities, i.e., their dependence from the distance. Therefore, its 

relationship with the modal curves may be variable as a function of the testing 

setup (Gucunski, 1992). 
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Figure 3-17. Geometrical interpretation of the effective phase velocity 
app

RV  (a) and of the 

effective phase attenuation 
app

R  (b) at the distance r1. The graphs represent a) the spatial 

variation of the phase of the displacement field argu(r,ω) and b) the spatial variation of 

the logarithm of the amplitude |u(r,ω)| corrected by the geometric spreading Yz(r,ω). 

From these two quantities, both the effective wavenumber 
app

Rk  (hence, 
app

RV ) and 
app

R
can be derived (after Lai and Rix, 1998b). 

3.4 Mechanisms of wave attenuation 

The attenuation theory seeks to identify the mechanisms responsible of changes in 

amplitude of perturbations propagating in a medium while moving away from the 

source. According to this theory, attenuation of seismic waves in real media may 

be interpreted as the superposition of three damping mechanisms: intrinsic 

damping, geometrical damping and extrinsic (or scattering) damping. These 

phenomena are associated with different levels of “complexity” in the medium, 

both in terms of constitutive behavior and of spatial variability of mechanical 

characteristics. However, the separation among the components is not trivial as 

they are often lumped into each other, because they all map into an amplitude 

decay with increasing distance from the source. 

The partition of attenuation components is crucial in site characterization 

techniques. Indeed, their target is typically the intrinsic damping, however the 

measured displacement data reflect the combination of all three mechanisms. 

Therefore, a correct estimate of material attenuation geometric spreading and 

extrinsic damping must be accounted for obtaining reliable values of material 

attenuation (Jongmans, 1990; Yoon, 2005). On the other side, proper modeling 

and separation of these components is often not straightforward. 
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The main mechanism behind the spatial amplitude decay is intrinsic damping 

(or material damping), which is an effect of material anelastic behavior, that 

entails energy dissipation under dynamic excitation. When propagating, indeed, 

part of the elastic energy is converted into other forms – e.g., heat – due to 

internal friction. Modeling of this dissipation mechanism relies on proper 

rheological models, for instance the linear viscoelastic scheme mentioned above. 

In this case, the effect on the displacement field amplitude can be summarized 

through the following relationship: 

 0

rA A e −=  (3.41) 

Geometrical damping, instead, represents a reduction in the motion amplitude 

due to the expansion of the wavefront. In this case, the wave energy is constant – 

if the wave is propagating in a linear elastic material – but the energy density 

decreases because the wavefront is spreading over a greater volume of material. 

Being the energy density proportional to the square root of the displacement 

amplitude, this reduces down as well (Kramer, 1996). Amplitude variations 

induced by geometrical damping depend on the type of wave and the mechanical 

and geometrical characteristics of the medium, and they assume a simple and 

intuitive trend in homogeneous bodies. In planar waves, the wavefront translates 

keeping its area unchanged, hence the energy density and the amplitude are 

constant while moving far from the source. Cylindrical waves (e.g., surface waves 

generated from a point source) are characterized by a wavefront expanding as a 

cylinder. Therefore, the displacement amplitude decays according to the square 

root of the distance. In spherical waves (e.g., body waves generated from a point 

source), the wavefront expands as a sphere, hence the displacement amplitude 

decays proportionally to the distance (Kokusho, 2017). In summary, geometrical 

damping in homogeneous media can be summarized through the following 

relationship: 

 0

nA A r−=  (3.42) 

where n = 0 for planar waves, n = ½ for cylindrical waves, and n = 1 for 

spherical waves. 

In the case of Rayleigh wave propagation, geometrical damping is described 

through the geometrical spreading function Yβ(r,ω). In a homogeneous halfspace, 

Yβ(r,ω) depends only on r (Eq. 3.36). Badsar (2012) compared the effect of 

intrinsic and the geometrical damping on the wave amplitude decay, as a function 

of the distance and the frequency (Figure 3-18a). The geometric damping is more 

relevant at short distances, whereas the material damping dominates into the 

displacement amplitude decay only far from the source. However, for increasing 
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frequencies, the role of material damping becomes more important, and it 

overcomes the geometrical one at progressively shorter distances from the source. 

This is an effect of the frequency-dependence of the phase attenuation of Rayleigh 

waves in homogeneous media, for which αR is greater at high frequencies. The 

inclusion of heterogeneities adds an extra level of complexity to the wave 

propagation, due to reflection phenomena and cumulative transmission loss at the 

layer interfaces. In layered media, Yβ(r,ω) still decreases with the offset, albeit 

with remarkable oscillations (Figure 3-18b). The geometry of the oscillations 

depends on the medium characteristics and also on the frequency – at high 

frequencies, cycles elongate and assume a larger relative amplitude. 

 

Figure 3-18. a) Comparison between the geometrical attenuation (black line) and the 

intrinsic attenuation for a homogeneous halfspace (grey lines), computed from the 

geometric spreading function and Eq. 3.53, respectively. Data refer to frequencies equal 

to 10 Hz, 30 Hz, 50 Hz, and 70 Hz (from thick to thin grey line). b) Comparison between 

the geometrical attenuation (black lines) and the intrinsic attenuation for a normally 

dispersive medium, computed from the geometric spreading function and Eq. 3.53, 

respectively. Data refer to frequencies equal to 10 Hz, 30 Hz, 50 Hz, and 70 Hz (from 

thick to thin grey line). Information about the soil model is available in Badsar (2012). 

Finally, amplitude changes in real media are also an effect of scattering of 

energy at local heterogeneities (e.g., inclusions) or to lateral variability in the 

mechanical properties of the soil deposit. This mechanism is sometimes termed as 

extrinsic attenuation or apparent attenuation (O'Doherty and Anstey, 1971). As in 

the geometric attenuation, the overall energy of the wavefront is conserved – at 

least, in an elastic medium – but it diffuses inside the medium, which is perceived 

as an energy loss on the surface ground motion (Stein and Wysession, 2003; 

Zalachoris and Rathje, 2015). In this sense, geometric and apparent attenuation 

share common features because, at least theoretically, they represent the effect of 

identical physical phenomena. For instance, Rayleigh wave amplitude changes in 

layered media – described through the geometrical spreading function – can be 

interpreted as a form of apparent attenuation. However, apparent attenuation is 
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conventionally linked to local fluctuations and lateral variability in the soil 

deposit, especially in the near-surface characterization. The proposed approaches 

rely on an indirect modeling of the phenomenon, for instance introducing a 

frequency-dependent equivalent damping ratio (Wu, 1985). 
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Chapter 4 

Experimental methods 

Many approaches currently adopted for the estimation of the small-strain damping 

ratio are based on the interpretation of laboratory tests or in situ geophysical 

surveys. 

On the one side, laboratory tests are carried out on small-size soil specimens 

by applying an imposed stress/strain history with known hydro-mechanical 

boundary conditions. In this way, there is full control on the response of the 

geomaterial and a rigorous estimate of the mechanical parameters is possible. 

However, the sample preparation may damage the soil microstructure, thus 

affecting the resulting estimates. Besides, obtained parameters may not be 

representative of the actual behavior of the soil deposit at the site scale. 

Geophysical seismic tests are generally classified as invasive and non-

invasive, and they are a common tool for site characterization, due to limited costs 

and the rapidity of execution. However, in situ tests require peculiar care in their 

interpretation and data quality is highly sensitive to the operator and to external 

perturbations (e.g., background incoherent noise). On the other side, all the 

geophysical methods investigate the medium in its undisturbed natural state, 

sampling a soil volume much larger than the size of a laboratory specimen. 

Specifically, they often return a layered earth model, wherein VS and DS are 

estimated for individual layers – instead, laboratory tests measure these quantities 

from a single sample, hence they provide a point measurement. Therefore, they 

can provide a reliable estimate of geotechnical parameters for design purposes, as 

they assess the soil behavior in undisturbed conditions at a spatial scale 

compatible with the geotechnical application of interest. 

Geophysical seismic tests are widely adopted for the in situ determination of 

the shear modulus G. On the other hand, some methods have been proposed also 

for the estimation of the small-strain shear damping ratio DS,0. The technical 

literature also includes some case studies of parameter estimation based on the 

interpretation of downhole arrays, hereafter labeled as “DH-arrays”. This 

approach is less common, as it requires instrumented boreholes with seismic 

records, but it provides useful data for the assessment of the soil behavior in 

seismic conditions. Although parameters obtained in this way may be interpreted 
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as in situ estimates, DH-arrays will be addressed in a devoted section, as they are 

not a common site characterization tool and have a role in the validation of 

theoretical models of ground motion amplification. 

This Chapter starts with a description of typical laboratory tests, that currently 

represent the most common way for estimating dissipative parameters of 

geomaterials. The second part focuses on approaches returning damping ratio 

values from in situ observations, based on invasive and noninvasive geophysical 

tests and DH-arrays. Finally, a brief comparison of results from laboratory and in 

situ tests is reported. 

4.1 Laboratory tests 

Laboratory tests are often carried out to obtain dynamic properties of soils. The 

different tests can be grouped into two main categories: cyclic tests, performed at 

low frequencies, and dynamic tests, carried out at higher frequencies. The most 

common cyclic tests are the Cyclic Triaxial (CTx) test, the Cyclic Torsional Shear 

(CTS) test and the Cyclic Direct Simple Shear (CDSS) test, along with its Double-

Specimens (CDSDSS) variant. The stress-strain loops are directly used in cyclic 

tests to obtain the dynamic properties of the soil. On the other hand, a dynamic 

Resonant Column (RC) test can be performed to obtain stiffness and damping 

estimates analyzing the resonant conditions of the soil sample. Finally, some 

Authors investigated the possibility of measuring small-strain parameters through 

bender element tests (e.g., Karl, 2005; Karl et al., 2008; Cheng and Leong, 2018), 

although no further details on this will be provided in this dissertation. 

In the following, the main features of the tests are firstly described, along with 

critical issues associated with the experimental measurement of DS,0. Part of this 

Section has already been published in Foti et al. (2021). 

4.1.1 Resonant column test 

The Resonant Column (RC) test (ASTM D4015–15e1) is based on the theory of 

torsional waves propagation in the medium. The test is performed under loading 

control, applying torque loadings with increasing amplitudes at the free top of the 

sample, whereas the bottom is fixed (Figure 4-1a). For a given loading amplitude, 

several cycles are applied for variable frequencies over a wide range, to clearly 

identify the resonance condition of the first torsional mode of the specimen and 

the corresponding frequency f0, associated to the cyclic shear strain reached. The 

soil response is tracked by measuring its rotation ϑ. The test is able to investigate 

cyclic shear strain amplitudes ranging from 10-5 to 0.5%. 
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Figure 4-1. a) Basic scheme of a RC test device, modified from Woods (1978); b-c) 

Typical results of a RC test: (b) output rotation amplitude |ϑ| vs frequency f curve; (c) 

free-vibration decay plot (modified from Foti et al., 2021). 

The response of the soil to the dynamic excitation can be represented in terms 

of ϑ vs. frequency curve, where the frequency associated with the maximum 

amplitude ϑmax is the f0 of the sample. The S-wave velocity VS of the soil is then 

obtained via the equation of motion for torsional vibrations (Richart et al., 1970): 

 0 02 2

t S S

J f h f h
tan

J V V

   
=   

 
 (4.1) 

where Jϑ is the mass polar moment of inertia of the specimen, Jt is the driving 

system polar moment of inertia and h is the height of the specimen (Figure 4-1a). 

The GS can then be obtained from the mass density of the soil, through Eq. 3.6. 

Three different methods can be applied to define the S-wave damping ratio 

DS, namely the half-power bandwidth, the free-vibration decay method, and the 

resonance factor method (Drnevich et al., 1978), although the latter is rarely used. 

In the half-power bandwidth method, the connection between the shape of the 

frequency response curve and the dissipated energy is exploited (Figure 4-1b). It 

can be shown that, for small values of DS, the latter can be evaluated as: 
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where f1 and f2 are the frequencies associated with a ϑ amplitude equal to 

2 2 max  (Figure 4-1b). 

Alternatively, the free-vibration decay method can be used to obtain the 

damping ratio from the amplitude decay of the torsional free oscillations, after the 

application of the forced vibrations. By knowing two successive peak amplitudes 

(ϑn and ϑn+1 corresponding, respectively, to the n-th and n+1-th cycle; Figure 

4-1c), the logarithmic decrement δn+1 can be computed as: 

 1

1

ln n
n

n





+

+

=  (4.3) 

The logarithmic decrement is computed for different successive cycles, then 

an average value δ is used to obtain the damping ratio as: 

 
2

SD



=  (4.4) 

The two methods are characterized by different advantages and 

disadvantages. When the free-vibrations method is used in the small-strain range, 

the background noise recorded by the accelerometer is not negligible and a 

filtering procedure has to be applied to the output signals prior to amplitude 

interpolation (Figure 4-1c). Moreover, given the small values of DS,0, the 

difference between two consecutive peaks can be rather small, hence the 

variability in estimated values may be large. On the other side, RC measurements 

of DS from forced vibrations are affected equipment-generated damping (e.g., 

Kim, 1991; Hwang, 1997; Cascante et al., 2003; Meng and Rix, 2003; Wang et 

al., 2003). The bias can be substantial, especially in the small-strain range where 

small values of DS are expected. Different studies suggested correcting the results 

of the RC test by subtracting the equipment generated damping, obtained through 

a calibration procedure of the apparatus (e.g., Kim, 1991; Hwang, 1997; Wang et 

al., 2003). However, the extent of the bias is not yet totally understood. 

Besides, the influence of the loading frequency on DS,0 (see Chapter 2) might 

be critical for RC tests. Indeed, these tests are usually carried out at variable 

frequencies, according to the resonance conditions at different strain amplitudes, 

beyond the typical seismic bandwidth. Ciancimino et al. (2020) proposed a 

procedure to correct results of a laboratory test by taking into account the loading 

frequency. Alternatively, an elegant strategy to deal with the frequency-

dependence of cyclic parameters is given by the so-called Non-Resonance 

Column (N-RC) method (Lai and Rix, 1998a; Lai et al., 2001; Rix and Meng, 
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2005; Lai and Özcebe, 2015). The method directly measures the complex-valued 

S-wave velocity VS(ω) of a soil specimen, idealized as a linear viscoelastic 

medium, by solving the following equation: 
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where T0e
iωt is the driving harmonic torque, ϑ(0,t) is the measured angle of twist at 

the top of the specimen, R is the radius of the specimen, and ρ is the mass density 

of the specimen (Figure 4-1a). VS(ω) is then used to compute consistently VS 

(hence, G) and DS (Figure 4-2), based on Eq. 3.14. Thus, the soil is assumed to be 

a dispersive medium and the frequency-dependence is inherently taken into 

account by the method, without prior assumptions on such dependence and in a 

fully coupled way. The application of the method in the current practice is anyway 

still limited by the complexity of the approach. 

 

Figure 4-2. Results of a N-RC test: a) Estimated shear modulus G and b) small-strain 

shear damping ratio DS,0, as a function of the loading frequency f for a remolded kaolinite 

sample (after Rix and Meng, 2005). 

4.1.2 Cyclic tests 

Despite the different configurations, cyclic tests are all based on the same concept, 

i.e., to measure soil parameters directly from the stress-strain response of the soil. 

The G is obtained as the average slope of the loop, while D can be computed from 

the energy dissipated WD and the maximum elastic strain energy WE for a given 

loading-unloading cycle, according to Eq. 2.6. 

In Cyclic Triaxial (CTx) tests (ASTM D3999/D3999M-11e1 and ASTM 

D5311/D5311M–13), a cyclic deviator stress is applied to a cylindrical specimen 

by keeping constant the cell pressure and changing the axial stress cyclically with 

a low loading frequency (about 1 Hz). The stresses and the strains are used to 
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compute G and DS (Figure 4-3a). The applicability of the CTx test is generally 

restricted to relatively high shear strains (greater than 10-2%) because of bedding 

errors and system compliance effects (Kramer, 1996). However, local strain 

measurements can produce an increase of the accuracy of the device (e.g., 

Burland and Symes, 1982; Ladd and Dutko, 1985; Goto et al., 1991). 

Cyclic Torsional Shear (CTS) tests can be performed in the same device used 

for RC tests (Figure 4-1a). The driving system applies a fixed number of cycles 

for a given amplitude with a fixed loading frequency (usually between 0.1 Hz and 

0.5 Hz). The rotation of the specimen is measured through a couple of 

displacement transducers connected to the top cap. The shear strain is then 

obtained from the rotation and, by knowing the input applied, it is possible to 

draw the loading-unloading loops, from which G and DS are then estimated 

(Figure 4-3b). 

Finally, in a Cyclic Direct Simple Shear (CDSS) test, a cylindrical specimen 

is cyclically loaded under displacement control by a horizontal piston. The 

stresses and the strains are then used to compute G and DS. The applicability of 

the test in the small-strain range is limited mainly because of frictional problems. 

The range can be increased using the Cyclic Double-Specimen Direct Simple 

Shear (CDSDSS) device. The CDSDSS adopts a double specimen configuration, 

able to capture the soil behavior also at very small strains (Doroudian and 

Vucetic, 1998). 

The main issue regarding cyclic tests is related to the measurement of the 

loops in the small-strain range. For example, Figure 4-3c shows a loop measured 

during a CTS test, for a c below the linearity threshold (i.e., in the almost linear 

branch of the stress-strain response). Although the definition of G from the slope 

of the loop is quite straightforward, the small area inside the loop can be affected 

by the accuracy of the measurement. Consequently, the experimental relative error 

on DS,0 can be, again, substantial. 
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Figure 4-3. a-b) Idealized stress-strain loops measured in the deviatoric stress-axial strain 

σd – εa plane in a CTx test (a) and in the shear stress-shear strain τ – γ plane in a CTS test 

(b); c) real loop measured in a CTS test at small strains (after Foti et al., 2021). 

4.2 In situ geophysical tests: invasive methods 

Invasive tests are a family of geophysical seismic tests for which part of the 

instrumentation is installed in the ground. Typical methods are the Cross-Hole test 

(CHT; ASTM D4428/D4428M-14), Down-Hole test (DHT; ASTM D7400-17), 

and the P-S suspension logging test (Nigbor and Imai, 1994). Other techniques are 

the Seismic Cone Penetration Test (SCPT; Campanella, 1994), the Seismic 

Dilatometer Test (SDMT; Marchetti et al., 2008), the vertical seismic profiling 

(Balch and Lee, 1984), that are variants of the DHT, and the direct-push cross-

hole test (Cox et al., 2018), that follows a scheme similar to the CHT. 

The data acquisition in invasive tests requires great care, especially when 

attenuation measurements are carried out. The main issue related to invasive tests 

is linked to the sensor-ground coupling, which is crucial for an accurate tracking 

of the particle motion. Indeed, when using a borehole, there is no direct contact 

between receivers and the ground as the borehole is supported by a lining covered 

by a grouting layer. As the grouting may not be perfectly homogeneous, the soil-

receiver interaction may be variable with depth (e.g., Lo Presti et al., 1997). SCPT 

and SDMT are effective in overcoming this limitation because the instrumentation 

a)

b)

c)

  

   

2 S(1  )



76 

 

is pushed in the ground without any casing, hence good coupling between soil and 

sensors is achieved. Furthermore, recorded data should have reasonably high 

signal-to-noise ratio in the frequency band of interest (e.g., Sun, 2000) and the 

quality of the seismogram should be good enough. This allows an accurate 

identification and isolation of the body wave of interest (either the P- or the S-

wave), otherwise the estimated attenuation data would be corrupted. 

The technical literature proposes many robust approaches for the 

determination of VS from the interpretation of the measured data. Conversely, the 

techniques aimed at estimating the in situ small-strain damping ratio ,0
site
SD  are 

limited to few attempts for CHT and DHT (and SCPT), that will be addressed in 

the following sections. Note that these techniques return an estimate of ,0
site
SD ; 

however, the following Sections will denote the identified value as DS, for 

simplicity. Part of this Section has already been published in Foti et al. (2021). 

4.2.1 Cross-hole testing 

In CHT, the source and the receivers are installed in boreholes and measurements 

are performed at different depths (Figure 4-4a). The test measures the travel time 

of body waves generated by the source and propagating along the direct path to 

the receivers. Thus, knowing the source-receiver distance, the body-wave velocity 

Vχ (where χ = P or S) can be estimated. Prescriptions about data acquisition and 

procedures for an accurate estimation of Vχ are described in ASTM 

D4428/D4428M-14. Techniques for the estimate of DS from CHT data are the 

random decrement approach (Aggour et al., 1982), the attenuation coefficient 

method (Hoar and Stokoe, 1984; Mok et al., 1988; Michaels, 1998; Hall and 

Bodare, 2000) and the causal dispersion approach (Crow et al., 2011; Lai and 

Özcebe, 2015; Lai and Özcebe, 2016). 

A popular approach is the attenuation coefficient method, proposed by Hoar 

and Stokoe (1984) and Mok et al. (1988). Its framework is based on the spatial 

decay of the wave amplitude (Eq. 3.22), and it compares the measured spectral 

amplitudes of the signal S1 and S2 at two receivers at distances R1 and R2 from the 

source (Figure 4-4a): 
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This approach provides a frequency-independent estimate of Dχ, which is 

reliable in the absence of receiver-coupling or casing effects and there are not 
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reflected or refracted waves induced by nearby layers of high velocity, that may 

affect measured amplitudes (Hall and Bodare, 2000). 

However, many existing methodologies rely on the hypothesis of frequency-

independent (i.e., hysteretic) damping or on enforcing a specific constitutive 

model in the interpretation of attenuation measurements. Moreover, they usually 

perform an uncoupled estimate of the low-strain parameters by using incompatible 

constitutive schemes: Vχ is obtained according to a linear elastic model, whereas 

Dχ estimates are based on inelastic models. Therefore, these approaches may 

return inconsistent and biased estimates. Instead, an effective strategy to 

overcome those limitations should accommodate rate-dependent behavior. For 

this reason, some Authors measured the body wave dispersive behavior from the 

unwrapped phase of the cross-power spectrum 
1 2R R

G  of the corresponding signal, 

detected at the two receivers (Hall and Bodare, 2000; Lai and Özcebe, 2015; Lai 

and Özcebe, 2016): 
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Then, Lai and Özcebe (2015) and Lai and Özcebe (2016) proposed a smart 

technique for estimating Dχ from the computed dispersion curves, by applying the 

solution of the Kramers-Kronig relation, that relates stiffness and attenuation 

characteristics in a linear viscoelastic medium (Christensen, 2012): 
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where ( ) ( )
0
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
→

= . 

This interpretation method only requires measurements of velocity for 

determining both the stiffness and the damping parameters of the material, hence 

an accurate tracking of particle motions is unnecessary. Moreover, the processing 

does not require a priori assumptions about the specific rheological behavior or 

the frequency-dependent nature of Dχ. On the other side, broadband seismic 

sources are required to generate a wave signal with a wide frequency range, 

otherwise waveforms generated by usual sources restrict the ability to resolve the 

damping ratio at low frequencies, including the seismic band. If not possible, 

some assumptions about the dispersive behavior of the soil parameters are 

necessary to extrapolate the available data, introducing uncertainties in the 
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estimate linked to the way with which the extrapolation is performed (Figure 

4-4b). Furthermore, an accurate estimation of both phase velocity and damping 

requires a preliminary step of windowing of the seismogram in the time-domain, 

to isolate the portion of interest (i.e., the signal corresponding to the arrival of the 

P- or the S-wave) and limit the influence of reflected waves (Hall and Bodare, 

2000). 

 

Figure 4-4. a) Scheme of the CHT layout; b) resulting S-wave velocity VS and damping 

ratio DS curves versus frequency f from the interpretation of CHT data (modified from 

Lai and Özcebe, 2015). 

4.2.2 Down-hole testing 

In DHT and SCPT, the source is located at the ground surface, whereas the 

receiver/s is/are installed in boreholes or pushed together with the cone probe 

(Figure 4-5). The test measures the travel time of body waves generated by the 

source and propagating to the receivers. The propagation occurs along slanted 

paths, that may be affected by refraction occurring at the layers’ interfaces. The 

travel time (hence, Vχ) can be estimated by means of various techniques, such as 

interval methods, direct methods and raytracing algorithms. A detailed description 

about these procedures for an accurate estimation of Vχ is available in ASTM 

D7400-17. Instead, the estimate of Dχ in DHT and SCPT is theoretically more 

complex since it should account for the reflection and refraction phenomena at the 

layer interfaces in the computation of the attenuation. Some pioneering 

interpretation schemes rely on data processing in the time domain, such as the 

rise-time method (Gladwin and Stacey, 1974; Kjartansson, 1979) and the pulse-

broadening method (Kjartansson, 1979; Liu et al., 1994). Alternative schemes are 

1  0 100
f (Hz)

  0

   

400

V
S
 (
m
 s
)

 xtrapolation  HT

1  0 100
f (Hz)

0

0.01

0.02

D
S
 (
 )

 L

R1

R2

b)
b)

c)

  

  

    

  

a)



79 

 

based on the attenuation coefficient method (Hoar and Stokoe, 1984; Mok et al., 

1988) or on a simulation of the downwards wave propagation in the DH testing 

(modified SHAKE method; Stewart and Campanella, 1991). Campanella and 

Stewart (1991) reported several issues in the application of such approaches, due 

to large variability in results and the need of correcting factors to model the effect 

of layer interfaces. 

 

Figure 4-5. a) Scheme of the DHT layout; b) Scheme of the SCPT layout, using a dual 

cone. 

A popular approach is the spectral ratio slope (SRS) method (Redpath et al., 

1982; Mok et al., 1988; Lo Presti et al., 1997; Crow et al., 2011). The approach 

provides a frequency-independent estimate of Dχ at depth zi by computing the 2nd 

order derivative of the wave amplitude spectral ratio (i.e., the ratio of the spectra 

of the signals S1 and Si recorded at the 1st and the i-th receiver) with respect to the 

depth and the frequency: 
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 (4.9) 

This formula is valid for multichannel acquisition setups, whereas it simplifies 

for two-sensor schemes (e.g., SCPT; Toksöz et al., 1979; Liu et al., 1994; Karl et 

al., 2006). However, Badsar (2012) questioned the reliability of the SRS method 

in the determination of the Dχ profile, especially in the presence of complex 

stratigraphy. Indeed, this technique models the vertical propagation of shear 

waves by assuming the geometrical damping as in a homogeneous medium. 

Therefore, the effect of reflected and refracted waves on measured wave 

amplitude is not properly accounted for. Thus, although the average of results is 

close to the theoretical value, the estimated Dχ is affected by strong variability, 
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especially close to layer interfaces (Figure 4-6; Karl, 2005). The large scatter 

together with erratic values prevent a clear and accurate estimation of the ,0
site
SD  

profile. 

 

Figure 4-6. Results from a SCPT survey: a) estimated S-wave velocity profile VS; b) 

estimated S-wave small-strain damping ratio profile DS,0, according to the SRS method 

(after Karl et al., 2006). 

A more robust approach is based on the spatial decay of the Arias intensity, 

developed by Badsar (2012). The Arias intensity IA,β (Arias, 1970) is a ground 

motion parameter defined from the acceleration time history aβ(zi,t) at the i-th 

receiver (where β labels the motion component) or the corresponding spectrum: 
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The method calibrates the Dχ profile through an optimization algorithm 

minimizing the difference between the experimental evolution of IA,β(z), computed 

from the horizontal component of the acceleration, among the receivers and the 

theoretical one, computed for a vertical point force (Figure 4-7). The estimation of 

DS is based on the horizontal component of the acceleration (i.e., β = x), whereas 

DP is obtained from the vertical one (i.e., β = z). The forward modeling relies on 

appropriate numerical schemes to model the wave propagation in layered media 

(e.g., the stiffness matrix approach; Thomson, 1950), hence this method properly 

considers all the phenomena of reflection and refraction at the layers’ interfaces. 
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On the other side, its application requires an accurate modelling of the VS profile, 

due to the remarkable sensitivity of the Arias intensity to this parameter, and long 

computational time due to the multiple forward analyses. 

 

Figure 4-7. Application of the fitting of the Arias intensity on a synthetic case to derive 

the damping ratio profile: a) S-wave velocity profile VS; b) Original (thick grey curve) 

versus calibrated (thin black curve) damping ratio profile DS; c) Comparison between the 

experimental (thick grey curve) and the theoretical (thin black curve) normalized Arias 

intensity, i.e. ratio Arias intensity-experimental Arial intensity (modified from Badsar, 

2012). 

4.3 In situ geophysical tests: non-invasive methods 

Non-invasive tests are geophysical seismic tests employing a set of receivers and 

a source (when required) on the ground surface. They include the seismic 

reflection survey (ASTM D7128), the seismic refraction survey (ASTM D5777), 

surface wave testing (Foti et al., 2014) and the horizontal-to-vertical spectral ratio 

(SESAME, 2004). This section will focus on techniques based on the 

measurement of surface waves. Furthermore, although surface wave testing can 

interpret various types of surface waves (e.g., Rayleigh waves, Love waves, 

Scholte waves), this section will address only methods based on the measurement 

of propagation characteristics of Rayleigh waves. Indeed, these techniques are the 

most used in ordinary engineering applications. 

Surface Wave Methods (SWM) rely on the dispersive behavior of Rayleigh 

waves in layered media, for which the phase velocity VR and the phase attenuation 

αR exhibit a dependence on frequency. The frequency-dependence of propagation 

parameters is a combined effect of geometric dispersion, which results from the 

variation of mechanical properties with depth, and intrinsic dispersion, due to the 

constitutive behavior of linear viscoelastic media. The standard testing procedure 

can be divided into three main steps (Figure 4-8): 

• Acquisition of the particle motion; 

• Processing of measured data to derive the experimental Rayleigh-wave 

dispersion curves VR(ω) and attenuation curves αR(ω); 

a) c)b)
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• Inversion: estimation of the VS and the ,0
site
SD  profile with depth through an 

inversion scheme, where a theoretical soil model is calibrated to match the 

experimental VR(ω) and αR(ω). 

Data acquisition consists in recording the particle motion induced by a 

propagating waveform on a single or multiple sensors (typically, geophones). The 

impinging wave is generated by an artificial source (e.g., a sledgehammer) or 

induced by ambient vibrations. The origin of the recorded wavefield is the basis of 

a key classification of SWM techniques: active methods, that use a source to 

generate the wavefield; and passive methods, that record ambient noise. 

Remarkable differences characterize the acquisition scheme and the techniques 

for data processing in these two families. On the one side, active methods often 

measure the wavefield by using a couple or a linear array of geophones and 

estimate the Rayleigh wave propagation parameters by means of a modeling or 

transformation of the recorded signal. Instead, passive methods record ambient 

vibrations on single receivers or 2D arrays of sensors and they adopt statistical 

tools to process the acquired data. In addition, these two categories of testing 

procedures are complementary in terms of resolution. Indeed, passive methods 

allow to resolve long wavelengths, whereas active data provide useful information 

in the high-frequency range, where ambient vibrations are typically corrupted by 

incoherent noise. For this reason, the current trend in site characterization consists 

in combining both approaches, to obtain high-quality profiles down to great 

depths (Tokimatsu, 1995; Rix et al., 2002; Foti et al., 2018). This task is possible 

because, although the two procedures rely on different acquisition and processing 

schemes, results can be combined in a single inversion scheme. 
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Figure 4-8. Main steps of a SWM survey (after Foti et al., 2014; Passeri, 2019) 

SWM have always been considered an appealing site characterization tool, 

especially for ordinary design applications, thanks to their cost-effectiveness and 

limited time consumption. However, the interpretation of experimental data is a 

challenging task because the inference of material parameters requires the use of 

advanced processing techniques. For this reason, some expertise from the operator 

is requested in order to achieve reliable results. On the other side, the gradual 

introduction of accredited guidelines for the execution of this kind of surveys 

(e.g., SESAME, 2004; Socco and Strobbia, 2004; Socco et al., 2010; Foti et al., 

2018) allowed a remarkable reduction of interpretation ambiguities, with a 

significant gain in confidence in SWM in the earthquake engineering community. 

Furthermore, it has been demonstrated that SWM provide results that are as 

reliable as those of invasive techniques, both in terms of accuracy and precision 

(e.g., Garofalo et al., 2016a). However, a key difference is that invasive 

techniques provide a local estimate of material parameters, which is representative 

of a small portion of soil around the borehole(s) (Figure 4-9). Instead, SWM 

investigate a large volume of the medium, whose size depends on the array 

geometry, and it returns an average measure of material properties in the reference 

volume of the soil deposit (Comina et al., 2011; Passeri, 2019). Therefore, SWM 

tend to provide data estimates at a scale compatible with those of the geotechnical 

system. 
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The next sections describe in more detail some applications of the active and 

the passive methods for the in situ estimate of VS and DS. The most relevant 

features in the data acquisition are addressed and some common algorithms for 

retrieving VR(ω) and αR(ω) are introduced. However, additional information about 

the acquisition and the processing stage can be retrieved in the devoted textbooks 

and guidelines (e.g., Foti et al., 2014; Foti et al., 2018). A thorough description of 

the inversion stage is provided in Chapter 8. 

 

Figure 4-9. Investigated volumes in invasive tests and SWM (after Passeri, 2019) 

4.3.1 Multichannel Analysis of Surface Waves (MASW) 

The acquisition and processing of active-source data relies on various techniques. 

One of the pioneering applications of this approach is the Steady-State Rayleigh-

wave Method by Jones (1958), which employs a single sensor to measure the 

wavefield generated by a monochromatic source. Then, Nazarian and Stokoe II 

(1984) exploited advanced digital signal processing schemes to derive Rayleigh 

wave parameters, developing the Spectral Analysis of Surface Waves. This 

technique uses an impulsive source to generate the wavefield, which is recorded 

by a pair of receivers, whose relative distance is gradually changed to investigate 

a broad range of wavelengths. Nowadays, the most popular testing configuration 

is the Multichannel Analysis of Surface Waves (MASW), which measures the 

wavefield on a linear array of receivers aligned with the source (Nolet and Panza, 

1976; McMechan and Yedlin, 1981; Gabriels et al., 1987; Park et al., 1999; Foti, 

2000). Typically, the recorded output is the vertical displacement at each sensor 
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uz(r,t) (or its spectrum uz(r,ω)) with offset r, whereas the source can be described 

as a harmonic vertical force source Feiωt in the frequency domain (Figure 4-10). 

This setup allows a fast and robust estimate of Rayleigh wave propagation 

characteristics, even in sites with complex stratigraphy. For these reasons, the next 

Section will address processing techniques relying on MASW data. 

The data acquisition in MASW testing requires great care, especially when 

attenuation measurements are carried out. The main issue is linked with the 

sensor-ground coupling, which is crucial for an accurate tracking of the particle 

motion. Furthermore, recorded data should have reasonably high signal-to-noise 

ratio in the frequency band of interest (e.g., Sun, 2000) and the quality of the 

seismogram should be good enough. 

Processing schemes aimed at estimating Rayleigh wave dispersion and 

attenuation curves from MASW data can be clustered as regression techniques, 

maximum likelihood parameter estimation procedures, and transform-based 

techniques. On the one side, regression approaches infer the R-wave propagation 

parameters by fitting a theoretical model describing the particle motion with the 

experimental data. On the other side, transform-based techniques interpret the 

recorded wavefield in a transformed domain, where the desired parameters can be 

identified from the spectral maxima. 

 

Figure 4-10. Scheme of the MASW setup, where the vertical displacement uz induced by 

an input force (e.g., a harmonic force Feiωt) is recorded by various sensors with varying 

distance r. 

4.3.1.1 Regression techniques 

Regression techniques are the most commonly used category of processing 

techniques for the derivation of the attenuation parameters of the Rayleigh wave. 

Their principle consists in solving a problem of model identification, by fitting 

experimental data with a theoretical model, typically given by the equation 

describing the spatial attenuation of the displacement field due to a harmonic 

point force (Eq. 3.35; Lai and Rix, 1998a). 

First applications of regression techniques estimated R-wave attenuation by 

comparing wave spectra recorded at different locations (e.g., Barker and Stevens, 

1983), although they did not properly model the geometrical spreading. However, 

this scheme has been later adopted in more advanced techniques (e.g., Xia et al., 
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2002; Gao et al., 2018; Mun and Zeng, 2018). Instead, Rix et al. (2000) estimated 

αR(ω) based on the regression of the displacement amplitude versus offset data, 

accounting for uncertainties in the geometrical spreading function. For this 

purpose, they performed a preliminary characterization of the VS profile, to obtain 

an approximate estimation of this function, which was then included in the 

regression to obtain the attenuation curve. However, the amplitude-offset 

regression provides an uncoupled estimate of the dispersion and attenuation data, 

which is not mathematically robust and ignores the intrinsic relationship between 

velocity and attenuation in a linear viscoelastic material (Lai and Rix, 1998a). 

An upgrade of the approach is the transfer function method (TFM; Rix et al., 

2001a; Lai et al., 2002). The technique is a multistation approach based on the 

estimate of the experimental displacement transfer function T(r,ω), i.e. the ratio 

between the measured vertical displacement at each sensor uz(r,ω) and the input 

harmonic source Feiωt in the frequency domain: 
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The TFM is based on the theoretical formulation of the particle vertical 

displacement induced by a propagating Rayleigh wave (Eq. 3.40), under the 

simplifying assumption the wavefield is dominated by a single Rayleigh mode of 

propagation, for which the complex-valued phase angle Fv(r,ω) becomes linearly 

dependent on the offset r through the complex wavenumber kR(ω) (Lai and Rix, 

1998a): 
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Based on Eq. 4.12, the TFM estimates kR(ω) through a nonlinear fitting of the 

experimental data, from which VR(ω) and αR(ω) are then derived (Eq. 3.28-29). 

However, the geometrical spreading function Yz(r,ω) is not known a priori, as it 

depends on the mechanical characteristics of the soil deposit. Therefore, it is 

usually assumed as equal to r−½ (e.g., Lai et al., 2002; Foti, 2003). The fitting of 

T(r,ω) can be performed in an uncoupled way, based on the separate fitting of its 

amplitude and phase (Lai et al., 2002). However, a coupled fitting of the transfer 

function in the complex domain is mathematically more robust (Foti, 2003; Figure 

4-11). 

Foti (2003, 2004) proposed a generalized version of the TFM by removing the 

effect of the input force, as its measurement is nontrivial and requires controlled 

sources, that are often unavailable in ordinary applications. For this purpose, the 

Author reformulated the displacement transfer function in terms of deconvolution 

of the seismic traces. The principle of this method consists in computing the 
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experimental transfer function adopting the response of the closest receiver as the 

reference trace. Under this assumption, the theoretical transfer function modifies 

as follows: 
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As in the TFM, Eq. 4.14 is the basis of a nonlinear regression procedure to 

compute kR(ω) and derive the phase velocity curve and the phase attenuation 

curve. 

The main limitation of the TFM is the assumption that the wavefield is 

dominated by a single Rayleigh mode of propagation. This approach may lead to 

wrong results when the effect of modal superposition is relevant. Indeed, the 

result is an estimate of apparent Rayleigh phase dispersion and attenuation curves, 

that can be affected by modal superposition when multiple propagation modes are 

relevant (Foti et al., 2014). Furthermore, the theoretical model relies on the far-

field approximation of the displacement field induced by Rayleigh waves. 

Therefore, estimated value may be less reliable at low frequencies, where the 

corresponding wavelength becomes comparable with the offset of the closest 

receiver. Finally, an additional source of uncertainties derives from the 

simplification of the geometrical spreading function. A possible solution may 

consist in determining approximate profiles of VS and DS through coupled 

inversion of the experimental curves and setting an iterative procedure where the 

geometrical spreading function is updated according to the resulting profiles and 

new models are extracted until convergence. In this case, the processing and the 

inversion stages would be performed simultaneously and results would be more 

accurate. However, this procedure is time-consuming. 
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Figure 4-11. Regression of the experimental transfer function T(r,ω) with the distance r 

for the coupled computation of dispersion and attenuation curves: (a) phase; (b) 

amplitude; (c) real part; (d) imaginary part. Data refer to the Pisa Leaning Tower site, at 

the frequency of 11.5 Hz (modified from Foti, 2003). 

4.3.1.2 Maximum likelihood parameter estimation procedures 

A promising approach able to overcome limitations in the modeling of 

multimode Rayleigh waves is the Wavefront Decomposition (WaveDec, hereafter 

labeled as “WD”) technique. The method was originally designed for passive 

measurements (Maranò et al., 2012) and then extended for active measurements, 

by modeling the propagation of a cylindrical wavefield including spatial decay 

(Maranò et al., 2017; Bergamo et al., 2018; Bergamo et al., 2019). The WD relies 

on quite a general framework, which makes it usable even in the presence of 2D 

arrays. The approach interprets measured three-component displacement data to 

jointly estimate the Rayleigh wave parameters, i.e., the complex wavenumber 

kR(ω) and the ellipticity angle ξ(ω), which is the arctangent of the ratio between 

the horizontal and the vertical component of the displacement field. These 

parameters are clustered in an unknown parameter vector θ = (kR(ω); ξ(ω)). The 

WD approach returns a maximum likelihood estimation of θ, labeled as θ̂ , where 

the likelihood function is defined as follows: 
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where yβ,n,m is the measured displacement, whereas uβ,n,m is the predicted 

displacement according to Eq. 3.34 (β is the component index, n is the receiver 

index, and m is the sample index). Instead, N is the number of receivers, M is the 

number of samples and σβ,n represents the standard deviation of the signal noise of 

the displacement component at the sensor. This approach accommodates for the 

presence of multiple modes of propagation in the recorded wavefield by 

performing multiple fittings of the experimental wavefield, assuming different 

number of modes in the predicted displacement. The selection of the most suitable 

number of modes to describe the recorded wavefield represents a problem of 

model selection, for which an effective indicator is the Bayesian Information 

Criterion (BIC; Schwartz, 1978). The Authors adopted a penalized version of 

BIC, defined as follows: 

 
( ) ( )ˆ2 ln 3pBIC f N N M = − + θ

 (4.15) 

where Np denotes the number of parameters calibrated in the fitting model (hence, 

it is linked to the assumed number of modes) and γ is a control parameter ranging 

between 0 and 1, that allows to control the complexity of the model and the fitting 

quality – specifically, at smaller γ, the algorithm returns a larger number identified 

propagation modes and it tends to overfit experimental data. Given the large 

number of evaluations of the likelihood function, the approach does not carry out 

a direct computation but it models it by means of a factor graph (Loeliger et al., 

2007), achieving more efficient computation. 

Figure 4-12 shows the application of WD on a synthetic case, where a linear 

and a 2D survey were simulated. For both arrays, this approach returns reliable 

estimates of VR(ω) and αR(ω) and the ellipticity angle, for both the fundamental 

mode and the first higher mode. Furthermore, the fitting quality is good also at 

low frequencies, because the method models the cylindrical shape of the Rayleigh 

wavefront, thus mitigating near-field effects. 
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Figure 4-12. Application of the WaveDec approach for a synthetic case: a-b) S-wave 

velocity VS and small-strain damping ratio DS,0 profiles; c) Acquisition layout; d) 

Estimated dispersion curves; e) Estimated attenuation curves; f) Estimated Rayleigh wave 

ellipticity (after Bergamo et al., 2019). 

4.3.1.3 Transform-based techniques 

Transform-based techniques rely on the application of appropriate transformations 

to the recorded wavefield to retrieve the R-wave propagation parameters. These 

techniques map the time-space seismograms into spectra defined in alternative 

domains, for instance the frequency-wavenumber (f-k) domain. A significant 

advantage is the capability of these approaches to separate the different 

components of the wavefield (i.e., different modes), although the possibility of 

isolating modes also depends on the spatial resolution of the array. For this 

reason, dispersion analysis is often carried out by interpreting the transformed 

wavefield, e.g. by means of a double Fourier transform, the frequency-domain 

beamformer (Lacoss et al., 1969), the high-resolution frequency-wavenumber 

approach (Capon, 1969), the linear Radon transform (McMechan and Yedlin, 

1981; Luo et al., 2008), the phase-shift (Park et al., 1999), the multiple signal 

classification (Iranpour et al., 2002), and the frequency decomposition and slant 

stack (Xia et al., 2007). 

c)

f)d) e)

a) b)
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Only few applications of transform-based techniques to retrieve attenuation 

data can be identified. One of the first attempts is attributed to Yoon (2005), who 

proposed a hybrid scheme for the attenuation estimate, combining a regression 

method and the double Fourier transform. Indeed, the algorithm derives VR(ω) 

from the location of peaks of the f-k spectrum, whereas αR(ω) is obtained through 

nonlinear regression of an equivalent displacement field, derived from the 

amplitude of the spectral peaks. More recent approaches relying on the 

interpretation of f-k spectra have been proposed by Badsar et al. (2010) and 

Verachtert et al. (2017). In both cases, the Authors generalized modal 

identification techniques commonly used in structural engineering to the 

characterization of R-waves. Further details on these techniques will be provided 

in the following. Instead, other Authors tried to extend dispersion analysis 

schemes into dissipative media (e.g., Misbah and Strobbia, 2014). 

Badsar et al. (2010) proposed a simplified method for the estimate of the 

αR(ω), based on a generalization of the half-power bandwidth method (Chopra, 

2017). This method is hereafter referred as Generalized Half-Power Bandwidth 

(GHPB). The GHPB is able to reduce the interpretation complexity and capture 

the propagation characteristics of multiple Rayleigh modes. The GHPB provides 

an uncoupled estimate of VR(ω) and αR(ω), from the interpretation of the f-k 

spectrum of the experimental displacement transfer function T(r,ω). The 

transform is calculated through a Hankel transformation, to account for the 

cylindrical shape of the wavefront (Forbriger, 2003): 

 ( ) ( ) ( )0 ,
0

1
, ,

2

Nr

r R tT k T r J k r rdr =   (4.16) 

where J0(kR,tr) is the zeroth-order Bessel function of the first kind and kR,t is 

the (trial) wavenumber at which the transform is computed. The dispersion curves 

of each mode of propagation are first identified as spectral peaks of the f-k 

spectrum. Then, for each propagation mode, the GHPB derives αR at every 

frequency from the width of the corresponding peak. At each frequency, the 

bandwidth ΔkR,j(ω) is the width of the f-k spectral peak of the j-th mode, measured 

at an amplitude level equal to a fraction γ of the peak value (Figure 4-13a). Then, 

αR(ω) is derived as follows: 
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The amplitude decay parameter γ equals √2/2 in the half-power bandwidth, 

whereas a much larger value is recommended in the GHPB, to avoid mixing of 

adjacent peaks and modal interference in the estimated phase attenuation (Figure 

4-13b). In this way, the approach is not sensitive to multiple Rayleigh modes. The 
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parameter γ should be tuned up as a function of the soil deposit characteristics and 

the testing setup, although a value equal to 0.99 is suitable in various conditions. 

 

Figure 4-13. Generalized half-power bandwidth method: a) Definition of the reference 

bandwidth ΔkR,j from the spectrum of the experimental displacement transfer function 

T(r,ω); b) Performance of the classical half-power bandwidth vs. GHPB in the presence 

of multiple propagation modes. 

However, the estimated VR(ω) and αR(ω) depend on two control parameters, 

that are the amplitude decay parameter γ and the quantity q. The latter controls the 

spatial window applied to the recorded wavefield, to minimize truncation effects 

in the computation of the f-k spectrum according to Eq. 4.17, that might induce an 

overestimation of αR(ω). In general q is typically equal to 10-4, although it should 

be calibrated based on in situ conditions. 

Instead, Verachtert et al. (2017) proposed an alternative methodology for the 

determination of multimodal R-wave dispersion curves and attenuation curves, 

namely the Circle Fit Method (CFM). The CFM is intimately connected with the 

GHPB as it uses the corresponding VR(ω) and αR(ω) estimates as starting point. 

The principle of the CFM relies on an alternative representation of the f-k 

spectrum of the displacement transfer function, based on the Nyquist plot, which 

compares the real and the imaginary part of a complex number. From the analogy 

between the spectral shape of the R-wave spectrum at each frequency and the 

frequency response function of a Multiple-Degree-Of-Freedom (MDOF) system, 

it can be demonstrated that the Nyquist plot of the f-k spectrum is a combination 

of circles, each one corresponding to a single Rayleigh mode (Ewins, 1984; 

Figure 4-14b). The CFM estimates VR(ω) and αR(ω) based on the geometry of the 

circles. Specifically, the modal wavenumber kR,j(ω) corresponds to the value 

where the angular sweep at the center ϑj(kr,ω) is maximum and it is obtained 

through a search method. The phase attenuation, instead, is computed by 
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combining the wavenumber sample points kt,a and kt,b and the corresponding 

angles close to the modal wavenumber (Figure 4-14b): 
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Verachtert et al. (2017) demonstrated that the CFM provides more accurate 

estimates of VR(ω) than the peak picking of the f-k spectrum (Figure 4-14a) and it 

is more reliable at deriving αR(ω) than the GHPB, for both the fundamental mode 

and higher modes. Furthermore, estimated data span a broader frequency range. 

Indeed, the CFM exploits all the information provided by the f-k spectrum, 

whereas the GHPB focuses only on its amplitude. However, both GHPB and CFM 

depend on two parameters (i.e., γ and q) that depend on the soil deposit 

characteristics and on the layout of the survey. Although some indicative values 

are prescribed, a proper application of these methods would require a site-specific 

calibration of these quantities, to avoid biased estimates. Furthermore, both 

methods tend to overestimate αR(ω) at low frequencies (less than about 15 Hz), 

due to leakage. Therefore, they are less reliable at long wavelengths. 

 

Figure 4-14. Application of the CFM scheme to identify the modal wavenumber kRe,j 

(hence, VR) and αR for a synthetic case, with a focus on the dominant mode: a) f-k 

spectrum of the particle displacement function, for a given frequency; b) Nyquist plot of 

the f-k spectrum of the particle displacement function. The dominant mode corresponds to 

the greatest circle and kRe,j is identified as the kt value at which the relative distance 

between subsequent points in the Nyquist plot is maximum. The plot highlights values 

corresponding to two wavenumber sample points kt,a and kt,b, that are used to compute αR. 
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The corresponding angles ϑ(kt,a) and ϑ(kt,b) are computed from the line connecting kRe,j 

and the circle center, and they increase according to the direction of growing kt. 

4.3.2 Ambient vibration analysis 

Passive methods derive propagation characteristics of the seismic ambient noise, 

which is mainly composed by surface waves generated by anthropic activities or 

natural events. The measurement of ambient vibrations is possible through single-

station measurements or multiple-station measurements. Multichannel 

measurements might employ linear acquisition arrays of receivers, which forms 

the basis of the ReMiTM technique (Refraction Microtremors; Louie, 2001; 

Zywicki, 2007; Strobbia and Cassiani, 2011). However, the current trend relies on 

2D acquisition arrays, termed as Ambient Vibration Arrays (AVA; Tokimatsu et 

al., 1992; Okada and Suto, 2003). Indeed, the related measurements provide more 

reliable and robust measurements of dispersion characteristics of surface waves 

(Cox and Beekman, 2010; Foti et al., 2018). The optimal scheme is based on 

circular arrays, although other geometries (e.g., L-shaped, triangles) are often 

adopted, especially in the presence of external constraints (e.g., in the urban 

environment). During the acquisition stage, a proper ground-sensor coupling 

should be guaranteed, due to the sensitivity to wind conditions (e.g., Foti et al., 

2018). Furthermore, recorded ambient vibrations may be corrupted by the 

presence of nearby structures (e.g., forests and infrastructures). Finally, 

measurements should be carried out according to adequately long time windows, 

to acquire a statistically significant number of propagating waves (SESAME, 

2004). 

The processing of acquired data is based on statistics computed on multiple 

time windows extracted from the recorded signals. However, the technique used 

to interpret data of each window depends on the acquisition scheme. 

For single-station methods, the Horizontal to Vertical Spectral Ratio (HVSR; 

Nogoshi and Igarashi, 1970; Nakamura, 1989) is used, which provides an estimate 

of the fundamental resonance frequency of the soil deposit (SESAME, 2004; 

Bonnefoy-Claudet et al., 2008). Furthermore, HVSR data provide useful 

indications about the location of strong impedance contrasts, they may provide an 

additional constraint in the inversion of surface wave data, allowing for better 

defined soil models or even extending the investigated depth range (e.g., Arai and 

Tokimatsu, 2005; Parolai et al., 2005; Passeri, 2019). Also, HVSR data allow to 

assess for the spatial variability of the investigated site (e.g., Vantassel et al., 

2018; Cheng et al., 2021). In some cases, single station measurements have also 

been used for soil damping characterization. However, the proposed techniques 
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identify a characteristic damping value, representing a global, equivalent value 

that reflects the overall response of the soil deposit (e.g., Yang et al., 1989; Huerta 

et al., 1994; Huerta et al., 1998; Mucciarelli and Gallipoli, 2006; Fernández-

Heredia et al., 2012; Castellaro, 2016). 

Array-based methods rely on multistation measurements of the ambient noise. 

The processing techniques may be clustered into two major families: transform-

based approaches and spatial correlation methods. 

On the one side, transform-based approaches (or f-k methods) interpret 

recorded data after applying a proper transformation, in which wave parameters 

are identified as spectral maxima. Several techniques have been developed for the 

dispersion estimate, as the conventional frequency wavenumber (Burg, 1964; 

Lacoss et al., 1969), high resolution frequency wavenumber (Capon, 1969), and 

the MUSIC approach (Iranpour et al., 2002). However, no attempt to estimate 

dissipation parameters is currently available. 

On the other side, spatial autocorrelation (SPAC) methods rely on the link 

between the spatial correlation of the recorded wavefield with the  reen’s 

function of surface waves. These techniques include the traditional SPAC (Aki, 

1957), the extended SPAC (Ling and Okada, 1993), the modified SPAC (Bettig et 

al., 2001), the two-site SPAC (Morikawa et al., 2004), and the multi-mode SPAC 

(Asten et al., 2004). The SPAC method is a regression-based approach that 

measures the ambient noise on a circular (or pseudo-circular) array with a central 

sensor. Sensors position is described by the distance r and the azimuth angle φ 

with respect to the central sensor (Figure 4-15). Then, it computes the azimuthal 

average of the spatial correlation of the noise across each couple of sensors, which 

is related to the  reen’s function of surface waves. By virtue of this relationship, 

the SPAC method is capable to provide a measure of the dispersion curve, 

frequency by frequency. 

 

Figure 4-15. Acquisition layout for the SPAC method. 
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The SPAC technique has also been applied to retrieve the dissipative 

parameters of surface waves. For instance, Albarello and Baliva (2009) estimated 

attenuation data through a linear fit of the time derivative of the noise cross-

correlation. However, several studies rely on the modification of the Aki’s SPA  

function proposed by Prieto et al. (2009), whose validity has been demonstrated 

theoretically by Nakahara (2012) and numerically by Lawrence et al. (2013): 

 ( ) ( ) ( )
0, R r

Rr J k r e
 

  
−

=     (4.19) 

Therefore, dispersion and attenuation data are estimated through an uncoupled 

fitting of the experimental correlation data with the theoretical model, described 

by the right term in Eq. 4.19. The fitting procedure is carried out within a proper 

wavelength range, so that the inter-receiver distance is bounded with one or two 

times the investigated wavelengths. Indeed, due to the attenuation, coherence is 

lost after short propagation distance and the fit beyond this limit would lead to 

unstable and unreliable estimates of wave parameters (Parolai, 2014). This 

scheme was also used for the derivation of dissipative characteristic in seismic 

interferometry (e.g., Weemstra et al., 2012; Weemstra et al., 2014; Magrini and 

Boschi, 2021). Figure 4-16 reports some results of the fitting procedure at a site in 

Italy (Parolai, 2014). Interestingly, the quality of the fit dramatically improves 

with respect to the elastic model, as a scheme closer to the actual behavior is used 

(Figure 4-16d-f; Prieto et al., 2009). However, although estimated VR(ω) are quite 

well constrained, the phase attenuation is affected by large uncertainties, with 

standard deviation increasing with the investigated frequency. This is also an 

indirect effect of the smaller accuracy in the estimated αR(ω) attenuation with 

respect to VR(ω), which is visible by the shape of the normalized misfit in Figure 

4-16a-c (Boxberger et al., 2017). 

Lawrence et al. (2013) observed that the SPAC method provides reliable 

attenuation estimates in the presence of far-field sources with reasonable 

azimuthal distribution and well-distributed receivers. Furthermore, the fitting 

model is valid for a single mode of propagation with small attenuation levels and 

large separation distance (i.e., the argument kRr in Eq. 4.23 is much larger than the 

unit; Nakahara, 2012). Therefore, it returns only an apparent mode of R-wave 

propagation. 
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Figure 4-16. a-c) Results of the grid search procedure in the velocity-attenuation domain, 

represented as pseudocolor plot mapping the normalized fit value, measured as 

RMSEmin/RMSE, where RMSE is the root mean square error. White triangles identify the 

best fit values. Data refer to frequencies of a) 3.25 Hz, b) 5.61 Hz, and c) 10.16 Hz. d-f) 

Measured SPAC values (black dots) versus best-fitting functions considering attenuation 

(solid line) and ignoring attenuation (dashed line). Grey dots denote the SPAC values 

discarded in the fitting procedure. Data refer to frequencies of d) 3.25 Hz, e) 5.61 Hz, and 

f) 10.16 Hz. g) Obtained Rayleigh wave dispersion curve VR(ω). h) Obtained Rayleigh 

wave attenuation curve. Grey dots denote the theoretical αR(ω) resulting from an 

inversion procedure, which has not been reported for simplicity (after Parolai, 2014).  

a) b) c)

d) e) f)

g) h)
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4.4 Back-analysis of downhole arrays 

Downhole arrays, hereafter referred as DH-arrays, are boreholes equipped with an 

array of seismometers located at different depths, recording earthquake-induced 

ground motion. Their aim is to measure variations in the ground shaking as 

seismic waves propagate from depth up to the surface. DH-arrays represent a 

valuable tool for understanding the physics of seismic amplification. Therefore, 

they represent the basis for verification and for the development and calibration of 

predictive tools for the estimate of ground motion amplification (Elgamal et al., 

2001). 

On the one side, DH-array data highlighted issues due to the erroneous or 

coarse estimates of material parameters (e.g., Assimaki et al., 2008; Régnier et al., 

2018) or induced by simplifying assumptions about the soil constitutive behavior 

(e.g., Kwok et al., 2008; Kaklamanos et al., 2013a), thus motivating the 

development of more advanced models for predicting site amplification (e.g., Shi 

and Asimaki, 2017). Besides, they demonstrated the limitations of classical 

propagation models (i.e., the 1D scheme) in some sites (e.g., Thompson et al., 

2012). 

Furthermore, DH-array data can be exploited for characterization purposes, as 

the back-calculation from observed weak motions can be an effective tool for the 

calibration of mechanical parameters of the soil deposit, with a particular focus on 

material dissipative characteristics, provided that 2D/3D resonance phenomena do 

not occur. However, it should be remarked that the high installation costs and the 

need of earthquake records do not allow their use for common applications. 

The technical literature reports various attempts of in situ characterization of 

the soil deposit, based on DH-arrays. In general, DH-arrays can be interpreted by 

means of a large variety of techniques. In order to simplify the description, a basic 

and non-exhaustive classification is proposed: waveform inversion techniques, 

amplification analysis and κ-informed damping estimation. This partition refers to 

the quantity that is adopted as reference to constrain ,0
site
SD  data. Waveform 

inversion techniques deal with time histories recorded in the DH-array sensors, 

whereas amplification analysis calibrates ,0
site
SD  based on synthetic ground motion 

parameters. Similarly, κ-informed damping estimation exploits another parameter, 

i.e. the high-frequency spectral decay κ (e.g., Ktenidou et al., 2014). However, 

being this approach mostly used in seismological studies rather than for site 

characterization purposes, it will be addressed separately. 

Part of this Section has already been published in Foti et al. (2021). 
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4.4.1 Seismogram inversion methods 

Seismogram inversion methods provide a coupled estimate of stiffness and 

dissipation parameters based on low-amplitude motions recorded in DH-arrays. 

The principle of these techniques consists in calibrating ground models to achieve 

an acceptable degree of compatibility between predicted and measured ground 

motion, typically checked in the time domain. The calibration may also include 

results from other geophysical surveys, that provide additional data to better 

constrain the inferred model. In some cases, such integration is carried out in a 

uncoupled way, where geophysical data provide a starting model to be refined 

with ground motion records (e.g., Assimaki et al., 2006; Parolai et al., 2010). 

However, newly developed schemes implement a joint inversion scheme, where 

both data types simultaneously contribute to constrain the soil model (e.g., Seylabi 

et al., 2020). 

Assimaki et al. (2006) implemented an elegant seismic waveform inversion 

algorithm for the estimate of the small-strain parameters from weak motion 

records in DH-arrays. The procedure estimates the mechanical parameters, i.e. VS, 

,0
site
SD  (hereafter simply labeled as DS) and density through a two-step optimization 

algorithm, consisting of a genetic algorithm in the wavelet domain and a nonlinear 

least-squares scheme in the frequency domain. The stochastic optimization 

minimizes the misfit between theoretical and observed acceleration time histories, 

represented in the wavelet domain – rather than in the time domain – to ensure 

equal weighting of the information across all frequency bands. The corresponding 

objective function is the normalized correlation between observed and synthetic 

seismograms and synthetic ones, which should be maximized. On the other side, 

the local search process is a nonlinear least-squares optimization algorithm in the 

frequency domain, minimizing the energy error between the empirical and 

theoretical transfer function (TF; see Section 2.4.1 for the definition). The 

combination of a stochastic search algorithm with a local search one results in a 

fast and robust model identification scheme. 

Assimaki et al. (2006) tested this approach with reference to a borehole 

station of the Kik-Net Strong Motion Network (Figure 4-17). The resulting soil 

models are quite comparable with the profiles inferred from the available 

geotechnical information, although discrepancies are observed at great depths. 

The matching with observed S-wave travel time data is sensibly improved, 

meaning that the estimated average VS is now reliable. A possible reason behind 

such improvement could be the high resolution of the stratigraphy adopted in the 

inversion, that overcomes the limitations of the coarse description of the soil 
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profile in the available information. Furthermore, the ,0
site
SD  profile exhibits strong 

variability in the shallow layers. The Authors interpreted the large variability as a 

side effect of the modeling the 3D propagation of waves in a heterogeneous 

medium into a 1D layered medium, where they synthetized the intrinsic 

attenuation and scattering energy redistribution into a single, frequency-

independent parameter. 

 

Figure 4-17. a-c) Obtained soil profiles in terms of S-wave velocity VS (a), small strain 

damping ratio DS (expressed as the reciprocal of the quality factor Q, namely 1/Q = 2DS), 

(b) and mass density ρ (c) in Asimaki et al. (2008). The dotted lines are the profiles 

obtained from geotechnical data, whereas the solid lines represent the results of the 

inversion procedure. d-g) Matching between observed and simulated time histories. 

Instead, Seylabi et al. (2020) combined information from DH arrays and 

geophysical surveys into an ensemble Kalman inversion scheme, to estimate the 

VS and the DS profile at the Garner Valley site, in California. This inversion 

scheme has been proposed as a possible strategy for mitigating the solution non-

uniqueness that characterizes the inversion problem in SWM (more details on this 

will be addressed in Chapter 8). This issue is usually tackled by adding 

complementary information, e.g. HVSR data. Seylabi et al. (2020) demonstrated 

the effectiveness of integrating DH-array data in the inversion problem, as they 

allow a remarkable constraint of the inferred soil models. Specifically, synthetic 

tests demonstrated the effectiveness of the joint inversion with respect to using 

different data types separately. Besides, tests on real data resulted in ground 

models with amplification features perfectly compatible with observed data. 

a) b) c)

d)

e)

f)

g)
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4.4.2 κ-informed damping estimation 

The spectral decay parameter κ has been introduced by Anderson and Hough 

(1984), who observed that the high-frequency amplitude spectrum of acceleration 

data induced by S-waves exhibits an exponential decay, independently from the 

specific event considered or the location of the sensor (Figure 4-18a): 

 ( ) ,f

E XA f e f f f−    (4.20) 

where fE and fX denote the boundaries of the frequency range in which this 

trend is observed. 

 

Figure 4-18. a) Definition of the spectral decay parameter, including the boundaries fE and 

fX of the reference frequency range (after Askan et al., 2014); b) Variation of the spectral 

decay between surface and borehole measurements (after Cabas et al., 2017). 

The κ can be estimated by a robust linear fitting of the amplitude decay in the 

high frequency range in a log-linear space. Ktenidou et al. (2013) and Ktenidou et 

al. (2014) provide useful prescriptions for an accurate estimation of this 

parameter. The κ increase as the epicentral distance grows (Figure 4-18b; 

Anderson and Hough, 1984; Ktenidou et al., 2015). The increase with the distance 

represents a path effect of regional attenuation, whereas the intercept at zero 

distance, labeled as κ0, is a function of geological conditions close to the site. 

Indeed, κ0 has been used in several seismological studies to infer the attenuation 

structure of the Earth (e.g., Cormier, 1982; Hough and Anderson, 1988; 

Campbell, 2009). Alternatively, in the presence of records on outcropping 

bedrock close to the investigated site, the damping structure of soil deposits can 
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be inferred, by assuming that the corresponding κ0 only incorporates the 

sedimentary component (e.g., Chapman et al., 2003; Campbell, 2009). 

When interpreting DH-arrays, κ data from surface and borehole records at a 

specific site tend to align along two parallel lines, as the sensors share the same 

path terms (Figure 4-18b; Douglas et al., 2010; Ktenidou et al., 2013; Ktenidou et 

al., 2015). The constant difference Δκ provides a measure of the attenuation along 

the borehole and it is related to the small-strain parameters of the soil deposit, 

under the assumption of frequency-independent damping ratio (Hough and 

Anderson, 1988; Cabas et al., 2017; Xu et al., 2019): 

 
0

2z
S

S

D
dz

V
 =   (4.21) 

Given the VS profile, the κ-informed damping estimation consist in calibrating 

DS,0 so that the theoretical Δκ matches the corresponding observed value, thus 

suiting the observed high-frequency attenuation (e.g., Cabas et al., 2017; Afshari 

and Stewart, 2019; Xu et al., 2019). For instance, Figure 4-19 shows the resulting 

soil model at a site characterized by complex stratigraphy, where the DS profile 

was calibrated starting from laboratory-based values (Afshari and Stewart, 2019). 

Notwithstanding the apparent simplicity of these approach, the relation 

between κ0 and DS is not always straightforward, due to wave scattering 

phenomena that may be relevant in presence of complex stratigraphy (Ktenidou et 

al., 2015). 
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Figure 4-19. Example of S-wave velocity VS profile and κ-informed damping ratio DS 

profile (after Afshari and Stewart, 2019). 

4.4.3 Amplification analysis 

A quite popular approach of DS estimation is based on site-amplification synthetic 

parameters. Similar to the κ-informed damping estimation, the strategy calibrates 

DS to obtain a good level of compatibility between the predicted and the observed 

amplification response, described by means of a synthetic parameter. Although 

this procedure is computationally intensive, as multiple GRAs are required, the 

resulting DS is consistent with the ground response in seismic conditions, and it 

can be used for GRAs. Conventional approaches rely on frequency-domain 

parameters, that capture variations in both amplitude and frequency content of the 

waveform while propagating in the soil deposit. Typical proxies are the transfer 

function TF (Figure 4-20; Pecker, 1995; Tsai and Hashash, 2009; Thompson et 

al., 2012; Kaklamanos et al., 2013b; Yee et al., 2013; Zalachoris and Rathje, 

2015; Tao and Rathje, 2019) or the amplification function AF (e.g., Thompson et 

al., 2012), the definition of which is available in Section 2.4.1. The description 

might refer also to time-domain parameters, as the peak values of acceleration and 

velocity and the Arias intensity (Tao and Rathje, 2019). 
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A critical issue in the amplification analysis is the choice of an appropriate 

goodness-of-fit metric. This applies especially when dealing with frequency-

domain data. Indeed, TFs and AFs are oscillating functions usually spanning over 

a broad range of frequencies and the various peaks and troughs may be of 

different orders of magnitude. Most studies rely on misfit magnitude-based 

estimates, because a deviation between theoretical and experimental data may be 

interpreted as an effect of biased material parameters or modeling errors, e.g. 

linked with lateral variability of the soil deposit (Thompson et al., 2009). Valid 

indicators of closeness between target and predicted data are the mean-squared 

error (MSE), the corresponding root (RMSE; Zalachoris and Rathje, 2015), or the 

coefficient of efficiency (Legates and McCabe Jr, 1999). An alternative family of 

goodness-of-fit statistics focuses on the shape similarity between target and 

theoretical data. An example is the Pearson’s sample correlation coefficient, that 

provides a direct measure of similarity, e.g. in terms of the peak alignment 

(Thompson et al., 2012). However, Legates and McCabe Jr (1999) questioned the 

high sensitivity of the correlation coefficient to extreme values in the target or in 

the experimental data. To overcome this limitation, a more robust metric is the 

index of agreement (Legates and McCabe Jr, 1999; Tao and Rathje, 2019). 

Furthermore, the assessment of the degree of fit is restricted within a moderately 

narrow frequency range, typically between the first and the fourth peak of the 

observed TF, to avoid biased estimates (Thompson et al., 2012). 

On the other side, the choice of an adequate fitting metric is even more 

complex when focusing on time-domain data. For instance, Tao and Rathje (2019) 

adopted a simple strategy as they focused on peak values of time histories (e.g., 

peak ground acceleration PGA) or the Arias intensity, for which the misfit 

estimation is immediate. Other studies (e.g., Shi and Asimaki, 2017), instead, 

adopt more refined approaches already used in seismological simulations, e.g. the 

Anderson (2004) criteria and the GOF method (Kristeková et al., 2006; Olsen and 

Mayhew, 2010). 
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Figure 4-20. Application of the amplification analysis at the Garner Valley site: a) S-

wave velocity VS profile; b) Calibration of the small-strain damping ratio DS,0 profile; c) 

Comparison between theoretical and observed transfer function TF (after Tao and Rathje, 

2019). 

4.4.4 Issues in the interpretation of downhole arrays 

The DH-array data processing is not straightforward and it incorporates some 

drawbacks. 

Firstly, DH-arrays are installed at a limited number of sites, hence these 

approaches cannot be easily applied in ordinary site characterization projects. 

Furthermore, the computation of the empirical site response requires the selection 

of an adequate number of ground motion records (Assimaki et al., 2008). Only 

weak motions should be included, to avoid the rise of nonlinear phenomena 

(Beresnev and Wen, 1996; Thompson et al., 2012; Zalachoris and Rathje, 2015; 

Cabas et al., 2017; Tao and Rathje, 2019; Xu et al., 2019). For this reason, 

processing should rely on seismic records with PGA smaller than 0.05÷0.1g (e.g., 

Zalachoris and Rathje, 2015; Tao and Rathje, 2019) or with a shear strain index Iγ, 

a)

c)

b)
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i.e. the ratio between the peak ground velocity and the equivalent S-wave velocity 

VS,30 (Idriss, 2011; Kim et al., 2016), smaller than 0.1% (e.g., Cabas et al., 2017). 

A critical issue is the ambiguity about wavefield conditions at the downhole 

sensors. Indeed, these sensors record both the upgoing incident wavefield and 

downgoing waves that are reflected off of the free surface. This condition is 

conventionally labeled as the “within” assumption (e.g., Zalachoris and Rathje, 

2015), to make a distinction from sensors on the free surface, where the 

downgoing and upgoing waves are equal (“outcrop” assumption). Due to the 

impossibility of separating them, the modelling of such conditions is complex 

(e.g., Shearer and Orcutt, 1987; Steidl et al., 1996; Bonilla et al., 2002; Cadet et 

al., 2012). However, in deep borehole sensors, the contribution of the downgoing 

wave might be negligible as its energy rapidly decays with depth, due to intrinsic 

attenuation and wave scattering. In this case, the upgoing component should be 

only considered in the estimate of the experimental TF. Therefore, particular care 

should be devoted in the assignment of proper boundary conditions at the 

downhole sensors, as a function of the depth and the mechanical characteristics of 

the medium (e.g., Bonilla et al., 2002; Stewart and Kwok, 2008; Thompson et al., 

2009). 

Finally, the quality of the estimate strongly depends on the reliability of the 

available geotechnical information and the absence of lateral variabilities or 

2D/3D resonance phenomena (Thompson et al., 2012). For instance, Assimaki et 

al. (2008) and Kaklamanos and Bradley (2018) pointed out that the coarseness in 

the provided information may result in apparent drifts between theoretical and 

effective data, that may be erroneously interpreted as other effects such as wave 

scattering. 

A special remark about the role of the ground motion parameter adopted for 

measuring the site response should be pointed out. The approaches listed above 

rely on different descriptors of the ground motion amplification: frequency-

domain parameters (e.g., TF, AF, κ) and time-domain parameters (e.g., PGA, IA). 

There is no consensus about the best reference parameter, also because only a few 

studies carried out a comparative analysis to investigate the influence of the 

amplification descriptor. For instance, Tao and Rathje (2019) calibrated a 

multiplying factor of the laboratory-based DS,0 to derive the in situ ,0
site
SD  profile in 

4 sites with different geology, each equipped with a DH-array. As reported in 

Figure 4-21, the calibrated factor is site-dependent and it is remarkably sensitive 

to the reference parameter. For instance, the multiplier derived from the TF 

oscillates between 3 and 6 and it is larger than the one obtained from the AF (its 

range is 1 to 5.5). Instead, constraining the ground model to time-domain data 
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leads to more scattered multiplier values, due to the request of matching a time 

instant parameter. Finally, the κ-informed estimate is close to 3.3, regardless the 

site conditions. The Authors suggest keeping the time domain parameters as 

reference, since they capture the overall response of the site. On the other side, the 

calibration in the frequency domain may lead to an overestimation of the damping 

due to the necessity of reducing the high-amplitude peaks of the theoretical 

estimate to match the empirical data, especially for the TF-based estimate. 

 

Figure 4-21. Obtained damping multipliers in Tao and Rathje (2019), at four sites: Garner 

Valley (GV), EuroseisTest (EST), Treasure Island (TI) and Delaney Park (DP). 

Multipliers are estimated based on the transfer function TF, the amplification function 

AF, the peak ground acceleration PGA or velocity PGV, the Arias intensity Ia, the high-

frequency attenuation Δκ. 

An additional source of uncertainties in the in situ ,0
site
SD  estimates from DH-

arrays is the starting damping ratio profile, together with the correction applied in 

the calibration procedure. The trial values of ,0
site
SD  can be assumed a priori 

(Thompson et al., 2012), on the basis of seismological relationships (Cabas et al., 

2017) or from laboratory results (e.g., Zalachoris and Rathje, 2015). ,0
site
SD  is often 

obtained from laboratory-based empirical relationships and updated through a 

multiplicative factor or an additive term, which is calibrated based on observed 

data. Cabas et al. (2017) highlighted the influence of the starting value of ,0
site
SD  

and of the type of correction. 

Average
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4.5 Laboratory vs. in situ estimates 

The description of the current techniques deemed to estimate the small-strain 

damping ratio ends with an inter-method comparison, aimed at understanding the 

relative differences between DS,0 values obtained through laboratory testing and 

the ,0
site
SD  measured in situ (from geophysical tests or DH-arrays). Indeed, the 

different disturbance degree, boundary conditions and representative scale result 

into a discrepancy in measured parameters, especially for those linked to the 

cyclic behavior of geomaterials. For instance, several studies (e.g., Stokoe and 

Santamarina, 2000) demonstrated that laboratory tests tend to underestimate VS of 

the geomaterial, probably because of perturbations in the soil microstructure 

during the sampling stage. 

As for geophysical testing, for instance, Rix et al. (2000) compared DS,0 with 

,0
site
SD  values obtained through CHT and SWM at the Treasure Island site, in 

California. While SWM data are quite similar to laboratory-based values, CHT 

tends to provide estimates of ,0
site
SD  larger than DS,0. The Authors justify such 

difference in terms of investigated volumes, as CHT provide a local measure 

whereas SWM yield results that are averaged over a much large volume. 

Furthermore, CHT measures high-frequency waveforms, which are more sensitive 

to local variations in material properties and falling in a range where material 

damping tends to be significantly rate-dependent. Foti (2003) compared the 

SWM-based ,0
site
SD  and DS,0 at the well-known site of the Pisa Leaning Tower. He 

observed that the in situ value slightly overestimates the laboratory-based DS,0, 

due to the presence of additional attenuation mechanisms other than geometric 

and intrinsic attenuation, especially at shallow layers (Figure 4-22). Finally, Karl 

et al. (2006) carried out a characterization study at a site in Belgium, through 

laboratory tests and a SCPT survey. In this case, ,0
site
SD  slightly overestimates DS,0, 

although the remarkable variability in the in-situ estimated values does not allow 

drawing general conclusions (Figure 4-22). 
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Figure 4-22. a) Comparison between the SWM-based and the laboratory-based small-

strain damping ratio DS,0 profile at the Pisa Leaning Tower site (modified from Foti, 

2003); b) Comparison between the SCPT-based (black circles) and the laboratory-based 

(hollow symbols) DS,0 profile at a site in Belgium (after Karl et al., 2006). 

Numerous studies based on DH-arrays observed high ,0
site
SD  values compared 

with laboratory data (e.g., Tsai and Housner, 1970; Dobry et al., 1971; Tsai and 

Hashash, 2009; Yee et al., 2013). The difference is remarkable especially in soft 

shallow layers, that usually exhibit strong heterogeneities resulting in relevant 

scattering phenomena (Assimaki et al., 2006; Zalachoris and Rathje, 2015). For 

instance, Ktenidou et al. (2015) observed that the κ-informed ,0
site
SD  significantly 

overestimates both laboratory-based DS,0 and DS,0 data obtained from the 

interpretation of surface waves. The reason behind this discrepancy is the 

presence of additional wave attenuation due to scattering, which is not accounted 

for in laboratory data and has less impact on the horizontal propagation of 

Rayleigh waves compared with the vertical propagation of S-waves. 

In summary, part of the differences in the various estimation techniques is 

linked to disturbance effects and the sampled soil volume, for which they might 

provide different results, as a function of the degree of heterogeneity of the soil 

deposit (Foti et al., 2014). However, one of the most important factors affecting 

,0
site
SD  estimates is the presence of wave scattering phenomena, which is an 

additional dissipation mechanism not accounted in the laboratory measurements. 

Seismic wave scattering is a phenomenon characteristic of the wave propagation 

in heterogeneous media, where the multiple reflections and refractions lead to a 

non-planar propagation and to the diffusion of the seismic energy. This 

component typically affects in situ estimates, due to the difficulty in separating 

geometric and intrinsic attenuation, i.e. the energy loss due to wavefront 
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expansion and to wave scattering in heterogeneous media, on one side, and the 

one due to intrinsic material attenuation, on the other. 
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Chapter 5 

Novel processing approaches 

This Chapter describes a novel methodology, that aims at extending the 

framework of dispersion estimation techniques to obtain the R-wave phase 

attenuation. The principle of this approach consists in applying a transformation to 

the wavefield, whose resulting function may be interpreted as a pseudo-wave. It is 

demonstrated that the phase attenuation can be derived through the dispersion 

analysis of the obtained pseudo-wavefield. In addition, a new modal filtering 

scheme is proposed, with the aim to isolate the contribution of each Rayleigh 

propagation mode. In this way, the quality and robustness in the modal dispersion 

and attenuation estimates can be improved. 

This Chapter starts by introducing a suite of synthetic waveforms, that 

represent the benchmark for the validation of the proposed techniques. The second 

part provides a detailed description of the proposed methods, that are firstly 

applied to simple wave models, to be then generalized to the analysis of surface 

wave data. Then, the inclusion of the modal filtering technique is reported. The 

Chapter ends with an assessment of the performance of the proposed technique on 

more complex wavefields, in which the Rayleigh wave is corrupted by the 

presence of body waves and incoherent noise. 

5.1 Synthetic wavefields 

The reliability of the proposed approach is tested with reference to a set of 

synthetic wavefields, each characterized by a different degree of complexity. On 

the one side, a collection of simplified waveforms, consisting of plane and 

cylindrical waves, is considered. The choice of focusing on idealized plane or 

cylindrical waves aims at providing an effective benchmark for testing the 

proposed algorithms, as the influence of model incompatibility effects (e.g., near 

field effects) is minimized. Then, realistic datasets of surface wave data are 

considered. These are obtained by simulating results of MASW surveys carried 

out on idealized soil models. Selected soil models are compatible with the 

stratigraphy of typical soil deposits in engineering practice and the generated 

wavefields are characterized by a different degree of complexity. 

The first synthetic wavefield (SW1) is a planar wave: 
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 ( ) ir kr

pu r e e− −=  (5.1) 

The displacement field up(r) is computed at 100 equally spaced receiver 

locations, with spacing equal to 1 m, by setting k equal to 0.1 rad/m and α equal to 

0.0015 rad/m (Figure 5-1). The simulated wavefield may be representative of the 

vertical displacement field induced by Rayleigh waves due to a monochromatic 

vertical point force, according to the asymptotic expansion of the Lamb solution 

and normalized by r½ (other normalization constants are not reported, in this 

case). For instance, this may correspond to a R-wave with VR approximately equal 

to 315 m/s and DR equal to 0.015, at a frequency of 5 Hz. 

Besides, this study focuses on another synthetic wavefield (SW2), that models 

the propagation of a cylindrical wave, which is computed from the Hankel 

function for fixed values of wavenumber k and attenuation α: 

 ( ) ( ) ( ) ( ) ( )2 2

0 0cu r H r H k i r= = −  k  (5.2) 

The displacement field uc(r) is computed at the same locations of the planar 

wave, adopting the k and α values defined above (Figure 5-1). The simulated 

wavefield may be representative of the vertical displacement field induced by 

Rayleigh waves due to a monochromatic vertical point force, according to the far-

field solution of the Lamb problem for a homogeneous halfspace (other 

normalization constants are not reported, in this case). 

Being k moderately small, up(r) and uc(r) do not exhibit identical spatial 

variation in the amplitude and in the phase. On the one side, the amplitude decay 

of the two waves is not the same, because of the different geometrical attenuation 

mechanism affecting the displacement field. Furthermore, the error introduced by 

the asymptotic solution increases at small kr values. For this reason, the two 

modeled waves diverge close to the location of the ideal source, i.e., for r close to 

0. The deviation can be immediately noticed by visual inspection the displacement 

phase (Figure 5-1b). 
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Figure 5-1. Simulated planar and cylindrical waves (labeled as SW1 and SW2, 

respectively), described in terms of particle displacement: spatial variation of a) 

amplitude |u| and b) phase argu. 

The wavefield SW3 simulates results of a MASW survey carried out on a 

normally dispersive soil deposit (Table 5.1; Figure 5-3a-b). In this case, the 

Rayleigh wavefield is multimodal, although the fundamental mode of propagation 

is dominant for a broad range of frequencies. For this reason, SW3 allows to 

investigate the performance of the proposed methods in the presence of a 

wavefield mostly composed by a single mode. The final synthetic example 

(labeled as SW4) is obtained from the simulation of a MASW survey on an 

inversely dispersive profile (Table 5.2; Figure 5-4a-b). In this case, higher modes 

significantly contribute to the simulated wavefield SW4. Therefore, the 

performance of the novel approaches in the presence of a multimodal wavefield 

can be addressed. In both models, constant values of ν = 0.33 and ρ = 1800 kg/m3 

are kept throughout the layers, whereas DP is assumed as equal to DS. 

Table 5.1. Ground model parameters adopted to generate the synthetic wavefield SW3. 

Thickness (m) 
S-wave velocity, VS (m/s) S-wave damping ratio, DS (%) 

5 200 3.5 

10 300 3 

10 400 2.5 

- 500 2 

Table 5.2. Ground model parameters adopted to generate the synthetic wavefield SW4. 

Thickness (m) 
S-wave velocity, VS (m/s) S-wave damping ratio, DS (%) 

5 250 2.5 

3 150 4 

- 350 1 
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SW3 and SW4 are computed by means of the ElastoDynamics Toolbox 

(EDT; Schevenels et al., 2009). EDT estimates the displacement transfer function, 

i.e. the displacement induced by a vertical point load at the surface, by means of 

the direct stiffness method (Kausel and Roësset, 1981). Actual displacement data 

are the result of the multiplication between the transfer function and a loading 

function F(t), representing the force applied by the source onto the ground. The 

selected loading function is a Ricker wavelet, which reproduces the typical 

frequency content of an impulsive source, e.g., a sledgehammer (Figure 5-2): 

 ( )
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   

 (5.3) 

The parameter ts is a time shift, whereas TD is the characteristic period of the 

wavelet. In this study, ts is assumed equal to 0.05 s and TD equal to 0.03 s, as 

proposed by Badsar (2012). SW3 and SW4 include vertical displacement data 

computed at 48 evenly spaced locations on the surface of the model, with spacing 

equal to 2 m. Thus, the offset from the source ranges between 2 m and 94 m. Both 

the number of receivers and the receiver spacing are consistent with the 

acquisition layout of MASW surveys for near-surface site characterization (Foti et 

al., 2018). The investigated frequency range spans between 1 Hz and 100 Hz. 

The resulting waveforms are plotted in Figure 5-3 and in Figure 5-4, both in 

terms of seismic traces defined in the time domain and of the f-k spectrum, 

computed by means of a 2D Fourier transform. As expected, the wave energy of 

SW3 is mostly carried out by a single mode (Figure 5-3f), whereas SW4 exhibits 

a remarkably strong multimodal propagation, with the dominant mode shifting to 

high-order propagation modes for increasing frequency (Figure 5-4f). Figure 5-3c-

d and Figure 5-4c-d report the theoretical phase velocity curves VR(ω) and phase 

attenuation curves αR(ω) corresponding to the models, as computed through EDT. 

 

Figure 5-2. Ricker pulse simulating the input force for SW3 and SW4: a) time history; b) 

Frequency content. 
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Figure 5-3. Main characteristics of the synthetic wavefield SW3: a-d) Reference ground 

model, described in terms of the S-wave velocity (a) and damping ratio (b); R-wave phase 

velocity curves (c) and phase attenuation curves (d); Time-domain traces (e) and f-k 

spectrum, where each mode is identified by the white patterns (f). To better visualize 

spectral peaks corresponding to each propagation mode, the f-k spectrum is normalized 

frequency by frequency. 
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Figure 5-4. Main characteristics of the synthetic wavefield SW4: a-d) Reference ground 

model, described in terms of the S-wave velocity (a) and damping ratio (b); R-wave phase 

velocity curves (c) and phase attenuation curves (d); Time-domain traces (e) and f-k 

spectrum, where each mode is identified by the white patterns (f). To better visualize 

spectral peaks corresponding to each propagation mode, the f-k spectrum is normalized 

frequency by frequency. 
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5.2 Processing methods 

This section starts with an overview of the frequency-domain beamforming 

approach, as it represents the basis of the approach proposed in this study. Then, 

the frequency-domain beamforming – attenuation is described, with reference to 

the synthetic wave models SW1 and SW2. This section ends with the definition of 

an algorithm that applies this method for the analysis of surface wave data. 

5.2.1 The frequency-domain beamforming technique 

The Frequency-Domain BeamForming (FDBF; Lacoss et al., 1969) technique is a 

transform-based method, that interprets measured waveform data in the 

frequency-wavenumber (f-k) domain (or alternatively the frequency-velocity 

domain), where R-wave propagation parameters can be identified as maxima of 

the amplitude spectrum. A significant advantage of this approach is the capability 

to identify the contribution of different modes of the Rayleigh wavefield as 

separate spectral peaks, although the actual possibility of isolating modes depends 

on the spatial resolution of the array. 

The FDBF approach estimates kR (hence, VR) under the assumption that the 

recorded wavefield is composed by Rayleigh waves, propagating according to 

planar wavefronts. The description of the method herein provided assumes that 

the measured wavefield consists of recorded particle displacement spectral data in 

the vertical direction u(r,ω) along a linear array, where r is the sensor offset from 

the active source. However, the method can be easily generalized to 2D 

acquisition setups, with single- or three-component data (e.g., Zywicki and Rix, 

2005; Wathelet et al., 2018). 

The FDBF technique combines recorded spectra into the spatio-spectral 

correlation matrix R(ω), which is a Hermitian-symmetric matrix where each 

element is the cross-power spectrum between the m-th and the n-th sensors, 

defined as follows: 

 ( ) ( ) ( )*

, , ,m n m nR u r u r  =  (5.4) 

The components of R(ω) carry information about spatial properties of the 

wavefield (Zywicki, 1999), as they contain the phase change between sensors. 

To exploit the phase change information contained in R(ω), the FDBF applies 

a linear phase shift to the recorded traces, as a function of a trial wavenumber kt, 

and it stacks the slanted traces. When the total energy is maximum, the steered 

traces are in equal phase and the corresponding kt equals the true wavenumber kR. 
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From the mathematical viewpoint, this operation is equivalent to compute the so-

called pseudopower PBF(kt,ω): 

 ( ) ( ) ( ) ( )H,BF t t tP k k k = e R e  (5.5) 

where H denotes the Hermitian transpose, and e(kt) is the planar steering 

vector, that is the mathematical representation of the linear phase shift: 

 ( ) 1
T

i i
, ,t t Nk r k r

tk e e
− − =  e  (5.6) 

The location of the peak of the PBF(kt,ω) in the f-k domain corresponds to the 

actual wavenumber kR, from which VR can be derived (Figure 5-5). If the recorded 

wavefield includes multiple plane waves (e.g., multimode Rayleigh waves), 

PBF(kt,ω) exhibits several peaks, each corresponding to a single wave component. 

The investigation of PBF(kt,ω) is carried out on an adequate search domain, 

where the boundaries of kt are compatible with spatial sampling capability of the 

array. The search domain should account for the effects of limited spatial 

sampling on the spectral estimates (Foti et al., 2002). On the one side, spatial 

aliasing limits the investigation range to a maximum kt value equal to π/d in 

uniformly spaced arrays with spacing d, according to the Nyquist-Shannon 

theorem. In addition, a fine discretization of the search domain is helpful for a 

more precise estimation of kR. Theoretically, a refined mesh would allow for 

easier identification of different wave components in measured data (e.g., 

different Rayleigh propagation modes). However, the actual wavenumber 

resolution depends only on the array length D, as it equals 2π/D. Therefore, the 

increased accuracy obtained with a finer kt grid is only apparent, as the actual 

resolution is unchanged. 

 

Figure 5-5. Application of the FDBF for the dispersion analysis of SW3: a) pseudopower 

PBF(kt,ω) in the f-k spectrum domain; b) Cross-section of PBF(kt,ω) at the circular 

frequency ω0. 
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One of the basic assumptions of the FDBF is that the recorded wavefield is 

composed by plane waves. However, in MASW tests, Rayleigh waves spread 

from the source with cylindrical wavefronts and modeling their propagation as 

plane waves might result in biased estimates of the wavenumber, especially for 

the usually adopted offsets. For this reason, Zywicki and Rix (2005) introduced a 

modified version of the FDBF, that accounts for the cylindrical wavefield. The 

Cylindrical FDBF (CFDBF; Zywicki, 1999) shares a similar scheme to the 

conventional FDBF, as it computes the pseudospectrum PCBF(kt,ω) from R(ω) as: 

 ( ) ( ) ( ) ( )H,CBF t t tP k k k = h R h  (5.7) 

However, the cylindrical steering vector h(kt) depends on the trial 

wavenumber kt by means of the Hankel function, which is a descriptor of the 

propagation of cylindrical waves: 

 ( )
( ) ( ) ( ) ( )
2 2

10 0

T
iarg iarg

, ,t t NH k r H k r

tk e e
− − =

  
h  (5.8) 

Note that ( ) ( )2

0H  should be replaced by ( ) ( )2

1H  when processing radial 

displacement data. 

The steering vector h(kt) ensures that the sensors are aligned with the Hankel 

function phase, so that the maxima of PCBF(kt,ω) provide an estimate of the wave 

parameters of the cylindrically spreading wavefield (Figure 5-6). As it properly 

models the cylindrical wavefield, the CFDBF entails major computational 

complexity (Zywicki and Rix, 2005). On the other side, this method improves the 

quality and reliability in the estimated dispersion data, with respect to the planar 

wavefield. 

 

Figure 5-6. Application of the CFDBF for the dispersion analysis of SW3: a) 

pseudopower PCBF(kt,ω) in the f-k spectrum domain; b) Cross-section of PCBF(kt,ω) at the 

circular frequency ω0. 
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5.2.2 Frequency-Domain BeamForming – Attenuation (FDBFa) 

The Frequency-Domain BeamForming – Attenuation (FDBFa), proposed in 

this dissertation, is a transform-based approach that seeks to provide robust and 

reliable attenuation estimates. The FDBFa approach estimates α under the 

assumption that the recorded wavefield is composed by a single planar wave (e.g., 

a Rayleigh wave with a dominant propagation mode, recorded in the far field). 

The principle of this approach consists in applying a transformation to the 

recorded wavefield, such that the resulting function may be interpreted as a 

pseudo-wave, with dispersion characteristics corresponding to the attenuation of 

the original one. Thus, α can be derived by estimating the wavenumber of the 

pseudo-wavefield, for which a broad variety of tools is currently available. In this 

study, the wavenumber estimate is carried out by means of the FDBF method, 

hence the FDBFa may be interpreted as a generalization of the FDBF for the 

attenuation estimate. Indeed, the FDBF scheme is computationally fast and robust. 

Furthermore, the FDBF allows an immediate generalization to non-planar waves, 

as the inclusion of geometric effects due to the cylindric shape of the Rayleigh 

wavefront is straightforward. 

The FDBFa method is based on the following wavefield transformation: 

 ( ) ( )
i

pv r u r =    (5.9) 

where “i” is the imaginary unit. If the recorded wavefield is a plane wave 

inducing the displacement field up(r), it can be demonstrated that resulting 

function v(r) can be interpreted as a planar pseudo-wave, whose wavenumber 

corresponds to the attenuation of up(r). Indeed, the application of the 

transformation (5.9) to up(r) returns the following function: 

 ( ) ( )
i

ikr r

pv r u r e e − = =   (5.10) 

Comparing Eq. (5.10) with (5.2), v(r) can be interpreted as a plane wave, 

whose displacement amplitude varies across space as ekr, with harmonic 

oscillations according to e−iα . Therefore, α is the wavenumber of the “pseudo”-

wavefield v(r), whereas k controls the spatial variation of the particle 

displacement amplitude (Figure 5-7a-d). Thus, α of the original planar wave up(r) 

can be retrieved by searching for the wavenumber of v(r). 

In this study, the FDBF technique is adopted to carry out the wavenumber 

analysis of v(r). Therefore, v(r) data across all the receivers are first combined 

into the spatio-spectral correlation matrix R. Then, the pseudospectrum PBFa(αt) is 

obtained by combining R with a planar steering vector e(αt) (defined as in Eq. 

5.6), as a function of the trial attenuation value αt: 
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 ( ) ( ) ( ) ( )H

BFa t t tP    = e R e  (5.11) 

Ideally, PBFa(αt) exhibits a single peak, with location αe (i.e., the estimated 

attenuation) corresponding to the actual attenuation α of the recorded wave 

(Figure 5-7e). 

 

Figure 5-7. a-b) Original planar wave up(r), in terms of a) log-amplitude and b) phase; c-

d) Transformed wave, in terms of c) log-amplitude and d) phase; e) Pseudospectrum of 

the transformed wave v(r), where the location of the spectral maximum αe is compared 

with α. 

However, the resulting pseudospectrum often exhibits side lobes together with 

the main peak. Differently from the FDBF, the presence of multiple waves in the 

recorded wavefield does not result in multiple local maxima in PBFa(αt) because a 

single peak still appears, as it will be addressed in the Section 5.3.1. Instead, side 

lobes may partially be the effect of spectral leakage, induced by windowing of the 

pseudo-wave. This perturbation can be mitigated by applying an appropriate 

tapering to v(r) prior the computation of PBFa(αt), e.g. by means of a Hanning 

window (Figure 5-8). 
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Figure 5-8. Effect of the tapering window on the pseudospectrum PBFa(αt), computed for 

SW1. The tapering is carried out by means of a spatial Hanning window. The plot also 

includes a zoomed view to show the comparison between the peak location (the grey 

circle) and the theoretical attenuation α = 0.0015 rad/m. 

On the other hand, side peaks are artifacts induced by the spatial variation of 

the amplitude of v(r). Indeed, the corresponding amplitude usually assumes a 

sawtooth-like shape, where each segment increases according to an exponential 

function. This peculiar trend is due to the strategy used for the numerical 

computation of wavefield data. Indeed, although the phase of uP(r) is linear with 

the distance, numerically it is wrapped. Thus, it appears as a sawtooth signal 

bounded between −π and  π and varying as −kr in each segment. Due to the 

transformation (5.9), the phase of up(r) becomes the exponent governing the 

amplitude of v(r), with opposite sign. Therefore, such amplitude assumes a 

piecewise exponential trend, with “jump” discontinuities. It can be demonstrated 

that the presence of these discontinuities in v(r) maps into a set of equally spaced 

side lobes inside PBFa(αt), with spacing equal to the wavenumber k (Figure 5-9). 

The demonstration is provided in the Appendix A. To avoid confusion in the 

identification of the peak of PBFa(αt), a possible strategy consists in normalizing 

v(r) by its amplitude, so that the discontinuities cancel out, prior to the tapering. 

Alternatively, the transformation (5.9) may be applied only to the |u(r)|, discarding 

the phase contribution. In both cases, the discontinuities in v(r) cancel out, and 

PBFa(αt) exhibits a single peak. 
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Figure 5-9. Effect of phase wrapping on the pseudospectrum PBFa(αt), computed for SW1: 

a-b) Original planar wave up(r), in terms of a) log-amplitude and b) phase; c-d) 

Transformed wave v(r), in terms of c) log-amplitude and d) phase; e) Pseudospectrum of 

the transformed wave. The plot also includes a zoomed view where the location of the 

spectral maximum αe (the grey circle) is compared with the theoretical attenuation α = 

0.0015 rad/m. 

5.2.3 Cylindrical Frequency-Domain BeamForming –Attenuation 

(CFDBFa) 

The FDBFa method relies on a key assumption, namely the recorded wavefield is 

composed by a single, plane wave. For this reason, the application of the FDBFa 

method to retrieve the phase attenuation of Rayleigh waves might lead to biased 

estimates, as they propagate according to a cylindrical wavefront. A potential 

solution to mitigate this problem consists in processing recorded traces after 

having scaled them according to r½. Indeed, cylindrical waves asymptotically tend 

to be described as a spatially harmonic function (i.e., plane waves), but with 

amplitude scaled down by r½. However, this strategy does not model properly the 

geometrical characteristics of the wavefront, as it relies on an asymptotic 

approximation which, by definition, is valid only at great distances from the 

source. Therefore, the resulting attenuation estimates may still not be accurate 

enough. 

For this reason, the FDBFa method is modified to introduce an explicit 

modeling of the cylindrical shape of the wavefront. The proposed scheme is 

hereafter termed as Cylindrical FDBFa (CFDBFa), which can be seen as a 

generalization of the CFDBF technique. 
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In this case, the application of the transformation (5.9) to the displacement 

field uc(r) returns a function v(r), for which the derivation of the expression is not 

straightforward, because a closed-form formulation for the Hankel function is not 

currently available. However, based on an analogy with the application of (5.9) to 

a plane wave, an intuitive description of v(r) assumes that it represents a pseudo-

wavefield, whose phase variations reflect spatial changes of the amplitude of the 

Hankel function and amplitude is linked to the corresponding phase of the original 

wavefield (Figure 5-10a-d). Therefore, the attenuation α can be retrieved by 

exploiting the phase information carried in v(r). For this purpose, the CFDBFa 

follows a procedure similar to the CFDBF, where it computes the pseudospectrum 

PCBFa(kt) from the spatio-spectral correlation matrix R of v(r) as: 

 ( ) ( ) ( )H

CBFa t t tP = a Rak k k  (5.12) 

The steering vector a(kt) is defined as follows: 

 ( ) ( )  ( ) 0 1 0

T
iarg iarg

, ,t t Nh r h r

t e e
− − =

  
a

k k
k  (5.13) 

where the function h0 is the power of the Hankel function to the imaginary 

unit: 

 ( ) ( ) ( )
i

2

0 0h H • = •
   (5.14) 

Note that ( ) ( )2

0H  should be replaced by ( ) ( )2

1H  when processing radial 

displacement data. In Eq. 5.13, kt is a trial complex wavenumber. The reason 

behind the use of this quantity is discussed below. 

The steering vector a(kt) stretches the pseudo-wavefield according to phase 

variations of the power of a Hankel function to the imaginary unit, thus 

accounting spatial changes in phase of v(r) in a proper way. In this way, the 

pseudo-cylindrical wavefield is converted into an equivalent plane wavefield, and 

attenuation of the cylindrical wave is properly estimated. PCBFa(kt) ideally 

exhibits a main peak with location αe coincident with α (Figure 5-10e). However, 

actual data may provide side lobes in the pseudospectrum, that may corrupt the 

correct identification of the peak. Their presence can be mitigated by normalizing 

the pseudo-wavefield by its amplitude and applying a proper tapering, as in 

FDBFa. 
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Figure 5-10. a-b) Original cylindrical wave uc(r), in terms of a) log-amplitude and b) 

phase; c-d) Transformed wave v(r), in terms of c) log-amplitude and d) phase; e) 

Pseudospectrum of the transformed wave, where the location of the spectral maximum αe 

is compared with α. 

Differently from FDBFa, the argument of a(kt) is a trial complex 

wavenumber kt which, by definition, includes both the real wavenumber and the 

phase attenuation term. Indeed, the estimate of the attenuation for a cylindrical 

wave should also account for the real wavenumber, as it affects spatial variations 

of the wave amplitude. 

As the CFDBFa searches for α, the real wavenumber has to be fixed to a value 

kref, whereas trial values αt for the attenuation are adopted. However, the choice of 

kref is not arbitrary, as it should be as close as possible to the actual wavenumber k 

characterizing the measured wavefield. Figure 5-11 describes the influence of kref 

on the estimated attenuation, with reference to SW2. If kref > k, the resulting 

attenuation αe would underestimate α. Furthermore, for increasing kref, αe tends to 

decrease down to a stable value. Instead, when kref < k, αe overestimates α (Figure 

5-11a). An interpretation of the discrepancy in the attenuation estimate is provided 

in Figure 5-11b-c, that compares the original wavefield SW2 with two cylindrical 

waves, with the same wavenumber kref > k and attenuation equal to α and αe, 

respectively. These waves are hereafter labeled as uc(k,α), uc(kref,α) and uc(kref,αe), 

respectively. Figure 5-11b shows the corresponding the spatial variation of wave 
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amplitude, whereas Figure 5-11c reports the spatial variation of the cylindrical 

wave amplitude corrected by the geometrical spreading factor r½ and converted in 

logarithmic scale. According to this representation, each curve tends to become 

linear at great r values, with a slope equal to the corresponding attenuation, by 

virtue of the asymptotic approximation of the Hankel function. Thus, a visual 

inspection of the slope of the modified amplitude at far offsets allows an 

immediate visualization of the fitting of α. Note that in Figure 5-11c, curves 

corresponding to uc(kref,α) and uc(kref,αe) are shifted by a quantity Δ so that they 

share the same end point, to facilitate the visual comparison of the slopes. When 

kref < k, the wave uc(kref,α) matches the slope of SW2 at great offsets but the 

predicted amplitude significantly overpredicts SW2 close to the source. In order to 

improve the fitting by keeping a similar shape (which is controlled by kref), a 

reduction of αe is required. Figure 5-11d-e report an equivalent comparison for kref 

< k. In this case, although uc(kref,α) is compatible with SW2 at great r, it 

systematically underestimates SW2 amplitude at short distances. An improvement 

in the fitting quality is obtained by increasing αe. In summary, the sensitivity of αe 

to kref is the result of the nonlinearity of the shape of spatial variations of the 

Hankel function amplitude with the offset and its sensitivity to this parameter. 

Due to the nonlinear variation, it is also believed that the entity of divergence 

between αe and α for kref ≠ k depends on the array geometry, namely the range of 

investigated spatial coordinates. In plane waves, instead, there is no influence of 

the wavenumber characteristics on the attenuation estimate, as the amplitude 

variations only depend on the attenuation itself. 

Therefore, the CFDBFa should be combined with a robust method for 

estimating k prior to the derivation of α. For this purpose, the CFDBF represents 

an effective strategy because of its accuracy and robustness. Furthermore, 

combining the CFDBF and the CFDBFa provides a physically consistent 

approach for estimating wave parameters, as both of them model the propagation 

of the wavefield according to a cylindrical scheme. 
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Figure 5-11. a) Influence of the chosen wavenumber kref on the estimated attenuation αe in 

the CFDBFa; b-c) Amplitudes of the cylindrical waves corresponding to three different 

kref values, represented in terms of b) amplitudes and c) logarithmic amplitudes 

normalized by the geometrical spreading factor. The parameter Δ shifts the curves in c) 

and e) so that they share the same end point, thus facilitating the comparison of relative 

variations in the space. Data refer to SW2. 

5.2.4 Applications 

The application of the FDBFa and of the CFDBFa for retrieving Rayleigh wave 

parameters from the interpretation of surface wave data is quite straightforward. 

Indeed, although both methods have been introduced with reference to 
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monochromatic planar or cylindrical waves, the generalization to nonharmonic 

signals can be easily achieved by means of the Fourier decomposition of the 

wavefield. In this way, each frequency component of the recorded wavefield is 

separated and it may be processed according to these techniques. The resulting 

wave parameters are then combined frequency by frequency to obtain the 

experimental dispersion and attenuation curves. 

Although Rayleigh waves propagate with cylindrical wavefronts, using a 

planar model for estimating propagation parameters is often a valid choice, 

because the influence of this approximation on the quality of results is moderately 

small. This is valid especially when waveform data are recorded moderately far 

from the active source. Furthermore, techniques based on this assumption are 

computationally fast. However, an accurate processing requires a preliminary 

scaling of recorded data by r , to remove the influence of geometric damping 

effect that characterizes cylindrical waves. When using a planar model, the 

FDBFa method provides an attenuation estimate that is independent from the 

wavenumber, entailing that dispersion and attenuation analysis of the wavefield 

can be carried out separately. Therefore, the algorithm adopted in this study first 

estimates dispersion curves by means of the FDBF approach, which also relies on 

a planar scheme. Then, attenuation data are obtained through the FDBFa method. 

The main steps of this algorithm are listed in Algorithm 1. 

 

Algorithm 1 Frequency-Domain BeamForming – Attenuation (FDBFa) algorithm for MASW 

processing 

Input: ( ) 
1 1

,
TN N

z n s
n s

u r t
= =

: particle displacement recorded at N sensors with offset rn, at NT time 

samples tt 

1: Compute frequency spectra ( ) 
1 1

,
N N

z n i
n j

u r



= =

, for Nω frequencies ωi 

2: Geometrical spreading removal: ( )  ( ) 
1 1 1 1

, ,
N N N N

z n i z n i n
n j n j

u r u r r
 

 
= = = =

   

3: for i = 1 : Nω do 

4:  Compute pseudopower spectrum PBF(kt, ωi) through FDBF 

5:  Identify wavenumber kRe(ωi) (hence, the phase velocity VRe(ωi)) of the 

dominant peak of PBF(kt, ωi) 

6:  Calculate vz(rn,ωi) from Eq. 5.9 

7:  Remove the amplitude term vz(rn,ωi) ← vz(rn,ωi)/|vz(rn,ωi)| 

8:  Apply the window vz(rn,ωi) ← w(rn,ωi)vz(rn,ωi) 

9:  Compute spatiospectral correlation matrix Rm,n(ωi) = vz(rn,ωi) [vz(rn,ωi)]* 

10:  Construct steering vector with trial attenuation αt: ( ) 1
T

i i
, ,t t Nr r

t e e
  − − =  e  

11:  Calculate pseudospectrum for varying αt: PBFa(αt,ωi) = eH(αt)R(ωi)e(αt)  

12:  Peak picking of PBFa(αt,ωi): αR,e(ωi) ← argmaxPBFa(αt,ωi) 

13: end for 
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Instead, when an explicit modeling of the cylindrical wavefield is considered, 

the coupling between dispersion and attenuation estimates becomes more relevant. 

For this reason, the adopted algorithm first estimates dispersion curves by means 

of the CFDBF approach. Then, the attenuation analysis is carried out by means of 

the CFDBFa method. In this step, wavenumber data returned by the CFDBF are 

plugged into the steering vectors used in the CFDBFa, frequency by frequency. 

The main steps of this algorithm are listed in Algorithm 2, which assumes that the 

recorded motion is the particle displacement in the vertical direction. Note that 
( ) ( )2

0H  should be replaced by ( ) ( )2

1H  when processing radial displacement data. 

 

Algorithm 2 Cylindrical Frequency-Domain BeamForming – Attenuation (CFDBFa) for MASW 

processing 

Input: ( ) 
1 1

,
TN N

z n s
n s

u r t
= =

: particle displacement recorded at N sensors with offset rn, at NT time 

samples tt 

1: Compute frequency spectra ( ) 
1 1

,
N N

z n i
n j

u r



= =

, for Nω frequencies ωi 

2: for i = 1 : Nω do 

3:  Compute pseudopower spectrum PCBF(kt, ωi) through CFDBF 

4:  Identify wavenumber kRe(ωi) (hence, the phase velocity VRe(ωi)) of the 

dominant peak of PCBF(kt, ωi) 

5:  Calculate vz(rn,ωi) from Eq. 5.9 

6:  Remove the amplitude term vz(rn,ωi) ← vz(rn,ωi)/|vz(rn,ωi)| 

7:  Apply the window vz(rn,ωi) ← w(rn,ωi)vz(rn,ωi) 

8:  Compute spatiospectral correlation matrix Rm,n(ωi) = vz(rm,ωi) [vz(rn,ωi)]* 

9:  Construct steering vector with trial complex wavenumber kt: 

( ) ( )  ( ) 0 1 0

T
i arg i arg

, ,t t Nh r h r

t e e
− − =

  
a

k k
k , with kt = kRe(ωi) − iαt 

10:  Calculate pseudospectrum for varying αt: PCBFa(kt,ωi) = aH(kt)R(ωi)a(kt)  

11:  Peak picking of PCBFa(kt,ωi): αR,e(ωi) ← argmaxPCBFa(kt,ωi) 

12: end for 

 

A potentially critical step is the definition of the grid of trial attenuation 

values αt. Indeed, the search domain should include a broad range of trial 

attenuation values, up to the limit value provided by the Nyquist-Shannon 

theorem. However, in usual acquisition setups for near-surface characterization 

(where the geophone spacing d is generally 1÷5 m), the maximum investigable αt 

is 0.6÷3 rad/m. On the other side, typical attenuation values in Rayleigh waves 

range between 10-3 and 3×10-1 rad/m. Therefore, the grid of αt should be 

adequately refined, otherwise the attenuation estimate would be biased because of 

the coarseness of the grid. For instance, if the Nyquist limit is equal to 3.14 rad/m 

(i.e., d = 1 m) and the αt grid has spacing equal to 7.7×10-4 rad/m (i.e., it includes 

8192 data points), the maximum error due to the grid discretization might be 
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quantified as Δα = 3.8×10-4 rad/m. Thus, the corresponding relative error 

Δα/αR(ω) may rise up to 4% when αR(ω) = 10-2 rad/m and up to 40% when αR(ω) 

= 10-3 rad/m. The grid coarseness may result in biased estimates of the attenuation 

curves especially at low frequencies, where αR(ω) is small, thus reducing the 

quality in estimated dissipation parameters at greater depths. Note that the 

influence of the grid sampling is much less relevant on the estimate of kR(ω), 

being this quantity usually one or two orders of magnitude greater than αR(ω). On 

the other side, a refined discretization of the search domain would require an 

overwhelmingly large number of grid points, entailing a remarkable increase in 

computation time. This aspect is relevant when processing surface wave data, as 

the computation of the pseudospectra has to be carried out at each investigated 

frequency. A reasonable tradeoff between refined discretization and computation 

speed can be achieved by investigating a narrower range of αt, which is limited to 

a maximum value which represents an upper bound in the usual range of αR(ω) in 

near-surface applications, compatibly with the constraints by the Nyquist-

Shannon theorem. For instance, a reasonable value for such upper bound may be 

an attenuation equal to 0.5 rad/m, which may be lowered when investigating low-

frequency Rayleigh waves. However, a narrower range may be adopted as search 

domain, by combining typical values of kR(ω) and of αR(ω) (or phase damping 

ratio). For instance, MASW surveys for ordinary applications usually investigate 

frequencies ranging between 1 Hz and 100 Hz and the retrieved VR(ω) ranges 

between 100 m/s and 1000 m/s. Therefore, kR(ω) typically lies between 10-3 rad/m 

and 101 rad/m. Recalling that αR(ω) = kR(ω)DR(ω) and that DR(ω) usually varies 

between 10-3 and 10-1, then a suitable range of variation for αR(ω) is 10-6 ÷ 100 

rad/m. The range of αR(ω) can be also reduced, by exploiting the variation of this 

parameter with the frequency (Figure 5-12). Specifically, αR(ω) usually ranges 

between 10-6 rad/m and 10-2 rad/m at 1 Hz, 10-5 rad/m and 10-1 rad/m at 50 Hz, 

and 10-4 rad/m and 100 rad/m at 100 Hz. This strategy allows a reduction in 

computation time and to obtain good quality estimates. However, these 

boundaries only represent suggested values valid for generic site conditions, that 

can be tightened in the presence of site-specific information. Furthermore, the 

maximum value is bounded to comply with the restrictions by the Nyquist-

Shannon theorem. 

The application of the proposed algorithms to SW3 and SW4 will be 

addressed in the next Section, as it will be useful to highlight some drawbacks of 

the FDBFa and the CFDBFa approaches in processing measurements of surface 

wave data. 
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Figure 5-12. Typical ranges of the a) R-wave wavenumber kR(ω) and b) R-wave phase 

attenuation αR(ω) as a function of the frequency.  

5.3 Dealing with multiple modes 

In this Section, an application of the FDBFa and the CFDBFa algorithms to 

synthetic MASW data (i.e., SW3 and SW4) highlights that they tend to provide 

estimates of the dispersion and attenuation, that may not be coincident with modal 

curves. To achieve reliable estimates of modal data, the contribution by each 

propagation mode needs to be separated. For this reason, this study proposes a 

filtering technique, that exploits basic principles of digital signal processing. This 

section describes the novel filtering scheme and how it is incorporated in the 

reference algorithms. 

5.3.1 Application to synthetic models 

A fundamental assumption of the FDBFa and of the CFDBFa methods is that the 

recorded wavefield should consist of a single wave or, in surface wave analysis, 

that a single Rayleigh mode is dominant (generally, the fundamental mode). 

When this hypothesis is violated, both methods tend to return biased estimates of 

the attenuation. 
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To understand the reasons behind the unreliability of such approaches in the 

presence of multiple waves, let us consider a simple case, where the wavefield 

upp(r) is the composition of two plane waves up1(r) and up2(r): 

 ( ) ( ) ( ) 1 1 2 2i i

1 2 1 2

r k r r k r

pp p pu r u r u r Ae e A e e
 − − − −

= + = +  (5.15) 

In this specific case, the wavenumbers k1 and k2 are equal to 0.1 rad/m and 0.4 

rad/m; the attenuations α1 and α2 are equal to 0.0015 rad/m and 0.0028 rad/m, 

respectively; the amplitudes A1 and A2 are both unitary. The resulting wavefield 

assumes an irregular variation of the amplitude with the offset, with complex 

patterns (Figure 5-13a). Indeed, the resulting amplitude is the weighted sum of the 

amplitudes of each wave component, plus an additional term depending on the 

phase lag between them, that incorporates the effect of constructive or destructive 

interferences occurring between up1(r) and up2(r) (Misbah and Strobbia, 2014). 

Instead, the phase assumes some oscillations, but it tends to match that of up1(r) 

(Figure 5-13b). Indeed, up1(r) slightly dominates the simulated wavefield, 

especially at large offsets, because it undergoes less spatial attenuation. This 

behavior is also visible in the spectral domain, as PBF(kt) exhibits two peaks 

located at k1 and k2 (hence, it properly identifies the two waves), but the first one 

has greater amplitude (Figure 5-13c). However, the application of the FDBFa to 

upp(r) returns an estimate of attenuation which is not consistent with α1 nor α2, and 

it falls between these values (Figure 5-13d). The resulting αe is an apparent 

attenuation, that depends both on the propagation parameters of the wave 

components and on the acquisition scheme, being a local quantity. In some cases, 

even zero or negative αe values might be identified, when constructive 

interference is dominant. 

Similar considerations are valid when considering a wavefield ucc(r) 

composed by a combination of two cylindrical waves uc1(r) and uc2(r), with the 

same parameters of up1(r) and up2(r) (Figure 5-14a-b). However, the application of 

the CFDBFa is not straightforward as a reference wavenumber is required to 

obtain αe. A reasonable approach may refer to the wavenumber of the dominant 

wave, which is the one with larger spectral amplitude, i.e. k1. (Figure 5-14c). In 

this specific case, αe is quite close to α1, but it is not coincident with it because it 

is an estimate of the apparent attenuation (Figure 5-14d). 
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Figure 5-13. Application of the FDBFa to the wavefield upp(r): a-b) Wave components 

up1(r) and up2(r) and total wavefield upp(r), in terms of a) amplitude and b) phase; c) 

Pseudopower spectrum of upp(r), obtained by means of the FDBF; d) Pseudopower 

spectrum of upp(r), obtained by means of the FDBFa. 

At this point, it is possible to describe the application of the FDBFa and of the 

CFDBFa to the synthetic wavefields SW3 and SW4, thus assessing their 

performance in the presence of a wavefield composed of Rayleigh waves. As they 

model the propagation of Rayleigh waves in layered media, the wavefield is the 

composition of several Rayleigh modes. In other words, recorded data are the 

superposition of multiple waves, interfering with each other. Instead, the FDBFa 

and of the CFDBFa model the wavefield as a single wave. Therefore, these 

approaches theoretically return a single dispersion curve and a single attenuation 

curve, that may not coincide with any modal curve. Specifically, estimated data 

correspond to the dominant component of the wavefield. This aspect is crucial 

especially for CFDBFa, as it requires the specification of a reference dispersion 

curve, in this case assumed to be coincident with the effective dispersion curve, 

i.e., the dominant one in the CFDBF spectrum. Thus, the proposed algorithms 

tend to return the dominant wave components, that are representative of the 

effective dispersion and attenuation curve. 
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Figure 5-14. Application of the CFDBFa to the wavefield ucc(r): a-b) Wave components 

uc1(r) and uc2(r) and total wavefield ucc(r), in terms of a) amplitude and b) phase; c) 

Pseudopower spectrum of ucc(r), obtained by means of the CFDBF; d) Pseudopower 

spectrum of ucc(r), obtained by means of the CFDBFa. 

Figure 5-15 and Figure 5-16 report the estimated VR(ω) and αR(ω) for SW3 

and SW4, according to the FDBFa and the CFDBFa schemes, respectively. 

Results were sampled with a sampling frequency of 1 Hz, across the frequency 

band ranging between 3 Hz and 100 Hz. For comparison purposes, the theoretical 

modal curves are included. Although synthetic data virtually enable the 

investigation of a broad frequency range, a proper investigation of the 

performance of each processing scheme should account for the restrictions due to 

the limited spatial sampling in the acquisition layout. Therefore, data above the 

maximum investigable wavelength λmax = D (where D = 100 m is the array length) 

and below the minimum one λmin = d (where d = 2 m is the receiver spacing) – if 

any – are included in the comparison, but a different coloring is adopted to 

highlight their peculiar condition. 
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Figure 5-15. a-b) Application of the FDBFa algorithm to SW3: a) Estimated phase 

velocity curve; b) Estimated phase attenuation curve; c-d) Application of the FDBFa 

algorithm to SW4: c) Estimated phase velocity curve; d) Estimated phase attenuation 

curve. Estimated data points beyond the array resolution limits – i.e., the grey areas in a) 

and c) – are colored in grey. 

The application of the FDBFa algorithm to SW3 provides an estimated 

dispersion curve that matches the one corresponding to the fundamental mode, 

except at low frequencies (Figure 5-15a). Indeed, the Rayleigh wavefield in 

normally dispersive media is typically governed by the fundamental mode, as 

highlighted in Figure 5-3e. However, the resulting attenuation curve equals the 

fundamental mode only at intermediate frequencies, whereas it tends to 

underestimate it at f > 30 Hz (Figure 5-15b). At this frequency, higher modes start 

to contribute to the wavefield, thus the estimated attenuation is partially affected 

by them. 

As for SW4, the wavefield is the combination of multiple Rayleigh modes, 

each one providing a different degree of contribution as a function of the 

frequency. This situation is quite usual in inversely dispersive media. Therefore, 

the estimated dispersion curve gradually shifts from the fundamental mode up to 

the second higher mode (Figure 5-15c). In a consistent way, the estimated 
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attenuation curve tends to follow the corresponding modal ones, and each 

transition occurs at the same frequency of the passages in the dispersion data 

(Figure 5-15d). However, estimated data do not exactly match modal curves, 

especially at moderately low frequencies (i.e., f < 30 Hz), where the estimated 

attenuation data lie between the fundamental mode and the first higher mode 

attenuation curves. This means that the wavefield amplitude is affected by both 

components, although its phase variations mainly depend on the fundamental 

mode. However, if the comparison is restricted to λmax = 30 m, then the deviations 

in the low-frequency range are negligible. This λ value represents the upper 

boundary of the range of wavelengths needed to fully resolve the layers’ 

interfaces of the medium, as the deepest one is located at 10 m depth (Figure 5-4). 

Therefore, if SW4 represented the output of a survey deemed to characterize the 

corresponding soil profile, this would represent the range of interest. On the other 

side, the drift at higher frequencies is still relevant due to the influence of higher 

modes. 

 

Figure 5-16. a-b) Application of the CFDBFa algorithm to SW3: a) Estimated phase 

velocity curve; b) Estimated phase attenuation curve; c-d) Application of the CFDBFa 

algorithm to SW4: c) Estimated phase velocity curve; d) Estimated phase attenuation 

curve. Estimated data points beyond the array resolution limits – i.e., the grey areas in a) 

in (a) and c) – are colored in grey. 
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Similar results are observed in the application of the CFDBFa on SW3 and 

SW4 (Figure 5-16), although a slight improvement in the quality of the estimated 

VR(ω) occurs at low frequencies. The reasons behind discrepancies in the very 

low-frequency range (i.e., f < 10 Hz) will be addressed in Section 5.4. 

In summary, the algorithms based on the FDBFa and on the CFDBFa tend to 

return estimates of the effective dispersion and attenuation curves, that may not be 

coincident with modal curves. Even when a single dominant mode characterizes 

the wavefield, the estimated attenuation data may not match the corresponding 

modal values at all the frequencies. Indeed, the amplitude of the Rayleigh 

wavefield is dramatically sensitive to constructive and destructive interference 

among different propagation modes. Therefore, ignoring the influence of this 

mutual interaction may lead to attenuation estimates that, when misinterpreted as 

modal values, might return biased estimates of the DS profile in the inversion 

stage. For this reason, both the FDBFa and the CFDBFa are modified to account 

for the presence of multiple propagation modes, by including an additional step. 

This further step aims at isolating each propagation mode by means of an 

appropriate filtering technique, that exploits basic principles of digital signal 

processing. 

5.3.2 Proposed filtering technique 

This study proposes a novel filtering technique, that seeks to isolate a single wave 

in multicomponent waveforms or a single R-wave propagation mode from 

waveforms recorded in multilayered media. In this way, the main hypothesis of 

the FDBFa and of the CFDBFa is satisfied, and these techniques can be 

effectively applied to obtain reliable estimates of the wave attenuation. Some 

algorithms have already been applied in seismological studies and in geophysical 

prospecting, based on the time-variable filter (Pilant and Knopoff, 1964; Karray 

and Lefebvre, 2009) or relying on the high-resolution linear radon transform 

(HRLRT; Luo et al., 2008; Gao et al., 2018). However, an effective modal 

separation in recorded waveform data is a nontrivial task (Ivanov et al., 2005). 

The proposed technique is based on a complex, bandpass and linear-phase 

Finite Impulse Response (FIR) filter. A complete description of their features and 

the relevant parameters is provided in Appendix A. The filter operates along the 

spatial direction, and the input sequence is the vector of the traces in the 

frequency domain of the recorded wavefield, in which the sample points 

correspond to the receivers locations. Although usual filtering schemes apply for 

time-domain signals, they are also valid also for data defined in the space domain. 

In this case, the frequency variable ω is replaced by the wavenumber k. 
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The adopted filter is a bandpass filter that isolates the wavenumber 

component corresponding to the target wave, thus limiting the contribution of 

additional components to the wavefield. The chosen filter is a FIR-type system, 

because they are stable and they represent the optimal choice when the linearity in 

the phase response is crucial (Mitra, 2006). In this case, the phase-linearity is 

strongly desired as any distortion in the target wave component may affect the 

estimated attenuation. Finally, the filter has complex-valued coefficients because 

it operates with complex-valued wavefield traces, for which the wavenumber 

spectrum is not an even function. In these conditions, the application of a real 

bandpass filter would enhance spectral components that are outside the desired 

target. Instead, a complex FIR filter with passband centered at the target 

wavenumber is guaranteed to select and favor only the investigated wave 

component. 

Designing complex FIR filters is usually a nontrivial task, because the 

frequency response is a non-symmetric function and the number of design 

parameters (i.e., the filter coefficients) is twice the ones of a real filter of the same 

order, as both real and imaginary values need to be calibrated. However, being a 

bandpass filter, the wavenumber response (hereafter labeled as k-response) has to 

be symmetric around the target wavenumber ktg. This constraint allows to exploit 

a simplified algorithm for designing the desired complex FIR filter h[n], namely 

the modulation method, starting from a real filter g[n] as follows: 

    
i tg n

h n e g n


=  (5.16) 

where n labels the spatial sample. The system g[n] is a lowpass real filter whose k-

response is an even function, and it exhibits a passband centered at the zero 

wavenumber. The factor 
i tgn

e


 is a modulation term, that shifts the passband of the 

filter in correspondence of the target wavenumber ktg. Indeed, the parameter ϑtg is 

linked with ktg as follows: 

 ( )
2

2
2

tg Nyq tg

Nyq

k k
k


 = −  (5.17) 

The subtraction accounts for the different spectral coordinates in the f-k 

spectrum and in the Fourier transform, whereas the factor 2π/2kNyq scales the 

range of wavenumbers from [−kNyq; kNyq] to [−2π; 2π], i.e. the domain where the 

transfer function of the filter is defined (equal to the range of the DTFT). In this 

way, the lowpass real filter g[n] is converted into the bandpass complex filter h[n] 

(Figure 5-17). 

This design approach has multifold advantages. Firstly, the modulation 

method allows to shift the design problem of a complex filter into the design of a 
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real filter, for which a broad variety of reliable and fast algorithms is available. 

Furthermore, the modulation of the symmetric filter g[n] returns a symmetric 

filter, hence h[n] is a linear-phase filter that, by consequence, does not introduce 

any phase distortion to the signal. A more detailed explanation on this is provided 

in Appendix A. 

 

Figure 5-17. Steps of the modulation algorithm for constructing a N-order bandpass 

complex FIR filter: a-c) Real lowpass FIR filter in terms of a) k-response and c) impulse 

response; b-d) Complex bandpass FIR filter in terms of b) k-response and d) impulse 

response. 

Thus, the design of h[n] can be achieved by designing the lowpass real filter 

g[n]. The key steps in the design of g[n] consist in specifying the desired k-

response Gd(e
ik) and in estimating an adequate filter order N, so that the effective 

k-response G(eik) adequately matches the theoretical one. Then, the estimation of 

the filter coefficients is carried out by means of the frequency sampling approach 

(Gold and Jordan, 1969). This algorithm is implemented in the MATLAB 

function fir2. 

The desired k-response of g[n] should be compatible with both the desired 

magnitude specifications and with the constraints of the physical realizability of 

the filter. Therefore, the definition of Gd(e
ik) should involve the specification of an 

adequate passband together with an adequate transition band to control the decay 
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in the response magnitude (Figure 5-18). On the other side, the definition of the 

filter order is a critical task. High-order filters are desirable because they well 

reproduce Gd(e
ik) and they manage to realize narrow transition bands. Instead, 

low-order filters only approximate Gd(e
ik), as the corresponding transition bands 

are broader, entailing a partial loss in the filtering capability (Figure 5-18). 

However, high-order filters require long computation time. Besides, the stationary 

response is shorter, as it includes only n-N samples. The stationary portion is 

crucial because it represents the “true” output of the filter, and it contains the 

desired signal. Therefore, N should be adequately less than n to allow processing 

of filtered values (see Appendix A). This issue may be critical when dealing with 

spatially sampled data, especially in geophysical applications. Indeed, each spatial 

sample corresponds to a physical sensor and usual acquisition setups employ a 

small number of sensors because of logistical issues, hence recorded signals only 

include a few tens of samples. Therefore, N has to be bounded within a proper 

maximum value, so that the number of samples in the stationary response is large 

enough to allow a robust estimate of wave parameters from the filtered signal. 

Finally, the filter response specifications (i.e., the definition of Gd(e
ik)) and the 

assignment of the filter order are not two independent steps. Indeed, narrow 

bandpass filters are effective in isolating the desired component of the wavefield, 

although such behavior can be achieved only with high-order filters. Instead, if 

Gd(e
ik) assumes smoother variations between the passband and the stopband, the 

separation capability of wave components is reduced but low-order filters can 

adequately reproduce the target response. Furthermore, low-order filters are 

preferred when dealing with spatially sampled data. Therefore, the definition of 

the design parameters is not straightforward, and it should achieve a trade-off 

between filter separation capability, feasibility and data availability. 

 
Figure 5-18. Magnitude response specifications, with an explanation of parameters kp and 

ks and a visualization of the influence of the filter N on the fitting of the desired response. 



141 

 

For this reason, a calibration study is carried out, to investigate the influence 

of both target response specifications, in terms of the passband and the stopband, 

and the order of the filter. In this study, the boundaries of the transition band are 

quantified as kpkres and kskres, where kres = 2π/D is the wavenumber resolution of 

the sensor array (Figure 5-18). Parameters kp and ks are constants that allow to 

select a range of wavenumbers around the target wavenumber ktg, and they need to 

be calibrated. Specifically, the following sets of parameters [kp; ks] are 

investigated: [1; 2], [2; 4], [3; 10]. Each couple describes a different specification 

of Gd(e
ik), with different size of the passband and of the transition band. The 

choice of referring to kres is not casual, as it describes the width of the spectral 

mainlobe of a wavefield composed by a single propagating wave (Zywicki, 1999). 

Thus, by setting the passband larger than kres (as kp >= 1), the filter tends not to 

alter spectral information related to the target wave. As for the filter order, the 

following N values are considered: 10, 20, 30, 40 and 80. Only even N values are 

considered, so that the filtered signal is exactly a shifted version of the desired 

wave component (see Appendix A). Alternative values of [kp; ks] and of N can be 

considered, however results undergo only small variations because the actual filter 

response is almost the same when design parameters are slightly modified. 

Figure 5-19 shows results of this calibration study for the wavefield upp(r) 

(see Section 5.3.1), where the modal filtering technique aims at extracting the two 

plane waves up1(r) and up2(r). Specifically, it reports the estimated wavenumber ke 

and attenuation αe of each isolated wave, computed according to the FDBF and 

the FDBFa, respectively. For comparison purposes, the theoretical values ki and αi 

(i = 1, 2) are reported. Besides, Figure 5-19b-c include the estimated attenuation 

according to the FDBFa from the total wavefield, labeled as αe,FDBFa. In this way, 

the influence of the filter on the attenuation estimate is addressed. The calibration 

study highlights that the geometry of the transition band (i.e., [kp; ks]) does not 

have remarkable influence on the resulting wave parameters, when the band is 

quite narrow around ktg. Instead, the quality of estimates drops for [kp; ks] = [3; 

10]. Indeed, this range identifies a filter where the stopband is quite far from ktg, 

hence the capability of removing the contribution of other wave components is 

reduced. Furthermore, the filter order dramatically affects αe. When N is low, αe is 

quite close to αe,FDBFa, hence the filter is not significantly changing the shape of 

the waveform, which is still close to upp(r). Instead, high-order filters tend to 

provide more precise estimates, and the discrepancy from the theoretical value 

becomes almost negligible already for N = 30. On the converse, ke is not sensitive 

to N, except for [kp; ks] = [3; 10], for the reasons stated before. 



142 

 

Similar considerations are valid when cylindrical waves are investigated, i.e. 

with ucc(r) (see Section 5.3.1; Figure 5-20). In this case, the influence of 

calibration parameters was analyzed considering ke and αe for each wave 

component, by means of the CFDBF and CFDBFa, respectively. Differently from 

the plane wave case, it appears that the quality of the estimated parameters for 

up2(r) is worse than the one for up1(r). Indeed, up1(r) is the dominant component 

inside ucc(r), hence the modal filter does not manage to completely remove it 

when isolating uc2(r). This issue is highlighted when inspecting ke for the 

corresponding wave component (Figure 5-20c), as low-order filters or filters with 

broad transition range tend to return ke = k1. Besides, the resulting αe is quite 

sensitive to N, especially when focusing on uc2(r). In general, high-order filters 

tend to return an overestimation of the attenuation, and the best matching is 

achieved by using N = 20÷50 with a moderately narrow transition band (i.e., [kp; 

ks] = [2; 4]). 

 

Figure 5-19. Influence of filter calibration parameters in extracting wave parameters for 

the two-component plane wave upp(r): a-b) Wave up1(r); c-d) Wave up2(r). The labels on 

the y axis identify different sets of [kp; ks], that control the passband and the stopband of 

the filter. The estimated attenuation through the FDBFa αe,FDBFa is also reported, for 

comparison purposes. 
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Figure 5-20. Influence of filter calibration parameters in extracting wave parameters for 

the two-component cylindrical wave ucc(r): a-b) Wave uc1(r); c-d) Wave uc2(r). The labels 

on the y axis identify different sets of [kp; ks], that control the passband and the stopband 

of the filter. The estimated attenuation through the CFDBFa αe,CFDBFa is also reported, for 

comparison purposes. 

5.3.3 Applications 

The inclusion of the modal filtering step inside the FDBFa and CFDBFa 

algorithms for processing results of MASW surveys is quite straightforward. 

The principle of the updated workflows consists in performing a preliminary 

dispersion analysis, aimed at identifying different Rayleigh modes contributing to 

the recorded wavefield. This stage identifies the modes from the peaks of the f-k 

spectrum, computed through the FDBF (or the CFDBF). Then, each mode is 

isolated and extracted from the wavefield, by applying the modal filter to the 

recorded displacement. The filter is defined by Eq. 5.16-17, by setting ktg equal to 

the wavenumber of the investigated mode. In this way, the recorded wavefield is 

transformed into a set of displacement data, each representative of a single 

Rayleigh mode. Thus, the application of the FDBFa algorithm (or CFDBFa 

scheme) to filtered data will return the modal phase velocity and the modal phase 
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attenuation, for each considered propagation mode. Note that a preliminary 

estimate of the phase velocity is available from the initial stage of identification of 

Rayleigh modes, however this quantity is updated posterior to the filtering, also to 

assess the effectiveness of the modal extraction. 

The FDBFa algorithm with Modal Filtering will be hereafter labeled as 

FDBFaMF, and a complete description is provided in Algorithm 3. Instead, the 

CFDBFa algorithm with Modal Filtering will be denoted as CFDBFaMF and a list 

of the main steps is provided in Algorithm 4. The latter assumes that the recorded 

motion is the particle displacement in the vertical direction. Note that ( ) ( )2

0H  

should be replaced by ( ) ( )2

1H  when processing radial displacement data. 

 

Algorithm 3 Frequency-Domain BeamForming – Attenuation with Modal Filtering (FDBFaMF) 

Input: ( ) 
1 1

,
TN N

z n s
n s

u r t
= =

: particle displacement recorded at N sensors with offset rn, at NT time 

samples tt 

1: Compute frequency spectra ( ) 
1 1

,
N N

z n i
n j

u r



= =

, for Nω frequencies ωi 

2: Geometrical spreading removal: ( )  ( ) 
1 1 1 1

, ,
N N N N

z n i z n i n
n j n j

u r u r r
 

 
= = = =

  

3: for i = 1 : Nω do 

4:  Compute pseudopower spectrum PBF(kt,ωi) through FDBF 

5:  
Identify peaks ( ) 

( )
,

1

iM
Re j i

j
k




=
 of PBF(kt,ωi), for M(ωi) modes 

6:  for j = 1 : M(ωi) do 

7:   Define filter h[n] from Eq. 5.16-17, based on kRe,j(ωi) 

8:   Mode extraction ( )  ( )   ,
1 1

, ,
N N

z j n i z n i
n n

u r u r h n 
= =
   

9:   Compute pseudopower spectrum PBF(kt, ωi) through FDBF 

10:   Peak picking of PBFa(αR,t,ωi): αR,e(ωi) ← argmaxPBFa(αR,t,ωi) 

11:   Calculate vz,j(rn,ωi) from Eq. 5.9 

12:   vz,j(rn,ωi) ← vz,j(rn,ωi)/|vz,j(rn,ωi)| 

13:   Apply the window vz,j(rn,ωi) ← w(rn,ωi)vz,j(rn,ωi) 

14:   Compute spatiospectral correlation matrix Rm,n(ωi) = vz,j(rm,ωi) 

[vz,j(rn,ωi)]* 

15:   Construct steering vector with trial attenuation αR,t: 

( ) 1
T

i i
, ,t t Nr r

t e e
  − − =  e  

16:   Calculate pseudospectrum for varying αR,t: PBFa(αR,t,ωi) = 

eH(αR,t)R(ωi)e(αR,t)  

17:   Peak picking of PBFa(αR,t,ωi): αRj,e(ωi) ← argmaxPBFa(αR,t,ωi) 

18:  end for 

19: end for 
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Algorithm 4 Cylindrical Frequency-Domain BeamForming – Attenuation with Modal Filtering 

(CFDBFaMF) 

Input: ( ) 
1 1

,
TN N

z n s
n s

u r t
= =

: particle displacement recorded at N sensors with offset rn, at NT time 

samples tt 

1: Compute frequency spectra ( ) 
1 1

,
N N

z n i
n j

u r



= =

, for Nω frequencies ωi 

3: for i = 1 : Nω do 

4:  Compute pseudopower spectrum PBF(kt, ωi) through CFDBF 

5:  
Identify peaks ( ) 

( )
,

1

iM
Re j i

j
k




=
 of PCBF(kt,ωi), for M(ωi) modes 

6:  for j = 1 : M(ωi) do 

7:   Define filter h[n] from Eq. 5.16-17, based on kRe,j(ωi) 

8:   Mode extraction ( )  ( )   ,
1 1

, ,
N N

z j n i z n i
n n

u r u r h n 
= =
   

9:   Compute pseudopower spectrum PCBF(kt, ωi) through CFDBF 

10:   Peak picking of PCBF(kt,ωi): kR,e(ωi) ← argmaxPCBF(kt,ωi) 

11:   Calculate vz,j(rn,ωi) from Eq. 5.9 

12:   vz,j(rn,ωi) ← vz,j(rn,ωi)/|vz,j(rn,ωi)| 

13:   Apply the window vz,j(rn,ωi) ← w(rn,ωi)vz,j(rn,ωi) 

14:   Compute spatiospectral correlation matrix Rm,n(ωi) = vz,j(rm,ωi) 

[vz,j(rn,ωi)]* 

15:   Construct steering vector with trial attenuation αR,t: 

( ) ( )  ( ) 0 1 0

T
i arg i arg

, ,t t Nh r h r

t e e
− − =

  
a

k k
k , with kt = kRe(ωi) − iαt 

16:   Calculate pseudospectrum for varying αR,t: PCBFa(αR,t,ωi) = 

eH(αR,t)R(ωi)e(αR,t)  

17:   Peak picking of PCBFa(αR,t,ωi): αRj,e(ωi) ← argmaxPCBFa(αR,t,ωi) 

18:  end for 

19: end for 

 

As in the simplified examples SW1 and SW2, a calibration study is carried 

out also for SW3 and SW4, to identify optimal filter parameters that allow to 

properly capture modal parameters. Differently from the previous cases, the 

wavefield in SW3 and SW4 exhibits complex features. Indeed, the number of 

waves (i.e., R-wave modes) varies with the investigated frequency and their 

amplitude and relative distance in terms of k range are not a constant. Therefore, it 

is expected that the most appropriate filter parameters for SW3 and SW4 might 

not match those obtained in the analysis of SW1 and SW2. 

The calibration study investigated the same sets of parameters [kp; ks] used for 

SW1 and SW2, whereas the following N values are considered: 10, 20, 30, and 

40. Indeed, the number of available spatial samples, i.e. 48 data points, does not 
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allow to apply higher order filters. For the sake of brevity, only results for the 

parameter set [kp; ks] = [1; 2] and N = 20 are herein reported, as they provided the 

best-quality estimates. Indeed, the calibration study demonstrated that filters with 

order N = 1/2÷2/3 times the number of receivers may be considered as a valid 

reference for applying the FDBFaMF and CFDBFaMF in various site conditions. 

Furthermore, the following discussion focuses on results for the CFDBFaMF, as 

similar results are observed in the application of the FDBFaMF to SW3 and SW4. 

A complete overview of results is available in Appendix A. 

Figure 5-21 compares resulting dispersion and attenuation estimates obtained 

through the CFDBFaMF algorithm for the first three modes for SW3, labeled as 

R0, R1 and R2, respectively. Reported data are sampled with a sampling 

frequency of 1 Hz, across the frequency band ranging between 3 Hz and 100 Hz. 

Furthermore, the regions associated with wavelengths beyond the resolution limits 

of the simulated array are highlighted, as the corresponding results should be 

interpreted with care. Interestingly, reliable estimates of αR(ω) for R0 can be 

obtained regardless N, even at high frequencies, where the CFDBFa-based 

attenuation estimate diverges from modal values. In addition, the estimated VR(ω) 

well matches the R0 dispersion curve, as demonstrated by the low estimation 

error. This result is not surprising, being the fundamental mode the dominant 

component of SW3, whereas higher modes provide a small contribution. 

Therefore, isolating the fundamental mode by removing other components is an 

easy task, that can be achieved even with smooth filters. The converse occurs 

when dealing with higher modes, because of the higher difficulties in extracting 

the desired mode, especially with low-order filters. For instance, the application of 

a filter with N = 10 to isolate R1 returns a wavefield where the fundamental mode 

is still dominant. Therefore, the estimated αR(ω) does not tend to match the 

corresponding modal value, except at higher frequencies. A similar result is 

observed for R2, where the degree of fit is improved at high frequencies (Figure 

5-21e-f). When using the parameter set [kp; ks] = [2; 4], the quality of the 

estimated VR(ω) and αR(ω) is still good and even less sensitive to N, although 

some oscillations in αR(ω) are observed at the low-frequency range. These 

oscillations become more relevant when higher modes are investigated. Finally, 

results obtained by setting [kp; ks] = [3; 10] exhibit some instability both in VR(ω) 

and αR(ω), especially when N is large. 

Instead, Figure 5-22 represents the calibration results of the CFDBFaMF 

algorithm for SW4. Similar to SW3, the estimated VR(ω) and αR(ω) consistently 

match the corresponding modal values for all the considered propagation modes, 

regardless N. However, this result is valid mainly in the frequency ranges where 



147 

 

each mode dominates the wavefield. Instead, at other frequencies, the filter has to 

isolate a wave component which is not dominant and quite close to other modes, 

as the relative distance in the wavenumber domain is quite small. Therefore, the 

estimated VR(ω) and αR(ω) are sensitive to filter characteristics and they do not 

tend to match the corresponding modal curves, entailing that the filter does not 

completely remove undesired wave components. This issue is even more evident 

when setting larger values of [kp; ks]. 

Finally, estimated VR(ω) and αR(ω) for SW3 and SW4 systematically differ 

from the corresponding modal values at low frequencies, for both FDBFaMF and 

CFDBFaMF. The factors behind such discrepancy will be addressed in Section 

5.4. 
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Figure 5-21. Application of the CFDBFaMF algorithm on SW3, with a focus on the first 

three modes: a-b) Estimated dispersion curves (a) and attenuation curves (b) for the 

fundamental mode, labeled as R0; c-d) Estimated dispersion curves (c) and attenuation 

curves (d) for the first higher mode, labeled as R1; e-f) Estimated dispersion curves (e) 

and attenuation curves (f) for the second higher mode, labeled as R2. Results correspond 

to the set of parameters [kp; ks] = [1; 2] and N = 20. Results of the CFDBFa are also 

reported, for comparison purposes. Estimated data points beyond the array resolution 

limits – i.e., the grey areas in (a), (c), and (e) – are colored in grey. 
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Figure 5-22. Application of the CFDBFaMF algorithm on SW4, with a focus on the first 

three modes: a-b) Estimated dispersion curves (a) and attenuation curves (b) for the 

fundamental mode, labeled as R0; c-d) Estimated dispersion curves (c) and attenuation 

curves (d) for the first higher mode, labeled as R1; e-f) Estimated dispersion curves (e) 

and attenuation curves (f) for the second higher mode, labeled as R2. Results correspond 

to the set of parameters [kp; ks] = [1; 2] and N = 20. Results of the CFDBFa are also 

reported, for comparison purposes. Estimated data points beyond the array resolution 

limits – i.e., the grey areas in (a), (c), and (e) – are colored in grey. 
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5.4 Influence of near- and far-field effects 

The FDBFa and the CFDBFa techniques rely on the hypothesis that the recorded 

wavefield consists in an idealized planar or cylindrical Rayleigh wave, 

respectively. However, in situ recorded data are more complex and the 

simplifying assumptions about geometrical attenuation might introduce some bias 

in the estimated values. The collection of mechanisms that are responsible of 

discrepancies between estimated and expected R-wave parameters due to 

modeling issues is conventionally labeled as near-field effects. Furthermore, 

incoherent noise in recorded data may affect the quality of the estimated 

parameters, introducing a bias termed as far-field effects. 

The main source of near-field effects is the model incompatibility. Indeed, 

usual processing schemes rely on the hypothesis that the recorded wavefield 

consists solely of Rayleigh waves. Furthermore, some techniques assume that 

Rayleigh waves propagate according to planar wavefronts. However, the 

application of a point force onto the surface generates both surface waves and 

body waves, and surface waves propagate according to cylindrical wavefronts. 

The discrepancy between the modeled behavior and the actual recorded wavefield 

leads to adverse effects in the quality and reliability of the estimate. On the one 

side, the schematization of Rayleigh waves as planar waves results in a drift in the 

estimated phase velocity, usually with an underprediction (Sanchez-Salinero et al., 

1987; Zywicki and Rix, 2005) but sometimes with a positive error (Yoon and Rix, 

2009). Furthermore, the lack of an explicit modeling of body waves introduces a 

perturbation in the recorded data, that maps into oscillations in the low-frequency 

phase velocity (Rahimi et al., 2021). Actually, such oscillations may also be the 

effect of  ibbs’ phenomenon (Park and Carnevale, 2010). Hopefully, the assumed 

displacement field well compares with the effective one at moderately far 

distances from the sources, with respect to the investigated wavelength. Indeed, 

the cylindrical shape of the wavefront can be approximated by a plane wave 

model in these conditions, and the contribution of body waves is negligible as 

they undergo stronger spatial amplitude decay than surface waves. Therefore, the 

resulting wave parameters gradually acquire reliability as the array distance from 

the source increases. For this reason, the bias introduced by the plane wave 

estimator is negligible with increasing frequency (Zywicki, 1999). On the other 

side, recorded data at great distances from the source are affected by incoherent 

noise, whose contribution may dramatically alter the estimated wave parameters. 

Several numerical and experimental studies addressed near-field effects on 

dispersion data, with the primary aim to quantify them, for both SASW and 
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MASW surveys. In general, MASW surveys tend to be less sensitive to near-field 

effects than the SASW processing (Tokimatsu, 1995; Foti, 2000; Rix et al., 

2001b; Foti, 2004). Furthermore, Rahimi et al. (2022) observed a dependence on 

the acquisition setup and on the number of receivers, as well as the investigated 

wave, site conditions and the source type. As a result, they proposed criteria to 

identify a critical condition wherein the related error becomes relevant. These 

criteria rely on statistical tests (Strobbia and Foti, 2006) and on wavelength-based 

normalized distances, referred or to the closest sensor to the source (Sanchez-

Salinero et al., 1987; Tokimatsu, 1995) or the average location of the array (Li 

and Rosenblad, 2009; Yoon and Rix, 2009; Rahimi et al., 2021; Rahimi et al., 

2022). On the other side, only few studies investigated the influence of near-field 

effects on the R-wave phase attenuation. Yoon (2005) observed that they induce 

an overestimation in the low-frequency attenuation, mostly due to the inaccurate 

modeling of the geometry spreading. Besides, the magnitude of the estimation 

error is much greater than the bias in the phase velocity. Yoon (2005) also 

attempted to define a criterion to identify when the effect of the near-field on 

attenuation data becomes significant, based on the normalized average location of 

the array. However, the lack of a consistent and clear trend in the estimated 

attenuation did not allow to identify a threshold value, especially in inversely 

dispersive media. 

This Section aims at understanding the influence of the modeling of the 

geometrical spreading on the estimated R-wave parameters, with a focus on the 

phase attenuation. For this purpose, the performance of both the planar-based 

scheme (i.e., the FDBFa technique) and the cylindrical-based approach (i.e., the 

CFDBFa technique) are tested in different conditions, with increasing complexity. 

Specifically, the two methods are applied to interpret an ideal cylindrical wave, 

also when corrupted by body waves and incoherent noise. 

5.4.1 Influence of the cylindrical shape of the wavefront 

A useful example to understand the influence of assumptions about the shape of 

the wavefront on the estimated R-wave parameters is represented by the synthetic 

dataset SW2 (see Section 5.1). Indeed, SW2 is an ideal cylindrical wave which 

may be interpreted as a “pure” Rayleigh wave (i.e., no body waves are included) 

generated on a homogeneous halfspace due to a monochromatic, unit-amplitude 

vertical force. The corresponding wave parameters are extracted by means of the 

FDBFa and the CFDBFa approaches, that model waveform data as a plane wave 

and as a cylindrical wave, respectively. Estimated wave parameters are listed in 

Table 5.3. 
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Table 5.3. Estimated wavenumber and phase attenuation from SW2 data, according to the 

FDBFa and the CFDBFa approaches. The values in brackets are the ratio between 

estimated and true values, that provide a measure of the entity of the error. 

 
FDBFa CFDBFa True value 

Estimated wavenumber ke (rad/m) 

[ke / kR] 

0.1009 

[1.0085] 

0.1000 

[0.9999] 

kR = 0.1 rad/m 

Estimated attenuation αe (rad/m) 

[αe / αR] 

0.0013 

[0.8564] 

0.0015 

[1.0000] 

αR = 0.0015 rad/m 

 

An explicit modeling of the cylindrical wavefield leads to an almost exact 

estimate of the wave parameters, whereas the use of a planar scheme results in 

some discrepancies between theoretical and estimated values. On the one side, the 

FDBFa tends to slightly overestimate kR – although the error is less than 1%. This 

bias is consistent with various studies on surface wave testing, that claimed that a 

planar propagation model often underestimates dispersion data (i.e., the resulting 

wavenumber is excessively large), especially at low frequencies (e.g., Zywicki 

and Rix, 2005). Instead, αR is significantly underestimated when using the FDBFa, 

with a relative difference around 15%. 

The error in both kR and αR estimates rises from the simplifying assumptions 

introduced by the planar model, that ignores the actual shape of the wavefront. 

Indeed, planar and cylindrical waves exhibit significant differences in the spatial 

variation of the amplitude and phase of the displacement field. Figure 5-23 

provides an example on this, comparing SW1 (i.e., a planar wave) and SW2 (i.e., 

a cylindrical wave). On the one side, the displacement phase of planar wavefield 

undergoes a linear variation with the offset. Instead, the phase of the cylindrical 

wavefield does not linearly change with space. As for the displacement amplitude, 

an effective comparison refers to an alternative metric, equal to the logarithm of 

the magnitude scaled by the square root of the distance (i.e., |u|c = log(r½|u|)). 

According to this specific representation, the |u|c of a plane wave is linear with the 

distance. Conversely, in the presence of a cylindrical wavefield, |u|c is strongly 

nonlinear with the distance. At short distances, this quantity is monotonically 

increasing from 0 up to a maximum. At large distances, the modified 

displacement amplitude is monotonically decreasing, and it gradually assumes a 

linear behavior as the distance is larger. The slope associated with the linear trend 

equals the exact attenuation, by the virtue of the asymptotic expansion. This result 

also applies for the displacement phase. Therefore, cylindrical waves are 

associated with a nonlinear change in both the displacement amplitude and phase 

with the distance, and this effect is more relevant at low kR (hence, low-frequency 

R-waves). 
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Figure 5-23. Planar wave vs. cylindrical wave, labeled as SW1 and SW2, respectively: 

amplitude and phase. 

By definition, the cylindrical model inherently incorporates the spatial 

variations in the displacement amplitude and phase linked with cylindrical 

spreading (Zywicki and Rix, 2005), hence wave parameters are correctly 

estimated. Instead, interpreting cylindrical wave data according to a planar model 

returns a plane wave best matching actual displacement data. In other words, the 

resulting wave exhibits a slope in both the modified displacement amplitude and 

phase that averages the actual ones. As the actual phase variation with the distance 

is a convex function, the use of a linear model returns an average slope greater 

than the slope of the final portion, entailing an overestimation of kR. Instead, 

spatial changes in the modified amplitude occur according to a concave shape, 

hence constraining observed data with a linear model induces an underestimation 

of αR. Furthermore, as the degree of nonlinearity in the displacement phase is not 

significant, the wavenumber estimation error introduced by the planar scheme is 

generally small. Instead, the discrepancy in the estimated attenuation values is 

much greater, due to the remarkable nonlinear variations in the modified 

displacement amplitude. 

As an additional consequence of the nonlinear spatial changes in the 

amplitude and the phase of the displacement field with the offset, the estimated 

plane-wave parameters are dependent on the considered distance range. Indeed, 

acquisition setups located far from the source tend to return similar estimates of 

wave parameters both with the planar and the cylindrical estimators, as the 

displacement exhibits a quasi-linear variation with the offset. On the converse, at 

short offsets from the source, the strong nonlinearity results in large differences 

between the estimates. 
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Thus, modeling the propagation of R-waves as plane waves would disregard 

actual shape of the wavefront, entailing a bias in the estimated phase wavenumber 

and the attenuation, especially for the usual offsets adopted in active-source 

SWM. This may dramatically alter the resulting damping ratio profile at greater 

depths. For this reason, an accurate modeling of the geometric spreading is crucial 

to achieve robust and reliable estimates of dispersion and attenuation data. For 

this reason, an explicit modeling of the geometry of the cylindrical modeling has 

been strongly recommended by several Authors, as a tool to mitigate near-field 

effects, due to the proper modeling of geometric spreading (Rahimi et al., 2021). 

Thus, the CFDBFa is a superior technique with respect to the use of a planar 

model. 

5.4.2 Influence of body waves: results for SW3 and SW4 

A more thorough investigation of the differences induced by the planar model 

and the cylindrical model on the estimated wave parameters requires a 

comparison on a more realistic wavefield. For this purpose, the synthetic 

wavefields SW3 and SW4 are an additional benchmark to address the role of the 

geometric spreading assumptions on the derived R-wave parameters. Indeed, both 

wavefields mimic the output of a usual MASW survey, carried out on realistic soil 

profiles. Furthermore, the study of these wavefields includes additional elements 

of complexity with respect to SW2, as they combine multiple R-wave propagation 

modes, as well as body waves. 

Figure 5-24 compares the estimated dispersion and attenuation curves for 

SW3 and SW4, computed through the FDBFaMF and the CFDBFaMF 

techniques. Reported data are sampled with a sampling frequency of 1 Hz, across 

the frequency band ranging between 3 Hz and 100 Hz. The graph includes 

estimated wave parameters for the fundamental mode only, for simplicity. 

However, the following considerations are also valid for higher modes. 

Furthermore, the regions associated with wavelengths beyond the resolution limits 

of the simulated array are highlighted, as the corresponding results should be 

interpreted with care. The discussion reported in this section does not focus on the 

compatibility between estimated and theoretical wave parameters, as a more 

detailed description on this is provided in Chapter 7. However, the target mode 

obtained from the solution of the Rayleigh eigenvalue problem is represented, as a 

reference. Instead, the differences between the FDBFaMF and the CFDBFaMF 

estimates are addressed, to focus on the influence on the effect of the geometric 

spreading assumption. 
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For both SW3 and SW4, the FDBFaMF and the CFDBFaMF return rather 

similar estimates of dispersion data and attenuation data. Furthermore, derived 

dispersion curves almost equal the corresponding theoretical ones especially at 

high frequencies. Instead, low-frequency data undergo some oscillations around 

the target value. This oscillation might be an artifact introduced by other wave 

components (e.g., body waves), whose contribution is usually significant in this 

range (Rahimi et al., 2021). As for αR(ω), the FDBFaMF and the CFDBFaMF 

underestimate the phase attenuation close to 10 Hz, perhaps due to some influence 

of the first higher mode, whose contribution to the wavefield might not have been 

completely removed by the modal filter. At lower frequencies, they tend to 

overestimate it, with a relative error which is on average much greater than the 

corresponding one on dispersion data. Specifically, at low frequencies, the 

estimation attenuation can be even tens or even hundreds of times greater than the 

theoretical value. 

In summary, the performance of the two schemes on SW3 and SW4 is almost 

identical, hence the cylindrical and the planar model return similar results, 

regardless the investigated frequency (or wavelength) range. Furthermore, both 

approaches undergo similar errors in both dispersion and attenuation in the low-

frequency range. This result contradicts the findings obtained from the analysis of 

SW2, that demonstrated the superiority of the explicit modeling of the cylindrical 

wavefield to reliably derive R-wave parameters. However, such conclusion is 

valid for a rather simplified case, where the recorded wavefield consists in a 

unique cylindrical wave, that may be interpreted as an ideal Rayleigh wave. 

Instead, SW3 and SW4 are a superposition of multiple Rayleigh propagation 

modes, where also body waves contribute to the simulated particle displacement. 

Actually, the influence of the multimodal nature of the wavefield should not be 

significant at low frequencies, as the displacement field mostly depends on the 

fundamental mode, especially for SW4. Therefore, the influence of body waves in 

the recorded wavefield may be the reason for which a more accurate modeling of 

the geometrical spreading of the wavefield is not sufficient to improve the quality 

of the estimated R-wave parameters, especially at low frequencies. Even, it 

appears that the improvement introduce by an explicit model of the cylindrical 

wavefront is canceled by the effect of body waves. A more detailed study on the 

influence of body waves in the estimated R-wave parameters is presented in the 

next Section. 
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Figure 5-24. Extracted fundamental-mode dispersion and attenuation curves for SW3 and 

SW4, for the FDBFaMF and the CFDBFaMF: a-b) Estimated dispersion curves (a) and 

attenuation curves (b) for SW3; c-d) Estimated dispersion curves (c) and attenuation 

curves (d) for SW4. Results refer to the fundamental mode only. Estimated data points 

beyond the array resolution limits – i.e., the grey areas in (a), (c), and (e) – are colored in 

grey. 

5.4.3 Influence of body waves: parametric analysis 

To better understand the influence of body waves on estimated R-wave 

parameters, the wavefield SW2 is modified to include their contribution. The new 

synthetic wavefield (hereafter labeled as SW2-B) is the solution of a boundary 

value problem, which models the response (in terms of vertical displacement on 

the free surface) of a homogeneous half-space to a vertical, unit-amplitude, 

harmonic force applied onto the free surface. The direct stiffness approach was 

adopted to solve the problem, by means of the EDT software (Schevenels et al., 

2009). In this way, the corresponding wavefield is the combination of both body 

and Rayleigh waves. The mechanical properties of the medium are the following: 

VS is 336 m/s, VP is 698 m/s, DS and DP both equal 0.015, and ρ is 2,000 kg/m3. 
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The adopted values are the result of a calibration study, so that the solution of the 

R-wave eigenvalue problem returns wave parameters identical to those of SW2. 

Thus, SW2-B is equivalent to SW2, but it includes the additional contribution of 

body waves. 

Table 5.4 compares the estimated R-wave parameters for SW2-B, obtained by 

means of the FDBFa and the CFDBFa approaches. This result provides useful 

insights about the relative performance of the planar and the cylindrical 

beamformer in the combined presence of body waves and cylindrically-spreading 

surface waves. As in SW2 (Table 5.3), the FDBFa and the CFDBFa tend to return 

quite similar results. However, both the planar and the cylindrical model slightly 

overestimate kR, with a relative error of about 4.5%. Besides, the CFDBFa returns 

a slightly more reliable estimate. Conversely, both approaches strongly 

overestimate αR, as they return a value which is some 5.5 times greater than the 

theoretical one. Even, the error associated with the cylindrical model is a bit larger 

than the one obtained according to the planar scheme. 

Table 5.4. Estimated wavenumber and phase attenuation from SW2-B data, according to 

the FDBFa and the CFDBFa approaches. The values in brackets are the ratio between 

estimated and true values, that provide a measure of the entity of the error. 

 
FDBFa CFDBFa True value 

Estimated wavenumber ke (rad/m) 

[ke / kR] 

0.1052 

[1.0520] 

0.1041 

[1.0410] 

kR = 0.1 rad/m 

Estimated attenuation αe (rad/m) 

[αe / αR] 

0.0085 

[5.6667] 

0.0088 

[5.8667] 

αR = 0.0015 rad/m 

 

The reason behind the biased velocity and attenuation estimates derives from 

the discrepancies between the planar or cylindrical model and the actual spatial 

changes variation of the amplitude and phase of the displacement field of SW2-B 

(Figure 5-25). On the one side, the displacement phase of SW2-B occurs with a 

steeper slope than SW2, thus resulting in a slight overestimation of kR. 

Furthermore, the inclusion of body waves dramatically affects the spatial variation 

of the displacement amplitude. With a focus on the corrected amplitude |u|c, this 

quantity is much greater than the one obtained for SW2 at short offsets, and it 

exhibits more complex changes. Besides, the amplitude undergoes large changes 

over a moderately narrow range of distances. This is a clear footprint of the 

presence of body waves, as they are affected by stronger geometric attenuation 

than surface waves. The combination between the different shape – the corrected 

amplitude tends to behave as a convex function – and the broader range of 

encompassed amplitudes result in a strong overestimation of αR, when SW2-B is 
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modeled according to a planar or a cylindrical scheme (i.e., according to the 

FDBFa and the CFDBFa, respectively). 

 

Figure 5-25. Cylindrical wave and body wave: amplitude and phase. 

Results reported in Table 5.4 provide a first insight on the influence of near-

field effects on the estimated R-wave parameters. However, this result does not 

have general validity. Indeed, due to the complexity and the remarkable 

nonlinearity in the amplitude and phase variation of the displacement field with 

the offset, the entity of the estimation error introduced by the planar and of the 

cylindrical estimators is sensitive to the investigated offset range. On the one side, 

the interpretation of waveform data recorded quite close to the source tends to 

return moderately biased estimates, because of the relevant contribution of body 

waves, that are not modeled. As body waves strongly attenuate with the distance, 

data acquired far from the source tend to return more accurate estimates of wave 

parameters, asymptotically matching the exact values at very large distances. 

Actually, this result is valid only on a theoretical basis, because real data are 

corrupted by incoherent noise, that mostly affects at great distances. 

The influence of the average distance on the quality of the estimated R-wave 

parameters is addressed in a parametric study, where SW2-B is assumed to be 

recorded according to different acquisition layouts. The simulation considers 

different ideal uniformly-spaced sensor arrays, the geometry of which can be 

described by three parameters: the number of sensors n, the inter-receiver spacing 

δ, and the offset between the source and the closest receiver r1. The adopted n 

were equal to 12, 24, 48, and 100, as they are compatible with the number of 

geophones usually adopted in ordinary MASW surveys. As for δ, several values 

were included, namely 0.3 m, 0.5 m, 1 m, 1.5 m, 2 m, 2.5 m, 3 m, 5 m, 10 m, 15 

m, 20 m, and 30 m. The large number of values attempts to model different 
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acquisition geometries, and the maximum inter-receiver spacing complies with 

limitations by the Nyquist-Shannon theorem, to properly process SW2-B without 

undergoing aliasing. Finally, r1 is chosen as an integer multiple of the sensor 

spacing, where the multiplying factor equals 1, 3 and 5, respectively. Thus, a total 

of 144 ideal acquisition geometries is modeled. 

For the sake of simplicity, each idealized testing setup is synthetically 

described in terms of the normalized array center distance (NACD; Yoon and Rix, 

2009). This quantity is defined as the ratio between the gravity center of the array 

(i.e., the average between the sensors’ locations) and the investigated R-wave 

wavelength: 
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In this case, λR equals 62.8 m as kR is 0.1 rad/m in SW2-B. The NACD 

combines both information about the MASW acquisition geometry and the target 

R-wave, the latter expressed in terms of the wavelength. Large NACD values are 

representative of array setups that, on average, are far from the source, with 

respect to the investigated wavelength. The usefulness of this parameter is 

twofold, as it condensates the whole array geometry into a single parameter and it 

is effective in describing discrepancies due to model incompatibility issues. 

For each acquisition setup, SW2-B data are processed both with the FDBFa 

and the CFDBFa, thus obtaining estimates associated with the planar and the 

cylindrical estimator. To address the reliability of the estimators, a comparison 

between the resulting R-wave parameters and the corresponding theoretical values 

takes place by considering the normalized estimates (Yoon and Rix, 2009). Each 

of these quantities is defined as the ratio between the estimated R-wave 

wavenumber (or attenuation) and the corresponding ideal value. Figure 5-26 

summarizes the results of the parametric analysis, reporting the normalized wave 

parameters as a function of the NACD. Note that results also include values 

obtained from rather short arrays compared to the investigated wavelength, with 

the aim to investigate this condition. Indeed, in this case the wavenumber 

resolution is not an issue being the wavefield composed by a single Rayleigh 

mode. However, as these data points are representative of conditions not usually 

investigated in MASW surveys, they are highlighted with a transparent layer. 
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Figure 5-26. Results of the parametric analysis to assess the influence of body waves on 

the estimated R-wave parameters, represented in terms of normalized values vs. 

normalized array center distance NACD: a) Wavenumber; b) Attenuation. Results for the 

planar beamformer (i.e., FDBFa) and the cylindrical beamformer (i.e., CFDBFa) are 

reported. The annotations denote the points specifically analyzed in Figure 5.27. 

Both the planar and the cylindrical model return identical and reliable 

estimates of the wavenumber and the attenuation when the NACD is large, i.e. 

when the acquisition is carried out at large distances from the source. As the 

NACD reduces down, both the wavenumber and the attenuation are 

overpredicted, with a gradually increasing estimation error. However, the entity in 

the discrepancy in the wavenumber estimate is sensibly different from the one for 

the attenuation. As for the wavenumber, the estimators tend to slowly diverge 

from the unit value at NACD less than 3. Specifically, the planar scheme returns 

monotonically increasing wavenumber estimates, and the normalized value grows 

up to 1.2. When referring to the cylindrical model, the normalized value is quite 

smaller and slightly oscillates around a center point close to 1.1. This oscillatory 

behavior in the estimated dispersion data is a direct effect of body waves, as 

confirmed by various in-situ observations (Rahimi et al., 2021). Notwithstanding 

these differences, the bias introduced in dispersion estimates by not properly 

incorporating body waves is less than 10%, and it becomes negligible at 

normalized distances greater than 1. When focusing on the attenuation, instead, 

the entity of the estimation error dramatically changes. Indeed, both schemes tend 

to significantly overpredict the attenuation at short NACD values, with a sudden 

deviation of the normalized value from the unit at NACD close to 2. Besides, at 

shorter distances, they return attenuation estimates even 10÷100 times greater than 
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the theoretical one. Furthermore, the difference in both models is qualitatively 

negligible. Although the drop in the bias magnitude as NACD increases is steeper 

than the one in the wavenumber, the error in the attenuation estimate is relevant 

even at moderately large distances. Indeed, the error starts to be negligible only at 

normalized distances greater than 2, and it still assumes some minor oscillation at 

even greater distances. 

To identify the reasons behind such discrepancies, Figure 5-27 reports some 

results of the processing, with reference to three different arrays, representative of 

increasing NACD values and highlighted in Figure 5-26. For each acquisition 

setup, the graphs represent both the displacement field induced by SW2-B (i.e., 

the combination of body and Rayleigh waves) and the one associated with SW2 

(i.e., R-waves only). The latter represents the theoretical Rayleigh wavefield. 

Furthermore, the actual wavefield is overlapped with the displacement field 

obtained according to the estimated parameters. Interestingly, the displacement 

phase of SW2-B is almost linear throughout the whole range of investigated 

distances. Therefore, both the planar and the cylindrical estimators return similar 

wavenumber data, that are rather close to the theoretical one for any considered 

array. Instead, the spatial variation of the modified amplitude |u|c exhibits a 

strongly nonlinear trend, which is sensibly different from the one ideally assumed 

by a cylindrical wave or a planar wave, especially at short NACD (i.e., less than 

1÷2). In this case, the contribution of body waves on the wave amplitude is 

overwhelming. As a consequence of the incompatibility between the modeled and 

the actual spatial variation of the amplitude, both the planar and the cylindrical 

beamforming strongly overpredict the attenuation. Indeed, these schemes interpret 

the combined amplitude decay of body waves and surface waves as only an 

amplitude decay of a cylindrical (or planar) wave, thus overestimating the wave 

attenuation. As the NACD increases, the spatial variation of the amplitude is still 

not fully compatible with the one of a pure cylindrical wave. Specifically, the 

amplitude undergoes some oscillations, perhaps induced by some destructive 

interference between the body and the surface waves. However, the average slope 

approaches the one of the corresponding R-wave (i.e., SW2). Therefore, the 

estimated wave attenuation gradually approaches the expected value. Similarly, at 

great distances some oscillations in the amplitude trend are still noticeable, but the 

strong linearity and the closeness to the ideal trend results in attenuation estimates 

rather close to the theoretical value. 
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Figure 5-27. Spatial variation of the displacement measured in three virtual arrays (rows 

of the grid of plots), the location of which (in terms of NACD) is represented in Figure 

5.26. The displacement is represented in terms of amplitude (left column) and phase 

(right column). 

In summary, the improvement in the quality of the estimated parameters 

introduced by an explicit modeling of the geometric spreading is partially 

balanced by the presence of body waves. In this condition, both the planar and the 

cylindrical scheme return similar estimates of wave attenuation when the 

wavefield includes body waves. On the other side, the use of a cylindrical 

beamformer still improves the quality in the dispersion estimate, as the bias 

affecting the estimated wavenumber is smaller with respect to the planar model. 
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5.4.4 Influence of incoherent noise 

The investigation of the influence of near-field effects on the estimated phase 

velocity and phase attenuation highlighted that the lack of an explicit modeling of 

the contribution of body waves in the displacement field results in a slight 

deviation in the wavenumber and in a strong overestimation of the attenuation. 

The entity of the bias decreases as the average distance of the acquisition array is 

moderately large compared to the investigated wavelength, and it becomes 

negligible at NACD greater than 2. In ideal conditions, as body waves strongly 

attenuate with distance, data acquired far from the source tend to return more 

accurate estimates of wave parameters, asymptotically matching the exact values 

at very large distances. Actually, this result has only theoretical validity because 

the modeled displacement data include only the contribution of the true wavefield, 

not accounting for incoherent noise which affects field data. In fact, ambient 

random noise may dramatically affect estimated wave parameters. Furthermore, 

the influence of noise is most relevant at sensors far from the source, due to the 

amplitude decay of the signal. For this reason, any perturbation in the resulting 

wave parameters due to incoherent noise is usually labeled as “far-field effects”. 

The influence of incoherent noise on the quality of the estimated R-wave 

parameters is investigated in a similar parametric analysis to the previous one, 

where a wavefield composed by the combination of SW2-B and white noise is 

assumed to be recorded according to different acquisition layouts. This study 

adopts the same suite of ideal acquisition geometries used to inspect near-field 

effects. Thus, the influence of body waves and of incoherent noise are jointly 

involved and investigated, as a function of the average array location – expressed 

in terms of NACD. 

The noise modeling requires a Monte Carlo procedure to simulate its random 

nature. This study adopts a white gaussian noise model, where the noise assumes 

a normal distribution. The selection of an adequate power level of the noise is 

critical, in order to reproduce noise conditions usually affecting in situ recorded 

data. A valid reference might consist in comparing the noise level with the ground 

force applied by the active source. For instance, the noise amplitude measured at 

the Garner Valley Downhole Array and the Hornsby Bend sites equals 10-8 ÷ 10-6 

m/s (this value is compatible with the common noise range identified by Peterson, 

1993), whereas the force magnitude ranges between 103 N (for light sources) and 

104 N (for vibrators). Therefore, a realistic noise level can be obtained by scaling 

down the input force by a factor equal to 10-12. This assumption reproduces 

typical signal-to-noise conditions when a mechanically-controlled source is used. 
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In the Monte Carlo procedure, recorded data are simulated as the sum of the 

“true” signal (i.e., SW2-B) and the gaussian noise. The simulation involves 50 

random samples, namely 50 noisy signals. The number of generated signals 

adequately reproduces the stochastic process, as it allows to achieve a stable 

estimate of the mean value and the standard deviation of both the displacement 

amplitude and phase, regardless the location of the virtual sensor. Figure 5-28 

represents the simulated waveforms in the stochastic procedure, in terms of 

displacement amplitude and phase, compared with SW2-B. On average, the 

displacement phase well matches the theoretical one, whereas the amplitude 

exhibits a gradually increasing positive deviation at great distances from the 

source. At these locations, the noise becomes gradually relevant in the recorded 

data, due to the attenuation of SW2-B, and the average amplitude converges 

towards the noise level. As for the data variability, the coefficient of variation 

(CoV) of the amplitude exhibits a quasi-linear increase with the distance, that 

asymptotically converges at 0.7, which is associated with the predominant noise 

level. Instead, the phase CoV is almost null across a broad range of distances, and 

it starts increasing only at r > 500 m, due to the strong influence of noise in this 

range. 
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Figure 5-28. Results of the Monte Carlo procedure to simulate the presence of incoherent 

noise in the recorded signal: a-b) Randomized signals, represented in terms of amplitude 

(a) and phase (b); c) Variability in the amplitude; d) Variability in the phase. The sample 

signals in a-b) are overlapped by the noiseless signal (thick black line) and by the 

intervals defined by the mean and one standard deviation (thin red lines). 

Waveform data for every stochastic signal are processed both with the FDBFa 

and the CFDBFa, thus obtaining estimates associated with the planar and the 

cylindrical estimator, for each acquisition setup. As in the previous Section, the 

geometry of each array layout is described in terms of NACD, whereas the 

normalized wavenumber and the normalized attenuation are used as metric to 

assess the reliability of the estimated R-wave parameters. Every virtual array is 

associated with a collection of normalized wave parameters, each obtained from a 

single randomized signal. As an effect of incoherent noise, these data are 

randomly distributed along a certain range. Figure 5-29 reports the resulting 

normalized wave parameters as a function of the NACD, in which the statistical 

distribution is synthetically described by errorbars, centered at the median value 

and with extent equal to the logarithmic standard deviation. Indeed, the variability 

in the estimated wave parameters due to incoherent noise can be modeled as a 
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lognormal distribution (Figure 5-30a-b). This kind of model well describes the 

statistical distribution of attenuation data, as it well captures the skewness and it 

ensures that negative values have no probability of occurrence. However, 

wavenumber data are also well matched by the gaussian model, consistently with 

other studies (e.g., Lai et al., 2005b). 

 

Figure 5-29. Results of the parametric analysis to assess the influence of body waves and 

incoherent noise on the estimated R-wave parameters, represented in terms of normalized 

values vs. normalized array center distance NACD: a-b) Normalized wavenumber and 

attenuation estimates for the planar beamformer (i.e., FDBFa); c-d) Normalized 

wavenumber and attenuation estimates for the cylindrical beamformer (i.e., CFDBFa). 

The errorbars denote the interval defined by the mean and one standard deviation for each 

simulated acquisition layout. Results obtained from the parametric analysis on SW2-B are 

included, as a reference. 

When using the planar or the cylindrical scheme under the combined presence 

of body and cylindrical waves and incoherent noise, an excellent degree of 

matching occurs for the wavenumber along the whole investigated NACD range. 

Besides, the variability in the estimated data is generally small (i.e., σln less than 

0.02) and it slowly decreases at greater NACD values (Figure 5-30c). However, at 

rather small NACD, the cylindrical scheme tends to systematically underestimate 
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the wavenumber. As this deviation does not occurs when analyzing SW2-B data, 

the loss of reliability of this scheme is an effect of the incoherent noise. Therefore, 

the cylindrical beamformer appears to be not robust in the presence of incoherent 

noise. On the other side, this issue is observed only at rather small NACD values, 

that are not usually involved in usual MASW processing, as beyond the typical 

resolution limits. At NACD > 0.3, the drift is negligible and the average nrmalized 

wavenumber is smaller than the one obtained according to the planar beamformer. 

Therefore, the cylindrical model is still effective, when focusing on a range of 

investigated wavelengths, compatible with the array resolution limits. 

Furthermore, the variability in the estimated wave parameters is almost identical 

for the two schemes (Figure 5-30c). 

When focusing on the attenuation, instead, the mean normalized attenuation 

starts to deviate from the deterministic trend at moderately large NACD values, 

i.e. NACD > 5, and the inclusion of noise generally induces a significant 

underestimation of the true attenuation. Indeed, in arrays quite far from the 

source, the noise level is a relevant component in the recorded signal and the ideal 

spatial decay is partially masked by the noise, whose spatial stationarity induces a 

reduction in the estimated attenuation. Furthermore, the variability in the 

normalized attenuation is much larger than the corresponding σln for the 

wavenumber, and it exhibits a nonlinear increase with the NACD, up to 1 at 

NACD close to 3 (Figure 5-30d). The large variability in the estimated attenuation 

is a direct consequence of the broad range encompassed by the simulated 

displacement amplitude data, the variability of which gradually increases as the 

NACD grows (Figure 5-28). Finally, no significant influence of the geometrical 

spreading model on the estimated attenuation is observed, as the corresponding 

reliability and variability are identical. 

In summary, the presence of incoherent noise in the recorded wavefield 

implies a significant drop in the accuracy of conventional schemes to infer R-

wave parameters, relying on the planar and the cylindrical scheme. Besides, this 

affects also the reliability in the estimated attenuation. On the one side, the 

addition of incoherent noise does not significantly affect the quality of the 

estimated wavenumber, as the average does not drift from the value obtained in 

noiseless conditions. Furthermore, the accuracy in the estimate is rather high, due 

to the small σln. Instead, the influence of incoherent noise on the inferred phase 

attenuation is highly dependent on the NACD. Indeed, at short distances, only a 

slight reduction in accuracy occurs. For increasing NACD, instead, the incoherent 

noise induces a significant loss in the accuracy, combined with a reduction in 

reliability, due to the drift of the mean value at great NACD values. Therefore, the 
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presence of incoherent noise in the recorded wavefield exerts a twofold negative 

effect on the quality of the estimated attenuation at great distances, with a loss of 

both reliability and accuracy. This result also highlights that good quality 

attenuation estimates can be achieved only at a limited range of distances from the 

sources, where both the influence of body waves and incoherent noise are 

minimized. In this specific case, the optimal range of NACD varies between 2 and 

4. However, a proper analysis of the wave attenuation must not disregard the 

strong variability intrinsically affecting the estimate, which is a direct effect of 

noise. These issues are much less relevant in the dispersion analysis, as 

conventional estimators usually return reliable and accurate estimates of the R-

wave wavenumber, at almost all the NACD values and noise levels. 

 

 

Figure 5-30. Results of the parametric analysis to assess the influence of body waves and 

incoherent noise on the estimated R-wave parameters. a-b) Comparison between the 

theoretical distribution, according to the normal and the lognormal model, and the 

empirical one: a) Estimated wavenumber; b) Estimated attenuation. c-d) Variability in the 

estimates: c) Variability in the estimated wavenumber; d) Variability in the estimated 

attenuation. Results in a-b) refer to NACD = 2. 
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5.5 Summary 

This Chapter presented a novel family of techniques, named as FDBFa and 

CFDBFa, for the estimation of the Rayleigh wave dispersion and attenuation data. 

Both techniques rely on a transformation of the wavefield, that allows to obtain 

the phase attenuation by carrying out a dispersion analysis on transformed data. In 

this way, a robust estimate of the phase attenuation can be achieved, by using a 

computationally fast algorithm. As the FDBFa and CFDBFa assume that the 

recorded wavefield consists of a single mode, they theoretically return an estimate 

of the effective phase velocity and phase attenuation, that might not be coincident 

with modal values. Therefore, an additional step has been included in the 

proposed algorithms, in which each propagation mode is isolated to fulfil the main 

assumptions of the FDBFa and CFDBFa. The modified algorithms are named 

FDBFaMF and CFDBFaMF, respectively. The extraction of each wave 

component is carried out by applying a bandpass filter to the recorded wavefield, 

that preserves the mode of interest and removes additional waves. However, the 

design of an effective filter is nontrivial because the capability to separate the 

desired component depends on a suite of parameters, for which an a priori choice 

is often impossible. For this purpose, a calibration study has been carried out, to 

address the influence of filter parameters on the estimated wave parameters. In 

general, moderately narrow, intermediate-order filters allow to obtain reliable 

estimates of the modal dispersion and attenuation curves. For instance, filters with 

order N = 1/2÷2/3 times the number of receivers, passband extended up to kres 

(i.e., the resolution wavenumber of the array) and stopband starting from 2kres 

may be considered as a valid reference for applying the FDBFaMF and 

CFDBFaMF in various site conditions. Indeed, the corresponding estimates of 

Rayleigh wave parameters are almost identical to the theoretical values, especially 

when the target mode is dominant. Thus, the modal filtering technique can be an 

effective tool for a broad variety of surface wave applications. However, this 

technique can only be applied to uniformly sampled spatial data, whereas it is not 

compatible with waveforms measured in irregular arrays. Furthermore, it is less 

effective when data include a small number of spatial samples, as the usable filter 

order is so low that it cannot effectively isolate the desired wave component. 

Specifically, the filtering procedure is valid when at least 20÷24 receivers are 

available. These issues will be addressed in future studies, to generalize the modal 

filtering technique and improve its robustness also in these cases. 

The last section of this Chapter addressed the influence of alternative models 

of the geometric spreading (i.e., the planar and the cylindrical beamformer) on 
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synthetic cases, each representative of a measure of a harmonic Rayleigh wave in 

different conditions. When the recorded wavefield consists of a pure, cylindrical 

R-wave, the cylindrical beamformer (hence the CFDBFa algorithm) perfectly 

matches the desired wave parameters. Instead, the use of a planar scheme would 

result in an overestimation of the wavenumber and an underestimation of the 

attenuation. On the other side, the inclusion of body waves and incoherent noise 

in the recorded wavefield implies a significant drop in the performance of both 

estimation procedures. Specifically, both the reliability (i.e., the capacity of 

returning estimates close to the true value) and the accuracy (i.e., the capacity of 

returning lowly variable estimates) are negatively affected by these two elements. 

As for the wavenumber, the presence of body waves induces a slight loss in the 

reliability of the estimated data at small NACD values, whereas the addition of 

incoherent noise mainly results in a slight loss in the accuracy, due to the small 

CoV. Focusing on the attenuation, the inclusion of body waves determines a 

dramatic drop in the reliability of the resulting values, due to the strong 

overestimation at small NACD values. Furthermore, for increasing NACD, the 

incoherent noise induces a significant loss in the accuracy, combined with a 

reduction in reliability, due to the drift of the mean value at great NACD values. 

Therefore, the presence of incoherent noise in the recorded wavefield exerts a 

twofold negative effect on the quality of estimated attenuation at great distances, 

with a loss of both reliability and accuracy. For this reason, a reliable and 

moderately accurate estimate of attenuation data can be achieved only at a limited 

range of distances from the sources, where both the near-field and the far-field 

effects are minimal. In this specific case, the optimal range of NACD varies 

between 2 and 4. Finally, the planar and the cylindrical beamformer have a rather 

similar performance, although the latter tends to return slightly more reliable 

wavenumber estimates at low NACD values. For this reason, the CFDBFa 

algorithm will be the preferred choice in the processing stages reported in the next 

Chapters. 
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Chapter 6 

Surface wave datasets 

This Chapter describes a series of experimental surveys devoted to the collection 

of high-quality surface wave data at two different sites in the United States. On 

the one hand, the Garner Valley Down-Hole Array is a site located in Southern 

California. The purpose of the field survey is the characterization of the velocity 

and damping structure of the site. The reliability of the estimated ground models 

is then tested, by comparing the expected ground motion amplification with 

observed data extracted from a seismic monitoring system herein installed. On the 

other hand, Hornsby Bend is a site close to Austin, Texas, in which waveforms 

generated by different sources were acquired in arrays with different layouts. 

Thus, the influence of the source characteristics and of the array geometry on the 

estimated R-wave parameters can be addressed. Besides, an innovative acquisition 

setup has been employed to carry out the MASW survey, based on utilizing a 

fiber-optic cable rather than geophones. Therefore, this field test allows to 

investigate the capability of this new system in retrieving attenuation data. In 

summary, the result of both experimental surveys is a valuable dataset that can 

represent an effective benchmark for investigating issues and uncertainties 

affecting the estimate of the R-wave parameters, with a focus on the derivation of 

the phase attenuation and the consequent profile of S-wave damping ratio. 

Besides, the resulting S-wave velocity and damping ratio profiles allow to address 

the impact of the uncertainties of in situ estimates in the ground motion 

amplification, and to assess the reliability of such estimates, in the case of the 

Garner Valley Down-Hole Array. 

This Chapter first describes the survey carried out at the Garner Valley Down-

Hole Array, then it focuses on Hornsby Bend. For each site, a brief overview of 

the geological layout and of the available geophysical information is provided. 

Then, it describes in detail the acquisition setup of each MASW survey. 
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6.1 Garner Valley Downhole Array 

6.1.1 Site description 

The Garner Valley Down-Hole Array (GVDA,   °40.12 ′N, 11 °40.42 ′W – in 

the WGS84 Datum) is located in a narrow valley in Southern California, USA. 

The site stratigraphy is characterized by three main geological units. The top unit 

is composed by soft silty and sandy alluvial soil, interbedded with some clay 

layers and lenses (Hill, 1981). The water table oscillates between the ground 

surface down to 1÷3 m depth. At about 20 m depth, the alluvium transitions into a 

layer of gravelly sand resulting from weathered granite, which overlies a 

competent granite bedrock at around 90 m depth (Figure 6-1b). However, the 

depth of the interface between alluvium and weathered granite is variable in 

space. 

The presence of stratigraphic units with sharp variations in dynamic 

impedance results in a complex site response to ground motions, with multifold 

amplification peaks. Indeed, the site exhibits a moderately low resonance 

frequency, equal to 1.7 Hz (e.g., Chandra et al., 2015), combined with higher 

amplification peaks at 3, 6, 8, and 12 Hz. Furthermore, the combination between 

this peculiar stratigraphy, the near-surface water table and the site vicinity to 

seismically active faults (e.g., the San Jacinto fault and the San Andreas fault) has 

generated great interest of the earthquake engineering community. For this reason, 

the GVDA has become a reference site for ground motion amplification, 

liquefaction and soil-foundation-structure interaction (Archuleta et al., 1992). 

The GVDA site has been characterized by several geotechnical and 

geophysical tests, that will be described in the next Section. Furthermore, this site 

is instrumented with a seismic monitoring system, which has been installed in 

1989 as a cooperation of the French Institute de Protection et de Sûreté Nucléaire 

and the U.S. Nuclear Regulatory Commission. The system is currently managed 

by the George E. Brown, Jr., Network for Earthquake Engineering Simulation at 

the University of California, Santa Barbara (NEES@UCSB; 

http://nees.ucsb.edu/facilities/GVDA). The site is instrumented with surface and 

borehole accelerometers, as well as with a ground water monitoring system. The 

equipment includes a one-story soil-foundation-structure-interaction (SFSI) 

structure for the study of dynamic response of this structure during earthquakes 

(Figure 6-1a). The surface equipment is a 244-m long array of five 

accelerometers, labeled as S-01, GL-0, S-02, S-03, and S-04. The array is aligned 

in the NW-SE direction, with the sensor spacing being equal to 61 m. The Down-

http://nees.ucsb.edu/facilities/GVDA
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Hole array of accelerometers consists of a system of sensors, with one surface 

accelerometer and five downhole accelerometers, at depths of 6 m, 15 m, 22 m, 50 

m, 150 m, and 220 m – however, the latter is no longer operational. The 

equipment was upgraded in 1995 by including a deep bedrock borehole, with 

accelerometers installed at 500 m and 501 m depth. The sensors of the vertical 

seismic array are labeled as GL-i, with i being equal to the corresponding 

installation depth (Figure 6-1b). The sensors are installed in a 3×3 m area, and 

GL-0 is aligned with the array of surface sensors (Figure 6-1a). Finally, the site 

includes a small group of borehole and surface sensors installed on the 

outcropping bedrock, 3 km far from GVDA (Steidl et al., 1998). 
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Figure 6-1. a) Plane view of surface and borehole accelerometers locations at the Garner 

Valley site, California. The figure includes a zoomed view of the sensors installed at the 

GVDA, as well as of the SFSI; b) Simplified geological cross section of the Garner 

Valley site, including a representation of the depth location of borehole sensors. Sensors 

GL-220 and GL-501 are not reported. 
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6.1.2 Previous geophysical studies 

Due to the high interest of the earthquake engineering research community on 

measuring site effects at the GVDA, several geophysical and geotechnical studies 

have been carried out to define a complete and precise model of the ground 

conditions. Figure 6-2 reports some significant results in terms of velocity and 

damping ratio structure estimated in past studies, as well as the locations of past 

surveys. 

The surveys include a seismic refraction survey (Pecker and Mohammadioun, 

1991), a DH survey that explored down to 100 m of depth (Gibbs, 1989) and two 

PS suspension logging tests, that investigated a 50-m borehole in 1994 and a 100-

m borehole in 1996 (Steller, 1996). In general, the estimated velocity structure is 

consistent with the local geology. Indeed, it involves a surface alluvium layer, 

with VS around 220 m/s and VP increasing from 400 m/s to 1200 m/s, although the 

latter estimate is less reliable due to the limited number of measured data. 

Furthermore, other studies showed VS values close to 100 m/s in the uppermost 

layer (Chandra et al., 2015). Then, after a 4-m thick transition zone, VS rises to 

450 m/s and it increases up to 1200 m/s with depth, whereas VP ranges from 1700 

m/s to 2400 m/s. This portion corresponds to the layer of weathered granite. The 

velocity characteristics of the competent granite at 100 m depth have not been 

directly characterized yet. However, a VS value equal to 2500 m/s is usually 

assumed, based on the extrapolation of the VS structure of a close-by site sharing 

similar crystalline rocks with the bedrock itself (Coutant, 1996). However, 

ultrasonic measurements with a 15-kHz signal in a 500-m borehole returned much 

higher values of VS, equal to 3150 m/s. In summary, the site profile includes two 

main impedance contrasts, namely the interface between soft alluvium and 

weathered rock and the transition to competent rock, and the latter is believed to 

mainly control the ground motion amplification at the site (Bonilla et al., 2002). 

In addition, several noninvasive geophysical surveys have been carried out, 

based on the measurement of both ambient noise (Liu et al., 2000) and active-

source data (Brown et al., 2002; Stokoe II et al., 2004). Moreover, Teague et al. 

(2018b) carried out an extensive survey involving both active-source MASW and 

passive ambient noise acquisition, considering linear and circular arrays located at 

three different locations, each on the vicinity of an accelerometer of the surface 

array. These studies observed that the Rayleigh wavefield at GVDA is mostly 

controlled by the fundamental mode of propagation of Rayleigh waves. 

Furthermore, they confirmed the velocity structure obtained from invasive 
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surveys. However, resulting profiles exhibit slightly different variations of VS with 

depth, which can be an effect of lateral variability at the GVDA site. 

This reference velocity structure has been gradually modified, based on 

observations of the ground motion at the GVDA alone or combined with other 

surveys (e.g., Seylabi et al., 2020). For instance, Bonilla et al. (2002) inferred a 

detailed velocity model down to 500 m depth, trying to match the arrival time and 

the amplitude of a target weak-motion. They also derived a preliminary damping 

structure, in terms of DP and DS. Instead, Chandra et al. (2015) carried out a 

seismic interferometry study, combining weak motion records to obtain the VS 

profile. The resulting velocity structure is quite compatible with other studies in 

the uppermost 50 m of the soil deposit, whereas it tends to provide lower values of 

VS at greater depths. This discrepancy could be a side effect of using the 

interferometry in the presence of strong impedance variations, as in this case. 

Finally, Tao and Rathje (2019) interpreted recorded seismic data in the DH-array, 

according to the amplification approach (see Section 4.4.3) and they provided an 

alternative estimate of the DS structure, whereas they referred to DHT results for 

the VS profile. 

These studies also highlighted some pitfalls in adopting a 1D ground model to 

describe the seismic amplification at the GVDA. On the one side, Bonilla et al. 

(2002) noticed that the synthetic model does not capture late arrivals especially in 

the shallow sensors. Indeed, these events are likely the effect of surface waves and 

scattered waves generated by the three-dimensional geometry of the transition 

between weathered and competent material at around 90 m depth and by 

inhomogeneities in the alluvium (Coutant, 1996). In addition, anisotropy in the 

velocity structure has been identified, even in the shallow layers. The anisotropy 

in rock layers may be an effect of oriented cracks in the material (Nur, 1971; 

Kelner et al., 1999; Chandra et al., 2015), whereas in soil layers this could be the 

result of spatially variable mechanical properties (Coutant, 1996). The anisotropy 

may be a source of complexity in the ground motion amplification (e.g., Bonilla et 

al., 2002). Therefore, Fathi et al. (2016) attempted to obtain a 3D estimate of the 

velocity model of the GVDA down to 40 m depth, by interpreting active-source 

data measured on a spatial array by means of a full wave inversion algorithm. The 

identified VS and VP well compare with results from a SASW survey carried out 

inside the acquisition area, except at greater depths. However, some lateral 

variations in VS are highlighted, especially in the shallow portion (Figure 6-3). 
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Figure 6-2. a) Plane view of the GVDA, showing the location of some invasive and non-

invasive surveys carried out at the site. As for the active-source (SASW and MASW) and 

passive measurements (MAM), the lines and the circles denote the shape underlying the 

sensors’ setup; b)  stimated S-wave velocity profiles from various studies carried out at 

the GVDA; c) Estimated S-wave damping ratio profiles from various studies carried out 
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at the GVDA. In the figure, DHT stands for results from the DHT by Gibbs (1989); 

Shallow PS and Deep PS report results from Steller (1996); SASW-1 labels results from 

the SASW survey by Brown et al. (2002); SASW-2 and SASW-3 label results from the 

SASW survey by Stokoe II et al. (2004); MASW+MAM labels results from the survey by 

Teague et al. (2018b); AA-1 denotes results from the fitting of DH-array data by Bonilla 

et al. (2002); IF labels results from the interferometry study by Chandra et al. (2015); 

AA-2 identifies results of the amplification analysis of DH-array data by Tao and Rathje 

(2019); and MASW+MAM+DHa denotes results from the combined inversion of SWM 

data and DH-array data by Seylabi et al. (2020). Only the first 150 m of depth are 

represented. 

 

Figure 6-3. Three-dimensional velocity structure reconstruction by full waveform 

inversion: a) Acquisition setup; b) Estimated S-wave velocity model (after Fathi et al., 

2016). 

6.1.3 MASW survey 

The investigation of the small-strain parameters of the soil deposit at the GVDA 

site was carried out by means of a MASW survey. The testing involved two two-

dimensional arrays. One array consisted of a regular, square grid of 196 

geophones, with a uniform inter-receiver spacing equal to 5 m and a total extent 

of 65 m for each side (Figure 6-4). The grid orientation was from North-West to 

South-East and the base lines are orthogonal with each other. This testing setup is 

hereafter labeled as GV-H5. The second array was an irregular grid of 196 

sensors, with spacing equal to 5 m in the paracentral region and 10 m in the 

peripheral portion. Thus, the total extent was 100 m in the North-West to South-

East direction and 90 m in the perpendicular one (Figure 6-5). This testing setup is 

henceforth identified as GV-HN. The investigated areas by the two arrays are 

adjacent to or they partially contain the GVDA and they include the central 

portion of the surface array of accelerometers. 

The receivers were Magseis Fairfield Nodal ZLand 3C nodes. These 

instrumentations are all-in-one nodes, including both a sensor, a built-in 

b)a)

VS (m/s)
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datalogger and a power supply. The nodes are cable-free, and the time 

synchronization is guaranteed by onboard GPS time. The sensor unit is a three-

component geophone, with passband corner frequency equal to 5 Hz, viscous 

damping ratio of 70% and a sensitivity of 1.95 Volts/in/s, namely 76.7 Volts/m/s. 

This kind of equipment is suitable for both active and passive surveys. The data 

acquisition system continuously recorded the particle velocity with a sampling 

rate of 200 Hz, storing data in an internal unit. Receivers were buried in the 

ground, to limit the influence of undesirable noise on the measured waveifeld and 

ensure adequate coupling with the ground, as suggested by the InterPACIFIC 

guidelines (Foti et al., 2018). 

Waveforms were generated through a vibrating source, namely the 

NHERI@UTexas Thumper vibroseis truck (Stokoe II et al., 2020) and an 

impulsive source. In both cases, various shot points were employed, with variable 

offsets from the closest receiver. In this way, thanks to the multiple-source offset 

technique (Cox et al., 2014), the influence of near-field effects on the estimated R-

wave parameters can be mitigated, and the corresponding uncertainties can be 

rigorously quantified. 

The impulsive source was a 20-lb instrumented sledgehammer striking on a 

metal plate, at different locations both inside and outside the spatial array. An 

accelerometer installed inside the sledgehammer allowed to record the force 

transmitted onto the ground. Internal shots points were located at the midpoint 

between each couple of sensors inside alternate NE-to-SW grid lines, whereas 

external shot points were placed at 5 m and 15 m off both ends (Figure 6-4a). At 

each shot point, five repetitions were run. 

The vibrating source generated a 12-s long sweep signal, namely a 

nonstationary signal whose frequency linearly increases with the time, shifting 

from 5 Hz to 30 Hz. The input force was recorded by an accelerometer installed 

on the base plate. When possible, two external shot points were employed for 

each side, with offsets from the closest sensor ranging between 2 m and 5 m, and 

30 m and 35 m, respectively. Instead, internal shot points were applied at the 

midpoint of specific couples of sensors. However, some shot points were non-

symmetrical or even missing, mostly due to logistic issues linked with the 

accessibility of the vibroseis truck (Figure 6-4b). At each shot point, three 

repetitions were performed, whereas the number was increased to ten at the 

farthest source-offsets. 

The peculiar acquisition setup adopted in this survey primarily aims at 

developing a three-dimensional model of the soil deposit at the GVDA, by 

exploiting a full waveform inversion algorithm. However, measured data can be 
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still effectively interpreted according to canonical MASW processing schemes, by 

extracting information from each linear sub-array of sensors. Furthermore, the 

comparison of the experimental Rayleigh dispersion and attenuation curves at 

each sub-array might provide a valuable insight on spatial variations of the near-

surface velocity and dissipation structure of the soil deposit. Finally, the closeness 

between both arrays and the GVDA allows to carry out a consistent comparison 

between the resulting soil model and the information provided by borehole data, 

thus assessing the reliability of the estimated VS and DS profiles. 

6.2 Hornsby Bend 

6.2.1 Site description and previous geophysical studies 

The site of Hornsby Bend (HB, 30°13.918′N, 97°38.631′W – in the WGS84 

Datum) is located on the outskirts of the city of Austin, Texas. The site is a flat 

area next to the Colorado River, owned by the City of Austin. The site 

stratigraphy is mostly characterized by layered alluvial soils. Specifically, a 

moderately stiff 15 m thick clayey layer overlies a loose-to-medium dense layer 

with fine sands. At greater depths, stiff clays are found (Figure 6-6c). 

The site has been object of geophysical investigations by Van Pelt (2010), 

who carried out CHT and SASW measurements quite close to Hornsby Bend, in 

his study about the influence of soil dynamic parameters on foundations 

settlements. Kallivokas et al. (2013) attempted to develop a 2D velocity model of 

the site from measured active-source data on a spatial grid of sensors, by 

exploiting the full waveform inversion algorithm. The resulting velocity structure 

exhibits some lateral variations, although the deviation from the one-dimensional 

geometry is not significant (Figure 6-6b). Indeed, results were compatible with the 

VS profile resulting obtained from a SASW survey carried out at the same 

location. Observed discrepancies were attributed to both lateral variability and 

limitations of the layered model used in the SASW-based estimate, that tends to 

return a coarse velocity model not representative of the actual, smooth variations. 

In general, near-surface layers exhibit moderately low VS values, ranging between 

200 m/s and 250 m/s, with moderately large variability. At depth, instead, VS 

gradually increases up to 400 m/s, in correspondence of the shale layer (Figure 

6-6d). 
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Figure 6-4. Acquisition setup of GV-H5 at the GVDA site: a) Location of sledgehammer 

shot points; b) Location of shaker shot points. 

a) b)

b)
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Figure 6-5. Acquisition setup of GV-HN at the GVDA site: a) Location of sledgehammer 

shot points; b) Location of shaker shot points. 

a)

b)
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Figure 6-6. a) Hornsby Bend site. The map also reports the location of the SASW surveys 

by Van Pelt (2010) (SASW-1) and Kallivokas et al. (2013) (SASW-2), together with the 

location of the MASW surveys herein discussed, namely HB-H5, HB-HN, HB-GP, and 

HB-DAS; b) Two-dimensional velocity model along the SASW-2 line, developed by 

Kallivokas et al. (2013); c) Simplified geological cross section along the SASW-2 line; d) 

S-wave velocity profiles, estimated by Van Pelt (2010) (SASW-1) and Kallivokas et al. 

(2013) (SASW-2). 
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6.2.2 MASW survey 

The geophysical investigation at the HB site was carried out by means of various 

MASW surveys, held at different stages. In all the cases, the investigated area is 

rather close to the location of the survey by Kallivokas et al. (2013). Differently 

from GVDA, all the surveys collected active-source data on linear arrays of 

sensors, albeit with different geometries, source types and receivers. Part of the 

in-situ tests used two arrays of geophones with variable geometry, and different 

sources generated the acquired waveforms. This survey aims at assessing the 

influence of two main acquisition parameters (i.e., the array geometry and the 

source characteristics) on the estimated R-wave parameters. Furthermore, an 

additional surface wave dataset collects waveform data by both an array of 

geophones and a fiber-optic device, thus allowing to address the influence of the 

receiver characteristics. This represents one of the first applications of fiber-optic 

data to retrieve the R-wave phase attenuation. As these surveys will focus on 

different factors affecting estimated R-wave parameters, they will be treated 

separately. 

6.2.2.1 First round of testing 

The first round of testing involved two one-dimensional arrays, both aligned along 

the North-West to South-East direction (Figure 6-7). The first layout was an array 

of 46, regular-spaced geophones. The inter-receiver spacing was equal to 5 m, 

hence the total extent of the array is 225 m. This testing setup is hereafter labeled 

as HB-H5 (Figure 6-7a). The second array was an irregular grid of 46 sensors, 

with spacing gradually increasing from 1 m to 8 m while moving towards North-

West, with doubling steps. Thus, the array length was 192 m. This testing setup is 

henceforth identified as HB-HN (Figure 6-7b). 

The receivers were GeoSpace GS-11D 4.5-Hz vertical geophones, that are 

sensors suitable for active surveys, with passband corner frequency equal to 4.5 

Hz, viscous damping ratio of 70% and a sensitivity of 2.54 Volts/in/s, namely 

97.4 Volts/m/s. Receivers were coupled with the ground by means of 7.6-cm 

metal spikes. Data were recorded by two interconnected 24-channel Geometric 

Geode seismographs, with a sampling time of 0.03125 ms. The remaining two 

channels were used to record source data. One recorded the drive signal from the 

shaker, when used, whereas the other recorded the actual input force, by means of 

an accelerometer installed on the base plate. 

Part of the waveforms recorded in HB-H5 and HB-HN were generated 

through the NHERI@UTexas Thumper vibroseis truck (Stokoe II et al., 2020). 

The vibrating source applied a 20-s chirp, with a log-linear increase of the 
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characteristic frequency between 3 Hz and 100 Hz. In addition, the vibroseis 

generated a stepped sine signal, i.e. a sequence of monochromatic signals with 

different frequencies. Also in this case, the frequency shifted logarithmically 

between 3 Hz and 100 Hz in 51 steps, and 50 harmonic cycles were applied in 

each step. In this specific case, the data acquisition system returned frequency-

domain data, where each frequency is associated with an average value of the 

spectral ground velocity at the corresponding stage. Waveforms were generated at 

five external shot points at the South-East side, with offsets from the closest 

sensor equal to 10 m, 20 m, 30 m, 40 m, and 50 m. Recorded data in HB-H5 

include also waveforms generated on reversed shot points (Figure 6-7a). As for 

HB-HN, additional shot points were included inside the array, next to locations 

where the receiver spacing changes (Figure 6-7b). The internal shot points seek to 

isolate sub-sections of the array, thus improving the quality of high-frequency 

estimates of R-wave parameters. 

Besides, waveforms in HB-HN were also generated by a 20-lb instrumented 

sledgehammer striking a metal plate lying on the ground. Waveforms were 

generated at three external shot points at the South-East side, with offsets from the 

closest sensor equal to 3 m, 7 m, and 10 m. Offsets were smaller than those of 

shaker shots to preserve the high-frequency components of the impulsive source. 

However, some internal shot points were included as well (Figure 6-7b). 

The main purpose of this survey is the assessment of the influence of the 

acquisition geometry and of the source characteristics on the estimated R-wave 

parameters, in terms of investigated frequency range and related uncertainties. As 

for the geometry, due the moderately large receiver spacing, HB-H5 is suitable for 

investigating the soil deposit structure at large depths. Indeed, the maximum 

resolvable wavelength approximately equals the array length, i.e. 225 m, thus the 

survey can potentially reconstruct the velocity and damping structure down to 

75÷110 m depth. Instead, the HB-HN acquisition setup seeks to fulfil a trade-off 

between two opposing needs, namely accurate resolution of shallow layers and 

extended investigation at great depths. On the one side, the portion with small 

inter-receiver distance allows to obtain a significantly small minimum resolvable 

thickness, which is about 0.3÷0.5 m – at least theoretically. On the other side, the 

maximum resolvable wavelength approximately equals 192 m, thus HB-HN can 

reconstruct the velocity and damping structure down to 65÷95 m depth. In this 

way, HB-HN array should contribute to investigate at greater depths, while 

preserving good resolution at shallow depths. As for source characteristics, the 

application of a stepped sine is more time-consuming, but it guarantees very high 

signal-to-noise ratio, hence it is expected that the quality of estimated R-wave 
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parameters will be excellent. However, sweep signals still provide high-quality 

data covering a broad range of frequencies in a single application (Foti et al., 

2014). 

 

Figure 6-7. a) Acquisition setup of HB-H5 at the HB site; b) Acquisition setup of HB-HN 

at the HB site. 

6.2.2.2 Second round of testing 

The second round of testing involved two one-dimensional arrays, investigating 

an area next to the one explored with HB-H5 and HB-HN. Specifically, both 

a)

b)
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arrays developed on the side of a small unpaved road, along the South-West to 

North-East direction (Figure 6-6a). 

The first layout was an array of 48, regular-spaced vertical and horizontal 

geophones. The inter-receiver spacing was equal to 2 m, hence the total extent of 

the array equaled 94 m. This testing setup is hereafter labeled as HB-GP (Figure 

6-8). The receivers were GeoSpace GS-11D 4.5-Hz vertical geophones, whereas 

four interconnected 24-channel Geometric Geode seismographs recorded 

waveform data, with a sampling rate of 1 kHz. 

The second acquisition scheme was a distributed acoustic sensing (DAS), 

fiber-optic array. DAS technology measures the axial strain of the fiber-optic 

cable induced by external perturbations (e.g., mechanical waves), using the phase 

interferometry principle (Hartog, 2017; Bakulin et al., 2020). Specifically, an 

interrogator unit measures variations in phase of a laser pulse traveling inside the 

cable over a reference length, called gauge length, that are linked with variations 

in relative distance, whence the axial strain is derived. This survey utilized a 200-

m long NanZee Sensing Technology (NZS-DSS-C02) fiber-optic cable, which 

was installed adjacent to HB-GP. The cable was buried inside a trench, backfilled 

with compacted soil to ensure an appropriate coupling of the cable with the 

ground. In this way, the measured axial strain along the cable corresponds to the 

actual strain experienced by the ground. Axial strain data were recorded by the 

ODH4 OptaSense Interrogation Unit, according to a gauge length equal to 2.04 m 

and a channel separation of 1.02 m, i.e., measurements of the wavefield were 

provided approximately every 1 m along the cable. However, each measured 

value represents an average cable response over the gauge length (i.e., 2.04 m) 

surrounding each channel location, at 94 locations, over a total length of 94 m. 

The interrogator unit returned data sampled at 100 kHz rate, that were then down 

sampled at 1 kHz and high-pass filtered above 3 Hz to remove artifacts at low 

frequencies linked with the acquisition. This testing setup is hereafter identified as 

HB-DAS (Figure 6-8). 

HB-GP and HB-DAS simultaneously recorded waveforms generated through 

different sources, namely an instrumented sledgehammer, the NHERI@UTexas 

Thumper vibroseis truck and the three-dimensional T-Rex vibroseis truck (Stokoe 

II et al., 2020), that were applied at different locations. External triggering was 

used to synchronize the source and both acquisition systems. However, this study 

focuses on waveforms generated by the Thumper truck, which generated a 12-s 

long chirp signal, with frequency shifting from 5 Hz to 200 Hz. Furthermore, this 

study will address only data associated with the source locations on the North-

East side, with offsets equal to 5 m, 10 m, 20 m, and 40 m from both HB-GP and 
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HB-DAS. At each shot point, three repetitions were run. Only the vertical motion 

data are considered for the HB-GP array. 

The choice of using different acquisition layouts aimed at investigating the 

influence of the array geometry and the equipment type onto the estimated 

dispersion and attenuation data. A 94-m section of the fiber-optic cable, which is 

adjacent to HB-GP, is selected in this study. 

 

Figure 6-8. Acquisition setup of HB-DAS and HB-GP at the HB site. 

  



189 

 

Chapter 7 

Uncertainties in dispersion and 

attenuation estimates 

The interpretation of MASW surveys should account for the sources of 

uncertainties that might affect the estimated R-wave parameters. Specifically, all 

the uncertainty components must be correctly identified, properly modeled and 

finally quantified (IQM procedure; Passeri, 2019). As uncertainty components 

have various nature, an effective taxonomy distinguishes between epistemic 

uncertainties and aleatory variability. Epistemic uncertainty rises from the lack of 

knowledge about the phenomenon under investigation and it incorporates all the 

features that appear as unexplained by the model that is adopted for the 

interpretation. Their quantification is a complex task; however, they can be 

theoretically removed by adopting more refined and complete interpretation 

models. Instead, aleatory variability clusters all the mechanisms linked with the 

natural randomness affecting measured data of the phenomenon under 

investigation. Aleatory variability cannot be reduced to zero, although the 

repetition of measurements may provide a reliable estimate. Besides, the 

quantification of the related magnitude can be achieved through statistical tools. 

In SWM surveys, the separation between epistemic uncertainties and aleatory 

variability is not trivial, as they often appear as lumped together. For instance, 

variations in the estimated R-wave parameters due to different source-receiver 

configurations are usually an effect of lateral heterogeneities of soil deposits, 

which is a combination of aleatory variability and epistemic uncertainty. On the 

one side, standard surface wave testing intrinsically assumes 1D modeling for soil 

stratigraphy, hence the scatter in estimated data might be interpreted as an 

epistemic uncertainty. However, in sites where lateral variations are negligible, 

this uncertainty can be modeled as an aleatory variability (Foti et al., 2018). 

A critical epistemic uncertainty is related to the so-called near-field effects. 

They are the result of model incompatibility issues, as usual processing schemes 

rely on the hypothesis that the recorded wavefield consists solely of planar 

Rayleigh waves, whereas actual waveforms include both surface waves and body 

waves, and surface waves propagate according to cylindrical wavefronts. The 
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influence of near-field effects on the estimated R-wave phase velocity and phase 

attenuation has been addressed in Chapter 5. Furthermore, the recorded wavefield 

data may be corrupted by the presence of reflected or refracted body waves, back-

scattered waves, other surface waves (e.g., Lamb waves) and the air blast. 

Typically, all the wave components other than the target one (i.e., Rayleigh 

waves) are labeled as coherent noise (Strobbia, 2003). An additional source of 

epistemic uncertainty is linked with the specific processing scheme adopted to 

interpret waveform data. Indeed, each approach relies on specific modeling 

assumptions of the wavefield, hence the degree of consistency with real data is 

variable. For instance, some algorithms include an explicit modeling of the 

cylindrical shape of the Rayleigh wavefront (Zywicki, 1999; Zywicki and Rix, 

2005; Maranò et al., 2017), hence they mitigate the influence of near-field effects. 

Furthermore, each processing scheme relies on different computation algorithms, 

with variable degree of sensitivity to incoherent noise and capacity of identifying 

different wave components (i.e., Rayleigh propagation modes). The mode 

separation itself represents another relevant source of epistemic uncertainties, as 

the recorded Rayleigh wavefield is typically multimodal and the correct 

identification of each mode depends on the adopted processing technique, on site 

conditions and on the acquisition geometry. The mode misidentification might 

result in physically unrealistic soil profiles, far from the actual stratigraphy of the 

investigated soil deposit. 

In SWM, aleatory variability is usually associated with lateral variations in 

the soil stratigraphy and incoherent noise. The influence of local heterogeneities 

and lateral variability in the soil deposit is a well-known source of uncertainty, as 

it introduces a perturbation into the Rayleigh wavefield. The resulting variability 

in the estimated R-wave parameters can be interpreted as aleatory variability, 

when deviations from the 1-D model are not relevant. The related influence 

depends also on the acquisition layout, because long receiver arrays sample a 

rather large portion of the soil deposit, and the probability of finding significant 

lateral variability is greater. As for incoherent noise, this represents the 

perturbations in the wavefield due to ambient vibrations, that are not generated by 

the active source. Due to the random nature of this component, the effect of 

incoherent noise on the estimated R-wave parameters represents an excellent 

example of aleatory variability. Its presence is usually tackled by a stacking 

procedure, that allows to increase the signal-to-noise ratio and to reduce the 

influence of noise on experimental data. However, incoherent noise has a 

significant impact on the estimated wave attenuation, as it has been demonstrated 

in Chapter 5. 
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The first part of this Chapter addresses some relevant sources of epistemic 

uncertainties affecting the estimated phase velocity and phase attenuation. On the 

one side, this study assesses the role of the processing technique on the quality of 

derived R-wave parameters, with reference to both synthetic cases and field 

surveys carried out at Hornsby Bend (HB) and Garner Valley (GV). Furthermore, 

the influence of source characteristics on the experimental data is investigated, by 

adopting the wavefield data recorded at the HB site as the experimental dataset. 

The overview of epistemic uncertainties ends with a comparison between the 

derived phase velocity and attenuation values obtained from geophone and fiber-

optic data at the HB site, thus investigating the capability of this new system in 

retrieving attenuation data. This assessment also allows to understand the 

sensitivity of the estimated R-wave parameters to the specific acquisition device. 

The final part of this Chapter focuses on the aleatory variability, introducing a 

statistical model to jointly describe the variability of the experimental dispersion 

and attenuation data. 

7.1 Inter-method differences 

This Section addresses the epistemic uncertainties linked with the specific 

methodology to process surface wave data, by inspecting the inter-method 

differences in the estimated phase velocity and phase attenuation data. The 

analysis is firstly carried out on synthetic wavefields (SW3 and SW4; see Section 

5.1), to assess the performance of each processing technique in ideal, noiseless 

conditions. Furthermore, the solution of the Rayleigh eigenvalue problem 

provides theoretical estimates of the R-wave parameters, that represent a 

benchmark for checking the reliability of each technique. Then, the inter-method 

comparison is carried out on in situ recorded data, in which the influence of 

incoherent noise is fundamental. This study focuses on results of the surveys 

performed at GV and HB sites. Indeed, the recorded wavefield at the former site is 

dominated by a single Rayleigh propagation mode, hence it can be used to 

simultaneously compare techniques providing modal estimates of the R-wave 

parameters (e.g., the CFM) and methods providing an effective value (e.g., the 

CFDBFa). Instead, the multimodal nature of the wavefield recorded at HB allows 

to investigate the effectiveness of various processing techniques in capturing 

different propagation modes, with a focus on the modal phase attenuation. For the 

same reason, this site represents a potential application to assess the capability of 

the proposed modal filtering techniques in extracting R-wave modes from real 

data. 
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In general, the inter-method comparison focuses on different features 

describing the quality of the estimated R-wave parameters, namely the reliability, 

the accuracy and the capability of each scheme of returning acceptable data over a 

broad range of frequencies. 

7.1.1 Synthetic data 

In this study, the investigation of the epistemic uncertainties linked with the 

specific methodology to process surface wave data is carried out by inspecting the 

inter-method differences in the estimated wave parameters, for the synthetic 

wavefields SW3 and SW4. 

This study investigates the inter-method differences in terms of both the 

investigated frequency range and the reliability. For each methodology, the 

reliability is quantified by measuring the relative error between the estimated 

dispersion and attenuation data – VR,e(ω) and αR,e(ω), respectively – and the 

theoretical VR(ω) and αR(ω) values, for each synthetic soil profile (e.g., Badsar et 

al., 2010; Verachtert et al., 2017; Bergamo et al., 2019). However, the considered 

processing techniques rely on different modeling of waveforms composed by 

multiple propagation modes. Some methods include an explicit modeling of 

multiple propagation modes (namely, GHPB, CFM, WD, FDBFaMF, and 

CFDBFaMF), hence they ideally provide estimates of the modal dispersion and 

attenuation curves. In this case, the reliability of each approach is addressed by 

comparing estimated modal data with the corresponding ones obtained from the 

solution of the R-wave eigenvalue problem. Other methods, instead, return 

estimates of effective dispersion and attenuation curves (i.e., TFM, FDBFa, and 

CFDBFa). In this case, a comparison with the modal values would be misleading, 

as the intrinsic discrepancy between effective and modal data might be 

misinterpreted as a source of bias. Thus, the study of inter-method differences 

should rely on a comparison between estimated and theoretical values of the 

effective dispersion and attenuation data. However, this section focuses on the 

performance of modal-based estimation techniques, whereas the reliability of the 

TFM, FDBFa, and CFDBFa will be addressed on real-case data, as it will be 

shown in the next Section. Furthermore, this study does not report results from the 

GHPB because of the almost equivalent performance compared with the CFM 

(see Appendix B). For the same reason, the FDBFa and the FDBFaMF are not 

considered either. 

For each synthetic wavefield and each processing technique, results were sampled 

with a sampling frequency of 1 Hz, across the frequency band ranging between 3 
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Hz and 100 Hz. The comparison takes place both by superimposing estimated 

data with theoretical curves, and by inspecting the relative error, expressed in 

terms of normalized phase velocity VR,e/VR (i.e., the ratio between the estimated 

and the theoretical modal value) and normalized phase attenuation αR,e/αR. This 

ratio equals the unity when the estimates are identical, whereas a value greater 

than 1 denotes an overestimation of the modal value. In addition, a quantitative 

measure of the relative differences is provided in terms of root mean square error 

ΔV and Δα, for the phase velocity and phase attenuation data respectively: 
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where N is the number of samples. This quantity is computed over the 

frequency range wherein all the considered techniques return wave parameters. 

Furthermore, a synthetic graph highlights the investigated frequency range, to 

allow an immediate comparison in terms of relative performance. Although 

synthetic data virtually enable the investigation of a broad frequency range, a 

proper investigation of the performance of each processing scheme should 

account for the restrictions due to the limited spatial sampling in the acquisition 

layout. Therefore, data above the maximum investigable wavelength λmax = D 

(where D = 100 m is the array length; however, this criterion is a conservative 

choice, see for instance Socco and Strobbia, 2004) and below the minimum one 

λmin = d (where d = 2 m is the receiver spacing) – if any – are included in the 

comparison, but a different coloring is adopted to highlight their peculiar 

condition. In a similar way, data beyond the resolution limits of the simulated 

array are not included in the computation of ΔV and Δα. 

7.1.1.1 Results for SW3 

Figure 7-1 compares estimated and theoretical fundamental-mode (labeled as R0) 

R-wave parameters for SW3 data. Results on the first two higher modes (i.e., R1 

and R2) are reported in synthetic way in Figure 7-2. The corresponding ΔV and 

Δα are reported in Table 7.1. 

The resulting dispersion curves are rather close to each other and match the 

theoretical one, for almost each approach, as demonstrated by the similar ΔV 

values (Figure 7-1a). This is valid especially at high frequencies, whereas some 

discrepancies are observed at low frequencies. Specifically, all the methods tend 

to underestimate VR(ω) at f < 15 Hz, with a significant deviation at f < 10 Hz (i.e., 

λ > 25 m; Figure 7-1c). The maximum error is about 10%, which is consistent 

with other studies (Figure 7-1; e.g., Bodet et al., 2009). The main source of such 

divergence is near-field effects, especially the model incompatibility effect due to 
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the contribution of body waves. However, there are some exceptions. On the one 

side, WD returns a dispersion estimate perfectly compatible with VR(ω) even at 

frequencies between 10 Hz and 15 Hz. Instead, the CFDBFaMF returns 

oscillating estimates of dispersion data at low f values, and the error magnitude is 

bounded between 5% and 10%. This oscillation might be an artifact introduced by 

the modal filtering procedure, which may have returned a mixture of the 

fundamental-mode R-wave and body waves. Indeed, this erratic behavior in 

VR,e(ω) is typical of a wavefield corrupted by strong body waves (e.g., Rahimi et 

al., 2021). 

 

Figure 7-1. Assessment of the inter-method differences for the fundamental mode R-wave 

dispersion and attenuation curve, with reference to SW3: a) Theoretical vs. estimated 

dispersion curves; b) Theoretical vs. Estimated attenuation curves; c) Normalized phase 

velocity VR,e/VR (i.e., the ratio between the estimated and the theoretical phase velocity), 

as a function of the frequency; d) Normalized phase attenuation αR,e/αR (i.e., the ratio 

between the estimated and the theoretical phase attenuation), as a function of the 

frequency; and normalized phase attenuation αR,e/αR. The vertical axis is represented in 

logarithmic scale as αR,e/αR spans multiple orders of magnitude. Estimated data points 

beyond the array resolution limits – i.e., the grey areas in a) – are colored in grey. 
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As for attenuation data, all the approaches agree quite well at high frequencies 

and the estimation error is negligible in this range (Figure 7-1b-d). On the other 

side, they tend to overestimate αR(ω) at low frequencies, with a much larger drift 

than what observed for dispersion data. As a result, Δα is generally quite large. 

Specifically, the estimated value can be even several orders of magnitude larger 

than αR(ω). For all the considered methods, differences are moderately small at f > 

15 Hz (i.e., λ < 13 m) and they slowly increase up to f = 10 Hz (i.e., λ = 20 m). 

This trend is not exactly matched by the CFDBFaMF, as the corresponding αR,e/αR 

undergoes oscillations that are compatible with those observed in the dispersion 

data. Furthermore, the CFM tends to overestimate high-frequency attenuation 

data. At lower f values, the estimated attenuation increases monotonically and 

αR,e/αR rises up to 3 for the CFDBFaMF and up to 10 for the CFM, whereas the 

overestimates αR by a factor of 5, at f = 6 Hz. Beyond the resolution limits of the 

array, only CFDBFaMF data are available, and the divergence from VR(ω) is 

moderately low, whereas αR,e/αR slowly grows up to 10. Interestingly, the drift in 

dispersion and attenuation data occurs at wavelengths greater than 10 m, which is 

consistent with similar findings on near-field effects. For this reason, both the drift 

in dispersion and in attenuation data may be linked with near-field effects, that are 

not modeled in an explicit way, especially in terms of the body-wave contribution. 

Table 7.1. Estimated root mean square error for the phase velocity ΔV and for the phase 

attenuation Δα for the circle fit method (CFM), the wavefield decomposition approach 

(WD), and the cylindrical frequency-domain beamforming-attenuation with modal 

filtering (CFDBFaMF). The total error ΔV + Δα is included in brackets. Residuals are 

computed with reference to the lowest-order three propagation modes (labeled as R0, R1 

and R2, respectively) of the synthetic wavefield SW3. 

Mode ΔV; Δα (ΔV+Δα) 

CFM WD CFDBFaMF 

R0 0.023; 0.43 (0.46) 0.0060; 0.22 (0.22) 0.015; 0.36 (0.20) 

R1 0.015; 0.16 (0.18) 0.010; 0.37 (0.38) 0.020; 0.35 (0.20) 

R2 0.0059; 0.23 (0.24) 0.0083; 2.62 (2.64) 0.031; 0.12 (0.16) 
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Figure 7-2. Assessment of the inter-method differences for the R-wave dispersion and 

attenuation curves, with reference to SW3. Each plot contains bars spanning along the 

frequency range at which each method returned estimates of R-wave dispersion data (top 

row) and attenuation data (bottom row). The color scale is a function of the magnitude of 

the normalized phase velocity VR,e/VR (i.e., the ratio between the estimated and the 

theoretical phase velocity), or the normalized phase attenuation αR,e/αR (i.e., the ratio 

between the estimated and the theoretical phase attenuation): a-d) Fundamental mode; b-

e) First higher mode; c-f) Second higher mode. The numeric values in brackets denote the 

maximum and the minimum detected wavelength. 

A synthetic description of results is reported in Figure 7-2, for R0 (Figure 

7-2a-d), R1 (Figure 7-2b-e), and R2 (Figure 7-2c-f). For each investigated mode, 

the figure represents the frequency range at which each method returned 

dispersion and attenuation data, at the boundaries of which are included the 

wavelength limits. Besides, each bar includes a pseudo-color scheme that 

indicates the VR,e/VR and αR,e/αR. As for R0, all the considered techniques return 

estimates across a broad range of frequencies. Focusing on higher modes, the 

overall quality in the estimated data is lower than what observed for the 

fundamental mode. Indeed, the contribution of R1 and R2 in SW3 is less relevant 

than R0, and it becomes even negligible across a broad frequency range. 
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However, the investigated methods are still able to identify the corresponding 

modal parameters. All the methods successfully identify the R1 dispersion curve, 

at moderately high frequencies, although the CFM tends to overestimate VR(ω) at 

low frequencies because of the influence of other modes on the correct definition 

of the spectral peak. In the same range, the CFDBFaMF significantly 

underestimates VR(ω), due to the inability of the modal filter in effectively 

separating the weak target mode from the dominant one (i.e., R0). If the degree of 

matching in terms of dispersion is acceptable at high frequencies, the fitting 

quality of αR(ω) is generally poor and the estimated value is often erratic, for all 

the considered methods. The only exception is the CFDBFaMF, which achieves a 

good level of compatibility at f > 50 Hz, and the WD at intermediate frequencies. 

Similar results apply for the R2. In this case, the WD identifies this propagation 

mode just over a narrow frequency range, whereas the CFDBFaMF is quite 

effective in characterizing the corresponding modal parameters. Specifically, the 

CFDBFaMF well captures VR(ω) above 50 Hz, whereas a good level of fitting 

with αR(ω) is achieved above 70 Hz, which is the frequency range where VR(ω) is 

exactly matched. 

7.1.1.2 Results for SW4 

In the inversely dispersive medium, characterized by the wavefield SW4, all the 

methods tend to return reliable estimates of both VR(ω) and αR(ω) for R0, R1, and 

R2, as shown in Figure 7-3, Figure 7-4, and Table 7.2. This result is not 

surprising, as SW4 is a remarkably multimode wavefield, where the contribution 

of each propagation mode is dominant at specific frequency ranges. Thus, being 

each frequency component of SW4 mainly dominated by a single propagation 

mode (either R0, R1, or R2), the investigated methodologies successfully retrieve 

the corresponding modal wave parameters. 
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Figure 7-3. Assessment of the inter-method differences for the fundamental mode R-wave 

dispersion and attenuation curve, with reference to SW4: a) Theoretical vs. estimated 

dispersion curves; b) Theoretical vs. Estimated attenuation curves; c) Normalized phase 

velocity VR,e/VR (i.e., the ratio between the estimated and the theoretical phase velocity), 

as a function of the frequency; d) Normalized phase attenuation αR,e/αR (i.e., the ratio 

between the estimated and the theoretical phase attenuation), as a function of the 

frequency; and normalized phase attenuation αR,e/αR. The vertical axis is represented in 

logarithmic scale as αR,e/αR spans multiple orders of magnitude. Estimated data points 

beyond the array resolution limits – i.e., the grey areas in a) – are colored in grey. 

With a focus on R0 (Figure 7-3a-b), all the estimators tend to match VR(ω) 

and αR(ω) at moderately high frequencies, up to 30 Hz – above this value, the 

contribution of R0 in SW4 becomes negligible and it becomes no longer 

detectable. On the other side, VR(ω) is slightly underestimated at low frequencies 

(i.e., at f < 10 Hz, corresponding to λ > 22 m), with a difference bounded within 

10% (Figure 7-3c), as demonstrated by the low ΔV values. In the same frequency 

range, all the considered methods dramatically overestimate the low-frequency 

αR(ω), due to the unmodeled contribution of body waves (Figure 7-3d). However, 

if the comparison is restricted to λmax = 30 m, then the relative differences are 

negligible and the overall performance of all the processing schemes is good. This 
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λ value represents the upper boundary of the range of wavelengths needed to fully 

resolve the layers’ interfaces of the medium, as the deepest one is located at 10 m 

depth. Therefore, if SW4 represented the output of a survey deemed to 

characterize the corresponding soil profile, this would represent the range of 

interest. On the other side, some divergence is observed at high frequencies (f ~ 

40 Hz), because SW4 is here dominated by both R0 and R1. 

 

Figure 7-4. Assessment of the inter-method differences for the R-wave dispersion and 

attenuation curves, with reference to SW4. Each plot contains bars spanning along the 

frequency range at which each method returned estimates of R-wave dispersion data (top 

row) and attenuation data (bottom row). The color scale is a function of the magnitude of 

the normalized phase velocity VR,e/VR (i.e., the ratio between the estimated and the 

theoretical phase velocity), or the normalized phase attenuation αR,e/αR (i.e., the ratio 

between the estimated and the theoretical phase attenuation): a-d) Fundamental mode; b-

e) First higher mode; c-f) Second higher mode. The numeric values in brackets denote the 

maximum and the minimum detected wavelength. 

Figure 7-4 provides an overview on the quality of the estimated R-wave 

parameters for R1 and R2. As for R1, VR,e(ω) and αR,e(ω) are generally obtained 

for a rather narrow range of frequencies, and the quality of the estimates is 

generally poor (Figure 7-4b-e). Indeed, R1 is dominant across a narrow frequency 
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range, where the contribution of R0 and R2 is also significant. The interference of 

other wave components does not affect the dispersion estimate. For instance, in 

transform-based methods, the location of the corresponding spectral peak in the f-

k representation of SW4 is generally not sensitive to the presence of other modes. 

However, αR,e(ω) is highly biased because the interference on the amplitude due to 

other wave components cannot be successfully removed, in this case. In the CFM, 

the presence of multiple R-wave modes with similar wavenumbers results in a 

superposition of the related f-k spectral peaks. In the CFDBFaMF, the filtering 

procedure does not effectively remove the contribution by R0 and R2, thus 

returning a corrected wave with amplitude variations not reflecting those linked 

with R1. Similar considerations are valid for R2 at low frequencies, due to the 

interference by R1 (Figure 7-4c-f). However, the CFDBFaMF and the CFM 

manage to identify reliable VR,e(ω) across a broad frequency, down to 30 Hz, 

where the contribution of R2 to SW4 is less significant. In that range, however, 

the resulting αR,e(ω) is quite erratic, due to the strong interference by R1. 

Table 7.2. Estimated root mean square error for the phase velocity ΔV and for the phase 

attenuation Δα for the circle fit method (CFM), the wavefield decomposition approach 

(WD), and the cylindrical frequency-domain beamforming-attenuation with modal 

filtering (CFDBFaMF). The total error ΔV + Δα is included in brackets. Residuals are 

computed with reference to the lowest-order three propagation modes (labeled as R0, R1 

and R2, respectively) of the synthetic wavefield SW4. 

Mode ΔV; Δα (ΔV+Δα) 

CFM WD CFDBFaMF 

R0 0.018; 1.32 (1.34) 0.020; 0.41 (0.43) 0.020; 0.52 (0.53) 

R1 0.007; 0.060 (0.07) 0.003; 0.09 (0.094) 0.06; 0.40 (0.45) 

R2 0.007; 0.060 (0.07) 0.003; 0.11 (0.12) 0.010; 0.20 (0.20) 

 

7.1.2 Field data: Garner Valley Downhole Array 

The investigation of the influence of the processing technique into the estimated 

R-wave parameters from real data, i.e. in situ recorded wavefields, starts with an 

application at the GVDA site. Indeed, the recorded wavefield is expected to be 

mainly governed by the fundamental mode, whereas the contribution of higher 

propagation modes is negligible, as demonstrated in previous geophysical studies. 

Therefore, this site represents a benchmark for comparing different processing 

techniques when the influence of modal superposition is not relevant. 

For simplicity, this study reports results obtained from on the South-East line 

of the GV-H5 testing setup, which is a linear array composed by 14 geophones, 
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with inter-receiver distance equal to 5 m (Figure 7-5). Furthermore, the 

assessment only focuses on waveforms generated by the chirp signal applied by 

the VibroSeis truck, at two shot points with reversal. The source-offsets of road-

side shot points are 4.5 m and 35.5 m respectively, whereas the ones on the 

parking side are 2.5 m and 33.5 m far from the closest sensor. 

 

Figure 7-5. MASW array setup. The larger circles represent the receivers belonging to the 

GV-H5 array, analyzed in this study. The blue area identifies the Garner Valley 

Downhole Array, where the instrumented boreholes are located. 

The wavefield recorded at GV-H5 is dominated by a single propagation 

mode, which is expected to be the R-wave fundamental mode, labeled as R0. This 

feature is apparent in Figure 7-6, which reports the f-k representation of the 

recorded wavefield at one of the selected sub-arrays, obtained by applying the 

spatial Fourier transform to recorded data. Spectral peaks are related to R-wave 

propagation modes that characterize the recorded wavefield. In this case, one 

dominant mode can be identified in the whole investigated frequency range. 
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Figure 7-6. Frequency-wavenumber representation of the wavefield recorded at GV-H5. 

Therefore, the inter-method comparison at GV-H5 focuses on the TFM, the 

WD, the CFM and the CFDBFa. Indeed, all these approaches can be tested 

simultaneously, as both modal techniques and those returning effective wave 

parameters should provide comparable results, in this case. Furthermore, as the 

array includes a moderately small number of sensors, this precludes a successful 

application of modal filtering techniques to well isolate the propagation features 

of the fundamental mode. Indeed, the modal filter effectively extracts information 

on the target mode when the number of sensors is greater than 20÷24, as 

demonstrated in Chapter 5. Therefore, the inter-method comparison for this site 

does not include results from the CFDBFaMF, as it returns identical results to 

CFDBFa. Finally, this study does not report results from the GHPB and the 

FDBFa, because of their equivalence with the CFM and the CFDBFa, 

respectively. The comparison includes data from multiple shots, for which 

statistics are computed by combining results from different source offsets and 

different sub-arrays, in consistency with the multi-offset approach (Wood and 

Cox, 2012), assuming a bivariate lognormal distribution of the experimental data. 

The reason behind the choice of using a lognormal distribution in this analysis and 

in the following will be discussed in Section 7.4. 

Figure 7-7 compares the estimated dispersion and attenuation curves obtained 

for each method. On the one side, the investigation of inter-method differences 

compares the lognormal statistics (i.e., median and logarithmic standard 

deviation) of VR,e(ω) and αR,e(ω), computed from the elementary R-wave 

parameters corresponding to the 4 shot locations. Given the small size of the suite 

of elementary data, the inferred statistics are only indicative of the actual data 
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distribution. This comparison investigates both the reliability of each processing 

technique, by assessing the behavior and the presence of anomalous drifts in the 

median, and their accuracy, expressed by the variability in the estimated R-wave 

parameters. Besides, Figure 7-8 compares the frequency ranges wherein each 

method successfully identified the R-wave parameters, simultaneously reporting 

the number of elementary data points available at each frequency. This 

information helps in understanding the effectiveness of each processing technique 

in extracting R-wave parameters from each sub-array. Furthermore, it allows to 

assess the reliability of data statistics. In this case, all the considered techniques 

identify R-wave parameters in the frequency range between 5 Hz and 35 Hz (i.e., 

λ = 5 ÷ 90 m), and they return a similar number of elementary data points for each 

frequency. Besides, the number of attenuation data points is usually smaller than 

the corresponding dispersion data, because of the higher difficulties in retrieving 

reliable values. 

 

Figure 7-7. Assessment of the inter-method differences for the fundamental mode R-wave 

dispersion and attenuation curve, with reference to GV-H5: a) Median estimated 

dispersion curves; b) Median estimated attenuation curves; c) Logarithmic standard 

deviation of the estimated dispersion curves; d) Logarithmic standard deviation of the 

estimated attenuation curves. 
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In general, the dispersion curves are rather close to each other and affected by 

low variability. Specifically, the corresponding standard deviation σlnVR varies 

from 0.02 at high frequencies, up to 0.03÷0.05 at longer wavelengths. The only 

exception is the CFM technique, with a data scatter uniformly equal to 0.05. As 

for the estimated αR(ω), all the approaches agree at short wavelengths. On the 

other side, the TFM matches the average values of all the other methods, even 

with less variability. However, it tends to overestimate αR(ω) at greater 

wavelengths, probably because of near-field effects due to model incompatibility, 

that are not modeled in this case. Finally, the CFM and the CFDBFa methods 

provide similar results, though the former is affected by rather large variability 

both on VR(ω) and αR(ω). In general, estimated attenuation data at this site exhibit 

increasing variability as the wavelength is longer, with a variation from 0.3 and 

0.4, whereas CFM data assume standard deviation σlnαR oscillating around 0.75. 

 

Figure 7-8. Assessment of the inter-method differences for the fundamental mode R-wave 

dispersion and attenuation curve, with reference to GV-H5. Each plot contains bars 

spanning along the frequency range at which each method returned estimates of R-wave 

dispersion data and attenuation data. The color scale is a function of the number of 

elementary data points returned at each frequency: a) Phase velocity; b-d) Phase 

attenuation. The numeric values in brackets denote the maximum and the minimum 

detected wavelength. 

This result demonstrates, on the one hand, the reliability of the CFDBFa in 

retrieving dispersion and attenuation parameters, when the wavefield is mostly 

controlled by a single propagation mode. The reliability is demonstrated both in 

terms of strong compatibility in averaged terms as well as the similar degree of 
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variability. On the other hand, some remarks on other techniques should be 

pointed out. The WD approach returns robust and consistent estimates of R-wave 

parameters, with small variability for the attenuation and almost no variability for 

the dispersion, except at low frequencies. This positive result is also a 

consequence of the specific fitting procedure adopted to infer R-wave parameters, 

as the maximum likelihood approach ensures their retrieval across the whole 

investigated frequency range, although it may be affected by overfitting and it 

requires an a priori specification of the number of target waves. Furthermore, the 

CFM technique provides consistent dispersion and attenuation estimates, although 

with dramatically larger data variability. The strong scatter is an indicator of a 

possible instability of this approach, maybe linked with perturbations of the 

spectral shape of transformed data, as well as drawbacks linked with the need of 

adopting site-specific calibration parameters. 

7.1.3 Field data: Hornsby Bend 

In this study, the investigation of the influence of the specific processing 

technique adopted to derive R-wave parameters referred to results of the HB-HN 

array (see Chapter 6). Indeed, the extent of this array is moderately short, thus 

limiting the influence of lateral variations in soil stratigraphy, that might introduce 

additional variability into the results, which is external to intrinsic epistemic 

uncertainties. However, the receiver spacing in HB-HN is not constant. Therefore, 

the CFDBFaMF technique cannot be applied as the modal filter requires 

uniformly sampled data to isolate the contribution of each R-wave propagation 

mode. Therefore, the analysis focuses on three sub-arrays extracted from HB-HN, 

with uniform spacing equal to 2 m, 4 m and 8 m, respectively (Figure 7-9). 

Ideally, also a 1 m-spacing array could have been included in the analysis. 

However, as it will be shown below, the recorded wavefield is multimodal and the 

interpretation of this array did not produce accurate results, due to the rather small 

number of sensors combined with the short length. Therefore, it was ignored. The 

isolation of subarrays also allows to exploit waveforms generated from internal 

shot locations. The resulting information will represent an additional reference to 

assess the relevance of lateral variations along the investigated array. Then, results 

are averaged and represented in terms of sample statistics, in consistency with the 

multi-offset approach (Wood and Cox, 2012). 

For simplicity, the inter-method comparison only focuses on waveforms 

generated by the stepped sine signal applied by the VibroSeis truck. Indeed, the 

corresponding records are the most energetic ones, hence the influence of 

incoherent noise is minimized. 
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Figure 7-9. Selected sub-arrays in HB-HN. The figure includes the original array, as a 

reference. 

The wavefield recorded at HB exhibits a remarkably multimodal propagation. 

This feature is apparent in Figure 7-10a, which reports the f-k representation of the 

recorded wavefield at one of the selected sub-arrays, obtained by applying the 

spatial Fourier transform to recorded data. Spectral peaks are related to R-wave 

propagation modes that characterize the recorded wavefield. In this case, two 

dominant modes can be identified in the investigated frequency range. The highest 

wavenumber mode (which is expected to be the R-wave fundamental mode, 

labeled as R0) tends to disappear at f > 20 Hz. The strong decay of R0 in the high-

frequency range may be an indicator of large αR(ω) characterizing such 

component, for which the corresponding high-frequency waves rapidly decay with 

the offset, becoming almost negligible at short distances. Instead, the second 

component of the wavefield (which may be representative of the first higher 

mode, labeled as R1) is relevant in the amplitude throughout the whole 

investigated frequency range. Figure 7-10b provides a clearer picture about the 

role of each propagation mode as a function of the frequency. In this case, the 

relevance of each component is quantified in terms of frequency-dependent 

relative energy, measured as the ratio between the squared amplitude of the 

corresponding spectral peak and the overall squared amplitude at each frequency 

band. Specifically, the wavefield is dominated by R0 at f less than 10 Hz, whereas 

high-frequency components are only dependent on R1. In the intermediate 

frequency range (i.e., f = 10 ÷ 20 Hz), both propagation modes contribute to the 

wavefield, although the influence of R0 rapidly decays as f increases. Therefore, 

the wavefield recorded at HB is quite complex, as the contribution of higher 

propagation modes is significant, across the whole frequency range. Furthermore, 

the modal superposition is relevant at low frequencies. Thanks to the multimodal 
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nature of the wavefield, the HB site is an appealing case study for the application 

of the CFDBFaMF technique and to assess the effectiveness of the modal filtering 

on real-site conditions. 

 

Figure 7-10. a) Frequency-wavenumber representation of the wavefield recorded at HB; 

b) Energy repartition between the fundamental and the first higher mode. Data refer to 

sub-array HB-HN-4m, with the source-to-receiver distance equal to 7 m. 

As in SW3 and SW4, the inter-method comparison at HB focuses on the WD, 

the CFM and the CFDBFaMF, because they incorporate an explicit modeling of 

multiple propagation modes and return modal R-wave parameters. Furthermore, 

this study does not report results from the GHPB and the FDBFaMF, because of 

their equivalence with the CFM and the CFDBFaMF, respectively. In both cases, 

the comparison includes data from multiple shots, for which statistics are 

computed by combining results from different source offsets and different sub-

arrays, in consistency with the multi-offset approach (Wood and Cox, 2012), 

assuming a bivariate lognormal distribution of the experimental data. 

Figure 7-11 compares the estimated modal dispersion and attenuation data for 

R0, according to the WD, the CFM and the CFDBFaMF techniques. On the one 

side, the investigation of inter-method differences compares the lognormal 

statistics (i.e., median and logarithmic standard deviation) of VR,e(ω) and αR,e(ω). 

Given the relatively small size of the suite of elementary data, the inferred 

statistics are only indicative of the actual data distribution. This kind of 

comparison investigates both the reliability of each processing technique, by 

assessing the behavior and the presence of anomalous drifts in the median, and 

their accuracy, expressed by the variability in the estimated R-wave parameters. 

Besides, Figure 7-13a-c compares the frequency ranges wherein each method 

successfully identified the R-wave parameters, simultaneously reporting the 

number of elementary data points available at each frequency. This information 
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helps in understanding the effectiveness of each processing technique in 

extracting R-wave parameters from each sub-array. Furthermore, it allows to 

assess the reliability of data statistics. 

 

Figure 7-11. Assessment of the inter-method differences for the fundamental mode R-

wave dispersion and attenuation curve, with reference to HB-HN: a) Median estimated 

dispersion curves; b) Median estimated attenuation curves; c) Logarithmic standard 

deviation of the estimated dispersion curves; d) Logarithmic standard deviation of the 

estimated attenuation curves. 

In general, R0 data are estimated across a moderately narrow range of 

frequencies and αR,e(ω) exhibit moderately large variability, regardless the 

considered method. Specifically, estimated R-wave parameters are defined at f 

from 5 Hz up to 30 Hz, as a consequence of the strong decay in the contribution of 

R0 to the wavefield at high frequencies. Furthermore, all the techniques return up 

to 20 ÷ 25 data points and resulting dispersion data are strongly similar to each 

other, whereas slightly larger differences characterize the attenuation data (Figure 

7-11a-b). Indeed, the CFM tends to return slightly smaller αR,e(ω), whereas the 

WD and the CFDBFaMF are moderately compatible with each other, with 

moderately small relative differences. Inter-method differences tend to be 
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significant at f < 10 Hz. On the one side, the attenuation estimates provided by the 

CFM start increasing as f gets smaller, with an apparent reversal in the trend. This 

sharp change in the behavior could be an effect of the influence of R1 in the 

wavefield, that induces a broadening in the f-k spectral peak, resulting in an 

increase in the low-frequency αR,e(ω). On the other hand, the CFDBFaMF 

undergoes some oscillations at low f, linked with the influence of R1 and of body 

waves, as highlighted by some variations in the corresponding VR,e(ω). 

Data variability is both dependent on the frequency range and on the specific 

processing technique. Dispersion data are affected by moderately low variability, 

with σlnVR mostly ranging between 0.05 and 0.1. The variability associated with 

the CFM is almost frequency-independent, with a constant value around 0.07. 

Instead, the σlnVR related with the CFDBFaMF and WD ranges about 0.03 at high 

frequencies, whereas it grows up to 0.15 at low frequencies. This is an effect of 

the difficulties of correctly separating the target mode (i.e., R0) from the influence 

of R1 and body waves. Attenuation data, instead, are affected by large variability. 

The σlnαR associated with intermediate-to-high frequencies is slightly smaller, and 

it ranges between 0.3 for the CFDBFaMF and WD and 0.5 for the CFM, whereas 

it dramatically rises up to 1 at f ~ 10 Hz, with the CFM showing the highest 

values. 

When focusing on R1, inter-method differences sensibly drop down, in terms 

of discrepancy between mean estimates (Figure 7-12a-b) and covered frequency 

range (Figure 7-13b). Specifically, all the considered techniques identify R-wave 

parameters in the frequency range between 9 Hz and 60 Hz (i.e., λ = 5 ÷ 55 m), 

and they return a similar number of elementary data points for each frequency. 

Besides, this number is generally greater than the one for R0. Mean values of 

VR,e(ω) and αR,e(ω) stick well at low-to-intermediate frequencies, although the 

CFM slightly underestimates the phase attenuation at f > 30 Hz. Furthermore, the 

variability in the estimated wave parameters is much smaller than the one 

affecting R0 data, for both dispersion and attenuation curves (Figure 7-12c-d). 

The σlnVR is about 0.02 at all the frequencies, except an increase up to 0.05 for the 

CFM at f < 30 Hz. Instead, the σlnα  decreases from 0.75 down to 0.1 for the WD, 

whereas it is frequency-independent for the CFDBFaMF and the CFM, with 

values equal to 0.4 and 0.65, respectively. Actually, a slight increase of σlnα  

occurs at high frequencies (i.e., f > 50 Hz), probably due to the smaller signal-to-

noise ratio. 
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Figure 7-12. Assessment of the inter-method differences for the first higher mode R-wave 

dispersion and attenuation curve, with reference to HB-HN: a) Median estimated 

dispersion curves; b) Median estimated attenuation curves; c) Logarithmic standard 

deviation of the estimated dispersion curves; d) Logarithmic standard deviation of the 

estimated attenuation curves. 
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Figure 7-13. Assessment of the inter-method differences for the R-wave dispersion and 

attenuation curves, with reference to HB-HN. Each plot contains bars spanning along the 

frequency range at which each method returned estimates of R-wave dispersion data (top 

row) and attenuation data (bottom row). The color scale is a function of the number of 

elementary data points returned at each frequency: a-c) Fundamental mode; b-d) First 

higher mode. The numeric values in brackets denote the maximum and the minimum 

detected wavelength. 

Interestingly, the quality of results as well as the relative performance of each 

processing technique strongly depend on the investigated mode. On the one side, 

R0 data are estimated across a moderately narrow range of frequencies and the 

related variability is rather large, regardless the considered method. Instead, R1 

wave parameters can be tracked more easily along a broad frequency range, as 

highlighted by the low variability. This divergence reflects the energy repartition 

of the wavefield across the propagation modes (Figure 7-10b). Indeed, a broad 

frequency range of the wavefield is strongly controlled by R1 and the contribution 

of R0 is only relevant at low frequencies, although the influence of the higher 

mode is still significant. Therefore, estimating R0 attenuation data in this site is a 

challenging task, due to the strong influence of the other mode on the amplitude-

offset changes. As a result, the corresponding αR,e(ω) is highly variable and 
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sensitive to the specific processing technique, because of the different capability 

in extracting and isolating information about the target mode. The CFM directly 

extracts attenuation from the shape of the spectral transform of the wavefield, but 

the combined presence of two vibration modes that are moderately close with 

each other results in an apparent broadening of the spectral peak, that is not only 

related to the attenuation, thus resulting in an overestimation of αR,e(ω). The WD 

technique relies on a fitting procedure that explicitly models the contribution of 

different propagation modes; hence it is expected to provide reliable estimates of 

modal parameters. Finally, the CFDBFaMF tends to isolate quite well information 

related to R0. However, the modal filtering is not completely effective because of 

the strong contribution of the R1, that cannot be fully removed. This results in in 

an erratic and highly variable αR,e(ω) at low frequencies, where the modal 

separation is more challenging. Conversely, retrieving R1 wave parameters is less 

complex, and all the considered methods provide consistent and accurate 

estimates of the R1 wave parameters because it is the dominant component of the 

wavefield, hence its characterization is easy. Some divergence is only observed at 

lower frequencies, as an effect of the increased role of R0 into the overall energy 

of the wavefield, for which the proper extraction of αR,e(ω) becomes more 

challenging. It is interesting to notice that the influence of multiple modes in the 

wavefield is different between attenuation and dispersion estimates. On the one 

side, reliable and well-defined dispersion values can be retrieved for both 

propagation modes, almost regardless the considered method. On the other hand, 

attenuation data are strongly sensitive, and the modal superposition dramatically 

affects the possibility of properly extracting correct modal attenuation values, 

especially when the target mode is not dominant or the energy is equipartitioned 

across different modes. 

7.2 Influence of source characteristics 

The source effect is critical in active-source characterization techniques. Indeed, 

the active source directly controls the frequency and amplitude characteristics of 

the recorded wavefield, especially the signal-to-noise ratio. It is highly desired 

that the source be capable of generating high-quality waveforms, with enough 

large amplitudes so that the influence of external, incoherent noise is negligible 

and the frequency and the amplitude components reflect the wave component that 

is under examination. In this way, additional sources of epistemic uncertainties, 

linked with the wrong modeling of the recorded wavefield according to an 

idealized scheme that is uncorrupted by noise, are significantly reduced. For this 

purpose, an ideal strategy may consist in generating waveforms by means of high-
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energy, controlled sources, e.g., by shakers and vibrators. As these devices can 

apply high-magnitude ground forces, the quality of the resulting signal will be 

excellent, and the influence of external noise sources will be negligible. This 

aspect is crucial especially for amplitude data, which are even rather sensitive to 

ground noise than the phase, as demonstrated in Chapter 5. However, an 

alternative, smart technique relies on weak-energy sources, where the lack of 

energy is compensated by a stack averaging procedure, which increases the 

signal-to-noise ratio (Foti et al., 2014). Furthermore, a proper source 

characterization is crucial to avoid the inclusion of additional epistemic 

uncertainties. Indeed, some processing techniques (e.g., the TFM, the GHPB and 

the CFM) require a direct measure of the ground force, which needs specific 

instrumentation, and its quantification may be affected by imperfect coupling 

between the plate and the ground. 

This Section investigates the influence of the specific source type on the 

reliability and the accuracy of the estimated R-wave parameters, by adopting the 

experimental data acquired at the HB-HN array as a reference. Indeed, the 

waveforms recorded in this array of sensors were generated by three different 

types of sources, with a different energy level and different frequency content. A 

more detailed description about the main features of the active sources is provided 

below. Due to the multimodal nature of the Rayleigh wavefield recorded at this 

site, wavefield data were interpreted according to the CFDBFaMF. Indeed, this 

technique returned reliable estimates of dispersion and attenuation data, compared 

with other approaches. As this technique requires uniformly sampled data to 

isolate the contribution of each R-wave propagation mode, the analysis focuses on 

three sub-arrays extracted from HB-HN, with uniform spacing equal to 2 m, 4 m 

and 8 m, respectively. The analysis of each sub-array focused on waveforms 

generated by different types of active source, with shared location. Specifically, 

wavefield data with active source located at 3 m, 7 m, and 10 m far from the 

closest sensor were considered, without reversal. In this way, the inter-source 

comparison is carried out by keeping the strongest equivalence in terms of 

boundary conditions. 

7.2.1 Source characteristics 

Figure 7-14 represents some examples of wavefield generated by all the types of 

active source. Data refer to the sub-array with spacing equal to 4 m, and a source 

located 7 m far from the closest sensor (Figure 7-14a). Furthermore, Figure 7-15 

provides a frequency-domain representation of the ground force, together with a 
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pseudo-color plot mapping the signal-to-noise ratio as a function of the frequency 

and the receiver location, for each source type. As the noise power derives from 

the pre-trigger and the post-trigger time windows only, this estimate may not be 

fully representative of the actual noise level. Indeed, the resulting signal-to-noise 

ratio is here represented for illustration purposes. 

Part of the recorded wavefield was generated by an instrumented sledgehammer 

(Figure 7-14b-c). This source applies a pulse-like signal, and most of the energy is 

carried by moderate-to-high frequency harmonics, with f = 30 ÷ 80 Hz (Figure 

7-15a). The average energy transmitted onto the ground is moderately low, 

especially compared with mechanically-controlled sources. Furthermore, the 

applied energy level is quite variable, as it is sensitive to the operator and not 

perfectly reproducible. The low energy entails a strong relevance of incoherent 

noise in the wavefield, especially when dealing with sensor data recorded at 

moderately large distances from the source itself, as highlighted by the moderately 

low signal-to-noise ratio (Figure 7-15d). 

The remaining waveforms were generated by means of a high-energy, vibroseis 

truck, that allows to apply high-energy signals, with an accurate control of the 

frequency content. The shaker was used to generate two different types of signals, 

namely a chirp and a stepped sine. The chirp appears as a non-stationary signal, 

with a linear increase of the frequency with time (Figure 7-14d). The 

corresponding frequency-domain representation results in a flat spectrum, with the 

largest amplitude at f = 5 ÷ 30 Hz, namely the frequency range encompassed by 

the sweep (Figure 7-15b). Instead, the stepped sine is a multi-stage signal that 

applies a sequence of harmonic cycles, in which the ground response is measured 

by the acquisition device directly in the frequency-domain (Figure 7-14f; Figure 

7-15c). This acquisition scheme shares some similarities with an ideal acquisition 

scheme, wherein a harmonic time history is applied onto the ground and the 

corresponding response is measured. In both cases, the energy of the input signal 

is large and lowly-variable, and the signal-to-noise ratio is moderately high 

(Figure 7-15e-f). Furthermore, the use of the stepped sine ensures a less 

pronounced decay of the signal-to-noise ratio with the offset and the frequency, 

compared with the chirp. Indeed, the stepped sine is capable to generate high-

frequency signals preserving their characteristics even at moderately large 

distances from the source itself. This result does not strictly depend on the energy 

generated by the source, as it is the same for both signal types, but on the 

frequency content. Indeed, the sweep is a nonstationary signal, where the 

frequency content constantly changes with time, hence each frequency is not 

sustained and tends to damp more rapidly (Rahimi et al., 2022). 
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Figure 7-14. Recorded wavefield at HB-HN. The left column represents the input force, 

whereas the right column reports the recorded particle velocity data: b-c) Sledgehammer; 

d-e) Chirp; f-g) Stepped sine. 
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Figure 7-15. Frequency-domain data. The top row represents the input force, with the 

interval defined by one standard deviation, whereas the bottom row includes pseudo-color 

maps of the signal-to-noise ratio: a-d) Sledgehammer; b-e) Chirp; c-f) Stepped sine. 

7.2.2 Source comparison 

Figure 7-16 compares the statistics of the estimated dispersion and attenuation 

curves for R0. Data are clustered as a function of the specific source type under 

examination (i.e., sledgehammer, chirp and stepped sine) and, for each one, the 

corresponding statistics are obtained by combining results from different source 

offsets and different sub-arrays, in consistency with the multi-offset approach 

(Wood and Cox, 2012). Note that, given the small size of the suite of elementary 

data, the inferred statistics are only indicative of the actual data distribution. As in 

the inter-method comparison, the influence of the source type on the estimated R-

wave parameters focuses on both the reliability and accuracy in the estimates – 

expressed by the median and the logarithmic standard deviation, respectively – as 

well as the covered frequency range and the number of elementary data points 

available at each frequency (Figure 7-18a-c). This information provides further 
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insight about the effectiveness of each source type in extracting R-wave 

parameters from each sub-array, as well as the reliability of data statistics. 

 

Figure 7-16. Influence of the source type on the fundamental mode R-wave dispersion 

and attenuation curve, with reference to HB-HN: a) Median estimated dispersion curves; 

b) Median estimated attenuation curves; c) Logarithmic standard deviation of the 

estimated dispersion curves; d) Logarithmic standard deviation of the estimated 

attenuation curves. 

On the one side, the investigated frequency range does not strongly depend on 

the source type (Figure 7-18a-b). Indeed, the upper boundary of the available 

frequencies is about 30 Hz (i.e., λ = 5 m) for both the sledgehammer and the 

stepped sine, whereas the use of the chirp signal limits the characterization of the 

fundamental-mode R-wave at 20 Hz (i.e., λ = 8 m). At higher frequencies, no data 

are available because of the strong decay in the contribution of R0 to the 

wavefield at high frequencies. On the other side, shaker data extend at lower 

frequencies (down to 5 Hz), whereas sledgehammer-based data stop at f = 7 Hz. 

However, the maximum identified λ varies between 50 m and 60 m, entailing an 

almost identical level of investigated depth for all the considered source types. 
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As for the quality of the estimated R-wave parameters, resulting dispersion 

data are strongly similar to each other, in terms of both the mean values and data 

variability. Specifically, σlnVR is close to 0.02 at f > 10 Hz, whereas it increases up 

to 0.1 ÷ 0.15 at low frequencies. No significant influence of the source type is 

observed, although sledgehammer-based data exhibit slightly larger variability at 

high frequencies. Instead, larger differences characterize the estimated attenuation 

curves. Deviations are not significant when focusing on the median value, except 

some divergence at f < 10 Hz. The related variability is large, with σlnαR ranging 

between 0.3 at intermediate-to-high frequencies and 0.5 ÷ 0.7 at f < 10 Hz. In 

general, sledgehammer-based data exhibit larger variability, especially at lower 

frequencies, because of the sensibly lower signal-to-noise ratio in this range. The 

negative influence of incoherent noise into the quality of the estimates also 

emerges in the small number of data points associated with this kind of source 

(around 5 ÷ 6), whereas other techniques provided up to 9 values. 

 

Figure 7-17. Influence of the source type on the first higher mode R-wave dispersion and 

attenuation curve, with reference to HB-HN: a) Median estimated dispersion curves; b) 

Median estimated attenuation curves; c) Logarithmic standard deviation of the estimated 

dispersion curves; d) Logarithmic standard deviation of the estimated attenuation curves. 
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When focusing on R1, the influence of the source used to generate 

experimental data on the estimated R-wave parameters is negligible, in a similar 

way to what occurred to the inter-method differences. Specifically, both the mean 

estimates (Figure 7-17) and the covered frequency range (Figure 7-18c-d) closely 

match with each other. Regardless the source type, R-wave parameters are 

identified at frequencies between 9 Hz and 70 Hz (i.e., λ = 3 ÷ 60 m). Besides, the 

number of elementary data points is similar. 

As for data variability, σlnVR ranges on average around 0.02 at all the 

investigated frequencies. Instead, σlnαR grows from 0.25 at high frequencies up to 

0.5 at low frequencies. Interestingly, data scatter is poorly sensitive on the source 

type. A potential reason behind the high quality in results and the limited 

influence of source characteristics in R1 data may be its dominant role in the 

recorded wavefield, for which even low-energy sources are capable of properly 

exciting it with small noise levels. 

 
Figure 7-18. Assessment of the inter-source differences for the R-wave dispersion and 

attenuation curves, with reference to HB-HN. Each plot contains bars spanning along the 

frequency range at which each method returned estimates of R-wave dispersion data (top 

row) and attenuation data (bottom row). The color scale is a function of the number of 

elementary data points returned at each frequency: a-c) Fundamental mode; b-d) First 
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higher mode. The numeric values in brackets denote the maximum and the minimum 

detected wavelength. 

In summary, the use of different source types returns, on average, equivalent 

dispersion and attenuation estimates. However, the use of high-energy controlled 

sources rather than a sledgehammer allows to investigate a slightly broader range 

of frequencies or wavelengths. Most of all, sledgehammer-based data tend to 

exhibit higher levels of variability. A potential reason behind such discrepancy 

can be linked with the energy level associated with each source mechanism 

combined with the incoherent ambient noise that characterizes the site, that results 

in different frequency characteristics of recorded data and in a different quality 

level. Indeed, the sledgehammer is not a high-energy source and the signal-to-

noise ratio of recorded traces might be low. Thus, the traces amplitude might be 

corrupted by noise. However, the mean trend in the attenuation curve can still be 

captured. This result positively contributes to the capability of the sledgehammer 

for the attenuation estimate. This is helpful for ordinary applications, where high-

energy sources are not typically available. 

7.3 Influence of receiver characteristics: geophones vs. 

distributed acoustic sensing 

7.3.1 The DAS technique 

The distributed acoustic sensing (DAS) records perturbations induced on a fiber-

optic cable by the propagation of mechanical waves in the ground. 

Pioneering applications of the DAS technology were mainly for industrial 

purposes, as perimeter security (Choi et al., 2003) and railroad and pipelines 

monitoring (Strong et al., 2008; Costley et al., 2018). Then, several studies 

demonstrated the efficiency of this technology for seismological studies (e.g., for 

the structural and dynamic characterization of earthquake sources; Jousset et al., 

2018), borehole monitoring (e.g., Mestayer et al., 2011; Daley et al., 2013; Parker 

et al., 2014), landslide monitoring (Lancelle, 2016), traffic monitoring (Lancelle, 

2016), and invasive geophysical tests (e.g., Mateeva et al., 2014; Kuvshinov, 

2016). Furthermore, this system has been widely used to measure ambient noise 

vibrations for near-surface characterization (e.g., Hornman et al., 2013; Freifeld et 

al., 2016; Yavuz et al., 2016; Ajo-Franklin et al., 2017). As for active-source 

SWM, only a few studies focused on the monitoring the quality of surface waves 

generated by active sources (Daley et al., 2013) and addressed the application of 

the DAS acquisition system to SASW surveys (Costley et al., 2018) and MASW 
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testing (Galan-Comas, 2015; Lancelle, 2016; Costley et al., 2018; Song et al., 

2018). 

In MASW testing, the main advantage of the DAS technology with respect to 

conventional acquisition devices is the enhanced spatial resolution using low-cost 

instrumentation. Indeed, the fiber-optic allows dense spatial sampling of the 

wavefield, potentially along a broad array extent. Thus, this device can return 

spatially un-aliased strain data over a broad frequency band useful for both 

seismological and geophysical studies. Conversely, achieving the same spatial 

resolution with ordinary receiver arrays would require a large number of sensors, 

entailing severe economic and logistic issues. Furthermore, high quality 

measurements can be even obtained from conventional fiber-optic cables, that are 

not specifically designed for seismic investigation and already deployed in the 

ground (e.g., the telecommunication infrastructure; Jousset et al., 2018). 

Therefore, the per-channel cost is moderately low. Finally, this technology is less 

sensitive to the ground coupling than geophones (Bakulin et al., 2020). 

Applications of this technology to MASW surveys demonstrated that the 

dispersion estimates well match those obtained from geophone measurements 

(Galan-Comas, 2015; Vantassel et al., 2022). Furthermore, the DAS acquisition 

tends to better identify higher propagation modes (Galan-Comas, 2015). However, 

fiber-optic systems are uniaxial devices, recording only perturbations acting in the 

longitudinal direction, and the correct location of measurement points may be 

uncertain in some cases (e.g., in the case of fiber overstuffing; Bakku, 2015). 

Also, the signal-to-noise ratio of measured data is lower compared to geophones. 

The lower quality in recorded traces limits the repeatability of the survey (Costley 

et al., 2018) and the reliability of the estimated wave parameters in the presence of 

weak signals (Mestayer et al., 2012). Finally, as it will be explained in the next 

section, the measurement technique involved in this technology partially limits the 

minimum investigable wavelengths at greater values than the one defined by the 

Nyquist-Shannon theorem (Lancelle, 2016; Bakulin et al., 2020). Therefore, the 

characterization of high-frequency R-wave data might be challenging. 

7.3.2 Principles of processing DAS data 

DAS measurements do not return the same output as the geophones, and a proper 

interpretation should account for the differences in acquired data. On the one side, 

geophones record the particle motion at discrete points along the acquisition array, 

and the output is a time history of the particle velocity at the location where the 

instrument is installed. Instead, the DAS system records a spatially-averaged axial 

strain er(r,ω) induced on the fiber optic by the passing wavefield. Indeed, the 
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passage of mechanical waves induces an axial strain in the fiber-optic cable, that 

is coincident with the horizontal, in-line strain εr(r,ω) in the ground, when a 

proper coupling is ensured. An interrogator unit reads the consequent shift in 

phase-lag of a laser pulse traveling in the cable, induced by the variation in length 

of the cable itself. However, the device does not perform a point measurement, 

but it reads the variation in phase difference over a reference length 2g, called 

gauge length, around the investigated location, from which the average strain 

er(r,ω) is derived (Figure 7-19a; Grattan and Sun, 2000). The resulting average 

strain at each measurement point can be linked with the displacement, as it equals 

the difference of the radial displacement at two points separated by a distance 

equal to the gauge length (Mateeva et al., 2014; Bakku, 2015; Jousset et al., 2018; 

Vantassel et al., 2022): 
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Note that the gauge length is not necessarily linked with the channel 

separation, i.e. the distance between two subsequent measurement points. 

Depending on their mutual relationship, the resulting strain measure may be 

obtained from independent windows or partially overlapping ones. 

 

Figure 7-19. a) Schematic model of the DAS system; b) Amplitude response. 

As the DAS device records a strain-related quantity and it provides a spatially 

averaged measure of the strain field, the interpretation of recorded data is slightly 

more complex with respect to conventional acquisition devices. On the one side, 

the gauge length affects the quality of spatial sampling, as it limits the range of 

investigable wavelengths. For instance, let us consider the simple case where the 

radial displacement field is spatially harmonic, with no amplitude decay. In this 

case, it is demonstrated that the recorded average strain er(r,ω) is a scaled version 

of the “true” strain field εr(r,ω), and the scaling factor is a sinc function depending 

on both 2g and the wavenumber k characterizing the wavefield: 
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Therefore, the averaging procedure is equivalent to the application of a 

lowpass filter (i.e., a sinc filter) in the wavenumber domain, which tends to 

significantly attenuate high-wavenumber waves, i.e. short wavelengths. Besides, 

the sinc filter includes notches when 2g/λ is an integer. Therefore, when the gauge 

length is an integer multiple of the passing wavelength, the recorded er(r,ω) is 

null. Indeed, in this case the gauge undergoes both negative and positive strains in 

equal measure, that cancel out in the averaging procedure. Thus, the 

corresponding wave components cannot be detected by the DAS system, and they 

are lost. The loss of information mainly affects the high-frequency components of 

the R-wavefield, as they usually exhibit short λ. An increase in 2g induces a 

greater loss of information of short-wavelength data, although the signal quality 

improves significantly, as the signal-to-noise ratio is greater (e.g., Bakulin 2020). 

For this reason, the design of the optimal gauge length is a critical task, that 

should account for the acquisition setup, for the quality of the source, the 

magnitude of incoherent noise, and the desired range of investigated wavelengths. 

A possible strategy to overcome the resolution issues induced by the spatial 

averaging consists in carrying out multiple measurements, where the gauge length 

is modified in each step (Bakku, 2015). 

A proper interpretation of DAS-based surveys should account for the peculiar 

nature of the recorded data, as it returns a spatially-averaged radial strain. Indeed, 

usual processing techniques estimate R-wave parameters from displacement data, 

according to a planar or a cylindrical scheme. er(r,ω) does not exhibit the same 

spatial variation as the radial displacement ur(r,ω), and the different geometric 

spreading needs to be modeled to obtain reliable estimates of the R-wave 

parameters. To better understand the entity of this difference, let us consider a 

synthetic case, where the recorded wavefield consists of a Rayleigh wave 

recorded moderately far from the source, characterized by kR = 0.1 rad/m and αR = 

0.0015 rad/m. In this case, ur(r,ω) can be described through the asymptotic 

approximation of the solution for the Lamb’s problem: 

 ( )
1 1

, R R Ri r r ik r

r r ru r e e e
r r

 − − −
=  = 

KA A  (7.4) 

The expression is equivalent to that in Eq. 3.38, and the parameter Ar 

includes all the information not linked with the spatial dependence (i.e., the source 

term, the initial phase, and the viscoelastic parameters). The radial strain εr(r,ω) is 

obtained as the derivative with respect to the spatial coordinate: 
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Differently from the displacement field, the strain phase is no longer linear 

with r, hence the planar model is no longer valid. Besides, the spatial variation of 

the strain amplitude now involves a more complex geometrical spreading 

function, also depending on the (unknown) R-wave parameters. 

Figure 7-20 compares the spatial variation of ur(r,ω) and εr(r,ω), in terms of 

the amplitude and the phase. Data for er(r,ω) are included as well. Amplitude data 

are reported as corrected amplitude, defined as the logarithm of the amplitude 

scaled by the square root of the offset. Indeed, when the spatial change of 

amplitude is compatible with the one of a plane wave (as in the case of ur(r,ω)), 

the corrected amplitude assumes a linear trend with the offset. The difference is 

negligible at large r, whereas the discrepancy becomes relevant at short offsets. 

The amplitude deviation is significant close to the source, where the relative 

difference rises up to 100%, but it rapidly decays as r increases. Instead, the 

relative difference in the phase is less than 5%. The discrepancy between er(r,ω) 

and εr(r,ω) is the result of the complex variation of the radial strain with the 

distance. At great distances, both the strain corrected amplitude and phase exhibit 

a quasi-linear variation with the distance from the source. In this case, the 

averaging procedure does not introduce significant changes with respect to the 

actual strain. Instead, close to the source, the relevant changes in both amplitude 

and phase induce large differences between er(r,ω) and εr(r,ω). 
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Figure 7-20. Radial displacement ur(r,ω) vs. radial strain εr(r,ω) vs. average radial strain 

er(r,ω) induced by a cylindrical wave, characterized by kR = 0.1 rad/m and αR = 0.0015 

rad/m: a) Corrected amplitude; b) Phase; c) Relative difference in the corrected amplitude 

between the radial strain and the average radial strain; d) Relative difference in the phase 

between the radial strain and the average radial strain. 

In view of the peculiar geometric attenuation exhibited by er(r,ω), an 

interesting aspect to be investigated consists in the influence of the specific model 

adopted to interpret the recorded wavefield in the DAS system. Indeed, a proper 

processing scheme for estimating R-wave parameters should account for the 

spatial variation of er(r,ω), with an adequate schematization of the geometric 

spreading. On the other hand, at the current state of knowledge, the existing 

processing techniques do not allow an explicit modeling of average strain data. 

For such reason, this study investigates three alternative strategies to infer R-wave 

parameters from the recorded average radial strain: displacement-based 

beamforming, strain-based beamforming, and average strain-based beamforming. 

 

Displacement-based beamforming 
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According to this scheme, er(r,ω) may be interpreted as a measure of the radial 

displacement wavefield. Although this assumption violates the consistency with 

the recorded data, the spatial variation of the average strain is quite compatible 

with the one of ur(r,ω), except at short distances. Therefore, the use of this model 

might result in biased estimates of the wave parameter, but the error may be small. 

Besides, this scheme allows the use of well-known and robust processing 

techniques. For this reason, this is the most commonly adopted processing scheme 

to interpret fiber-optic data. 

In this case, the adopted estimator is the CFDBFa technique, wherein H1
(2)(r) 

replaces H0
(2)(r) in the trial steering vector to properly model the spatial variation 

of the radial displacement. 

 

Strain-based beamforming 

This alternative assumption interprets er(r,ω) as equal to εr(r,ω). This scheme 

gains stronger physical consistency, as a strain-based parameter is modeled 

together with the related geometric spreading. However, the spatial averaging is 

still disregarded. In this study, the derivation of the R-wave parameters from the 

(assumed) radial strain data adopts a modified version of the CFDBFa, 

implementing a corrected steering vector to incorporate the geometrical features 

linked with the radial strain. Specifically, the wavenumber estimate exploits the 

following steering vector, dependent on the trial wavenumber kt: 

 ( ) ( ) ( )1

T
iarg iarg

, ,r t r t NH k r H k r

tk e e
− − =

 
e  (7.6) 

where the function Hr is the spatial derivative of H1
(2)(x), which mimics the spatial 

variation of the phase of the radial strain field: 
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As for the attenuation estimate, the steering vector a(kt) is updated as follows: 

 ( ) ( ) ( ),0 1 ,0

T
iarg iarg

, ,r t r t NH r H r

t e e
− − =

 
a

k kk  (7.8) 

where the function Hr,0 is the power of Hr(r) to the imaginary unit. 

 

Average strain-based beamforming 

An accurate modeling of the recorded data explicitly models the spatial variation 

of er(r,ω). In this case, the CFDBFa can be updated by properly modifying the 

steering vector, as follows: 
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where the function Kr is the spatial average of H1
(2)(x), which accounts for the 

spatial variation of a theoretical average radial strain field: 
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As for the attenuation estimate, the steering vector a(kt) is defined as follows: 

 ( ) ( ) ( ),0 1 ,0
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where the function Kr,0 is the power of Kr(r,ω) to the imaginary unit. 

The explicit modeling of the average radial strain allows to directly 

incorporate the influence of the averaging procedure, thus accounting for the 

specific acquisition layout, described in terms of the gauge length 2g. 

 

The definition of these three alternative strategies demonstrates the flexibility 

of the newly proposed method to handle with different wavefield conditions, as 

only a slight update of the trial steering vectors defined in Eq. 5.8 and 5.13 is 

required. 

Table 7.3 summarizes the estimated wave parameters from the er(r,ω) data 

represented in Figure 7-20 (corresponding to a wave with characterized by kR = 

0.1 rad/m and αR = 0.0015 rad/m), for the three alternative schemes. The 

displacement beamformer underestimates both kR and αR., with a significant error 

in the latter. The bias is an effect of the difficulties of the displacement-based 

cylindrical beamforming in properly describing the spatial variations of both the 

amplitude and the phase of er(r,ω). On the converse, an explicit modeling of the 

average strain ensures a perfect matching of the theoretical wave parameters, as 

the geometry of the wavefield is properly accounted for. Interestingly, the use of a 

strain-based scheme returns reliable wavenumber data, whereas αR is slightly 

overpredicted, although the error is rather small. Indeed, er(r,ω) and εr(r,ω) 

usually exhibit similar spatial variation, with some divergence in the amplitude 

only close to the source. Thus, the derivation of dispersion data might refer to 

simplified models not fully compatible with the geometric features of the 

wavefield, as the phase information is poorly sensitive on this. Instead, an 

accurate modeling of the geometric features of the wavefield is crucial when 

attenuation estimates are of interest. By the virtue of its reliability, the 

interpretation of the HB-DAS data will adopt the CFDBFaMF procedure, 

modified to implement the average strain-based beamforming. 
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Table 7.3. Estimated wavenumber and phase attenuation from planar radial average strain 

data (representative of a Rayleigh wave with kR = 0.1 rad/m and αR = 0.0015 rad/m), 

according to the displacement-based beamforming, strain-based beamforming, and 

average strain-based beamforming approaches. The values in brackets are the ratio 

between estimated and true values, that provide a measure of the entity of the error. 

Beamforming method 
Displacement-

based 

Strain-

based 

Average 

strain-

based 

True value 

Estimated wavenumber ke (rad/m) 

[ke / kR] 

0.0920 

[0.9200] 

0.1000 

[1.0000] 

0.1000 

[1.0000] 

kR = 0.1 

rad/m 

Estimated attenuation αe (rad/m) 

[αe / αR] 

0.00030 

[0.2000] 

0.00153 

[1.0200] 

0.00150 

[1.0000] 

αR = 0.0015 

rad/m 

 

7.3.3 Data processing at Hornsby Bend 

The interpretation of the data acquired at the HB-DAS array has a twofold aim. 

On the one side, the possibility of extracting both dispersion and attenuation data 

is addressed, with a focus on the issues linked with the processing scheme and the 

modeling of geometric spreading of the wavefield. Furthermore, the reliability of 

the estimated R-wave parameters is evaluated, by carrying out a comparison with 

results from the HB-GP array. For this reason, the analysis focuses on a 94 m-long 

portion of the fiber-optic cable coincident with the geophone array, so that they 

sample a comparable volume of the soil deposit. Besides, this study refers to 

waveforms generated at shot points located at 5 m, 10 m, 20 m, and 40 m far from 

the closest measurement point, whereas reversal shots are not included due to the 

smaller signal-to-noise ratio. 

As an example, Figure 7-21a-b reports the time histories of recorded data in 

the HB-GP and the HB-DAS arrays, together with an estimate of the signal-to-

noise ratio as a function of the frequency (Figure 7-21c-d). As the noise power 

derives from the pre-trigger and the post-trigger time windows only, this estimate 

may not be fully representative of the actual noise level. Indeed, the resulting 

signal-to-noise ratio is here represented for illustration purposes. Furthermore, 

Figure 7-21e-f reports the f-k spectral images of the two waveforms, both obtained 

according to the cylindrical beamformer for comparison purposes. Data refer to 

the wavefield generated from the active source located at an offset equal to 10 m. 

The DAS acquisition scheme returns a dense and detailed picture of the 

wavefield, by the virtue of the small channel separation – data are measured 

approximately every 1 m along the cable. The increased number of measurement 

points enhances the resolution of the spectral image, allowing the clear 

identification of various vibration modes over a broad range of frequencies 
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(Figure 7-21f). However, the quality of the signal is generally poorer than the 

recorded velocity data in the geophone array, as highlighted by the slightly lower 

levels of the signal-to-noise ratio (Figure 7-21c-d), with sharper receiver-to-

receiver variations at high frequencies. The reduced quality maps into blurred and 

more confused spectral peaks in the f-k representation of the recorded average 

strain data. 

 

Figure 7-21. Recorded data at HB-GP (left column) and HB-DAS (right column). Data 

refer to the wavefield generated from the active source located at an offset equal to 10 m: 

a-b) Time histories of particle velocity and average radial strain, respectively; c-d) 

Estimated signal-to-noise ratio, as a function of the frequency and the receiver location; 

e-f) f-k spectral images. 
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Figure 7-22 compares the estimated modal dispersion curves and attenuation 

data for the first two propagation modes, obtained from the interpretation of the 

HB-DAS and the HB-GP data. In this case, the data distribution is represented by 

the interval around the median value, the width of which equals one logarithmic 

standard deviation. Data statistics are obtained by combining results from 

different source offsets, in consistency with the multi-offset approach (Wood 

2014). 

In general, dispersion and attenuation data well match with each other, 

although the DAS data do not allow to obtain reliable values at low frequencies. 

This partially limits the capability of the DAS system in characterizing deeper 

layers. However, the corresponding degree of data variability is generally less or 

equal the one affecting geophone-based estimated parameters. This result is quite 

surprising, as the signal-to-noise ratio of DAS records is slightly lower, hence 

quite high variability in the derived attenuation was expected. A possible reason 

behind the low data scatter can be the remarkably larger number of measurement 

points that the DAS system includes, that provides a more exhaustive dataset of 

wavefield values to better constrain the velocity and the attenuation estimates. an 

effective constraint in the phase information. 

In summary, the DAS technology can be successfully used to jointly estimate 

the phase dispersion and attenuation data, obtaining the same level of reliability of 

the canonical geophone array. Furthermore, the stronger influence of incoherent 

noise is balanced by the strong increase in the number of measurement points, 

thus resulting in a reduction in data variability, entailing an improvement in the 

accuracy of this system. As a potential solution to cope with this issue, it is 

recommended to carry out multiple measurements with variable gauge length, 

thus managing different levels of signal-to-noise ratio. 
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Figure 7-22. Comparison between the estimated dispersion and attenuation curves from 

the HB-DAS and the HB-GEO data: a-b) Resulting dispersion (a) and attenuation (b) 

curves for the fundamental mode; c-d) Resulting dispersion (c) and attenuation (d) curves 

for the first higher mode. Estimated data are represented in terms of intervals given by 

one logarithmic standard deviation around the median value. 

7.4 Variability in dispersion and attenuation data 

The characterization of the uncertainties affecting experimental dispersion and 

attenuation data in MASW surveys is not a trivial task, and a standard procedure 

for their quantification has not been developed yet. Indeed, the difficulty of 

separating epistemic uncertainties and aleatory variability does not allow a robust 

identification of the different components. Furthermore, uncertainties are strongly 

dependent on the acquisition layout as well as on site-specific conditions, both in 

terms of the stratigraphy (e.g., the entity of lateral variations) and the presence of 

incoherent noise. Finally, the estimated wave parameters are the result of complex 

processing algorithms, involving various computational steps, hence a direct 

mapping from uncertainties of measured displacement data into uncertainties of 

the estimated R-wave parameters might be complicate. On the one side, 
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regression-based techniques include statistical procedures that allow to directly 

obtain the wavenumber and the attenuation uncertainties from those affecting the 

measured displacement amplitude and phase (Strobbia and Foti, 2006). Instead, 

transform-based techniques often involve several complex and highly nonlinear 

computation steps, hence a straightforward propagation of measurement errors 

into parameters errors is not feasible. Therefore, the correct quantification of data 

uncertainties should refer to adequate statistical tools (e.g., FOSM), although there 

is no consensus about the best strategy to be adopted. 

The most recommended approach consists in a direct statistical inference on 

the estimated R-wave parameters (Lai et al., 2005b). In this case, a robust 

quantification of uncertainties requires the performance of multiple 

measurements, by modifying the geometry of the array (whenever possible) and 

the offset of the active source, to capture the influence of spatial variations in soil 

mechanical properties. Besides, this procedure returns a suite of experimental 

dispersion and attenuation curves, that facilitates the identification of outliers or 

modeling issues (e.g., biases due to near-field effects). Furthermore, multiple 

source repetitions at each shot location should be carried out to tackle the 

influence of incoherent noise. Its influence on data uncertainty is not usually 

modeled in an explicit way and it is removed through a stacking procedure – 

typically, in the frequency domain. 

The inference of statistical parameters for both the dispersion and the 

attenuation curves should account that these quantities are estimated 

simultaneously from the same set of experimental data. Therefore, a rigorous 

statistical model should identify a joint distribution that describes the probabilistic 

variations in a coupled way. However, statistical inference of multi-dimensional 

probabilistic distribution is a complex operation and only a few procedures are 

available. Indeed, the characterization and the description of a multi-dimensional 

random variable is much more complex than in the univariate case, as the suite of 

sufficient statistics does not only include descriptors about the location and the 

scatter for each variable, but also a quantity providing the mutual relationship 

between them (i.e., a correlation parameter). Furthermore, the proper choice of 

statistics requires a prior assumption about the related joint distribution, but robust 

statistical criteria for its identification are currently not available or they apply 

only for a rather narrow variety of distributions. A potential solution consists in a 

preliminary investigation of the statistical features of the single variables. Indeed, 

several tools are available for inspecting univariate distributions and the 

characteristics of the marginal distributions can provide useful indications for an 

effective selection of the multivariate distribution. 
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As for the phase velocity, a conventional assumption models experimental 

data as a normally distributed random variable. The validity of this hypothesis has 

been first demonstrated by Marosi and Hiltunen (2004), based on the visual 

inspection of the empirical frequency distribution. Lai et al. (2005b) and 

Olafsdottir et al. (2018) confirmed that this assumption is reasonable in the 

typically investigated frequency range, by using devoted statistical tests (e.g., chi-

squared test and Shapiro-Wilk’s test). However, other Authors claimed that the 

theoretical statistical distribution of the phase velocity is asymmetric especially at 

low frequencies (Strobbia, 2003). In this range, O'Neill (2004) observed that a 

good matching can be achieved by assuming a Lorentzian distribution for velocity 

data. Instead, only few studies attempted to infer statistical parameters on the 

estimated phase attenuation, often relying on the assumption of normally 

distributed data. However, no rigorous demonstration about the related statistical 

distribution has been provided yet. 

This study investigates the possibility of modeling dispersion and attenuation 

data according to the normal and the lognormal distribution. The reference dataset 

is the collection of experimental data that derives from the combination of the 

HB-H5 and HB-HN arrays at the Hornsby Bend site in Texas, for different active 

sources (Figure 7-23; see Chapter 6). Experimental dispersion and attenuation 

curves are computed at 51 log-spaced frequency values, spanning between 3 Hz 

and 100 Hz. This specific sampling corresponds to the frequencies of the 

harmonics applied in the stepped sine signal. Besides, the logarithmic scale 

guarantees an adequate balance between low-frequency samples and high-

frequency data, thus ensuring an adequate constraint both for near-surface and 

deep layers (Vantassel and Cox, 2021b). Furthermore, the moderately large 

number of sample points ensures a consistent reconstruction of the trend and of 

singular points of experimental data (e.g., Teague et al., 2018a; Vantassel and 

Cox, 2021b). As discussed in Section 7.1.3, the recorded wavefield at the HB site 

is the composition of two R-wave propagation modes, deemed to be 

representative of the fundamental and the first higher mode, hereafter labeled as 

R0 and R1, respectively. 
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Figure 7-23. Elementary data points obtained from the combination of results of the HB-

H5 and HB-HN arrays, for different locations and types of active source: a) Estimated 

dispersion curves; b) Estimated attenuation curves. 

Usual modeling of variability of experimental data relies on the normal and 

the lognormal scheme. The main advantage of the normal and the lognormal 

distributions is the capability of describing data variability by means of a few 

parameters. When using a Gaussian model, sufficient statistics for describing data 

distribution are the mean (mV and mα) and the standard deviation (σVR and σαR) – 

alternatively, the latter may be replaced by the Coefficient of Variation (CoV), 

defined as the ratio between the mean and the standard deviation. Instead, 

lognormally distributed data can be effectively described in terms of the median 

(μV and μα) and the logarithmic standard deviation (σlnVR and σlnαR). 

At least from the statistical point of view, both the normal and the lognormal 

model well describe the distribution of experimental data. On the one side, the 

normal model well suits the physical phenomenon involved in R-wave 

propagation, as measured data reflect the influence of a large volume of soil, 

within which the effects of individual elements add up to produce the macroscopic 

response. Therefore, the actual measure might be seen as an averaging process, 

which tends to produce a normal distribution by virtue of the central limit theorem 

(Baecher and Christian, 2005). However, the selection of an appropriate model 

should also account for additional constraints due to the physical nature of the 

problem. Indeed, both the phase velocity and the phase attenuation are positive-

definite quantities, hence the lognormal distribution model is more suitable for 
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their description. For instance, Figure 7-24 provides a visual comparison of the 

distribution of the phase velocity and phase attenuation values of the elementary 

data points. Data refer to R1, with reference to f = 13 Hz and f = 35 Hz. As for 

dispersion data, the normal and the lognormal distribution produce identical 

curves, both compatible with the empirical data distribution (Figure 7-24a-c). A 

similar result is valid for high-frequency attenuation data, as the degree of 

similarity is still high (Figure 7-24d). Instead, using a normal or a lognormal 

model to describe low-frequency attenuation values produce significantly 

different theoretical distributions (Figure 7-24b). In this case, the lognormal 

distribution is the preferred choice because it allows to model highly-variable data 

(as the phase attenuation) without including negative values. Instead, the Gaussian 

scheme allows some probability even for negative attenuation data, hence this 

model is less consistent from the physical viewpoint. Furthermore, this result is 

consistent with the Monte Carlo simulations introduced in Chapter 5 to simulate 

the influence of incoherent noise. 

 

Figure 7-24. Comparison between the theoretical distribution, according to the normal 

and the lognormal model, and the empirical one, described in terms of a histogram, for 
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R1 data: a) Experimental phase velocity at f = 13 Hz; b) Experimental phase attenuation 

at f = 13 Hz; c) Experimental phase velocity at f = 13 Hz; d) Experimental phase 

attenuation at f = 35 Hz. 

The effectiveness of the lognormal scheme in describing data variability is 

also demonstrated in Figure 7-25, which tests some the effectiveness of using 

such distribution for describing the R0 and the R1 dispersion and attenuation data, 

at two selected frequencies, namely f = 8.6 Hz and f = 20 Hz for R0, and f = 13 Hz 

and f = 35 Hz for R1. The selected frequencies contain different amounts of 

experimental data, with a different degree of variability. For each frequency, the 

degree of fitting is assessed by means of a quantile-quantile (Q-Q) plot, which 

compares empirical and predicted quantile data, according to the normal or the 

lognormal model. The fitting quality is good when the data points align along a 

straight line with inclination of 45°. The fitting quality is moderately poor for R0 

data (Figure 7-25), especially when focusing on the phase attenuation. However, 

the drift in the trend may be a consequence of difficulties in characterizing the 

amplitude decay of this propagation mode, because of its weakness compared 

with R1. Instead, the degree of matching significantly improves when considering 

R1. This result is valid for both the normal and the lognormal model. Therefore, 

interpreting the variability of dispersion or attenuation data either with a normal 

distribution or a lognormal distribution may represent a reasonable choice. 

 

Figure 7-25. Lognormal quantile-quantile (Q-Q) plots for both the fundamental mode 

(R0) and the first higher mode (R1) data. The first row contains Q-Q plots for the phase 

velocity VR, whereas the second row contains Q-Q plots for the phase attenuation αR; each 

column correspond to a specific frequency for a given propagation mode: a-e) Lognormal 
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Q-Q plots of the experimental phase velocity (a) and phase attenuation (e) for R0 at f = 

8.6 Hz; b-f) Lognormal Q-Q plots of the experimental phase velocity (c) and phase 

attenuation (f) for R0 at f = 20 Hz; c-g) Lognormal Q-Q plots of the experimental phase 

velocity (c) and phase attenuation (g) for R1 at f = 13 Hz; d-h) Lognormal Q-Q plots of 

the experimental phase velocity (d) and phase attenuation (h) for R1 at f = 35 Hz. 

On the other hand, although both data may appear as lognormally distributed, 

this does not guarantee that they belong to a jointly lognormal bivariate 

distribution. Indeed, the nature of marginal distribution does not necessarily imply 

any specific constraint on the joint distribution. Therefore, additional statistical 

tests should be carried out to demonstrate whether the data vector can be 

described by a specific joint bivariate distribution. However, currently there is no 

robust statistical test to assess whether multidimensional data belong to a specific 

multivariate distribution. This study refers to the graphical tool represented by the 

χ2-plot, which represents a generalization of the Q-Q plot into the multivariate 

case. In this case, theoretical and observed quantiles are replaced by the chi-

squared value and the squared Mahalanobis distance (SMD). The interpretation 

scheme is the same of the Q-Q plot, namely the assumed distribution model well 

describes experimental data when the data points align along a straight line with 

inclination of 45°. For instance, Figure 7-26 represents the χ2-plot for the coupled 

distribution of the elementary phase velocity and phase attenuation values, to 

assess the compatibility with the joint lognormal model. Figure 7-26a-b includes 

R0 data at f = 8.6 Hz and f = 20 Hz, respectively; Figure 7-26c-d refers to R1 data 

at f = 13 Hz and f = 35 Hz. In all the cases, data tend to be aligned along a straight 

line with unitary slope (with some drift for R0 data). Therefore, the assumed 

distribution is a reasonable choice to model data variability. Similar results apply 

for the bivariate normal distribution. 
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Figure 7-26. Bivariate lognormal χ2-plot for R0 and R1 data: a) Bivariate lognormal χ2-

plot for the R0 experimental phase velocity and attenuation at f = 8.6 Hz; b) Bivariate 

lognormal χ2-plot for the R0 experimental phase velocity and attenuation at f = 20 Hz; c) 

Bivariate lognormal χ2-plot for the R1 experimental phase velocity and attenuation at f = 

13 Hz; d) Bivariate lognormal χ2-plot for the R1 experimental phase velocity and 

attenuation at f = 35 Hz. 

Thus, a reasonable scheme to describe the joint variability for both dispersion 

and attenuation data at each frequency can refer to the bivariate normal or the 

bivariate lognormal distribution, at almost all the investigated frequencies. When 

using a bivariate Gaussian model, sufficient statistics for describing data 

distribution are the mean vector (mVR,αR), composed by the mean values of the 

marginals (i.e., mVR and mαR) and the covariance matrix (ΣVR,αR), which depends 

on the standard deviation of the marginals (i.e., σVR and σαR) and the correlation 

coefficient ρVR,αR. A bivariate lognormal distribution refers to equivalent 

parameters, namely the median vector (μVR,αR), composed by the mean values of 

the marginals (i.e., μVR and μαR) and the covariance matrix (ΣlnVR,lnαR), which 

depends on the logarithmic standard deviation of the marginals (i.e., σlnVR and 

σlnαR) and the correlation coefficient ρlnVR,lnαR. These quantities can be derived 

from the elementary data points of the phase velocity and phase attenuation 

curves, frequency by frequency. Note that, however, the lognormal scheme is 

preferred. 

Figure 7-27 summarizes the statistics obtained from the experimental 

dispersion and attenuation data, according to the bivariate lognormal scheme. The 

variability in the phase velocity is rather low, with σlnVR close to 0.04 for R0 data 
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and 0.01 for R1 data. This value is compatible with the typical CoV of dispersion 

data, which ranges between 2% and 10% (Marosi and Hiltunen, 2004; O'Neill, 

2004; Lai et al., 2005b; Foti et al., 2009; Comina et al., 2011; Cox et al., 2014; 

Garofalo et al., 2016a; Garofalo et al., 2016b; Olafsdottir et al., 2018; Teague et 

al., 2018a; Teague et al., 2018b). Indeed, σlnVR and the CoV are similar when the 

corresponding values are quite small. Furthermore, σlnVR decreases as the 

frequency gets higher, albeit with a further increase at very high frequencies, 

compatibly with Lai et al. (2005b) and Passeri et al. (2021). The large variability 

of low-frequency data is the combined result of the poor resolution of the SWM at 

long wavelengths and the difficulty of various sources of generating high-energy 

signals at low frequencies (Passeri, 2019). Instead, at high frequencies, the greater 

scatter is an effect of small-scale heterogeneities, attenuation and spatial aliasing 

(Passeri, 2019). 

As for the attenuation variability, σlnαR is one order of magnitude greater than 

the corresponding σlnVR, as it oscillates around 0.2÷0.3 and it increases up to 1 at 

low frequencies. Similar levels of variability were observed by Spang (1995), Rix 

et al. (2000), Verachtert (2018) and Bergamo et al. (2019). Furthermore, Figure 

7-27e-f reports the estimated correlation coefficients, with a coloring scheme 

mapping the related p-value, that quantifies the reliability of the estimated 

correlation. The observed values of ρlnVR,lnαR are generally small. Furthermore, the 

corresponding p-value is often above the significance threshold (fixed at 0.05), 

entailing that the correlation is not significantly different from zero, from the 

statistical viewpoint. Therefore, a weak level of correlation exists between the 

estimated phase velocity and phase attenuation values. Due to weak correlation 

level, this information will not be reported in the next sections, and the analysis 

mainly focused on the median and standard deviation estimates. 
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Figure 7-27. Inferred data statistics for the combined HB-HN and HB-H5 dataset, 

interpreted according to a bivariate lognormal distribution: a) Median phase velocity μVR; 

b) Median phase attenuation μαR; c) Logarithmic standard deviation of the phase velocity 

σlnVR; d) Logarithmic standard deviation of the phase attenuation σlnαR; e) Correlation 

coefficient ρlnVR,lnαR for R0 data, as a function of the frequency; f) Correlation coefficient 

ρlnVR,lnαR for R1 data, as a function of the frequency. Correlation data points are colored as 

a function of the p-value. 

7.5 Summary 

This Chapter addressed the main sources of uncertainties in the estimated 

dispersion and attenuation data, with a focus on the modeling of epistemic 
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uncertainties and a quantification of the aleatory variability. As for epistemic 

uncertainties, the influence of the specific processing method and the type of 

active source were investigated, as well as the role of the receiver type. 

The inter-method comparison referred to both synthetic waveforms and 

measured data obtained from in situ surveys, addressing the performance of each 

processing technique in terms of the reliability and accuracy of the estimated 

wave parameters, as well as the capability of extracting such information over a 

broad frequency range. In general, both synthetic and real data demonstrated a 

similar performance of different processing techniques, both in terms of the 

quality of the estimate and of the investigated frequency range. Besides, the 

CFDBFa algorithm returns reliable estimates of R-wave parameters, when the 

wavefield is dominated by a single mode. In the case of a multimode wavefield, 

the modal filtering procedure successfully isolates the dominant mode, whereas 

the extraction of information related to low-energy modes is more challenging. 

Indeed, regardless the considered interpretation scheme, the quality of results 

strongly depends on the energy partition between different R-wave propagation 

modes. When the investigated mode dominates the wavefield, the corresponding 

wave parameters can be tracked over a broad frequency range, and the 

corresponding estimates are affected by low variability, even in the presence of 

other modes. Instead, the analysis of low-energy modes is more challenging. In 

this case, even though the phase velocity can still be well-identified, the resulting 

attenuation estimate is highly variable and sensitive to the specific processing 

technique, because of the different capability in extracting and isolating 

information about the target mode. A similar issue occurs when the wave energy 

is equally partitioned across different modes. Therefore, the analysis of wavefield 

data in the presence of inversely dispersive media or soil deposits with abrupt 

changes in the impedance requires special care, as the resulting wavefield is 

remarkably multimodal. 

The analysis of the source influence investigated the quality of the estimated 

R-wave parameters as a function of the source type. For this purpose, the study 

focused on wavefield data generated by a sledgehammer source and by a 

mechanically-controlled vibrating source, which applied a chirp and a stepped 

sine signal. In general, the specific source type does not affect the average trend of 

the estimated dispersion and attenuation data. However, high-energy controlled 

sources allow to extract R-wave parameters across a broader range of frequencies. 

Most of all, the estimated data exhibit smaller variability. Indeed, seismic traces 

generated by the sledgehammer usually have smaller signal-to-noise ratio, which 

entails greater scatter in the estimated wave parameter, especially in terms of the 
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attenuation. However, the mean trend in the attenuation curve can still be 

captured. This result positively contributes to the capability of the sledgehammer 

for the attenuation estimate. This is helpful for ordinary applications, where high-

energy sources are typically not available. Indeed, generating waveforms through 

a sledgehammer striking onto a metal plate represents the most accessible and 

affordable source. 

Finally, the sensitivity of the estimated R-wave parameters to the specific 

acquisition device was assessed, by comparing estimated phase velocity and phase 

attenuation data obtained from geophone and fiber-optic DAS data at the HB site. 

In this way, the capability of this new system in retrieving attenuation data was 

also addressed. On the one side, the CFDBFa algorithm was adapted to account 

for the peculiar geometric attenuation that the recorded average strain by the fiber-

optic assumes. Indeed, ignoring the geometric spreading would result in a slight 

overestimation of the phase attenuation, whereas the phase velocity appears not to 

be sensitive on this. This result also demonstrates the flexibility of the newly 

proposed method to handle with different wavefield conditions. On average, the 

resulting phase velocity and phase attenuation data are compatible with each 

other, although the DAS data exhibit lower variability. This improvement is 

perhaps the effect of the remarkably larger number of measurement points that the 

DAS system includes, that provides a more exhaustive dataset of waveform values 

to better constrain the velocity and the attenuation estimates, thus balancing the 

lower signal-to-noise ratio in the records. Therefore, the DAS technology can be 

successfully used to jointly estimate the phase dispersion and attenuation data, 

obtaining the same level of reliability of the canonical geophone array. 

The modeling of aleatory variability requires the definition of a statistical 

model to describe the distribution nature of experimental data. Two factors led to 

this modeling. On the one side, various models have been proposed to quantify 

the dispersion variability, whereas no scheme was explicitly demonstrated for 

attenuation data. On the other side, as both the phase velocity and the phase 

attenuation derive from the same dataset, a robust modeling should rely on a 

multidimensional distribution. Based on real data recorded at the HB site, this 

Chapter demonstrated that both the bivariate normal and the bivariate lognormal 

distribution are a reasonable choice to describe experimental data. However, the 

latter is the preferred choice, especially when modeling low-frequency data. 

Indeed, it allows to model highly-variable data (as the phase attenuation) without 

including negative values, thus ensuring greater consistency from the physical 

viewpoint. Furthermore, the observed degree of correlation is negligible, hence 

the statistical characterization mostly focuses on the marginals.  
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Chapter 8 

Joint inversion of dispersion and 

attenuation data 

This Chapter introduces one of the key steps in SWM processing, namely the 

inversion procedure. The inversion is an operation that allows to map the 

experimental R-wave parameters into a suite of earth models, that synthetize the 

desired information in terms of mechanical parameters (i.e., S-wave velocity and 

damping ratio). This is a crucial and rather complex operation. Indeed, advanced 

and effective algorithms are required to produce reliable and accurate ground 

models. This Chapter proposes a new algorithm for the joint inversion of 

dispersion and attenuation data to retrieve both stiffness and dissipation 

parameters, that relies on an improved Monte Carlo scheme. In this approach, the 

optimization is achieved by exploiting the scaling properties of the Rayleigh 

eigenvalue problem. Therefore, the procedure derives from the the algorithm 

introduced by Socco and Boiero (2008), which is generalized into the viscoelastic 

case 

The Chapter starts with a general description of the inverse Rayleigh problem, 

to introduce basic notions and the relevant terminology. Then, the main steps of 

the inversion procedure are summarized, with a detailed description of the 

proposed algorithm. Additional information about the inversion stage can be 

retrieved in the devoted textbooks and guidelines (e.g., Foti et al., 2014; Foti et 

al., 2018). the Chapter includes the application of the algorithm to the HB-DAS 

dataset, already discussed in Chapter 7. Indeed, this set of experimental data 

represents a quite general and challenging condition, in which multiple R-wave 

propagation modes are jointly inverted. 

8.1 The inversion problem 

The inversion is a crucial step in SWM processing, as it maps observed 

experimental data into explicit information about mechanical parameters of the 

soil deposit (Mosegaard and Sambridge, 2002). The inversion stage can be 

defined as the “estimation of the parameters of a postulated earth model from a set 
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of observations” (Lines and Treitel, 1984). Indeed, the inversion relies on a 

physically-based model-data relationship, that can be described by the following 

general relationship: 

 ( )d = g m  (8.1) 

where d is the vector of measured data and m is the vector of the desired model 

parameters, whereas g is a functional relating these quantities. This expression 

provides an estimate of observed data when the model parameters are known, 

hence it is a forward problem, in mathematical terms (Tarantola, 2004). As 

experimental measures provide information on d, the inference of m requires a 

backward application of the relationship in Eq. (8.1). However, the inverse 

functional g-1 might not exist, or the analytical formulation can be unknown. In 

this case, the model identification is tackled through the inversion theory, in 

which model parameters are calibrated so that the simulated system response 

(obtained by applying the forward problem in Eq. 8.1) suits the experimental data. 

The degree of fit to experimental data is quantitatively measured by a misfit 

function, whose minimization represents the goal of the inversion process. 

In SWM processing deemed to jointly estimate stiffness and dissipation 

parameters of the soil deposit, d is the collection of experimental modal phase 

velocity VR(ω) and phase attenuation αR(ω) curves (when triaxial measurements 

are available, also R-wave ellipticity can be included, e.g. Bergamo et al., 2018), 

whereas m is the collection of parameters describing the geometry and the 

mechanical behavior of the soil deposit. Under the assumption of viscoelastic 

layered medium (see Chapter 3), m consists in the VS, VP, DS, DP, and the ρ 

profiles with depth. The derivation of a subsurface model from experimental data 

relies on the dispersive behavior of Rayleigh waves in layered media, for which 

VR(ω) and αR(ω) exhibit a dependence on frequency. The frequency-dependence 

of propagation parameters is a combined effect of geometric dispersion, which 

results from the variation of mechanical properties with depth, and intrinsic 

dispersion, due to the constitutive behavior of linear viscoelastic media (see 

Chapter 3). This relationship is synthetized by the Rayleigh wave eigenvalue 

problem, that maps the subsoil profile into the dispersive behavior of the R-waves 

(Eq. 3.16), hence it represents a forward relationship (i.e., the functional g). As the 

existence of the inverse functional g-1 has not been demonstrated yet, the 

inversion theory should be applied. In this case, a single or a set of ground models 

is calibrated so that the response suits the experimental data. 

From the mathematical viewpoint, the inversion problem in SWM is 

nonlinear, mixed-determined and ill-posed. The nonlinearity arises from the 

absence of a linear relationship between data and model parameters in the forward 
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problem. Instead, the mixed-determination is an effect of the inhomogeneous 

influence of the ground model parameters on VR(ω) and phase attenuation αR(ω). 

Indeed, high-frequency R-wave parameters mainly depend on the mechanical 

properties of shallow layers, whereas low-frequency data depend both on shallow 

and deep layers. Therefore, the characterization of the first few meters of the soil 

deposit can be easily achieved by focusing on the high-frequency portion of the 

experimental data. However, a correct identification is crucial, otherwise the 

whole ground model would be biased. Finally, the ill-posedness is an intrinsic 

feature of most inversion problems, and it is responsible of the solution non-

uniqueness, namely different ground models may provide compatible degree of fit 

with the experimental data. Indeed, the inversion problem involves a weak 

relationship and it attempts to constrain several model parameters with few 

experimental data. Thus, solution non-uniqueness combined with the experimental 

uncertainties results in highly variable estimates of model parameters. On the 

other side, several strategies allow to significantly reduce the variability in the 

inferred ground model, e.g. by adopting a priori values for less influencing 

parameters (e.g., Foti and Strobbia, 2002) or introducing physically-based 

constraints in the model (e.g., smoothness criteria; Constable et al., 1987). 

Nevertheless, the interpretation of inversion results should account for solution 

non-uniqueness, by introducing an explicit modeling of variability. Therefore, 

uncertainty bounds on the best solution should be included or a set of equivalent 

solutions should be provided (Foti et al., 2018). 

Furthermore, the retrieval of stiffness and dissipation parameters from SWM 

data might deal with experimental values in multifold ways. Some pioneering 

approaches adopted an uncoupled inversion approach, based on a separate 

inversion of VR(ω) and αR(ω). This strategy relies on a multistage procedure, in 

which the stiffness structure of the soil deposit is firstly obtained, by considering 

VR(ω) only. The resulting ground model can be used to approximate the geometric 

spreading of R-waves, thus improving the estimate of αR(ω) (Rix et al., 2000; Xia 

et al., 2002; Xia et al., 2012). Furthermore, once fixed the stiffness model, the DS 

profile can be obtained from the inversion of αR(ω). One advantage of this scheme 

is that the inversion of attenuation data can be solved with linear optimization 

algorithms in weakly dissipative media (e.g., Foti et al., 2014). However, the 

intrinsic coupling between the R-wave phase velocity and phase attenuation in 

linear, viscoelastic media is neglected. On the one side, this approximation is not 

expected to produce a significant bias in the resulting soil models when the 

inferred DS is small enough, as the difference between elastic and viscoelastic 

phase velocities is negligible (Armstrong et al., 2020). On the other hand, a joint 
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inversion coupling both VR(ω) and αR(ω) mitigates the ill-posedness of the 

inversion problem, because an explicit modeling of the coupling between stiffness 

and attenuation parameters introduces an internal constraint in the inversion, that 

derives from the Cauchy-Riemann equations (Lai and Rix, 1998b; Lai et al., 

2002). 

Finally, the misfit function involved in the inversion stage exhibits a complex 

and multi-dimensional shape, often with the presence of multiple minima. In this 

case, an a priori identification of the position of the global minimum is almost 

impossible. Besides, a brute-search approach based on a systematic investigation 

of the whole parameter space is unfeasible, as the computation cost due to the 

rather large number of forward simulations would be unacceptable. In general, the 

most popular methods aiming at identifying the global minimum of the misfit 

function can be clustered into two families: local search methods and global 

search methods. Local search methods are iterative, deterministic techniques that 

gradually adjust an initially assumed ground model to match the experimental 

data, by minimizing the misfit function. However, these schemes adopt local 

optimization algorithms, hence the choice of the initial model is crucial to ensure 

the identification of the global minimum (Spang, 1995; Lai and Rix, 1998b). 

Several Authors applied local search methods, with slight variations in the model 

updating procedure, smoothness and weighting criteria (e.g., Constable et al., 

1987; Lai and Rix, 1998b; Xia et al., 1999; Badsar, 2012; Verachtert et al., 2017). 

Global search methods are stochastic techniques that randomly explore the whole 

parameter space to identify the global minimum of the misfit function. These 

approaches generate random samples of the parameter space, according to an 

assigned probability distribution. Each sample is representative of a randomized 

ground model, and the corresponding synthetic data are compared with the 

experimental ones. In some procedures, the sampling of the parameter space is 

optimized and iteratively refined over promising regions potentially including the 

global minimum of the misfit function, limiting the required number of samples 

and enhancing the quality of the final estimate (Sen and Stoffa, 1996; Al-Hunaidi, 

1998; Martı́nez et al., 2000; Wathelet et al., 2004; Socco and Boiero, 2008; 

Verachtert, 2018; Passeri et al., 2019; Armstrong et al., 2020). In general, global 

search methods are preferred over local search methods, as they do not require the 

definition of a first tentative profile but only a statistical distribution of model 

parameters. Besides, they allow easier investigation of the uncertainties associated 

to solution non-uniqueness. On the other hand, they are usually more time 

consuming and computationally intensive (Foti et al., 2018). In some cases, a 

mixed inversion scheme is adopted, where a global search method identifies 
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promising regions of the parameter space and a least squares algorithm explores 

them to identify the best misfit solution (e.g., Picozzi and Albarello, 2007). 

Alternatively, the Monte Carlo procedure can be used to estimate uncertainties of 

the solution provided by a local estimator (Misbah and Strobbia, 2014). 

Regardless the adopted inversion algorithm, the generic inversion procedure 

consists in a multistage operation, in which the most relevant steps are the 

following: the definition of the inversion target (i.e., the suite of experimental 

data); the definition of the investigated parameter space; the application of the 

inversion algorithm; the description of results. The differences between search 

methods rise from the specific operations and assumptions carried out in each 

step. In this study, a Monte Carlo-based global search approach to jointly invert 

phase velocity and phase attenuation data is introduced. Furthermore, the 

description of the main steps will refer to results of the HB-DAS survey. The 

reason behind this choice is to describe the proposed method in a quite general 

situation, where multiple R-wave propagation modes are involved. 

8.2 Target function 

The inversion target is the suite of observed data, wherein dispersion parameters 

are usually described as R-wave phase velocity VR(ω), whereas attenuation data 

are provided as phase attenuation αR(ω) (Badsar, 2012; Verachtert, 2018) or phase 

damping ratio DR(ω) (Misbah and Strobbia, 2014; Armstrong et al., 2020). 

Alternatively, the complex-valued phase velocity VR(ω) can be used (Lai et al., 

2002; Lai, 2005; Foti et al., 2014). Usual inversion procedures in SWM involve 

modal phase velocity and phase attenuation curves, typically focusing on R-wave 

fundamental mode data. However, some inversion schemes rely on a joint 

inversion of multiple mode data (e.g., Maraschini and Foti, 2010; Bergamo et al., 

2011), resulting in a reduced variability in the estimated soil models and an 

increase of the investigated depth (e.g., Gabriels et al., 1987). Alternatively, 

effective mode data can be used to infer ground model parameters, although the 

latter requires a full simulation including the information of the array geometry 

and the source location (Tokimatsu, 1995). An appealing strategy is the full 

waveform inversion (Tran and Hiltunen, 2012; Pakravan et al., 2016), which 

directly employs measured particle motion as the target experimental data. 

Although this scheme is computationally intensive and not standardized yet, this 

approach inherently accounts for both the presence of multiple propagation modes 

and body waves, as it can potentially overcome limitations linked to the correct 
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modeling of geometric spreading and remove the influence of scattering (Sun, 

2000). 

Experimental data should be provided according to an adequate sampling in 

the frequency or the wavelength domain. On the one side, the number of sample 

points should ensure an exhaustive reconstruction of the trend and of singular 

points of experimental data. In general, a minimum of 20÷40 sampling points is 

recommended (e.g., Teague et al., 2018a; Vantassel and Cox, 2021b). However, 

the number of data points should not be too large, as it would entail a dramatic 

rise in computation time for the forward simulation. Furthermore, data should be 

sampled according to a logarithmic representation in the frequency domain (Foti 

et al., 2018). This alternative representation is extremely useful at the inversion 

stage, as it guarantees an adequate equilibrium between low-frequency samples 

and high-frequency data, thus ensuring an adequate constraint both for near-

surface and deep layers (Olafsdottir et al., 2018; Vantassel and Cox, 2021b). An 

alternative representation adopts the wavelength as the independent variable, 

typically according to a logarithmic scale to cope with the different resolution of 

the MASW technique at different wavelengths and still ensure adequate 

proportion between shallow and deep data (Olafsdottir et al., 2018). In general, 

the sampling grid, in terms of the sampling interval and the corresponding 

number, should also ensure that the resulting experimental curves exhibit gradual 

and smooth variations with the frequency. 

The example herein presented adopts the VR(ω) and αR(ω) data from HB-

DAS, computed at log-spaced frequencies between 10 Hz and 50 Hz. The 

inversion target includes both fundamental-mode data (labeled as “R0”) as well as 

the first higher mode (“R1”), where experimental uncertainties are represented in 

terms of logarithmic error bars. 
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Figure 8-1. Experimental phase velocity (a) and phase attenuation (b) data obtained from 

the HB-DAS array, that represent the target for the inversion procedure. The experimental 

dataset includes information on the variability of the derived R-wave parameters, 

represented as error bars the width of which is related with the logarithmic standard 

deviation. 

8.3 Model parameter space 

The definition of the parameter space consists in the assignment of geometrical 

and mechanical parameters of the trial ground models. Usual SWM inversion 

procedures model the soil deposit as a vertical stack of homogeneous and 

isotropic linear viscous elastic layers, consistently with the hypothesis underlying 

most processing schemes used to extract experimental data from the measured 

waveforms. Therefore, the unknown parameters are the number of layers and, for 

each layer, the thickness H (excluding the half-space), the mass density ρ, the S-

wave velocity VS, the P-wave velocity VP (alternatively, the Poisson ratio ν), the 

S-wave damping ratio DS, and the P-wave damping ratio DP. The parameterization 

procedure changes as a function of the adopted inversion algorithm. In local 

search approaches, the definition of the parameter space typically consists in 

assuming an initial ground model, which is the input in the local optimization 

scheme. Instead, Monte Carlo-based, global search procedures rely on a 

probabilistic description of the parameter space, wherein a probability distribution 

describes the model parameters. Many schemes assume a multivariate uniform 

distribution of the parameter vector (see next Section), hence the parameterization 

defines the investigated ranges of each parameter. 
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Sensitivity studies demonstrated that each unknown parameter has variable 

influence in the inversion process. Inversion results are mostly sensitive on H, VS, 

and DS, whereas the role of ρ, VP (or ν), and DP is generally less relevant 

(Nazarian and Stokoe II, 1984; Xia et al., 1999; Aki, 2002; Badsar, 2012; 

Verachtert, 2018). However, experimental data do not exhibit the same sensitivity 

to all the earth model parameters. On the one hand, modal dispersion data strongly 

depend on H and VS, whereas the role of ρ and VP (or ν) is generally less relevant 

(Nazarian and Stokoe II, 1984; Xia et al., 1999; Aki, 2002; Badsar, 2012; 

Verachtert, 2018). Furthermore, DS and DP do not significantly impact on their 

behavior, at least in weakly dissipative media (Nazarian and Stokoe II, 1984; Xia 

et al., 1999; Aki, 2002; Badsar, 2012; Verachtert, 2018). On the other hand, modal 

attenuation data are remarkably sensitive on H, VS, and DS. The relevant role of VS 

urges for robust inversion schemes to retrieve a reliable and accurate stiffness 

model, in order to achieve reliable DS profiles. Instead, ρ and VP (or ν) have a 

minor influence on attenuation curves. Finally, modal attenuation data are much 

less sensitive to DP compared with DS (Nazarian and Stokoe II, 1984; Xia et al., 

1999; Aki, 2002; Badsar, 2012; Verachtert, 2018). 

Therefore, an optimized model identification only investigates a model 

parameter subspace composed by the most influencing quantities, whereas the 

remaining are kept fixed to realistic values or related to other ones. Indeed, the 

reduced dimensionality of the search domain limits solution non-uniqueness. On 

the one side, ρ is usually assigned as a function of the site geology, whereas VP 

can be expressed as a function of VS, through ν. The choice of ρ and ν depends on 

the lithology and on the location of the water table (Foti and Strobbia, 2002; Foti 

et al., 2018). Instead, DP is usually assumed as equal to DS (e.g., Badsar, 2012; 

Armstrong et al., 2020). 

A reasonable choice of the initial values of model parameters or the 

corresponding investigation range can mitigate solution non-uniqueness, 

improving the reliability and the accuracy in the resulting ground models. For this 

purpose, geological data or independent geophysical and geotechnical surveys 

often provide valuable information that help in optimizing the parameter choice 

(Foti et al., 2014). These data often allow an effective constraint in the model 

layering (i.e., the number of layers in the ground model and their thickness). In 

case of unavailable site-specific information, it is strongly recommended to 

include variations in the inversion parameterization to account for epistemic 

uncertainty, e.g. by means of the layering ratio approach (Cox and Teague, 2016) 

or by including a statistical model for the layering (Passeri et al., 2020). Besides, 

the interpretation of R0 experimental data allows to draw inference on the 
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investigated parameters. Indeed, the transformation of the experimental dispersion 

curve from the VR - f domain into the (1.05÷1.1)×VR - λ/2.5 domain returns an 

approximation of the time-weighted average VS profile over the depth, the validity 

of which is as stronger as the R0 dominates the wavefield (Foti et al., 2018). The 

inspection of the transformed dispersion data provides some preliminary insights 

on the velocity structure of the medium. Furthermore, the experimental data point 

closest to the surface provides a twofold indication, as its depth is approximately 

equal to the minimum resolvable layer thickness (i.e., λmin/3, where λmin is the 

minimum measured wavelength) and the corresponding velocity is a fairly close 

to the VS of the surface layer – or the average value, if thin surface layers are 

involved. On the other side, the largest λ/2.5 value is a conservative proxy of the 

maximum investigable depth, within which layer interfaces should be located 

(Herrmann and Al-Eqabi, 1991; Shtivelman, 1999). Similarly, the corresponding 

phase damping ratio usually matches the near-surface DS. Therefore, these 

experimental data allow an effective constraint of mechanical parameters of the 

near-surface layer. Similar considerations apply for the dissipation structure, 

which can be guessed by transforming experimental attenuation data from the αR - 

f domain into the DR - λ/2.5 domain. Indeed, the near-surface DR usually matches 

the corresponding DS. However, the variation of DR along the pseudo-depth 

usually does not allow an immediate inference of the dissipation structure of the 

medium, due to the great variability and the presence of oscillations linked with 

stiffness variations. 

Figure 8-2 represents the investigated parameter space in the inversion of HB-

DAS data, in terms of ranges of VS and DS as a function of the depth. Indeed, the 

adopted inversion algorithm relies on a uniform distribution of model parameters, 

hence the related range is an exhaustive descriptor. For simplicity, the model 

identification adopts a fixed layering scheme, based on a three-layer ground 

model. This choice relies on the stratigraphy inferred by cone penetration 

soundings carried out close to the DAS array (Fathi et al., 2016). The 

parameterization focuses on models with increasing layer thickness, to account for 

the loss of sensitivity of the R-wave parameters as the depth increases (Strobbia, 

2003; Socco and Strobbia, 2004), with a minimum thickness equal to 2 m. This 

value is compatible with λmin. Besides, the investigated parameter space includes 

models with half-space interface at around 15 m, which is consistent with λmax. As 

for VS, the parameter space mostly focuses on ground models with increasing VS 

with the depth, as the monotonic increase of (1.05÷1.1)×VR over λ/2.5 is typical of 

normally dispersive media. Note that the search domain for the half-space VS 

includes values quite greater than the maximum available (1.05÷1.1)×VR. Indeed, 
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experimental data exhibit a continuous increase without any asymptote at depth, 

entailing that greater VS values can be found beyond the last point. For simplicity, 

the search domain for DS shares the same layering of VS. In this case, the shallow 

DS is inferred from experimental data, whereas not enough information is 

available to constrain DS at depth. Therefore, the investigated ranges are rather 

broad to ensure an adequate exploration of the parameter space. On the other side, 

a gradual reduction of DS with depth is accommodated, to comply with the 

gradual decrease of DR when λ/2.5 is great. For simplicity, ρ and ν are fixed at 

realistic values, whereas DP is assumed as equal to DS. Parameter ranges are 

summarized in Table 8.1. 

 

Figure 8-2. Range of VS and DS profiles corresponding to the investigated parameter 

domain, reported in Table  .1. The search domain is overlapped by the “pseudo-depth” 

representation of the fundamental-mode experimental data, i.e. 1.1×VR vs. λ/2.5 and DR 

vs. λ/2.5. 

Table 8.1. Boundaries of the investigated parameter domain. 

Layer 
Thickness 

H (m) 

Mass 

density ρ 

(kg/m3)  

S-wave 

velocity VS 

(m/s) 

Poisson 

ratio ν (-) 

S-wave 

damping 

ratio DS 

(%) 

P-wave 

damping 

ratio DP 

(%) 

1 2 ÷ 7 1600 130 ÷ 250 0.33 4 ÷ 10 Equal to DS 

2 2 ÷ 9 1600 200 ÷ 350 0.33 2 ÷ 8 Equal to DS 

Half-

space 

- 1800 250 ÷ 600 0.33 0.3 ÷ 5 Equal to DS 
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8.4 A Monte Carlo algorithm for the joint inversion 

8.4.1 Monte Carlo sampling 

The Monte Carlo sampling procedure is a family of global search algorithms for 

the solution of the inversion problem, that falls within the framework of the 

Bayesian approaches. 

The aim of the Bayesian approach is the derivation of a posterior probabilistic 

distribution σ(m) for a generic model m, that statistically measures the ability of 

the model to be compatible with observed data and with a priori constraints. This 

scheme assumes an a priori statistical distribution ρ(m) on the model parameters 

to be estimated (e.g., a uniform distribution), that synthetizes any data-

independent information (e.g., constraints derived from physical laws). 

Information from observed data is modeled through the likelihood function L(d | 

m), which quantifies the degree of fit between observed system response and the 

predicted one under the assumed validity of the generic model m, as a function of 

the forward modeling g. The posterior distribution σ(m) is proportional to the 

product of the prior model and the likelihood function, thus combining 

information provided by the measurement of the data vector and by the physical 

theory (Tarantola and Valette, 1982; Mosegaard and Tarantola, 1995; Mosegaard 

and Sambridge, 2002; Tarantola, 2004): 

 ( ) ( ) ( )|L m m d m  (8.2) 

Eq. 8.2 can be interpreted as the mapping of the measured data into a 

distribution of the desired model parameters. Therefore, it is a statistical 

representation of the solution of an inverse problem. Furthermore, the 

interpretation of σ(m) allows to draw inference on the nature of the estimated 

model. 

The main advantage of this formulation is that the derivation of information 

on the estimated model parameters refers to the characterization of ρ(m) and L(d | 

m), the characterization of which is usually an easier task than describing σ(m). 

Typical modeling describes ρ(m) according to simple statistical schemes, for 

instance with a normal distribution or a uniform model. Instead, L(d | m) usually 

depends on a misfit function S(m), that measures the deviation between observed 

data and predicted data (Mosegaard and Tarantola, 1995), the latter being often 

obtained through the forward problem: 

 ( ) ( )
|

S
L e

−


m
d m  (8.3) 
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The Monte Carlo procedure reconstructs σ(m) through a two-step procedure. 

Firstly, it simulates the prior distribution ρ(m), drawing a suite of samples mi. As 

typical inverse problems adopt simple distribution models for ρ(m), basic 

sampling methods allow an adequate simulation. Then, it computes the L(d | m) 

value for each sample mi, derived from the corresponding misfit S(mi). The 

combination of the prior information and the likelihood value for each sample mi 

returns samples of σ(m), thus obtaining a suite of realizations for the posterior 

distribution. 

In this study, the model m is a ground model and it clusters the unknown 

geometric and mechanical parameters. The adopted simulation procedure assumes 

that ρ(m) is a multivariate, uniform distribution. Therefore, the generation of 

realizations mi from ρ(m) involves a sequential use of one-dimensional sampling 

methods (Mosegaard and Sambridge, 2002). In each step, each model parameter 

(i.e., H, ρ, VS, ν, DS, and DP) is randomly extracted from a uniform distribution, 

the range of which is defined based on experimental data. The advantage of using 

a multivariate, uniform model for ρ(m) is twofold. On the one side, the statistical 

characterization of the parameter space can be carried out for every single model 

parameter in a separate way, and each one requires only two statistics for an 

exhaustive description (e.g., the boundaries of the uniform distribution). 

Furthermore, for a uniform prior, σ(m) is determined primarily by L(d | m) which, 

in turn, depends solely on the misfit function S(m) (Sen and Stoffa, 1996; Socco 

and Boiero, 2008). Therefore, a characterization of S(m) provides an adequate 

description of the posterior distribution, and inference on estimated ground 

models can be drawn from this quantity. For instance, the most suitable model 

(i.e., the one maximizing σ(m)) coincides with the minimum of S(m). 

8.4.2 Misfit function 

The ranking of each model with respect to observed data is quantified by the 

misfit function S(m), which is a distance metric between the observed data and the 

predicted ones. In this case, experimental data are the VR(ω) and αR(ω) data 

obtained at the HB-DAS survey, whereas the simulated values are the ones 

computed for each randomized earth model mi. The derivation of theoretical data 

requires the solution of the forward problem, corresponding to the Rayleigh-wave 

eigenvalue problem. This operation is carried out through the EDT toolbox 

(Schevenels et al., 2009), which implements the transfer matrix method 

(Thomson, 1950; Haskell, 1953). 

A popular definition of the misfit function assumes that the prediction error is 

normally distributed (Oldenburg and Li, 2005). In this case, an effective metric to 
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quantify model accuracy with respect to experimental data is the Mahalanobis 

distance (Mosegaard and Tarantola, 1995), computed as the L2-norm of the 

prediction error vector, weighted by the experimental covariance matrix Σ-1 

(Seber and Wild, 2003): 

 ( ) ( ) ( )
T 1

1

n

i i i i i

i

S −

=

= − −      m g m d Σ g m d  (8.4) 

Eq. 8.10 is a specialized version of the S(m) formulation typically used in 

nonlinear model identification, for the joint inversion of multimode phase velocity 

and phase attenuation data. The label i denotes the i-th frequency sample (n is the 

number of data samples), at which the vector of observed data di contains the 

median experimental VR(ω) and αR(ω), that are compared with the corresponding 

theoretical estimates contained in gi(m). The covariance matrix Σi contains the 

variances and the correlation coefficients at the i-th frequency sample. Actually, 

as experimental data are modeled according to a lognormal distribution, these 

quantities should be represented in logarithmic scale. 

This definition weights the fitting errors as a function of the uncertainties 

affecting VR(ω) and αR(ω) as well as their linear correlation (in log scale, in this 

case). On the other side, the linear correlation between measured VR(ω) and αR(ω) 

is statistically insignificant, for each frequency, as demonstrated in Chapter 7. 

Therefore, an alternative formulation for S(m) can be obtained by assuming 

uncorrelated experimental uncertainties: 
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The definition compares theoretical dispersion data Vi,Rj,t and attenuation data 

αi,Rj,t and observed values Vi,Rj,e and attenuation data αi,Rj,e, for each considered 

propagation mode Rj and each frequency sample i. Figure 8-3 provides a 

graphical representation of the involved quantities. The comparison is carried out 

in logarithmic scale, to be consistent with the assumption of lognormally 

distributed experimental data (see Chapter 7). This structure of the misfit function 

is a least-square objective function, that can be interpreted as a generalization of 

the version often adopted in the model identification from phase velocity data 

(e.g., Wathelet et al., 2004). This definition separates the contributions linked with 

VR(ω) and αR(ω) fitting, and the normalization with respect to the corresponding 

variance (i.e., 
2

ln , ,RV i j  and 
2

ln , ,Ri j ) guarantees proportional weighting to 

dispersion and attenuation data. Therefore, the model identification accounts for 

the different degree of accuracy in the observed data, also compensating for the 
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different order of magnitude that characterizes VR(ω) and αR(ω) (and the related 

prediction errors), thus avoiding potential overfitting of part of the observed data. 

The multiplying factor 1/2Mn is an additional quantity that simply scales the S(m) 

distribution without altering its shape, with the aim of providing a more intuitive 

interpretation of the numerical values of S(m) itself. Indeed, S(m) is unitary when 

the distance between predicted and experimental VR(ω) and αR(ω) across the 

investigated frequency bandwidth and the considered propagation modes equals 

one standard deviation, on average. 

Alternative misfit definitions are available, that rely on a complex-valued 

definition (Lai et al., 2002; Lai, 2005; Foti et al., 2014) or as the weighted sum of 

the separate misfits in terms of phase velocity and phase attenuation data, 

adopting a structure usually employed in joint inversion of multiple geophysical 

data (e.g., Verachtert, 2018). 

 

Figure 8-3. Quantities involved in the definition of the misfit function, namely theoretical 

estimates (subscript “t”) and observed data (subscript “e”). 

8.4.3 Scaling properties of the forward problem 

This Section provides a synthetic description of the scaling properties of the 

solution of the Rayleigh wave eigenvalue problem in viscoelastic conditions. 

Then, it specifies how this feature is implemented into the Monte Carlo procedure, 

improving the quality of the resulting earth models with limited computation 

effort. 
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8.4.3.1 Description of the scaling properties 

Strobbia (2003), Socco and Strobbia (2004), and Maraschini et al. (2011) 

demonstrated that the modal solution in elastic conditions scales with the 

wavelength. Specifically, a scaling of VS results in an equivalent scaling of both 

VR and ω in the dispersion curve, whereas a scaling of H induces an inverse 

scaling of ω. In this study, it is demonstrated that this property can be extended to 

the viscous-elastic model, thanks to the correspondence principle (Achenbach and 

Reddy, 1967). In such conditions, a scaling of VS and H leads to a scaling of 

αR(ω). As for variations in DS, their mapping on the modal solution is nontrivial 

but an approximate solution has been developed in this study. Although this 

approximation neglects the causality relationship between VS and DS, the resulting 

estimate is fairly accurate. 

This section contains an intuitive explanation of the scaling properties of the 

R-wave modal parameters in viscous-elastic conditions, whereas a more detailed 

and mathematically rigorous demonstration is available in Appendix C. 

Let us consider a layered, viscoelastic earth model, wherein each layer is 

characterized by thickness H0, S-wave velocity VS,0 and S-wave damping ratio 

DS,0. A harmonic Rayleigh wave with frequency f travels in this medium with a 

phase velocity VR,0 and a phase attenuation αR,0 (alternatively, a phase damping 

ratio DR,0). On the other side, the propagation parameters of the R-wave mostly 

depend on the soil mechanical properties down to a depth equal to the 

corresponding wavelength λR (Foti, 2000). Thanks to this property, variations in 

thicknesses, velocities and damping ratios on the dispersion and attenuation 

curves can be mapped. 

Firstly, the effect of scaling VS is investigated. Let us consider a soil model 

identical to the original one, but with layer velocities VS,1 equal to c×VS,0 (and VP,1 

= c×VP,0 for simplicity, namely ν does not vary), where c is a real constant. In the 

original medium, a Rayleigh wave of wavelength λ travels with phase velocity 

VR,0 and phase damping DR,0. In the scaled ground model, the same wavelength is 

sampling the same medium, but with scaled velocity. Hence, it propagates 

according to a velocity c×VR,0, whereas the attenuation is still equal to αR. In this 

situation, the corresponding frequency is: 

 ,1 ,0

1 0

R RV cV
f cf

 
= = =  (8.6) 

Therefore, also the frequency is scaled. On the other side, the damping 

structure is unchanged, hence the phase damping ratio equals DR,0. Thus, the 

corresponding attenuation is: 
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Hence, αR is unchanged. In summary, a scaling of all the S-wave velocities 

results in a scaling of both velocities and frequencies in the dispersion curve and 

of frequencies only in the attenuation curve (Figure 8-4). 

 

Figure 8-4. Effect of S-wave velocity scaling on the dispersion and attenuation curves. 

Then, the effect of scaling H is investigated. In this case, the alternative soil 

model is characterized by layer thickness H1 equal to c×H0, where c is a real 

constant. In the original medium, a Rayleigh wave of wavelength λ propagates 

with phase velocity VR,0 and phase damping ratio DR,0. In the scaled medium, a 

Rayleigh wave of wavelength λ1 = c×λ0 is sampling a medium with the same 

characteristics of the original one, hence it propagates according to a phase 

velocity VR,0 and phase damping ratio DR,0. In this situation, the corresponding 

frequency is: 

 
,1 ,0

1 0

1

1R RV V
f f

c c 
= = =  (8.8) 

Therefore, the frequency is inversely scaled with respect to the change in 

thickness. The corresponding attenuation is: 
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Hence, αR is scaled in a similar way as the frequency. In conclusion, a scaling 

of all the layers’ thicknesses results in a scaling of frequencies only in the 

dispersion curve and of both phase attenuations and frequencies in the attenuation 

curves (Figure 8-5). 

 

Figure 8-5. Effect of layer thickness scaling on the dispersion and attenuation curves. 

When scaling S-wave damping ratios, the resulting soil model is characterized 

by damping ratio DS,1 equal to c×DS,0 (and DP,1 = c×DP,0 for simplicity), where c 

is a real constant. In the original medium, a Rayleigh wave of wavelength λ 

travels with phase velocity VR,0 and phase damping ratio DR,0. In the scaled 

medium, the same wavelength is sampling a medium with scaled damping ratio, 

thus traveling according to the phase velocity VR,0 and phase damping ratio DR,1 = 

c×DR,0. In this situation, the corresponding frequency is unchanged, whereas the 

corresponding phase attenuation is scaled: 
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Therefore, a scaling of all the damping ratios results in an unchanged 

dispersion curve and in a scaling of attenuations in the attenuation curves (Figure 

8-6). However, this relationship is approximate because variations in the damping 

ratios induce more complex modifications in the modal solution than a simple 

scaling. Indeed, also variations in frequencies and phase velocities occur, but there 

is no closed-form solution for predicting them. Furthermore, the modification in 

the attenuation is slightly nonlinear and dependent on the frequency. However, 

such variations are rather small compared to the order of magnitude of phase 

velocities and frequencies of common application, when dealing with low 

dissipative media. Therefore, the error induced by the approximation may be 

considered negligible, as also numerically stated in Armstrong et al. (2020). 

 

Figure 8-6. Effect of S-wave damping ratio scaling on the dispersion and attenuation 

curves. 

8.4.3.2 Implementation of the scaling properties in the inversion algorithm 

One critical aspect of Monte Carlo-based global search methods is the need of 

effectively sampling the investigated parameter space. Indeed, as the search 

domain is broad and high-dimensional, a huge number of model realizations is 

required to minimize the risk of neglecting promising regions. However, 

increasing the number of generated models means a greater number of forward 
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simulations, entailing a significant rise in computation time. The computation 

burden is even more relevant when viscoelastic media are involved, due to the 

greater complexity of the forward algorithm. As an example, the performance of 

elastic and viscoelastic forward modeling codes are compared, with reference to 

the computation of modal VR(ω) and αR(ω) for the synthetic wavefield SW3 (see 

Chapter 5), at 82 frequencies spanning between 0.5 Hz and 100 Hz. Elastic 

modeling was carried out by means of built-in MATLAB codes, whereas the EDT 

toolbox (Schevenels et al., 2009) was used for viscoelastic simulations. Numerical 

calculations were run on a workstation, with 24 Intel® Xeon® W-2265, 3.50 GHz 

CPUs. The computation time needed for computing fundamental-mode data is 

0.15 s in elastic conditions, and it rises to 0.9 s when computing both VR(ω) and 

αR(ω). If the goal of the forward simulation is estimating the first two R-wave 

modes (e.g., for multi-mode inversion), elastic modeling takes 0.45 s, whereas the 

computation time is 2.3 s in viscoelastic conditions. Therefore, viscoelastic 

forward modeling is 5 ÷ 6 times more time consuming than the corresponding 

elastic computation. This dramatically affects the global search procedure as the 

number of trial earth models should be not large, to avoid excessively time-

consuming inversion runs. For instance, running an inversion stage with 104 trial 

ground models needs about 12 ÷ 24 hours for being completed, depending on the 

size of the parameter space and on the number of propagation modes being 

simulated. On the other side, reducing the number of random samples hinders the 

capacity of the search algorithm to explore the parameter space, increasing the 

risk of discarding potentially good solutions. 

The scaling properties of the solution of the Rayleigh wave eigenvalue 

problem can represent a valuable tool to optimize the generated Monte Carlo 

samples, with negligible increase in computation time. Indeed, these properties 

can be used to modify the random samples in order that the theoretical data match 

better observed values. 

Specifically, the inversion algorithm implements a backwards version of the 

scaling properties. For each generated ground model, the predicted dispersion and 

attenuation data are scaled to improve the fitting with the experimental values, 

and the corresponding model parameters are modified through the inverse 

application of the scaling properties. This application in the inversion procedure 

was introduced by Socco and Boiero (2008), where the scaling of the theoretical 

data was based on the comparison of the barycenters between predicted and 

observed dispersion data. In this study, the scaling procedure jointly modifies the 

theoretical frequencies, phase velocities and phase attenuations according with 

three scaling coefficients, that are calibrated by means of an optimization 
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procedure which maximizes the degree of fit between theoretical and 

experimental data. The matching is quantified by means of a distance metric 

between the scaled version of theoretical data and experimental data, measured by 

misfit function introduced in Eq. 8-5. A local optimization solver identifies the 

best scaling coefficients, according to which the corresponding ground model is 

updated. Compared with measuring the distance on the gravity center only, this 

approach does not only guarantee a good matching between scaled and observed 

data at the gravity center, but it also introduces a constraint on the behavior of the 

remaining points. Therefore, the estimated scaling coefficients also accounts for 

the geometry of the dispersion and attenuation data, thus ensuring better matching 

between predicted and experimental data. Once obtained the scaling factors for 

the frequencies (cf), for the phase velocities (cVR) and for the phase attenuations 

(cα ), the corresponding scaling factors for the layer thicknesses (cH), for the S-

wave velocities (cVS) and for the S-wave damping ratios (cDS) are computed as 

follows: 

 , ,
VR VR

H VS VR DS R

F F

c c
c c c c c

c c
= = =  (8.11) 

The result of the scaling procedure is an alternative sampling of the parameter 

space, with the models concentrated in the high-probability region, which is closer 

to the true model (Socco and Boiero, 2008). This allows to optimize the sampled 

portion, converting the randomized parameter set into an alternative one, best 

suiting observed data. In this way, the number of required samples (hence, 

forward simulations) can be significantly reduced. Also, this correction does not 

require any further forward analyses to be run, thus saving computation time. 

8.4.4 Inversion results 

The inversion was run using 10,000 trial earth models. Forward dispersion and 

attenuation modeling was carried out through the EDT toolbox (Schevenels et al., 

2009), which implements the transfer matrix method (Thomson, 1950; Haskell, 

1953). 

An effective description of inversion results should refer to a representative 

suite of ground models, ensuring an adequate matching with experimental data 

(i.e., low misfit) and accounting for the uncertainties both in the inversion 

problem (due to solution non-uniqueness) and in the experimental data themselves 

(Mosegaard and Sambridge, 2002). For this purpose, various approaches have 

been proposed for the inversion of phase velocity data (e.g., Socco and Boiero, 

2008; Griffiths et al., 2016b; Hallo et al., 2021). However, currently there are no 

methods for identifying a reference collection of samples from the joint inversion 
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of phase velocity and phase attenuation data. Furthermore, the generalization of 

existing criteria to select adequate damping models is not immediate because this 

should account for both the multivariate nature of the joint inversion and the 

different degree of variability affecting experimental data. In the context of 

Bayesian inversion, an effective strategy relies on specific statistics extracted 

from the posterior distribution (Hallo et al., 2021). Alternatively, a non-

conventional, yet intriguing approach directly obtains the desired distribution by 

running multiple inversion simulations on a suite of experimental data, whose 

statistical features are compatible with measured ones (Vantassel et al., 2022). 

This study adopts a simple strategy reporting a collection of best fitting models as 

the representative suite. Despite its simplicity, this selection criterion provides an 

insight about the main features of inverted models and the related uncertainties. 

Figure 8-7 shows results for the best fitting 30 models. Inverted S-wave 

velocity and damping ratio profiles are poorly scattered, and the velocity and 

dissipation structures are clearly identifiable in the near-surface layers. 

Specifically, the resulting VS model exhibits a gradual increase in stiffness with 

depth. The depths of the identified layers interfaces are about 4 m and 12 m. This 

result is consistent with the main geological interfaces inferred at the site and with 

information from past geophysical surveys (see Chapter 6). Instead, the estimated 

DS profiles are affected by greater variability, which increases with depth. 

However, variations in DS with depth follow the same layer interfaces as VS, and it 

ranges about 5% in the near-surface layer, whereas it increases to 7÷9% in the one 

below. As for the half-space, the variability in both VS and DS dramatically 

increases with respect to shallow layers. Indeed, the depth of the interface with the 

half-space is quite close to the maximum resolvable depth that can be achieved 

with the available experimental data, i.e. λmax/2 (Foti et al., 2018). Therefore, the 

few amount of experimental data at long wavelengths does not allow an effective 

constraints of estimated profiles at greater depths. Thus, the VS oscillates between 

330 m/s and 400 m/s, whereas DS spans over a much broader range, mostly 

between 0.5% and 5% (that is, the variation is about one order of magnitude). 

This is the combined effect of the high σlnα in low-frequency experimental data, 

the relevant influence of VS on phase velocity and attenuation data, and the 

moderately low sensitivity of theoretical attenuation curves to DS at great depths 

(e.g., Verachtert, 2018), that does not allow a constraint on DS as effective as in 

the stiffness modeling. 

However, it should be remarked that both the velocity and dissipation 

structures exhibit well defined trends, especially in the near-surface layers. 

Furthermore, the DS increase at intermediate depths partially contradicts the 
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boundaries of the investigated search domain, which imposed a maximum DS 

equal to 8% in this layer. This demonstrated the effectiveness of the improved 

Monte Carlo sampling procedure, which manages to well identify the ground 

models even when the adopted parameterization is non-optimal. These results 

highlight the effectiveness of the proposed inversion algorithm. 

 

Figure 8-7. Best fitting ground models to HB-DAS experimental data: a-b) Theoretical 

vs. experimental data, for the phase velocity (a) and phase attenuation (b); c-d) Resulting 

S-wave velocity (c) and damping ratio (d) profiles. The boundary z = λmax/2 is an 

approximated value of the maximum investigable depth, that can be achieved from the 

available experimental data – layer interfaces beneath it are usually less reliable. 

8.5 Summary 

This Chapter addressed the joint estimate of S-wave velocity and damping ratio 

profiles from the experimental R-wave parameters. This operation consists in an 

inversion procedure, which requires the use of effective algorithms to handle with 

the nonlinearity and the ill-posedness of the problem. For this purpose, a novel 

algorithm is introduced. The proposed scheme is a global search, Monte Carlo 

procedure that implements an optimized sampling procedure, based on the scaling 
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properties of the Rayleigh eigenvalue problem in viscoelastic conditions. The 

validity of these properties in the viscoelastic case has been demonstrated in this 

Chapter. On the one side, the Monte Carlo scheme allows to explore various 

candidate earth models, thus evidencing the local minima in the misfit function. 

On the other side, the implementation of scaling properties concentrates the 

random samples in high probability density zones, that are expected to be closer to 

the “true” ground model. Thanks to this strategy, the number of random samples 

required to effectively investigate the parameter space is smaller, and the 

computation time needed to run forward simulations is significantly reduced. 

Indeed, forward modeling in viscoelastic conditions is much more complex than 

in elastic conditions and running Monte Carlo simulations with 105÷107 trial earth 

models (i.e., the typical sample size used in the inversion of phase velocity data) 

would require a time which is incompatible with practical needs. Therefore, the 

inclusion of the scaling properties allows to optimize the available random 

samples, without additional computation effort. 

The effectiveness of the proposed algorithm was tested on the inversion of the 

experimental data collected at the HB-DAS survey. This represents an interesting 

case study due to the complexity of the recorded wavefield, from which multi-

mode R-wave parameters were extracted and inverted. Furthermore, this study 

represents the first joint inversion of dispersion and attenuation data extracted 

from a fiber-optic array, to our knowledge. The improved sampling scheme and 

the presence of multi-mode observed data resulted in well-constrained S-wave 

velocity and damping ratio profiles, especially in the near-surface layers. 

However, the estimated ground models are affected by greater variability at depth, 

especially in terms of the damping ratio. The great scatter is the combined effect 

of the high σlnα in low-frequency experimental data and the moderately low 

sensitivity of theoretical attenuation curves to DS at great depths (e.g., Verachtert, 

2018). Therefore, experimental data do not allow an effective constraint on DS in 

the deeper portions of the earth models. On the other side, these considerations 

rely on a selected suite of best fitting ground models, that may not be fully 

representative of actual data uncertainties and inversion non-uniqueness. 

Although this selection criterion might seem arbitrary, currently there are no 

methods for selecting a statistical collection of samples from the joint inversion of 

phase velocity and phase attenuation data. For this reason, further studies on this 

topic will address this issue, by generalizing available criteria developed in the 

dispersion analysis or introducing new schemes, that account for the multivariate 

nature of the joint inversion. 
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Chapter 9 

Influence of the small-strain 

damping ratio on ground site 

analyses 

This Chapter addresses the interpretation of results of SWM testing, with a focus 

on ground response analyses. Indeed, site characterization for the prediction of the 

ground motion amplification represents one of the most usual applications of 

SWM. The aim of this Chapter is to understand the implications of uncertainties 

in both the S-wave velocity and damping ratio on the predicted ground response. 

For this purpose, results from the SWM survey carried out at the Garner Valley 

Downhole Array (GVDA) are considered. The choice of this site derives from 

multifold reasons. On the one side, the detailed site characterization allows to 

compare the estimated ground models with ones derived from past studies. 

Furthermore, the presence of a permanent DH-array provides valuable 

observations on the actual ground motion amplification, that are an effective 

benchmark for the validation of the predicted ground response. 

After a brief introduction on the performance of SWM into modeling the 

seismic site response, this Chapter shortly describes the main stages adopted to 

derive the reference earth models at the GVDA. Then, the reliability of the 

derived S-wave velocity and damping ratio models is addressed, in terms of both 

the comparison with alternative results and the quality of the predicted ground 

motion amplification. 

9.1 Application of surface wave methods for ground 

response analyses 

One of the main purposes of SWM is the derivation of ground models to be used 

for predicting the ground motion amplification, by means of Ground Response 

Analyses (GRAs). As recommended by Foti et al. (2018), a proper modeling of 

the site response requires a suite of profiles that are statistically representative of 

the experimental data distribution (Vantassel and Cox, 2021a) or equivalently 
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fitting the experimental R-wave parameters (e.g., Foti et al., 2009). This criterion 

accounts for both the solution non-uniqueness and the uncertainties in the 

experimental data. 

Several studies investigated the potential of using SWM for GRAs, in terms of 

both the capacity of predicting the expected ground motion amplification and the 

accuracy in the estimate. However, these studies mainly focused on the influence 

of uncertainties in the S-wave velocity profile, whereas a constant, laboratory-

based value was usually adopted for the material damping. As for the reliability, 

the estimated ground motion amplification usually matches observed data, with 

some discrepancies at high frequencies. The lack of fit is an effect of two main 

factors. On the one side, the limited investigated depth in SWM might not allow 

the identification of deep impedance contrasts, that would introduce a fictitious 

truncation in the resulting soil profiles. This is apparent as a discrepancy in the 

location of the peaks of the estimated linear viscoelastic transfer functions 

(Vantassel et al., 2018). On the other side, the unmodeled contribution of spatial 

variability combined with an implicit modeling of energy dissipation results in 

wrong estimates of the magnitude in the ground motion amplification (e.g., Tao 

and Rathje, 2019). Focusing on variability, Foti et al. (2009) and Foti et al. (2018) 

demonstrated that the mapping of uncertainties from inferred profiles into derived 

ground motion amplification is nonlinear, and the uncertainty in the derived 

amplification is much smaller than the one affecting the estimated profiles. 

Indeed, although equivalent VS profiles are quite variable, ground motion 

amplification is mostly controlled by variations in the S-wave travel time (or the 

harmonic velocity), which is less uncertain than the interval velocity, even in 

challenging conditions (e.g., Socco et al., 2015). This justifies the high accuracy 

and reliability of SWM in estimating VS,30 (Comina et al., 2011; Passeri et al., 

2021), wherein the solution non-uniqueness has limited influence. 

9.2 Case Study: Garner Valley Downhole Array 

9.2.1 Derivation of S-wave velocity and damping ratio profiles 

Figure 9-1a-b represents the fundamental-mode VR(ω) and αR(ω), obtained from 

waveforms recorded at the GV-H5 array and generated by the VibroSeis truck. 

These data are computed at log-spaced frequencies between 5 Hz and 35 Hz (i.e., 

λ = 5 ÷ 90 m; see Chapter 7), by means of the CFDBFa method. The modeling of 

experimental uncertainties relies on a lognormal statistical distribution, where data 

variability is described by the log-standard deviation. The error bars denote the 
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interval defined by the mean and one log-standard deviation. This represents the 

target dataset used in the inversion procedure. 

The model parameterization assumes that ρ is fixed at realistic values, and DP 

is assumed as equal to DS, whereas the identification of H, VS, and DS is carried 

out by means of the optimized Monte Carlo algorithm proposed in Chapter 8. The 

definition of the investigated parameter space was mainly informed by 

experimental data, converted in the (1.05÷1.1)×VR - λ/2.5 and the DR - λ/2.5 

domains. The investigated parameter space includes models with half-space 

interface at around 40 m, which is consistent with λmax. Both the surface geology 

and invasive testing (e.g., Gibbs, 1989; Steller, 1996; Teague et al., 2018b) 

demonstrated the presence of a low-velocity alluvium layer overlying weathered 

rock, with remarkably greater stiffness. Therefore, the model identification adopts 

a fixed layering scheme, based on a four-layer ground model. The 

parameterization includes three shallow layers with moderately low VS, which 

gradually increases with depth. These layers seek to capture VS variations in the 

alluvium, as suggested by the gradual rise of (1.05÷1.1)×VR with λ/2.5. Note that 

the search domain also includes a near-surface thin layer, with thickness slightly 

below the minimum resolvable value according to experimental data (i.e., λmin/3 = 

1.8 m). Indeed, the low-depth DR exhibits a remarkable increase in value, without 

achieving a stable value. Therefore, it is assumed that the presence of a thin, 

highly dissipative layer might be responsible of such behavior. Instead, the half-

space might be representative of weathered rock, for which the average VS of the 

investigated range sensibly increases. Similar to HB-DAS results (see Chapter 8), 

not enough information is available to constrain DS at depth. Therefore, the 

investigated ranges are rather broad to ensure an adequate exploration of the 

parameter space. On the other side, a gradual reduction of DS with depth is 

accommodated, to comply with the gradual decrease of DR when λ/2.5 is large. 

Finally, the parameterization also allowed independent randomization for VP, of 

which ranges were based on borehole data carried out at the GVDA (Steller, 

1996). Also, to ensure realistic coupling with VS, ν was constrained within 

realistic boundaries. Parameter ranges are summarized in Figure 9-2c-d and Table 

9.1. In general, the search domain is broad enough to allow an effective 

exploration of the parameter domain and to accommodate for discrepancies from 

a priori information due to lateral variability at the GVDA site and variable test 

locations. 

The inversion was run using 10,000 trial earth models. Forward dispersion 

and attenuation modeling was carried out through the EDT toolbox (Schevenels et 
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al., 2009), which implements the transfer matrix method (Thomson, 1950; 

Haskell, 1953). 

 

Figure 9-1. Range of VS and DS profiles corresponding to the investigated parameter 

domain, reported in Table 9.1. The search domain is overlapped by the “pseudo-depth” 

representation of experimental data, i.e. 1.1×VR vs. λ/2.5 and DR vs. λ/2.5. 

 

Table 9.1. Boundaries of the investigated parameter domain. 

Layer 
Thickness 

H (m) 

Mass 

density ρ 

(kg/m3)  

S-wave 

velocity VS 

(m/s) 

P-wave 

velocity VP 

(m/s) 

Poisson 

ratio ν (-) 

S-wave 

damping 

ratio DS 

(%) 

P-wave 

damping 

ratio DP 

(%) 

1 1 ÷ 3 1600 150 ÷ 250 300 ÷ 500 0.25 ÷ 0.40 1 ÷ 3 Equal to DS 

2 3 ÷ 5 1600 160 ÷ 260 320 ÷ 520 0.25 ÷ 0.40 0.05 ÷ 5 Equal to DS 

3 5 ÷ 15 1750 170 ÷ 280 1350 ÷ 1650 0.43 ÷ 0.49 0.03 ÷ 5 Equal to DS 

Half-

space 

- 2000 350 ÷ 1000 1800 ÷ 3000 0.43 ÷ 0.49 0.03 ÷ 2 Equal to DS 

 

Figure 9-2 shows results for the 30 best-fitting models. Inverted S-wave 

velocity profiles are poorly scattered, with a clearly identifiable velocity structure. 

Specifically, the resulting VS model includes a low-velocity near-surface portion, 
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with VS close to 200 m/s. Then, it suddenly increases at 450 ÷ 500 m/s at around 

18 m of depth, which is compatible with the location of the interface between 

alluvium and weathered rock. Therefore, the derived velocity structure is 

consistent with both the site geology and information from past surveys. As for 

DS, the estimated profiles are affected by large variability, which increases with 

depth. This is an effect of the high σlnα in experimental data, that does not allow a 

constraint on DS as effective as in the stiffness modeling. However, inverted 

profiles exhibit a quite clear trend, characterized by DS around 1%, which rises up 

to 5% in the near-surface layer. The moderately low variability in DS in this layer 

highlights the effectiveness of using this peculiar parameterization in the inversion 

procedure. The large DS in the shallow portion of the ground models might be an 

effect of heterogeneities on the top of the soil deposit, that have been also 

identified in Fathi et al. (2016). Lateral variations result in wave scattering 

phenomena, that induce an apparent increase of the material DS. 

 

Figure 9-2. Best fitting ground models to GV-H5 experimental data: a-b) Theoretical vs. 

experimental data, for the phase velocity (a) and phase attenuation (b); c-d) Resulting S-

wave velocity (c) and damping ratio (d) profiles. The boundary z = λmax/2 is an 
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approximated value of the maximum investigable depth, that can be achieved from the 

available experimental data – layer interfaces beneath it are usually less reliable. Besides, 

derived profiles in c-d) are overlapped with velocity and damping ratio models obtained 

in past studies (see Figure 6.2). 

9.2.2 Variability of the derived ground models 

Figure 9-3 represents the standard deviation – in logarithmic scale – of the 

derived velocity and damping models (i.e., σlnV and σlnD, respectively), computed 

as a function of depth from the 30 best-fitting models. The lognormal model is a 

common scheme to describe VS statistics (e.g., Toro, 1995; Li and Assimaki, 

2010; Passeri, 2019). This kind of distribution is often adopted also for modeling 

DS (e.g., Schevenels, 2007). Note that this representation does not provide a 

rigorous picture of model uncertainties, as it describes the variability of the 

reference suite composed by the 30 best-fitting models, which is a subset of the 

collection of models that are compatible with experimental data. Furthermore, 

drawing inference from profiles of interval velocity and damping ratio might 

provide a biased description of variability, as the presence of layer interfaces 

introduces artificial variability which is not linked with the actual uncertainty in 

the layers’ mechanical parameters. For this reason, an accurate statistical 

modeling of the stiffness structure should refer to profiles of travel-time or 

harmonic average of VS (Passeri, 2019). However, an analogous parameter for 

damping data has not been identified yet. Therefore, this study refers to the σlnV 

and σlnD representation to provide an insight on uncertainties in the derived earth 

models. 

As for VS, the related standard deviation σlnV is generally small, being less 

than 0.1 at almost all the investigated depths. Specifically, it ranges around 0.05 at 

shallow depths, as an effect of the low variability in the high-frequency phase 

velocity data. At about 20 m depth, it exhibits a sharp peak with σlnV = 0.4. The 

increased σlnV does not represent actual variability in VS, as it is a consequence of 

uncertainties in the location of the layer interface in this depth range. Finally, it 

equals 0.1, showing a pattern typically observed at sites consisting of moderately 

soft soil overlying a significantly stiffer formation (Garofalo et al., 2016b). 

As for DS, σlnD mostly ranges around 0.5, which is almost one order of 

magnitude larger than σlnV. This discrepancy is consistent with the different degree 

of variability affecting experimental phase velocity and attenuation data. 

However, σlnD exhibits a peak in the shallow portion, in correspondence of the 

first identified layer interface (i.e., z = 1 ÷ 3 m). Indeed, σlnD is computed from 

damping ratios of layers with rather different DS values, as this quantity undergoes 
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an abrupt change at this location (Figure 9-2d). Therefore, this trend shares some 

similarities to the sharp changes in σlnV at greater depths. 

 
Figure 9-3. Variability of the best fitting ground models to GV-H5 experimental data: a) 

S-wave velocity profiles; b) Damping ratio profiles; c) Linear correlation coefficient 

between velocity and damping ratio profiles. The boundary z = λmax/2 is an approximated 

value of the maximum investigable depth, that can be achieved from the available 

experimental data – layer interfaces beneath it are usually less reliable. 

9.2.3 Comparison with alternative models 

A first insight on the reliability of the estimated ground models can be obtained by 

comparing the resulting VS and DS profiles with those estimated in independent 

surveys or assumed in previous studies. However, a careful interpretation should 

account that alternative estimates do not usually represent a rigorous benchmark 

for assessing the reliability of the inferred model. Indeed, differences may arise 

due to specific processing schemes or spatial variability, linked with different 

testing locations and different investigation scale. Most of all, many available DS 

profiles are exclusively or partially based on laboratory data, hence the 

comparison should be carried out with care. Indeed, the purpose of this section is 

just the assessment of the general compatibility between inversion results and 

existing information about the soil deposit at the GVDA. 

Figure 9-4 overlaps the estimated earth models with results of previous 

studies, already discussed in Chapter 6 (Figure 6.2). Figure 9-4b includes a 

laboratory-based DS estimate, which has been obtained through the Darendeli 

(2001) empirical model. Besides, it shows the DS models proposed by Bonilla et 

al. (2002) and Tao and Rathje (2019), that were estimated according to the 

amplification approach and from the high-frequency spectral decay κ (see Chapter 

4), respectively. 
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In general, the resulting VS profiles well match other studies in the near-

surface layers, with a good consistency both in terms of stiffness values and of the 

depth of the impedance variation. However, some divergence occurs for the VS 

values below 20 m, that should be representative of the weathered rock unit. 

Indeed, this study returned VS = 450 ÷ 500 m/s, whereas past studies provided 

larger VS values, spanning between 450 m/s and 600 m/s. This discrepancy may 

be justified as an effect of lateral variability at the GVDA site, which results in 

significant variations of VS at intermediate depths, as also highlighted by the large 

variations in results from past studies (Teague et al., 2018b). 

As for DS, the estimated damping model is almost coincident with the 

laboratory-based profile. However, it should be remarked that the latter is not 

specific for this site, as it derives from an empirical model which provides an 

average damping ratio for typical fine-grained soil deposits. Therefore, no strong 

conclusions can be drawn from this comparison. On the other hand, the 

consistency between these two alternative schemes suggests that the MASW-

based DS estimate shares the same order of magnitude of the intrinsic damping 

ratio, hence the influence of scattering is not strongly significant – at least, in the 

depth range investigated in this survey. Actually, the laboratory-based DS is 

significantly different in the shallow layer. This discrepancy may be an effect of 

local heterogeneities, that induce significant scattering of high-frequency 

Rayleigh waves. Indeed, as they propagate with moderately small wavelengths, 

they are rather sensitive to local fluctuations in the soil deposit characteristics. 

These considerations also explain why inverted DS models are significantly lower 

than the values proposed by Bonilla et al. (2002), except in the shallow layer. 

Indeed, these results derive from the interpretation of down-hole array data 

recorded at the GVDA from both shallow and deep sensors, according to the 

amplification approach (see Chapter 4). Such values are moderately large, 

especially compared with laboratory-based estimates, because the estimation 

procedures inherently incorporate additional dissipation mechanisms than material 

damping, such as wave scattering and reflection/refraction phenomena at the layer 

interfaces. Indeed, it is expected that these phenomena are quite relevant at the 

GVDA site, as spatially variable mechanical properties and the consequent 

anisotropy in the velocity structure are significant especially at intermediate-to-

large depths layers (Coutant, 1996; Bonilla et al., 2002). In a similar way, the κ-

based DS estimate proposed by Tao and Rathje (2019) is larger than the estimated 

earth model because it has been inferred from changes in κ over a depth of 150 m, 

that is range much broader than the one investigated in this survey. Therefore, this 

estimate relies on large scale variations, which includes additional scattering 
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phenomena and different impedance variations than those involved in the field 

test, thus resulting in increased attenuation. 

 

Figure 9-4. Comparison between the best fitting ground model to GV-H5 experimental 

data and velocity and damping ratio models obtained in past studies (see Figure 6.2 for 

further details): a) S-wave velocity profiles; b) S-wave damping ratio profiles. Results 

from past studies are represented in grey, with the exception of the models labeled as Dlab, 

computed according to Darendeli (2001); DB, proposed by Bonilla et al. (2002); and 

DT&R, proposed by Tao and Rathje (2019). 

9.2.4 Modeling of the ground response 

Finally, implications of the inverted soil models into the site response were 

addressed, by comparing the estimated stratigraphic amplification with the one 

observed at GVDA. In this study, the amplification is described as acceleration 

transfer function (TF), i.e. the ratio of the Fourier amplitude spectra between 

acceleration time histories at different depths. Specifically, empirical TFs between 

the sensor GL-0 (i.e., the surface sensor) and GL-6, GL-15, and GL-22 (see 

Chapter 6, Figure 6.1b), located at 6 m, 15 m, and 22 m depth, were considered. 

Data from deeper sensors were not included, as they fall beyond the maximum 

investigable depth that have been achieved with surface-wave data in this study, 

hence the corresponding VS and DS would be unreliable. Empirical TFs (ETFs) 

were taken from Vantassel and Cox (2019). The corresponding theoretical TFs 

(TTFs) were computed through linear viscoelastic ground response analyses, 

assuming “within” conditions at each reference depth, for compatibility with 

empirical data (e.g., Teague et al., 2018b). Numerical simulations were carried out 

through the software DEEPSOIL v7.0 (Hashash et al., 2017). 

Figure 9-5 compares the ETF with TTFs corresponding to the VS and DS 

profiles reported in Figure 9-2. Theoretical values are synthetically represented as 
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intervals defined by the median TTF and one log-standard deviation, computed 

frequency by frequency. Interestingly, the variability in the TTFs is almost 

negligible, notwithstanding the strong scatter in the estimated DS profiles, 

especially in the weathered rock. This result is compatible with past findings on 

the influence of VS uncertainties on GRAs, that demonstrated that variability in 

TFs is small even with highly scattered profiles (e.g., Foti et al., 2009). Therefore, 

it can be expected that a rigorous modeling of uncertainties in DS should not refer 

to interval values, but to alternative quantities that exhibit a stronger link with the 

stratigraphic amplification, in a similar way to using S-wave travel times to model 

stiffness variations with depth (e.g., Socco et al., 2015; Passeri et al., 2020). For 

comparison purposes, TFs obtained from the VS model proposed by Teague et al. 

(2018b) are included. In this case, as DS was unknown, it was estimated according 

to the empirical model by Darendeli (2001). These TFs can be representative of 

the result of a typical survey, where the focus is the stiffness profile and DS is 

obtained through laboratory testing – or laboratory-based relationships. 

Data compare consistently when considering both the shallower sensor 

(Figure 9-5a) and the deep one (Figure 9-5c). In this case, the degree of matching 

is excellent in terms of locations of the fundamental peak and of higher-order 

peaks. As for the amplitude, the predicted model matches the troughs of the ETF, 

whereas it overestimates it in correspondence of the peaks, with a stronger 

difference in correspondence of the fundamental one. The overestimation at the 

peaks can be the result of limitations in 1D modeling of site conditions, as the 

presence of lateral variability and anisotropy effects at the GVDA may induce 

additional energy losses than just material dissipation. The divergence at higher 

order peaks derives from the sensitivity in the variable shallow layers (Foti et al., 

2009; Comina et al., 2011; Griffiths et al., 2016a; Teague and Cox, 2016; Teague 

et al., 2018a; Passeri, 2019). On the contrary, the fitting quality for the 

fundamental mode is poor when the 15 m-depth sensor is adopted, whereas TFs 

are more similar to each other at high frequencies (Figure 9-5b). However, this 

situation was also observed in Vantassel and Cox (2019) and it was attributed to 

inaccuracies in the low-frequency data recorded in this sensor. Furthermore, the 

performance of predicted TFs from inverted VS and DS profiles and the one of 

those adopted in Teague et al. (2018b) are strongly similar with each other, with 

the latter predicting slightly smaller amplification close to the peaks of the ETF. 

These differences may rise from the different amount of profiles involved in the 

estimation of the theoretical TF and the different extent of the investigated portion 

of the site, as Teague et al. (2018b) clusters various arrays distributed throughout 

the site, thus involving different conditions. In this case, the averaging of different 
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profiles (due to spatial variability) tends to decrease the TF (Tao and Rathje, 

2019). Under these considerations, the generally good fitting level and the 

compatibility with alternative observations confirm the reliability of the estimated 

VS and DS profiles. 

 

Figure 9-5. Comparison between experimental transfer function (ETF, extracted from 

Vantassel and Cox, 2019) and median theoretical transfer function for the best fitting 30 

models in the inversion (SWM), for the reference depths of 6 m (a), 15 m (b), and 22 m 

(c). Experimental data are labelled as North-South (NS) and East-West (EW), 

corresponding to the components of seismometer records from which they were derived. 

Theoretical TFs obtained from results of the SWM survey by Teague et al. (2018b) are 

included. 
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Chapter 10 

Conclusions and Recommendations 

This dissertation addressed the joint characterization of the shear-wave velocity 

and damping ratio from the interpretation of Multichannel Analysis of Surface 

Waves (MASW) measurements. Specifically, it focused on the issues and the 

uncertainties related to the derivation of the Rayleigh wave parameters (i.e., R-

wave phase velocity and phase attenuation) from measured wavefield data and the 

derivation of S-wave velocity and damping ratio profiles from the inversion of 

experimental data. 

Part of the research aimed at developing a reliable dataset, including synthetic 

waveforms and data measured in situ. Part of the synthetic data are plane and 

cylindrical waves, corrupted by body waves and incoherent noise. In this way, the 

influence of model incompatibility effects (e.g., near field effects) on the 

estimated phase velocity and attenuation data could be addressed. The synthetic 

dataset also includes more complex waveforms, characterized by multi-mode 

Rayleigh waves combined with body waves. They simulate results of MASW 

surveys carried out on idealized earth models, that are representative of typical 

soil deposits in engineering practice. Furthermore, part of the database collects 

results of experimental surveys at the Garner Valley Down-Hole Array and the 

Hornsby Bend sites, in the United States. The result is a high-quality surface wave 

dataset that can represent an effective benchmark for investigating uncertainties 

affecting the estimate of the R-wave parameters, with a focus on the derivation of 

the phase attenuation. Furthermore, the instrumented borehole installed at the 

Garner Valley Down-Hole Array provides observations on the ground motion 

amplification, that can be used as a benchmark to assess the reliability of the 

derived soil models. 

The main focus of this research was the derivation of the R-wave phase 

velocity and phase attenuation from experimental data. For this purpose, a novel 

family of techniques aimed at retrieving both the R-wave phase velocity and 

attenuation was introduced. This approach can handle multi-mode Rayleigh 

wavefields, and it allows an explicit modeling of the geometric shape of the 

wavefront. Furthermore, the research addressed epistemic uncertainties and 

aleatory variabilities affecting the estimated R-wave parameters. The investigation 
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of epistemic uncertainties focused on the quantification of the sensitivity of 

experimental data to model incompatibility effects (i.e., the influence of body 

waves) and to incoherent noise. Furthermore, it assesses the quality of 

experimental data as a function of different interpretation techniques and various 

source types, quantifying the performance in terms of the reliability and the 

accuracy of the estimated propagation parameters and the capability of covering 

an adequately large frequency range. Finally, the analysis of the influence of the 

acquisition device compares geophone versus fiber-optic data, to investigate the 

sensitivity of estimated parameters to the receiver type. This study also allows to 

understand the potential of the fiber-optic device in retrieving dissipation 

parameters. On the other side, the modeling of aleatory variability resulted in the 

introduction of a new statistical model, to describe the joint variations of phase 

velocity and phase attenuation data. 

The final part of this dissertation dealt with the inversion procedure to map 

the experimental R-wave parameters into a suite of S-wave velocity and damping 

ratio profiles. A key result of this research is a novel algorithm for the joint 

inversion of dispersion and attenuation data to retrieve both stiffness and 

dissipation parameters, that relies on an improved Monte Carlo scheme. In this 

approach, the optimization is achieved by exploiting the scaling properties of the 

Rayleigh eigenvalue problem. The novel algorithm was applied to characterize the 

stiffness and dissipation structure for both the investigated sites. Furthermore, the 

reliability of results from the Garner Valley Downhole Array site was assessed, 

using in situ observations on the ground motion amplification as a benchmark. 

The following section summarizes the main conclusions of the research. Still 

some aspects concerning the derivation of the Rayleigh wave parameters and the 

inversion procedure need to be investigated. Some recommendations are then 

given at the end of the section, including suggestions for future studies. 

10.1 Conclusions 

The main result emerging from numerical simulations and experimental data is 

the different degree of reliability and accuracy affecting estimated R-wave phase 

velocity and phase attenuation. Indeed, the resulting attenuation is strongly 

sensitive to the modeling of the geometry of the Rayleigh wavefront, to the 

influence of body waves and to the presence of incoherent noise. As a result, 

derived attenuation data exhibit large variability, which is one order of magnitude 

greater than the corresponding phase velocity variability. The larger scatter and 

the different sensitivity of phase velocity and phase attenuation data to stiffness 

and damping parameters result into highly variable S-wave damping ratio profiles, 
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whereas stiffness models are usually well constrained even at depth. However, the 

damping model exhibits a well-identified trend and the impact on uncertainties in 

the ground motion amplification is moderately small, in all the investigated sites. 

The following conclusions summarize the main findings on the modeling 

issues and uncertainties in the derivation of the S-wave velocity and damping ratio 

profiles from MASW surveys. 

 

A novel technique for estimating phase velocity and phase attenuation 

The Frequency-Domain BeamFormer – attenuation (FDBFa) is a novel technique 

aimed at estimating the R-wave phase velocity and attenuation from measured 

waveform data. This technique relies on a transformation of the recorded 

wavefield, for which the phase attenuation can be derived by carrying out a 

dispersion analysis on transformed pseudo-wavefield. Specifically, this scheme is 

based on a twofold application of the FDBF procedure: the application on 

measured data returns the phase velocity, whereas the application on transformed 

data provides the phase attenuation. As the algorithm inherits the flexible structure 

of the FDBF approach, one key advantage of the FDBFa is the possibility of an 

explicit modeling of the actual geometry of the investigated wavefront. This 

feature is crucial when interpreting Rayleigh wave data, as they propagate 

according to a cylindrical wavefront. Their modeling is implemented in a 

modified version of the FDBFa, namely the Cylindrical Frequency-Domain 

BeamFormer – attenuation (CFDBFa). 

The FDBFa assumes that the recorded wavefield consists of a single mode, 

hence it theoretically returns an estimate of the effective phase velocity and phase 

attenuation, that might not be coincident with modal values. Therefore, a new 

modal filtering scheme is proposed, with the aim to isolate the contribution of 

each Rayleigh propagation mode and fulfil the main assumption of the FDBFa. 

The extraction of each wave component is carried out by applying a bandpass 

filter to the recorded wavefield, that preserves the mode of interest and removes 

additional waves. A calibration study addressed the influence of filter parameters 

on the estimated wave parameters. It is demonstrated that filters with order N = 

1/2÷2/3 times the number of receivers, passband extended up to kres (i.e., the 

resolution wavenumber of the array) and stopband starting from 2kres may be 

considered as a valid reference for applying the FDBFa in various site conditions. 

However, the use of the modal filtering technique is recommended when data 

from at least 20÷24 receivers are available, otherwise the filter might not 

effectively isolate the desired wave component. On the other side, common 
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acquisition setups in MASW surveys adopts 24, 48, or even more sensors, hence 

the modal filtering technique is suitable in many applications. 

 

Influence of near- and far-field effects 

Results of the parametric study to address the tole of near- and far-field effects 

demonstrated the limited influence on the estimated phase velocity on modeling 

issues. Instead, phase attenuation is more sensitive on these factors, hence a 

rigorous modeling of these phenomena is crucial to achieve reliable estimates. 

The inclusion of body waves and incoherent noise in the recorded wavefield 

implies a drop in the quality of estimates. Specifically, these two elements are 

detrimental to both the reliability (i.e., the capacity of returning estimates close to 

the true value) and the accuracy (i.e., the capacity of returning lowly variable 

estimates). As for the phase velocity, the presence of body waves induces a slight 

underestimation when the average offset is small, compared with the investigated 

wavelength. Instead, the addition of incoherent noise mainly results in a slight loss 

in the accuracy. Focusing on the phase attenuation, the inclusion of body waves 

determines an overestimation of the true value, even at moderately long distances. 

Furthermore, the incoherent noise exherts a twofold negative effect on the quality 

of the estimated phase attenuation at great distances, with a loss of both reliability 

and accuracy. On the one side, the variability in the estimate is significantly large, 

and it is one order of magnitude greater than the one affecting dispersion data. On 

the other side, the average value gradually shifts towards lower attenuations, for 

increasing average offset. The drop in the quality is a consequence of the strong 

influence of incoherent noise on amplitude data. 

Due to the combined effect of near-field and far-field phenomena, reliable and 

moderately accurate estimates of attenuation data can be retrieved only at a 

limited range of distances from the sources, where both these detrimental effects 

are minimized. In the specific case under investigation, the optimal offset range 

corresponds to NACD = 2÷4, where NACD is the distance between the active 

source and the array center, normalized by the investigated wavelength. 

Finally, the planar and the cylindrical beamformer have a rather similar 

performance, although the CFDBFa tends to return slightly more reliable phase 

velocity estimates at short offsets. Indeed, by the virtue of the explicit modeling of 

the cylindrical shape of the Rayleigh wavefront, it mitigates the influence of near-

field effects (Zywicki, 1999; Zywicki and Rix, 2005). On the other side, the 

relative performance towards far-field effects is similar. For this reason, the 

CFDBFa algorithm is the preferred choice in processing surface wave data. 
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Influence of the processing scheme 

A source of epistemic uncertainty is linked with the specific processing scheme 

adopted to interpret wavefield data. Indeed, each approach relies on specific 

modeling assumptions of the wavefield and different computation algorithms, 

with variable degree of sensitivity to incoherent noise and capacity of identifying 

different wave components (i.e., Rayleigh propagation modes). The inter-method 

comparison referred to both synthetic waveforms and measured data obtained 

from in situ surveys, addressing the performance of each processing technique in 

terms of the reliability and accuracy of the estimated wave parameters, as well as 

the capability of extracting such information over a broad frequency range. 

In general, results demonstrated a similar performance of different processing 

techniques. The considered algorithms return reliable estimates of R-wave 

parameters, when the wavefield is dominated by a single mode. For a multimode 

wavefield, the characterization of the dominant mode is immediate, as the 

corresponding wave parameters can be tracked with low variability over a broad 

frequency range. Instead, the analysis related to low-energy modes is more 

challenging. In this case, the phase velocity can still be well-identified, whereas 

the resulting attenuation estimate is highly variable and sensitive to the specific 

processing technique, because of the different capability in extracting and 

isolating information about the target mode. Therefore, the analysis of wavefield 

data in the presence of inversely dispersive media or soil deposits with abrupt 

changes in the impedance requires special care, as the resulting wavefield is 

strongly multimodal. 

In this study, the CFDBFa exhibits remarkably good performance. On the one 

side, the modal filtering procedure successfully isolates the investigate mode, 

even for low-energy ones in some cases. Furthermore, it manages to retrieve R-

wave parameters almost continuously over a rather broad frequency range. Also, 

it appears that the filtering procedure allows to identify reliable velocity values 

even beyond the resolution limits of the acquisition array. 

 

Influence of source characteristics 

The analysis of the source influence investigated the quality of the estimated R-

wave parameters as a function of the type of active source. For this purpose, the 

study focused on wavefield data generated by a sledgehammer source and by a 

mechanically-controlled vibrating source, which applied a chirp and a stepped 

sine signal. 
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In general, using alternative source types does not affect the average trend of 

the estimated dispersion and attenuation data. However, high-energy controlled 

sources allow to extract R-wave parameters across a broader range of frequencies. 

Most of all, the estimated data exhibit smaller variability. Indeed, seismic traces 

generated by the sledgehammer usually have smaller signal-to-noise ratio. 

Therefore, the estimated phase attenuation is affected by larger variability, due to 

the greater relevance of incoherent noise. However, the mean trend in the 

attenuation curve can still be captured. This result positively contributes to the 

capability of the sledgehammer for the attenuation estimate. As it represents the 

most accessible and affordable source, this demonstrates the possibility of 

retrieving reliable attenuation data also in ordinary MASW surveys. 

 

Influence of receiver characteristics 

The sensitivity of the estimated R-wave parameters to the specific acquisition 

device was assessed, by comparing estimated phase velocity and phase 

attenuation data obtained from geophone and fiber-optic Distributed Acoustic 

Sensing (DAS) data at the Hornsby Bend site. In this way, the capability of this 

new system in retrieving attenuation data was also addressed. 

In order to process DAS data, the CFDBFa algorithm was adapted to account 

for the peculiar geometric attenuation that the recorded average strain by the fiber-

optic assumes. Indeed, ignoring the geometric attenuation affecting this kind of 

data would result in a slight overestimation of the phase attenuation, whereas the 

phase velocity appears not to be sensitive on this. This result also demonstrates 

the flexibility of the newly proposed method to handle with different wavefield 

conditions. 

The comparison demonstrated that, on average, the resulting phase velocity 

and phase attenuation data are compatible with each other. However, DAS data 

exhibit lower variability. This improvement is perhaps the effect of the 

remarkably larger number of measurement points that the DAS system includes, 

that provides a more exhaustive dataset of wavefield values to better constrain the 

velocity and the attenuation estimates. This advantage balances the lower signal-

to-noise ratio in the recorded data. Therefore, the DAS technology can be 

successfully used to jointly estimate the phase dispersion and attenuation data, 

obtaining the same level of reliability of geophone arrays and improved accuracy. 

 

A statistical model for aleatory variability in phase velocity and attenuation 
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The modeling of aleatory variability requires the definition of a statistical model 

to describe the distribution nature of experimental data. 

The development of the model accounted the shared dataset underlying the 

estimated phase velocity and the phase attenuation, for which a multidimensional 

distribution is needed. The statistical analysis on a vast dataset of experimental 

data collected at the Hornsby Bend site demonstrated that both the bivariate 

normal and the bivariate lognormal distribution can reasonably describe their 

variability. However, the latter is the preferred choice, especially when modeling 

low-frequency data. Indeed, it allows to model highly variable data (as the phase 

attenuation) without including negative values, thus ensuring greater consistency 

from the physical viewpoint. Furthermore, the observed degree of correlation is 

negligible, hence the statistical characterization can simply focus on lognormal 

marginals. 

 

Derivation of the S-wave velocity and damping ratio profiles 

A novel algorithm for the joint inversion of dispersion and attenuation data was 

proposed. The approach relies on a global search, Monte Carlo scheme, which 

implements a smart sampling procedure. This scheme exploits the scaling 

properties of the solution of the Rayleigh eigenvalue problem in linear 

viscoelastic media to modify the trial earth models. These properties are 

introduced in this study and their use helps improve the matching with 

experimental model. Thanks to this strategy, the number of random samples 

required to generate an adequate suite of trial models is smaller, and the 

computation time needed to run forward simulations is significantly reduced. This 

advantage becomes crucial when running viscoelastic inversions, as forward 

simulations need much longer computation time than in elastic conditions. 

The performance of the proposed inversion procedure was excellent with 

experimental data, both in the case when they include fundamental-mode data 

only or in the joint inversion of multimode experimental datasets. The improved 

sampling scheme resulted in well-constrained S-wave velocity and damping ratio 

profiles, especially in the near-surface layers. However, the estimated ground 

models are affected by greater variability at depth, especially in terms of the S-

wave damping ratio. The scatter is the combined effect of the high variability in 

low-frequency experimental data, the different sensitivity of phase velocity and 

attenuation data to stiffness and damping ratio, and the moderately low sensitivity 

of theoretical attenuation curves to the damping ratio at great depths. 

Finally, the reliability of the derived ground models was addressed, by 

assessing the compatibility of the corresponding response with observed ground 
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motion data. The comparison was carried out for the Garner Valley Downhole 

Array site. On the one side, the uncertainties in the predicted ground motion 

amplification are small, even when the variability in the estimated damping ratio 

is large. This discrepancy may be linked with a pitfall in the description of the 

attenuation structure of the soil deposit. Indeed, some authors claimed that using 

S-wave travel time rather than interval velocities should be preferred to model 

stiffness variations with depth (e.g., Socco et al., 2015; Passeri et al., 2020). 

Similarly, it can be expected that a rigorous modeling of uncertainties in DS 

should not refer to interval values, but to alternative quantities that exhibit a 

stronger link with the stratigraphic amplification. On the other side, the degree of 

matching between predicted and observed data is remarkably good, with an 

excellent fit of locations of resonance peaks, whereas the amplitude is 

overestimated. This discrepancy can be the result of limitations in 1D modeling of 

site conditions. However, the generally good fitting level and the compatibility 

with alternative observations confirm the reliability of the estimated VS and DS 

profiles. This result stresses the effectiveness of using damping ratio estimates 

from in situ surface wave data, as an alternative to other characterization 

techniques. 

10.2 Recommendations for future research 

One of the main contributions of this research was the implementation of a novel 

algorithm for retrieving Rayleigh wave phase velocity and phase attenuation from 

experimental surface wave data. This scheme is robust, flexible towards different 

geometric attenuation mechanisms, and it provides reliable and low-variable 

values of the R-wave parameters over a broad range of frequencies. Furthermore, 

the inclusion of a modal filtering schemes allows to successfully isolate the 

contribution of different propagation modes from the recorded wavefield, in 

various scenarios. Nevertheless, the modal filtering procedure incorporates two 

main limitations: 1) it can be successfully applied only in the presence of a 

moderately vast dataset of surface wave records, with at least 20 sensors; 2) the 

filtering procedure cannot be applied in the presence of unevenly spaced 

acquisition arrays. These limitations can be mitigated by implementing more 

advanced procedures, that deal with irregularly sampled data (e.g., Tarczynski et 

al., 1997; Bidégaray-Fesquet and Fesquet, 2009). This improvement shall be 

addressed in future studies, to generalize the modal filtering technique and, 

potentially, improve its performance. 

Furthermore, another fundamental result is the different sensitivity of the 

estimated R-wave phase velocity and phase attenuation to near- and to far-field 



287 

 

effects, both in terms of reliability and accuracy. Indeed, it justifies the different 

trends in variability observed for these parameters in this dissertation as well as in 

past studies. However, this result derives from a parametric study on a rather 

simplified model, which may be representative of a single Rayleigh wave 

propagating in a homogeneous medium. Therefore, further simulations are 

necessary to address the role of incoherent noise and near-field effects in more 

realistic conditions. For this purpose, the analysis approach can be extended to 

synthetic waveforms that simulate MASW surveys in realistic earth models. In 

this way, multi-mode Rayleigh waves are included, and more complex variations 

of body and surface wave amplitude can be addressed. Furthermore, alternative 

noise levels (i.e., alternative source types) can be considered. Finally, findings 

shall be validated with in situ data from experimental surveys. The outcome of 

this study might result in the proposal of a novel processing scheme deemed to 

mitigate near- and far-field effects simultaneously, based on the interpretation of 

frequency-dependent, moving windows of the array. Specifically, this scheme 

might infer high-frequency R-wave parameters focusing on the near-offset portion 

of the array, thus involving records with high signal-to-noise ratio. Instead, low-

frequency values should be obtained by discarding the sensors closest to the 

source, thus mitigating the influence of near-field effects. However, the definition 

of the optimal offset range as a function of the frequency and of site conditions 

has to be addressed in future studies. 

The proposed inversion procedure successfully retrieved earth models well 

matching experimental data, although some improvement is possible. On the one 

side, the investigation of the parameter space can be enhanced by including a free-

layering scheme method (e.g., Cox and Teague, 2016; Passeri, 2019). 

Furthermore, being a global search method, it requires the implementation of 

rigorous selection criteria to define a reliable suite of representative earth models. 

In this way, both the uncertainties in the experimental data and the non-

uniqueness of the solution of the inversion problem are accounted for. For this 

reason, further studies will address this issue, by generalizing available criteria 

developed in the dispersion analysis (e.g., Socco and Boiero, 2008; Hallo et al., 

2021; Vantassel and Cox, 2021a) or introducing new schemes, that account for the 

multivariate nature of the joint inversion of velocity and attenuation data 

(Anderson, 1962). Furthermore, the modeling can include an explicit frequency-

dependence of the mechanical parameters, which might improve the estimate and 

the fit with observed data (e.g., Kausel and Assimaki, 2002; Armstrong et al., 

2020). Finally, a more accurate and statistically robust description of uncertainties 

in the estimated stiffness and dissipation structure should be addressed. Indeed, 
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although effective statistical models are available to describe variability in the S-

wave velocity (Passeri, 2019; Hallal et al., 2022), a scheme for the joint statistics 

of the stiffness and damping data would allow to properly understand actual 

uncertainties in the estimated earth models and to map variability in the 

experimental R-wave parameters into the variability of the inverted data. 

A potential feature for future research is the compatibility between the 

MASW-based damping ratio and in situ measurements from alternative 

geophysical methods, such as invasive tests. Furthermore, the comparison with 

measured ground motion amplification data should be extended to different site 

conditions with respect to those investigated in this study. Besides, it should 

involve other parameters, such as the high-frequency spectral attenuation κ (e.g., 

Ktenidou et al., 2015). This comparison allows to get further insight on the 

reliability of the estimated mechanical parameters and to better understand other 

mechanisms that induce wave attenuation, especially those linked with wave 

scattering. 

Finally, one aspect needing further investigation is the reconstruction of the 

attenuation structure of soil deposits at greater depths. Indeed, the high variability 

of experimental data and the limited investigated wavelength range do not allow 

an effective constraint on DS in the deeper portions of the earth models. A 

potential strategy to tackle this issue relies on passive surveys, that provide useful 

information in the low-frequency range. Therefore, the possibility of extracting 

attenuation from ambient noise data can be addressed, to better constrain 

estimated damping ratios at greater depths.  



289 

 

Appendix A 

Frequency-domain beamforming 

attenuation: some technical aspects 

This Appendix deals with some technical details related to the Frequency-Domain 

BeamForming-Attenuation (FDBFa) scheme, introduced in Chapter 5. The first 

section focuses on a side effect of the wavefield transformation which is the basis 

of the FDBFa, that results in sidelobes in the estimated pseudo-spectrum. The 

remaining sections address some aspects linked with the modal filtering 

procedure. Firstly, some basic concepts of digital filtering are addressed, with a 

focus on complex filters. Then, the symmetry of complex filters is discussed, as it 

represents a key property for the proposed filtering technique. The last section 

contains results of the calibration procedure to identify the optimal parameters for 

the proposed modal filter, with reference to the synthetic wavefields SW3 and 

SW4 (see Section 5.1). 

A.1 Side lobes in FDBFa pseudospectrum 

When dealing with a plane wave u(r), the application of the transformation (5.9) 

returns a wave v(r), the amplitude of which theoretically exhibits a sawtooth 

shape, whereas the corresponding phase linearly varies with the offset. This 

peculiar behavior produces sidelobes inside the pseudo-spectrum used to derive 

the wave attenuation, computed according to (5.11). 

To demonstrate this, let us assume that both u(r) and v(r) are assumed to be 

infinitely extended, continuous signals, for simplicity. In this way, windowing and 

sampling effects are discarded. Therefore, the transformed wave v(r) can be 

expressed as the product of two signals, one carrying the amplitude information 

and one linked to the phase: 

 ( ) ( ) ( )v r x r y r=  (A.1) 

The signal x(r) is a periodic, sawtooth-shaped signal. The period length L is 

equal to 2π/k and the truncated version of the signal on a single period of 

oscillation of the signal varies as xL(r) = ekr. Instead, y(r) is described by a 



290 

 

complex exponential function, as e−αr. This statement derives from the 

observations done on v(r) and represented in (5.10). 

Under such assumptions, the resulting pseudospectrum PBFa(αt) exhibits a 

main peak located at αt = α located, combined with side lobes located at αt = α + 

nk, being n an integer value. Indeed, the pseudospectrum PBFa(αt) can be 

interpreted as an approximation of the squared amplitude of Fourier transform of 

v(r), labeled as V(αt): 

 ( ) ( ) ( ) ( )
2 H

BFa t t t tP V V V   = =  (A.2) 

By exploiting the properties of the Fourier transform, V(αt) is the convolution 

of the spectra of the two factors x(r) and y(r): 

 ( ) ( ) ( )t t tV X Y  =   (A.3) 

The amplitude component X(αt) is the Fourier transform of periodic signal 

x(r), and the only information from a single period is sufficient: 
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where δ labels the Dirac’s δ-function. In this way, the spectral component X(αt) 

can be derived: 
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As for Y(αt), being y(r) a complex exponential, the Fourier transform is a 

Dirac’s δ-function: 

 ( ) ( )t tY    = −  (A.6) 

The spectrum V(αt) is the convolution of two signals involving Dirac’s δ-

functions, thanks to which the resulting spectrum is still a Dirac’s δ-function: 
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Thus, the DTFT is a sequence of Dirac’s functions, each centered at α+nk. 

The peak obtained at n = 0 returns the desired attenuation value α, and this 

corresponds to the main peak, as the multiplying factor is maximized at n = 0. 

Instead, side peaks are located at a relative distance from the main peak given by 
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integer multiples of k. Besides, for k → 0, the period of x(r) dramatically 

lengthens, and discontinuities disappear. Under such conditions, the side peaks of 

V(αt) tend to collapse towards α, hence only the main lobe appears. Such 

considerations are valid also for PCBFa(αt). 

A.2 Basic concepts of digital filtering 

The aim of this section is to provide some key concepts of digital filtering, that 

will be helpful for a proper understanding of the proposed filtering technique 

developed in this study. The main references of this sections are the manual by 

Mitra (2006) and the study by Bruekers (2009). 

Digital signal processing often requires some manipulation of discrete-time 

signals, to modify amplitude characteristics or the frequency content. This task is 

carried out by specific devices that are mathematically described as discrete-time 

systems, i.e. an operator T processing an input sequence x[n] to generate an output 

signal y[n], where n denotes the discrete sample index (Figure A-1): 

    ( )y n x n=   (A.8) 

 

Figure A-1. Schematic representation of a discrete-time system (modified from Mitra, 

2006). 

The most popular category of discrete-time systems are digital filters. A 

digital filter is a linear, time-invariant system. The linearity attribute specifies that 

the system fulfils the superposition principle, whereas the time-invariance entails 

that the behavior of the system does not change with time. Furthermore, causal 

digital filters are usually considered, where the output at a time instant does not 

depend on future input states. In this case, the time response can be described by 

means of a finite difference equation, with constant coefficients am and bm: 
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However, an effective characterization of digital filters relies on a transformed 

representation, in terms of transfer function H(eiω). The transfer function is the 

ratio between the Discrete-Time Fourier Transforms (DTFTs) of the output and 

the input sequences, which is a function of am and bm for digital filters described 

as finite different equations: 

        T
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Thanks to the time-invariance property, an exhaustive time-domain 

characterization of digital filters can be achieved by means of its impulse response 

h[n , namely the filter output when a Dirac’s δ-sequence is applied as the input. 

Indeed, the response to a generic sequence can be obtained through linear 

convolution between the input and h[n]. Furthermore, H(eiω) is exactly the DTFT 

of h[n]. 

Several classification schemes for digital filters are available, based on the 

time-domain response or on the features in the transformed domain. 

The time-domain classification clusters digital filter into two families, namely 

Finite Impulse Response (FIR) and Infinite Impulse Response (IIR) filters, based 

on the input-output relationship in the time domain. In FIR filters, the output only 

depends on the input signal and h[n] is a finite-length sequence. Therefore, the 

time- and the frequency-domain response can be obtained from Eq. A.9-10 by 

setting am = 0: 
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Instead, IIR filters return an output signal depending both on the input 

sequence and on previous output states, and the corresponding h[n] is a sequence 

defined over an infinite support. In this case, the finite difference equation and the 

transfer function coincide with those provided in Eq. A.9-10. 

Furthermore, digital filters can be clustered as real filters or complex filters, in 

which h[n] is real- and complex-valued, respectively. This classification reflects 

in a remarkable difference in the frequency response of the filter (i.e., H(eiω)). 

Real digital filters exhibit a symmetric response in the frequency domain, as 

H(eiω) is an even function. Instead, for complex filters, H(eiω) is asymmetric 

(Figure A-2). 
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Figure A-2. Real vs. complex filter: a-b) Impulse response h[n] for a) a real filter and b) a 

complex filter; c-d) Transfer function H(eiω) for c) a real filter and d) a complex filter. 

Alternative classification schemes of digital filters refer to the frequency 

response of the filter. On the one side, the magnitude |H(eiωt)| vs. frequency curve 

controls variations in the frequency content between the input and the output 

sequence. Specifically, some regions in the frequency domain can be identified: 

the passband, which is the frequency range where |H(eiωt)| is unitary; and the 

stopband, i.e., the frequency range where |H(eiωt)| is zero. Digital filters are 

classified as a function of the location of the passband and the stopband. Lowpass 

filters exhibit a passband at low frequencies and a stopband elsewhere (Figure 

A-3a), whereas the converse applies for highpass filters (Figure A-3b). In 

bandpass filters, the passband is centered around a target frequency range, and a 

stopband is applied elsewhere (Figure A-3c). Instead, bandstop filters exhibit a 

specular frequency response with respect to bandpass ones (Figure A-3d). 
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Figure A-3. a-d) Digital filter classification based on the magnitude vs. frequency 

response: a) Lowpass filter; b) Highpass filter; c) Bandpass filter; d) Bandstop filter; e) 

Ideal vs. physically realizable lowpass filter (only the positive frequency axis is 

represented). 

However, each magnitude response reported in Figure A-3a-d is 

representative of an ideal filter, where |H(eiωt)| is unitary in the passband and null 

in the stopband, with sharp transitions and zero phase everywhere. Such filters are 

not physically realizable because they can be achieved only by means of an 

infinite-length, acausal h[n]. Instead, a stable and realizable filter is characterized 

by a finite h[n], hence the corresponding H(eiωt) does not match the ideal transfer 

function. On the other side, it approximates the ideal trend, although it includes 

transition bands to allow smooth variations of the magnitude and undergoes small 

oscillations in the magnitude response in the passband and the stopband (Figure 

A-3e). In fact, one of the main goals in digital filter design is to minimize such 

oscillations and control the size of transition bands. 

In addition, the characterization of the phase response of a digital filter is of 

paramount importance. Indeed, it is often desired that the application of the filter 

does not introduce any distortion to phase of the signal, at least in the passband. 

For this purpose, a useful family of digital filters consists in linear-phase filters, 

where the phase of H(eiωt) is linear in the frequency range of interest (Figure A-4). 

A reliable indicator of phase linearity is provided by the group delay τg(ω), which 

is defined as the differential of the phase response of the filter with respect to the 

frequency: 
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The group delay expresses the time delay between the input and the output 

signal sequences. When τg(ω) is variable with the frequency (i.e., when the phase 

response is nonlinear), the filter introduces a distortion in the output signal. In 

linear-phase filters, the group delay is constant with the frequency, hence the 

output signal matches the desired component of the input sequence, unless some 

shift in the time domain. 

 

Figure A-4. Example of lowpass, linear-phase filter: a) Magnitude response; b) Phase 

response. 

FIR filters exhibit interesting features, thanks to which they are an appealing 

tool in digital signal processing. On the one side, the estimation of the output 

response is straightforward. Instead, IIR filters often require recursive 

computational schemes. Furthermore, FIR filters usually are an effective choice, 

because of the stability of the filter structure. However, they are computationally 

more demanding because a high order filter is required to achieve the same 

performance of a IIR filter, in terms of magnitude response. Finally, when FIR 

filters exhibit a symmetric or antisymmetric impulse response, then they are 

linear-phase filters. Under this condition, indeed, it is demonstrated that the group 

delay is constant with the frequency and it equals N/2, being N the order of the 

FIR filter (i.e., the number of elements of h[n] minus 1). Therefore, the output 

signal will be a modified amplitude, delayed version of the input sequence. As it 

will addressed in the next section, the design of symmetric FIR filters is 

straightforward, hence obtaining a linear phase response is quite an easy task. 

Instead, obtaining a linear-phase IIR filter is rather challenging, if not impossible. 
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For this reason, in those applications where the linearity in the phase response is 

crucial, the FIR filter is the preferred choice (Mitra, 2006). 

In summary, the most suitable digital filter category to be used for the scope 

of this study is the linear-phase FIR filter. However, some care in the design and 

in its application is required. Indeed, although this kind of filters does not 

introduce any phase distortion on the desired component of the input signal, the 

resulting output is delayed and it includes a transient portion. To get an insight on 

these two aspects, let us consider a simplified example: a harmonic signal x0[n] is 

corrupted by random Gaussian noise and it is desired to remove such component 

(Figure A-5). An effective strategy might rely on a bandpass FIR filter with order 

N, where the passband is centered around the frequency component of interest. 

However, the application of the digital filter to the input signal x[n] returns a 

sequence y[n], the initial samples of which do not exhibit oscillations compatible 

with the expected result. This corresponds to the transient portion, which derives 

from the assumption of causality of x[n], i.e. it is identically zero at negative 

times. Indeed, the output sequence is the result of a convolution between x[n] and 

h[n], hence each sample of y[n] depends on a number of past input data. Thus, the 

initial data of the y[n] are affected by the assumed zero input sample values at n < 

0. At large n, instead, y[n] depends solely on the actual input data and it is 

virtually identical to the expected result. The corresponding portion of the 

sequence is labeled as stationary response. Being an artifact due to the assumed 

causality of input signals, the transient response has to be removed from y[n], 

otherwise the interpretation of the resulting sequence might be biased. In FIR 

filters, the length of the transient portion is equal to N, hence only the last n-N 

samples (where n is the number of samples of the input sequence) of y[n] should 

be considered. 

However, even in the stationary portion, the output is a shifted version of the 

selected frequency component of the input. The entity of the shift is measured by 

τg(ω) which, in linear-phase FIR filters, equals N/2. Note that when N is odd, the 

output does not share identical features with the input sequence, but it is a 

translated version of the corresponding continuous version. This aspect may be 

critical as each output sample has to be associated with the correct sample 

location, accounting for this delay, in order to carry out a proper spectral analysis. 
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Figure A-5. Effect of a N-order FIR filter on a harmonic signal, highlighting the transient 

portion and the delay in the stationary response. 

A.3 Symmetry of complex filters 

This section provides a quick overview about symmetry of complex filters, with a 

focus on the main results that are of interest for the specific digital filter that is 

adopted in this study. The main reference is the study by Bruekers (2009). 

The description of the symmetry of complex-valued filters refers to two 

parameters, namely the shape of symmetry σ ∈ ℂ (with |σ| = 1) and the center of 

symmetry μ ∈ ℤ/2. The parameter σ specifies whether a filter is symmetric or 

antisymmetric. As this couple of parameter allows a full characterization of 

symmetric complex filters, often the symmetry is denoted as (σ, μ)-symmetry. 

The definition of (σ, μ)-symmetry for a complex filter h[n] applies both for 

the impulse response h[n] and the transfer function H(e ω): 
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where HC(e ω) is the transfer function of h*[n]. 

The adopted filter is defined as follows (see Eq. 5.16): 

  
i

[ ]tgk n
h n e g n

−
=  (A.15) 

being ktg the target wavenumber and g[n] a real-valued, lowpass filter with order 

N. As g[n] is designed through the windowing approach, g[n] is a symmetric 

filter, specifically it exhibits (1, N/2)-symmetry. The transformation tgik n
e
−  still 

returns a symmetric filter. Indeed, if s[n] is (σ, μ)-symmetric, then the filter t[n] 

defined as 
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-symmetric. 

Finally, symmetric complex filters exhibit linear phase response. Indeed, the 

phase response of a (σ, μ)-symmetric filter s[n] is the following: 

 ( )i 1
arg arg

2
S e   = −  (A.17) 

For the specific case of h[n], the phase varies as follows: 

 ( ) ( )i 1
arg 2

2 2 2 2
tg tg

N N N
H e k k  = − = −  (A.18) 

Therefore, the group delay is constant and it equals N/2. 

A.4 Calibration study of the FDBFaMF and the 

CFDBFaMF 

This section reports results of the calibration study of the FDBFaMF and 

CFDBFaMF, for the parameter sets [kp; ks] = [1; 2], [2; 4], and [3; 10] and N = 10, 

20, 30, and 40. Data refer to synthetic waveforms SW3 and SW4 (see Section 

5.1). 

The following figures compare resulting dispersion and attenuation estimates 

obtained through the FDBFaMF and the CFDBFaMF algorithms for the first three 

modes for SW3 and SW4, labeled as R0, R1 and R2, respectively. Reported data 

are sampled with a sampling frequency of 1 Hz, across the frequency band 

ranging between 3 Hz and 100 Hz. Furthermore, the regions associated with 

wavelengths beyond the resolution limits of the simulated array are highlighted, as 

the corresponding results should be interpreted with care. Finally, Table A.1 to 

Table A.4 list the overall estimation error ΔV Δα, as a function of filter 

parameters. Values ΔV and Δα are root mean square errors for the phase velocity 

and phase attenuation data respectively: 

 ( ) ( )
2 2

, ,

1 1

1 1
ln ln ln ln

N N

R e R R e R

n n

V V V
N N

  
= =

 = −  = −   (10.19) 

where N is the number of samples, VR,e and αR,e are the estimated values, and 

VR and αR are the theoretical ones. The error is computed as sum of the errors for 

the first three modes, considering data within the array resolution limits.  
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Table A.1. Estimation error ΔV Δα in the phase velocity and phase attenuation data for 

the FDBFaMF algorithm on SW3, with a focus on the first three modes, as a function of 

filter calibration parameters. 

↓ [kp; ks]   N → 10 20 30 40 

[1; 2] 1.48 1.43 2.18 2.02 

[2; 4] 1.54 1.48 1.89 2.05 

[3; 10] 1.59 1.29 1.99 3.13 

 

Table A.2. Estimation error ΔV Δα in the phase velocity and phase attenuation data for 

the CFDBFaMF algorithm on SW3, with a focus on the first three modes, as a function of 

filter calibration parameters. 

↓ [kp; ks]   N → 10 20 30 40 

[1; 2] 1.13 1.14 2.73 2.13 

[2; 4] 1.40 1.39 2.10 2.26 

[3; 10] 1.58 1.49 2.37 3.51 

 

Table A.3. Estimation error ΔV Δα in the phase velocity and phase attenuation data for 

the FDBFaMF algorithm on SW4, with a focus on the first three modes, as a function of 

filter calibration parameters. 

↓ [kp; ks]   N → 10 20 30 40 

[1; 2] 2.81 2.18 2.35 3.81 

[2; 4] 2.81 2.21 2.55 2.03 

[3; 10] 2.86 2.28 2.85 4.91 

 

Table A.4. Estimation error ΔV Δα in the phase velocity and phase attenuation data for 

the CFDBFaMF algorithm on SW4, with a focus on the first three modes, as a function of 

filter calibration parameters. 

↓ [kp; ks]   N → 10 20 30 40 

[1; 2] 1.96 1.90 1.93 2.70 

[2; 4] 1.96 3.01 3.17 2.53 

[3; 10] 1.96 2.95 1.45 3.13 
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A.4.1 Results for SW3 - FDBFaMF 

 
Figure A-6. Influence of filter calibration parameters in the application of the FDBFaMF 

algorithm on SW3, with a focus on the first three modes: a-b) Estimated dispersion 

curves (a) and attenuation curves (b) for the fundamental mode, labeled as R0; c-d) 

Estimated dispersion curves (c) and attenuation curves (d) for the first higher mode, 

labeled as R1; e-f) Estimated dispersion curves (e) and attenuation curves (f) for the 

second higher mode, labeled as R2. Results correspond to the set of parameters [kp; ks] = 

[1; 2]. Results of the FDBFa are also reported, for comparison purposes. Estimated data 

points beyond the array resolution limits – i.e., the grey areas in (a), (c), and (e) – are 

colored in grey. 
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Figure A-7. Influence of filter calibration parameters in the application of the FDBFaMF 

algorithm on SW3, with a focus on the first three modes: a-b) Estimated dispersion 

curves (a) and attenuation curves (b) for the fundamental mode, labeled as R0; c-d) 

Estimated dispersion curves (c) and attenuation curves (d) for the first higher mode, 

labeled as R1; e-f) Estimated dispersion curves (e) and attenuation curves (f) for the 

second higher mode, labeled as R2. Results correspond to the set of parameters [kp; ks] = 

[2; 4]. Results of the FDBFa are also reported, for comparison purposes. Estimated data 

points beyond the array resolution limits – i.e., the grey areas in (a), (c), and (e) – are 

colored in grey. 
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Figure A-8. Influence of filter calibration parameters in the application of the FDBFaMF 

algorithm on SW3, with a focus on the first three modes: a-b) Estimated dispersion 

curves (a) and attenuation curves (b) for the fundamental mode, labeled as R0; c-d) 

Estimated dispersion curves (c) and attenuation curves (d) for the first higher mode, 

labeled as R1; e-f) Estimated dispersion curves (e) and attenuation curves (f) for the 

second higher mode, labeled as R2. Results correspond to the set of parameters [kp; ks] = 

[3; 10]. Results of the FDBFa are also reported, for comparison purposes. Estimated data 

points beyond the array resolution limits – i.e., the grey areas in (a), (c), and (e) – are 

colored in grey. 
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A.4.2 Results for SW3 - CFDBFaMF 

 

Figure A-9. Influence of filter calibration parameters in the application of the 

CFDBFaMF algorithm on SW3, with a focus on the first three modes: a-b) Estimated 

dispersion curves (a) and attenuation curves (b) for the fundamental mode, labeled as R0; 

c-d) Estimated dispersion curves (c) and attenuation curves (d) for the first higher mode, 

labeled as R1; e-f) Estimated dispersion curves (e) and attenuation curves (f) for the 

second higher mode, labeled as R2. Results correspond to the set of parameters [kp; ks] = 

[1; 2]. Results of the CFDBFa are also reported, for comparison purposes. Estimated data 

points beyond the array resolution limits – i.e., the grey areas in (a), (c), and (e) – are 

colored in grey. 
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Figure A-10. Influence of filter calibration parameters in the application of the 

CFDBFaMF algorithm on SW3, with a focus on the first three modes: a-b) Estimated 

dispersion curves (a) and attenuation curves (b) for the fundamental mode, labeled as R0; 

c-d) Estimated dispersion curves (c) and attenuation curves (d) for the first higher mode, 

labeled as R1; e-f) Estimated dispersion curves (e) and attenuation curves (f) for the 

second higher mode, labeled as R2. Results correspond to the set of parameters [kp; ks] = 

[2; 4]. Results of the CFDBFa are also reported, for comparison purposes. Estimated data 

points beyond the array resolution limits – i.e., the grey areas in (a), (c), and (e) – are 

colored in grey. 
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Figure A-11. Influence of filter calibration parameters in the application of the 

CFDBFaMF algorithm on SW3, with a focus on the first three modes: a-b) Estimated 

dispersion curves (a) and attenuation curves (b) for the fundamental mode, labeled as R0; 

c-d) Estimated dispersion curves (c) and attenuation curves (d) for the first higher mode, 

labeled as R1; e-f) Estimated dispersion curves (e) and attenuation curves (f) for the 

second higher mode, labeled as R2. Results correspond to the set of parameters [kp; ks] = 

[3; 10]. Results of the CFDBFa are also reported, for comparison purposes. Estimated 

data points beyond the array resolution limits – i.e., the grey areas in (a), (c), and (e) – are 

colored in grey. 
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A.4.3 Results for SW4 - FDBFaMF 

 

Figure A-12. Influence of filter calibration parameters in the application of the FDBFaMF 

algorithm on SW4, with a focus on the first three modes: a-b) Estimated dispersion 

curves (a) and attenuation curves (b) for the fundamental mode, labeled as R0; c-d) 

Estimated dispersion curves (c) and attenuation curves (d) for the first higher mode, 

labeled as R1; e-f) Estimated dispersion curves (e) and attenuation curves (f) for the 

second higher mode, labeled as R2. Results correspond to the set of parameters [kp; ks] = 

[1; 2]. Results of the FDBFa are also reported, for comparison purposes. Estimated data 

points beyond the array resolution limits – i.e., the grey areas in (a), (c), and (e) – are 

colored in grey. 



307 

 

 

Figure A-13. Influence of filter calibration parameters in the application of the FDBFaMF 

algorithm on SW4, with a focus on the first three modes: a-b) Estimated dispersion 

curves (a) and attenuation curves (b) for the fundamental mode, labeled as R0; c-d) 

Estimated dispersion curves (c) and attenuation curves (d) for the first higher mode, 

labeled as R1; e-f) Estimated dispersion curves (e) and attenuation curves (f) for the 

second higher mode, labeled as R2. Results correspond to the set of parameters [kp; ks] = 

[2; 4]. Results of the FDBFa are also reported, for comparison purposes. Estimated data 

points beyond the array resolution limits – i.e., the grey areas in (a), (c), and (e) – are 

colored in grey. 
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Figure A-14. Influence of filter calibration parameters in the application of the FDBFaMF 

algorithm on SW4, with a focus on the first three modes: a-b) Estimated dispersion 

curves (a) and attenuation curves (b) for the fundamental mode, labeled as R0; c-d) 

Estimated dispersion curves (c) and attenuation curves (d) for the first higher mode, 

labeled as R1; e-f) Estimated dispersion curves (e) and attenuation curves (f) for the 

second higher mode, labeled as R2. Results correspond to the set of parameters [kp; ks] = 

[3; 10]. Results of the FDBFa are also reported, for comparison purposes. Estimated data 

points beyond the array resolution limits – i.e., the grey areas in (a), (c), and (e) – are 

colored in grey. 
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A.4.4 Results for SW4 - CFDBFaMF 

 
Figure A-15. Influence of filter calibration parameters in the application of the 

CFDBFaMF algorithm on SW4, with a focus on the first three modes: a-b) Estimated 

dispersion curves (a) and attenuation curves (b) for the fundamental mode, labeled as R0; 

c-d) Estimated dispersion curves (c) and attenuation curves (d) for the first higher mode, 

labeled as R1; e-f) Estimated dispersion curves (e) and attenuation curves (f) for the 

second higher mode, labeled as R2. Results correspond to the set of parameters [kp; ks] = 

[1; 2]. Results of the CFDBFa are also reported, for comparison purposes. Estimated data 

points beyond the array resolution limits – i.e., the grey areas in (a), (c), and (e) – are 

colored in grey. 
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Figure A-16. Influence of filter calibration parameters in the application of the 

CFDBFaMF algorithm on SW4, with a focus on the first three modes: a-b) Estimated 

dispersion curves (a) and attenuation curves (b) for the fundamental mode, labeled as R0; 

c-d) Estimated dispersion curves (c) and attenuation curves (d) for the first higher mode, 

labeled as R1; e-f) Estimated dispersion curves (e) and attenuation curves (f) for the 

second higher mode, labeled as R2. Results correspond to the set of parameters [kp; ks] = 

[2; 4]. Results of the CFDBFa are also reported, for comparison purposes. Estimated data 

points beyond the array resolution limits – i.e., the grey areas in (a), (c), and (e) – are 

colored in grey. 
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Figure A-17. Influence of filter calibration parameters in the application of the 

CFDBFaMF algorithm on SW4, with a focus on the first three modes: a-b) Estimated 

dispersion curves (a) and attenuation curves (b) for the fundamental mode, labeled as R0; 

c-d) Estimated dispersion curves (c) and attenuation curves (d) for the first higher mode, 

labeled as R1; e-f) Estimated dispersion curves (e) and attenuation curves (f) for the 

second higher mode, labeled as R2. Results correspond to the set of parameters [kp; ks] = 

[3; 10]. Results of the CFDBFa are also reported, for comparison purposes. Estimated 

data points beyond the array resolution limits – i.e., the grey areas in (a), (c), and (e) – are 

colored in grey. 
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Appendix B 

Implementation details of other 

SWM processing methods 

This Appendix describes some literature approaches for the estimation of R-wave 

phase velocity and phase attenuation. Although the main principles were already 

discussed in Section 4.3.1, this Appendix focuses on some technical aspects 

linked with their implementation. Firstly, the Transfer Function Method (TFM) is 

addressed, to specify the adopted regression algorithm. Then, the description of 

the Generalized Half-Power Bandwidth (GHPB) and of the Circle Fit Method 

(CFM) focuses on the relative differences and on some issues linked with some 

operative parameters. Finally, the WaveDec (WD) procedure is recalled, with a 

particularization to processing vertical displacement data only. The description 

uses the synthetic wavefields SW1, SW2, SW3, and SW4, introduced in Section 

5.1. 

B.1 Transfer function method 

The TFM estimates the phase velocity VR(ω) (alternatively, the wavenumber 

kR(ω)) and the phase attenuation αR(ω) of Rayleigh waves based on the nonlinear 

fitting of the R-wave experimental displacement transfer function T(r,ω), i.e. the 

ratio between the measured vertical displacement at each sensor and the force 

applied at the source in the frequency domain. The regression provides an 

estimate of the complex wavenumber kR(ω), from which VR(ω) and αR(ω) are 

then derived. The fitting of T(r,ω) can be performed in an uncoupled way, based 

on the separate fitting of its amplitude and phase (Lai et al., 2002). However, a 

coupled fitting of the transfer function in the complex domain is mathematically 

more robust (Foti, 2003; Figure B-1). The fitting procedure is solved via an 

optimization procedure, aimed at finding the global minimum of an objective 

function. 

The nonlinearity of the regression model introduces various levels of 

complexity in the solution of the fitting procedure. On the one side, the fitting 

procedure requires an initial guess of the R-wave parameters. Furthermore, the 
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objective function tends to exhibit manifold local minima, as a function of the 

complexity of the recorded wavefield and of the noise level. In ideal conditions, 

such as a single planar wave (e.g., SW1; Figure 4-11a), the objective function 

only includes a global minimum, and any solver easily identifies it. However, 

usual acquisition setups return wavefield data that potentially include multiple 

wave components (even other than surface waves) and are affected by incoherent 

noise. Therefore, the shape of the objective function is more complex, and it 

exhibits manifold local minima combined with the global one, which theoretically 

represents the actual wave component of interest (Figure 4-11b). In this case, the 

estimator might get trapped, thus returning wrong estimates of the R-wave 

parameters. Therefore, a robust solver must be used to achieve reliable estimates 

of dispersion and attenuation data. 

The present study solves the fitting procedure through a strategy compatible 

with the one implemented by Lai et al. (2002) and updated by Badsar (2012). This 

technique carries out a coupled fitting of the transfer function in the complex 

domain, wherein first-stage estimates of kR(ω) and αR(ω) are obtained through two 

preliminary stages of uncoupled fitting. Specifically, a starting value of αR(ω) is 

first estimated by means of a nonlinear fitting of the amplitude of T(r,ω) with 

respect to the offset, which is modeled according to the amplitude component of 

Eq. 4.12. This stage can rely on a local optimization solver, as the simplex method 

(Nelder and Mead, 1965). Then, a reference value of kR(ω) is obtained by 

exploiting the phase information carried in T(r,ω). An intuitive way estimates 

kR(ω) through a linear fitting of the phase of T(r,ω) itself, with the offset. 

However, this strategy is quite sensitive to the robustness of the phase unwrapping 

algorithm, which may lead to unreliable estimates, especially in the presence of 

noisy data (e.g., Strobbia and Foti, 2006). Alternatively, kR(ω) can be estimated by 

fitting T(r,ω) according to the theoretical formulation given in Eq. 4.12. In this 

case, the attenuation component is kept fixed and equal to the αR(ω) obtained in 

the previous stage. As the objective function exhibits multiple minima, a global 

optimization algorithm is required to achieve reliable estimates of the real 

wavenumber. This study adopts the sequential quadratic programming method 

(Nocedal and Wright, 2006), combined with a scatter-search mechanism (Ugray et 

al., 2007) to explore the whole parameter space in a fast and consistent way. 

Finally, the preliminary estimates of kR(ω) and αR(ω) are plugged as initial values 

into a coupled nonlinear fitting procedure, wherein T(r,ω) is modeled through the 

theoretical formulation given in Eq. 4.12 and both the amplitude and the phase 

term are not fixed, to obtain a final estimate of kR(ω). The solution is found by 

means of a local optimization solver, as the simplex method (Nelder and Mead, 
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1965), because the initial values are usually close enough to the target kR(ω). The 

multi-stage fitting improves the reliability, the stability and the robustness of the 

estimates with respect to a direct, nonlinear fitting. 

 

Figure B-1. Objective function of the nonlinear regression procedure adopted in the TFM, 

represent as pseudo-color plots mapping its magnitude as a function of trial values of the 

wavenumber and the attenuation: a) Waveform SW1, which represents the ideal case of a 

planar wave, where the estimated wave parameters (ke; αe) are compared with the 

theoretical values (k; α); b) Data from GV-H5 array (see Section 7.1), which represents a 

real case. 

B.2 Wavefield decomposition approach 

The WD approach (e.g., Maranò et al., 2017; Bergamo et al., 2018; Bergamo et 

al., 2019) interprets measured three-component displacement data to jointly obtain 

a maximum likelihood estimate the Rayleigh wave parameters, i.e. the complex 

wavenumber kR(ω) and the ellipticity angle ξ(ω). This approach accommodates 

for the presence of multiple modes of propagation in the recorded wavefield, and 

it identifies the most reliable number of wave components based on the Bayesian 

Information Criterion (BIC; Schwartz, 1978). The output of the fitting procedure 

depends on the parameter γ, that allows to control the complexity of the model 

and the fitting quality – specifically, at smaller γ, the algorithm returns a larger 

number identified propagation modes and it tends to overfit experimental data. 

The value γ = 0 is adopted. This choice forces the procedure to adopt the 

maximum likelihood criterion, thus ensuring the retrieval of wave components 

across the whole investigated frequency range. This assumption is necessary to 
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allow consistent comparison with alternative processing techniques. The WD 

algorithm is implemented in a Python-based software (available at the following 

URL: https://stefanomarano.github.io/WaveDec/). 

However, usual MASW surveys utilize vertical geophones to acquire the 

wavefield, but the available options implemented in the WD software do not 

include the attenuation estimate from the vertical component of the Rayleigh 

waves. For this reason, an alternative version of the WD approach has been 

implemented. The modified version exploits the only information provided by 

vertical displacement data to constrain both VR(ω) and αR(ω). In this case, 

information about ξ(ω) is inevitably lost. Figure B-2 compares the estimated 

dispersion and attenuation data for SW3 and SW4, based on the vertical 

displacement only and on three-component data. The estimates of VR(ω) and 

αR(ω) are identical with each other, entailing a good level of reliability and 

correctness of the modified scheme. However, when using single-component 

records, the resulting wave parameters are defined over a narrower frequency 

range, and less information about weak wave components (i.e., non-dominant R-

wave modes) is retrieved. Indeed, less experimental data are available to constrain 

the wave propagation model. A potential solution to compensate for the lack of 

estimated wave parameters might consist in decreasing the γ parameter, which 

allows for a more flexible propagation model. 

https://stefanomarano.github.io/WaveDec/
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Figure B-2. Application of the WD approach in the presence of three-component data or 

vertical displacement data only, for SW3 and SW4: a-b) Estimated dispersion and 

attenuation curves for SW3; c-d) Estimated dispersion and attenuation curves for SW4. 

B.3 Generalized Half-Power Bandwidth and Circle Fit 

Methods 

The GHPB (Badsar et al., 2010) provides an uncoupled estimate of VR(ω) and 

αR(ω), from the interpretation of the magnitude of the experimental T(r,ω), in the 

f-k domain. Instead, the CFM infers the R-wave parameters based on the Nyquist 

plot of the f-k spectrum of the displacement transfer function (Verachtert et al., 

2017). In both cases, the transformation of T(r,ω) into the f-k domain is carried 

out through a Hankel transform, to account for the cylindrical shape of the 

wavefront (Forbriger, 2003). The transformation involves a numerical integration, 

which is achieved through a generalized version of the Filon’s quadrature scheme 

(Filon, 1928; Frazer and Gettrust, 1984; Verachtert, 2018). 

The GHPB first identifies the dispersion curves of each mode of propagation 

are first identified as spectral peaks of the f-k spectrum. Then, for each 
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propagation mode, it derives αR at every frequency from the width of the 

corresponding peak. At each frequency, the bandwidth ΔkR,j(ω) is the width of the 

f-k spectral peak of the j-th mode, measured at an amplitude level equal to a 

fraction γ of the peak value (Figure 4-13a). Then, αR(ω) is derived from such 

bandwidth, according to Eq. 4.18. 

However, the estimate of the f-k spectrum according to Eq. 4.17 is influenced 

by a truncation effect. Indeed, a rigorous estimate would require the integral to be 

extended up to r → ∞, but the limited length of the acquisition array forces a 

truncation to a finite value of r. The result is a widening of the peaks in the f-k 

spectrum, that induce an overestimation of αR(ω). For this reason, Badsar et al. 

(2010) apply a exponentially decaying window to recorded data prior to the 

calculation of the f-k spectrum: 

 ( )
( , ) art r

w r e
 


−

=  (B.1) 

The aim of this window is to accelerate the spatial decay of the recorded 

signal, thus the truncation effect on the estimated attenuation becomes negligible 

(Fladung and Rost, 1997). The decay rate αart(ω) is derived by forcing the 

amplitude of the windowed signal at the farthest receiver to be small enough 

compared with the one recorded at the closest sensor. Specifically, αart(ω) is the 

smallest nonnegative value for which the following inequality is satisfied: 
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( , ) ( , )

N Nw r T r
q

w r T r

 

 
  (B.2) 

The control parameter q should be chosen as a function of site characteristics 

and the survey setup, although it is typically equal to 10-4. On the other side, the 

application of such window introduces an artificial attenuation due to the stronger 

decay of the signal amplitude in space, resulting in an increase in αR(ω) of a value 

equal to the decay rate αart(ω). Hence, the estimate obtained from the width of 

each peak should be reduced by this term to obtain a correct value of the R-wave 

attenuation. The whole procedure is synthetized in Algorithm 5. 

 

Algorithm 5 Generalized Half-Power Bandwidth 

Input: ( ) 
1 1

,
TN N

z n s
n s

u r t
= =

: particle displacement recorded at N sensors with offset rn, at NT time 

samples tt 

1: Compute displacement transfer function ( ) 
1 1

,
N N

n i
n j

T r



= =

 from Eq. 4.11, for Nω 

frequencies ωi 

2: for i = 1 : Nω do 

3:  Calculate αart(ωi) from Eq. B.2 

4:  Apply the window T(r, ωi) ← w(r, ωi)T(r, ωi) 

5:  Compute f-k spectrum T(kr, ωi) from Eq. 4.16 
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6:  
Identify peaks ( ) ( )( ) 

( )
, ,

1
; ,

iM

Re j i Re j i i
j

k T k


  
=

 of the f-k spectrum, for 

M(ωi) modes 

7:  for j = 1 : M(ωi) do 

8:   Compute αRe,j(ωi) from Eq. 4.17 

9:   αRe,j(ωi) ← αRe,j(ωi) − αart(ωi) 

10:  end for 

11: end for 

 

Instead, the CFM is intimately connected with the GHPB as it uses the 

corresponding VR(ω) and αR(ω) estimates as starting point. The principle of the 

CFM relies on an alternative representation of the f-k spectrum of the 

displacement transfer function, based on the Nyquist plot, which compares the 

real and the imaginary part of a complex number. From the analogy between the 

spectral shape of the R-wave spectrum at each frequency and the frequency 

response function of a Multiple-Degree-Of-Freedom (MDOF) system, it can be 

demonstrated that the Nyquist plot of the f-k spectrum is a combination of circles, 

each one corresponding to a single Rayleigh mode (Ewins, 1984; Figure 4-14b). 

The CFM estimates VR(ω) and αR(ω) based on the geometry of the circles. The 

whole procedure is synthetized in Algorithm 6. 

 

Algorithm 6 Circle Fit Method 

Input: ( ) 
1 1

,
TN N

z n s
n s

u r t
= =

: particle displacement recorded at N sensors with offset rn, at NT time 

samples tt 

1: Compute displacement transfer function ( ) 
1 1

,
N N

n i
n j

T r



= =

 from Eq. 4.11, for Nω 

frequencies ωi 

2: for i = 1 : Nω do 

3:  Calculate αart(ωi) from Eq. B.2 

4:  Apply the window T(r, ωi) ← w(r, ωi)T(r, ωi) 

5:  Compute f-k spectrum T(kr, ωi) from Eq. 4.16 

6:  
Identify peaks ( ) ( )( ) 

( )
, ,

1
; ,

iM

Re j i Re j i i
j

k T k


  
=

 of the f-k spectrum, for 

M(ωi) modes 

7:  for j = 1 : M(ωi) do 

8:   Compute kRe,j(ωi) as the point with max. relative distance in the 

Nyquist plot of T(kr, ωi) 

9:   Update kRe,j(ωi) by maximizing the angular sweep 

10:   Compute αRe,j(ωi) from Eq. 4.18 

11:   αRe,j(ωi) ← αRe,j(ωi) − αart(ωi) 

12:  end for 

13: end for 

 

In the GHPB and the CFM method, the estimated VR(ω) and αR(ω) depend on 

two parameters, i.e., γ and q. The quantity q controls the exponential spatial 
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window which is applied to the experimental T(r,ω), to reduce the influence of 

spatial leakage on the f-k spectrum. Instead, γ sets the reference power level 

corresponding to the bandwidth from which αR(ω) is then derived. The CFM is 

also sensitive to q, whereas the dependence of the estimated R-wave parameters 

on γ is usually negligible. Indeed, this technique uses the GHPB estimate of αR(ω) 

as a starting value, and it corrects it based on the shape of the f-k spectrum. Badsar 

et al. (2010) and Verachtert et al. (2017) adopted γ = 0.99 and q = 10−4. However, 

both γ and q depend on the soil deposit characteristics and on the acquisition 

layout, hence a site-specific parametric study to assess their influence on the 

resulting R-wave parameters is required. 

For instance, Figure B-3 reports results of the calibration analysis carried out 

on SW2, for both the GHPB and the CFM. The assessment considered 11 log-

spaced q values, ranging between 10−10 and 1, whereas the following γ values 

were adopted: √2/2 (i.e., the basic half-power bandwidth), 0.9, 0.95, 0.99, 0.995, 

and 0.999. Interestingly, both techniques failed in returning an estimate of kR(ω) 

and αR(ω) for a broad range of q, and results are available only for q > 10−2. 

Furthermore, the observed influence of q on the obtained value kR,e(ω) in this 

small interval is almost negligible, and a small underestimation of kR(ω) is noticed 

– the relative difference is about 5%. Instead, the resulting attenuation αR,e(ω) is 

remarkably sensitive to q, as the estimation error is minimum for q = 10−2 and it 

doubles itself elsewhere. As far as γ is concerned, the optimal choice corresponds 

to √2/2 for the GHPB, whereas its influence on αR,e(ω) is negligible when using 

the CFM. 
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Figure B-3. Influence of the model parameters γ and q onto the estimated R-wave data, 

according to the GHPB and the CFM: a-b) Influence of q on the estimated wavenumber 

ke, for the GHPB (a) and the CFM (b); c-d) Influence of q and γ on the estimated 

attenuation αe, for the GHPB (c) and the CFM (d). The estimation error in the attenuation 

is quantified by the relative error Δα, i.e., the error normalized with respect to the 

theoretical value. Data refer to SW2. 

These results may suggest a strong site- and acquisition setup-dependence of 

the optimal γ and q, due to the large discrepancy with the values proposed by 

Badsar et al. (2010) and Verachtert et al. (2017). However, the limited number of 

available data does not allow to draw general conclusions on the influence of 

these parameters on the estimated R-wave data, at least in this case. Furthermore, 

in no scenario the estimated attenuation well matches the theoretical value, as the 

estimation error is always greater than 5. On the other side, this result highlights a 

potential drawback of using the GHPB and the CFM to estimate R-wave 

parameters. Indeed, all the q values where no estimate of kR(ω) and αR(ω) is 

returned correspond to conditions where no peak is identified in the f-k spectrum. 

The absence of such peak arises from the combination of two factors. On the one 

side, the computation scheme used to transform T(r,ω) into the f-k domain suffers 

from numerical instability at very low k values, and the magnitude of transformed 

data can be rather large in this range. Furthermore, as q decreases, each spectral 
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peak becomes broader and with smaller amplitude, entailing an apparent loss in 

resolution in the spectral domain. Thus, at low q values, the spectral peak 

corresponding to the investigated wave component is quite small, and it may be 

masked by the anomalous increase in the magnitude at low k. This issue becomes 

critical when the investigated wave component is characterized by low kR(ω), as 

in SW2, where k = 0.1. Therefore, both the GHPB and the CFM might not 

correctly identify the R-wave parameters in the low-frequency range, where the 

corresponding Rayleigh waves usually exhibit long wavelengths, i.e. small 

wavenumbers. This also probably represents the reason why both Badsar et al. 

(2010) and Verachtert et al. (2017) returned the R-wave parameters and 

information about calibration data only at frequencies greater than 15 Hz. 

To highlight the influence of γ and q on the estimated wave parameters, 

Figure B-4 reports the results of the calibration study on an alternative cylindrical 

wavefield, with k = 1.5 rad/m and α = 0.025 rad/m. The acquisition layout is the 

same of SW2. In this case, both the GHPB and the WD do not fail to estimate the 

R-wave parameters in all the investigated q range. Furthermore, the average 

estimation error for the wavenumber and the attenuation is much smaller. In 

general, the error in kR is less than 5% and it reduces down as q increases, 

becoming negligible at q > 10−5÷10−2. Furthermore, the sensitivity of the CFM on 

q is less relevant and the estimation error is smaller than in GHPB. As for the 

attenuation estimate, the best matching is achieved for q = 10−5. The influence of γ 

on the GHPB results is still apparent, as the quality of the estimate is improved for 

γ = 0.99, whereas its role on the CFM is negligible. Furthermore, the closest 

match is achieved with the CFM. 
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Figure B-4. Influence of the model parameters γ and q onto the estimated R-wave data, 

according to the GHPB and the CFM: a-b) Influence of q on the estimated wavenumber 

ke, for the GHPB (a) and the CFM (b); c-d) Influence of q and γ on the estimated 

attenuation αe, for the GHPB (c) and the CFM (d). The estimation error in the attenuation 

is quantified by the relative error Δα, i.e., the error normalized with respect to the 

theoretical value. Data refer to a modified version of SW2, with k = 1.5 rad/m and α = 

0.025 rad/m. 

As the GHPB and the CFM exhibit strong similarities, the present study 

focuses on a single method, and any specific feature of the other is specified when 

needed. This study adopts the CFM as representative of this family of techniques. 

Indeed, Verachtert et al. (2017) demonstrated that the CFM provides more 

accurate estimates of VR(ω) than the peak picking of the f-k spectrum and it is 

more reliable at deriving αR(ω) than the GHPB, for both the fundamental mode 

and higher modes. The better performance is also highlighted in Figure B-4, for 

both the wavenumber and the attenuation. Besides, the estimated R-wave 

parameters are less sensitive to q, and they are independent from γ. Therefore, this 

technique is less affected by the epistemic uncertainty linked with the parameter 

choice. 

Figure B-5 reports the results of the calibration study for the CFM, carried out 

on SW3 and SW4, that represent the outcome of a more realistic surface wave 
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test. As q increases, the matching between predicted and theoretical dispersion 

curves slightly improves, and a significant broadening in the investigated 

frequency range is noticed. The gradual extension at low frequencies results from 

the presence of narrower peaks in the f-k spectrum, for which the influence of 

computation issues at low wavenumbers becomes less remarkable. As for 

attenuation data, the best matching is achieved for q = 10−4÷10−3, although a 

significant overestimation occurs at low frequencies. Similar results are observed 

for higher modes, highlighting that the recommended values of the parameters are 

reliable also in these synthetic cases. Furthermore, no influence of γ on the 

estimated attenuation is observed. 

 

Figure B-5. Influence of the model parameters γ and q onto the estimated R-wave data, 

according to the CFM: a-b) Influence of q on the estimated wavenumber ke, for SW3 (a) 

and SW4 (b); c-d) Influence of q and γ on the estimated attenuation αe, for SW3 (c) and 

SW4 (d). The comparison is carried out for the fundamental mode. The dashed lines 

denote the array resolution limits. 
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Appendix C 

Scaling properties of the solution of 

the forward Rayleigh problem 

The Rayleigh eigenvalue problem in linear, viscoelastic layered media can be 

solved according to the formalism of matrix notation. This study adopts the 

notation used in Strobbia (2003) and Socco and Boiero (2008). Although the 

original scheme is valid in elastic conditions, the generalization into a linear, 

viscoelastic medium is immediate by the virtue of the correspondence principle, 

according to which the analytical formulation is unchanged but with complex-

valued parameters replacing the elastic ones. 

The Rayleigh eigenvalue problem is associated with a characteristic equation, 

which assumes an implicit form: 

 ( ) ( ) ( ), , , , 0R S P Rz z z   = V V k  (C.1) 

The functional form ΦR[‧] is named “secular function” and it is a highly 

nonlinear, transcendental function of the arguments. In the equation, the unknown 

is the wavenumber kR, that includes the Rayleigh wave propagation 

characteristics at the considered frequency ω. The parameters describing the 

layered medium are the complex-valued S-wave velocity VS, the complex-valued 

P-wave velocity VP and the mass density ρ. Each velocity term depends on the 

corresponding body-wave phase velocity (VS, VP) and phase damping ratio (DS, 

DP), as follows: 
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V  (C.2) 

Note that these quantities are dependent on the frequency, however this is not 

explicitly reported for simplicity. 

In layered media, the secular function is linked with the 2nd order matrix 

quantity R11: 

 ( ) ( ) ( ) 11, , , , det 0R S P Rz z z   = =  RV V k  (C.3) 
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R11 is a 2nd order matrix obtained from the partition of a matrix R, that relates the 

displacement and the stress state at the free surface with the displacement 

potential at the interface with the half space: 

 
11 12

21 22

 
=  
 

R R
R

R R
 (C.4) 

The matrix R derives from the combination of matrices depending on the 

mechanical parameters and the thicknesses of each layer: 

 1 1
1 2 1,L l l lL l

− −
−= =R A G G G G A E A  (C.5) 

The matrix Al collects the mechanical parameters of the l-th layer, as it 

contains VS,l, VP,l and the mass density ρl as well as the unknown R-wave 

wavenumber kR: 
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where: 
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Instead, the matrix El includes the influence of the layer thickness Hl: 
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The demonstration of the scaling properties in the linear viscoelastic case 

relies on the formulation characterizing the R11 determinant, for which a 

simplified formula allows an immediate estimation. Indeed, as R is a matrix 

product, R11 can be computed as the product of related 2nd order sub-determinants: 

 ( ) ( ) ( ) ( )
12121 1

1 2 1 11 1 2 112 12
det

ab st uv
L LL L cd uvab

− −
− −=  = = R A G G G R R A G G G  (C.9) 
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In the equation, 
ab

cd
M  is the 2nd order sub-determinant of the matrix M, 

involving rows a and b and columns c and d. The formula is valid for any m < n, 

excluding couples as cd and dc. The sub-determinants are listed below: 
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On the other side, part of the subdeterminants of the half-space matrix AL are 

involved: 
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 (C.11) 

According to Eq. E.9, the secular function derives from the product of the 

factors listed in Eq. E.10 and Eq. E.11. As some parameters intervene only as a 

product and the solution is a zero of the secular function, the scaling properties 

should ensure that the quantities listed below remain simultaneously unchanged: 
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γl, pl = ml/ kR, ql = nl/ kR, cm,l, and cn,l for l = 1,…, L. Note that the invariability of 

pl and cm,l guarantees the invariability for sm,l; similarly, unchanged ql and cn,l 

ensures constant sn,l. The remaining quantities appear inside products, hence they 

do not directly affect the locations of the zeros. 

At this point, let us consider a layered medium (labeled as medium “0”) with 

the following mechanical parameters: H0 = H, VS,0 = VS, VP,0 = VP, DS,0 = DS, and 

DP,0 = DP. The density ρ is not considered in this study, because its role in the 

Rayleigh eigenvalue problem is less relevant (e.g., Foti et al., 2014). Also, the 

quantities H, VS, VP, DS, and DP have to be interpreted as depth-dependent discrete 

functions. For this medium, the eigenvalue problem returns the dispersion curve 

VR,0(ω) = VR(ω) and the attenuation curve αR,0(ω) = αR(ω). Furthermore, the 

corresponding secular function involves parameters γ0,  ̃0, ñ0, cm,0, and cn,0 – the 

layer index subscript “l” is removed for simplicity. 

C.1 Layer velocities 

Firstly, the effect of scaling body-wave phase velocities is investigated. In this 

case, for each layer, H, DS, DP, and ρ are unchanged, whereas VS and VP are 

simultaneously multiplied by a real-valued, positive constant cVB. The 

simultaneous scaling guarantees no variations in the Poisson’s ratio. Therefore, 

the modified medium (labeled as medium “1”) is characterized by H1 = H0, VS,1 = 

cVB × VS,0, VP,1 = cVB × VP,0, DS,1 = DS,0, and DP,1 = DP,0. 

This modification of the earth model is compatible with the causality 

constraint that a linear viscoelastic medium should fulfil. Indeed, this constraint 

relates stiffness and attenuation characteristics in a linear viscoelastic medium by 

means of the solution of the Kramers-Kronig relation (Christensen, 2012): 
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where ( ) ( )
0

0V lim V 



→

= . This is not the general formulation, but it is a derived 

form valid when Vχ is prescribed. However, assuming that Vχ,  and Dχ,  fulfil this 

relationship, also Vχ,  = cVB × Vχ,0 and Dχ,  = Dχ,0 are solution of the equation, as Vχ 

appears only as the ratio with the zero-frequency value. 
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Furthermore, according to Eq. C-2, this operation is equivalent to scaling the 

magnitude of Vχ (χ = P, S) by the factor c or, alternatively, Vχ itself by the factor 

cVB. 

Under this assumption, it is demonstrated that the secular function does not 

change, when setting the dispersion curve as VR,1(ω) = cVB × VR,0(cVB × ω) and the 

attenuation curve αR,1(ω) = αR,0(cVB × ω). 

In this case, we have kR,1(ω) = kR,0(cVB × ω) and: 
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Therefore, the scaling of body wave velocities induces the scaling of phase 

velocities combined with a simultaneous scaling of the frequency ω by the same 

factor c. 

C.2 Layer thicknesses 

Then, the effect of scaling layer thicknesses is investigated. In this case, for each 

layer, VS, VP, DS, DP, and ρ are unchanged, whereas H is multiplied by a real-

valued, positive constant cH. Therefore, the modified medium (labeled as medium 

“1”) is characterized by H1 = cH × H0, VS,1 = VS,0, VP,1 = VP,0, DS,1 = DS,0, and DP,1 

= DP,0. 

Under this assumption, it is demonstrated that the secular function does not 

change, when setting the dispersion curve as VR,1(ω) = VR,0(1 / cH × ω) and the 

attenuation curve αR,1(ω) = 1 / cH × αR,0(1 / cH × ω). 

In this case, we have kR,1(ω) =1 / cH × kR,0(1 / cH × ω) and: 
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Thus, the scaling of layers’ thicknesses induces the scaling of phase 

attenuations combined with a simultaneous scaling of the frequency ω by the 

same factor c. 

C.3 Layer damping ratios 

Finally, the effect of scaling body-wave damping ratios is investigated. In this 

case, for each layer, H, VS, VP, and ρ are unchanged, whereas DS and DP are 

simultaneously multiplied by a real-valued, positive constant cDB. Therefore, the 

modified medium (labeled as medium “1”) is characterized by H1 = H0, VS,1 = VS,0, 

VP,1 = VP,0, DS,1 = cDB × DS,0, and DP,1 = cDB × DP,0. 

At this point, an issue should be pointed out. This kind of modification of the 

earth model returns a set of viscoelastic parameters (Vχ,1, Dχ,1) that is no longer a 

solution of the Kramers-Kronig relation equivalent to (Vχ,0, Dχ,0). In the general 

case, (Vχ,1, Dχ,1) may even violate the causality constraint. Indeed, to 

accommodate the scaling in the damping ratios, the phase velocity should modify 

its value and its dependence on the frequency to still fulfil this constraint. 
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On the other side, some simplifying assumptions can be introduced. In 

practical applications, Dχ(ω) is typically assumed as constant, because 

experimental evidence shows that dissipative properties are not strongly sensitive 

to the loading frequency, at least over the seismic bandwith (i.e., between 0.1 Hz 

and 10 Hz – see Section 2.2). Under this hypothesis, the Kramers-Kronig relations 

provide an explicit solution for Vχ(ω) (Aki, 2002), that allows to predict the 

corresponding dispersion model once the value at a reference frequency ωref 

(typically equal to 2π) is known: 
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Furthermore, in low-dissipative media (i.e., Dχ < 10%) under seismic loading, 

the frequency dependence of Vχ(ω) is weak, as variations range within 10% (see 

Chapter 3.1.2). For this reason, Vχ is typically assumed as constant with the 

frequency and equal to the elastic value (e.g., Badsar, 2012). Although a linear 

viscoelastic model with frequency-independent stiffness and damping does not 

fulfil the causality constraint, this kind of model can incorporate the adopted 

transformation from the medium “0” to medium “1”, in which only Dχ is scaled. 

The scaling of Dχ results in a variation of both the modulus and the phase of 

the complex-valued velocity Vχ. Specifically, a scaling factor can be defined for 

the magnitude: 
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The scaling of the magnitude in Vχ results in a scaling of both the R-wave 

phase velocity and the frequency, based on what stated in Section c.1. However, 

in low dissipative media, this scaling factor is close to the unit. Therefore, a good 

approximation can assume that the scaling of the damping ratio does not affect the 

phase velocity nor the frequency. 

Instead, mapping the variations of the Vχ phase into γ0, p0, q0, cm,0, and cn,0 is 

less trivial. However, a reasonable assumption might impose that the scaling of 

the damping ratio results in an identical scaling of the R-wave phase attenuation. 

The numerical example reported in Figure C-1 provides a quantification of the 

error introduced by this simplifying assumption. In this example, the only scaling 

of the damping ratio is modeled and, for the scaled model, theoretical dispersion 

and attenuation curves are compared with those obtained by scaling only the 
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original attenuation data. This example demonstrates the presence of an error 

between the simplified scaling procedure and the actual solution of the R-wave 

eigenvalue problem. However, the error is moderately small, hence the 

approximation introduced by this assumption is acceptable. 

In summary, the scaling of all the damping ratios results in an unchanged 

dispersion curve and in the scaling of attenuations only in the attenuation curves. 

 

 

Figure C-1. Numerical example showing the approximation error introduced by the 

assumption that the scaling of the damping ratio maps into an equivalent scaling of the 

attenuation curves: a-d) Original and scaled S-wave velocity (a) and damping ratio 

profiles (d); b-e) Original and scaled dispersion curves (b) and attenuation curves (e); c-f) 

Relative difference between the approximate and the true dispersion (c) and attenuation 

(f) data, computed for the scaled model.  
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