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Abstract

The present manuscript deals with the analysis of vocal features applied to health
assessment and early diagnosis of patients with the Parkinson’s Disease and other
pathological voices. In particular, the whole measuring chain has been characterized
in order to identify the main uncertainty contributions of voice features and study
their effect on classification algorithms. The main features analysed in this work
are the pseudo-period and amplitude stability metrics, such as Jitter and shimmer,
of sustained vowels recorded with a microphone in air. Additionally, the Cepstral
Peak Prominence Smoothed, the Root Mean Square values and the Harmonics to
Noise Ratio sequences, extracted from the sustained vowels, have been analysed
in terms of descriptive statistics. To evaluate the uncertainty contributions of the
stability metrics, an analytical evaluation has been carried out highlighting that the
main uncertainty contributions for the period stability metrics are the time-base
resolution of the Analog to Digital Converter, while for the amplitude stability
metrics the Integral NonLinearity and the Gain Error were identified as important
contributions along the amplitude resolution. The analytical evaluation of the features
uncertainty showed to be very challenging for some stability metrics so a Monte
Carlo uncertainty propagation has been carried out. The Monte Carlo propagation has
been performed on the stability metrics to evaluate the effect of time and amplitude
resolution on the bias and dispersion of the metrics under analysis, highlighting
an important bias contribution on some stability metrics. Moreover a study on
the effect of background noise has showed that the extraction algorithm represents
the main uncertainty contribution for the evaluated stability metrics. In order to
evaluate the uncertainty contribution of each component of the measuring chain,
a vowel re-synthesis method has been proposed to produce artificial vowels with
known pseudo-periods and amplitudes sequences. This method is based on the
sampling of the original distributions of pseudo-periods and amplitudes sequences,
which are used to produce reference sequences that are statistically comparable



v

to the original ones. Using this method a characterization of the measuring chain,
composed by a microphone in air, a portable audio digital recorder and an extraction
algorithm, has been carried out to evaluate the main uncertainty contributions to the
voice features. This has been made possible thanks to the use of a Head and Torso
Simulator, which replaces the original subject in the measuring chain and allows
to perform repeatable and reproducible measurements. The analysis of the feature
uncertainty highlighted that the vocal features are affected by a bias contribution
and a dispersion contribution. The bias contribution can be different depending on
the subject and on the length of the measuring chain, while the dispersion showed
to be almost constant. This study highlighted that the extraction algorithm is the
measuring chain component that mainly affects the evaluation of the voice features
because the contribution of the whole measuring chain is comparable to the extraction
contribution alone. The uncertainty evaluations performed in this work have been
used to train binary weighted logistic regression models using a number of features in
a range between 2 and 6. To train the models various strategies have been used to take
advantage of the uncertainty evaluations of the measuring chain. In particular the
effect of bias removal and the effect of evaluating the mixed terms of the uncertainty
have been tested. The uncertainty analysis of the predicted probabilities was used
to produce confidence intervals around the probabilities and thus the definition of
a third class of non-classified. Thanks to this definition new classification metrics
have been proposed to evaluate the classification performances and in particular the
Realistic Accuracy has been defined excluding from the accuracy evaluations the
non-classified subjects. These evaluations leaded to a maximum realistic accuracy of
100 % for the training and 77 % for the validation of the classification of Parkinson
subject with respect to an healthy control group. For the Parkinson vs. Pathologic
classification the training realistic accuracy reached values up to 96 % and 92 % for
the validated one.



Contents

List of Figures xiii

List of Tables xx

List of Abbreviations and Acronyms xxv

1 Introduction 1

1.1 General introduction . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 A conceptual analogy with a "natural" intelligence . . . . . . . . . 2

1.3 Safety: how to stop a car? . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Repeatability: how to train to stop a car? . . . . . . . . . . . . . . . 3

1.5 Trustability: how to be confident of the braking . . . . . . . . . . . 4

1.6 Traceability: who to blame when something goes wrong? . . . . . . 5

1.7 Accountability: how to discriminate the human from the machine . . 6

1.8 Adaptability: how to train a "natural intelligence" . . . . . . . . . . 7

1.9 Main topics of this thesis . . . . . . . . . . . . . . . . . . . . . . . 8

1.9.1 The Parkinson’s Disease . . . . . . . . . . . . . . . . . . . 8

1.9.2 Effects of the Parkinson’s Disease on voice production . . . 9

1.9.3 Voice features and their uncertainties . . . . . . . . . . . . 10

2 Materials and methods 12



Contents vii

2.1 Acquisition Devices . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Recordings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Extracted features . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 Algorithm for pseudo-period and amplitude extraction . . . 16

2.4.2 Period and amplitude stability metrics . . . . . . . . . . . . 19

2.4.3 Other period and amplitude metrics . . . . . . . . . . . . . 20

2.4.4 Cepstral Peak Prominence Smoothed (CPPS) . . . . . . . . 22

3 Uncertainty evaluation of the extracted parameters 25

3.1 Uncertainty evaluation of period and amplitude stability metrics . . 25

3.1.1 Time-base tolerance, aging and resolution . . . . . . . . . . 26

3.1.2 Analytical uncertainty propgation of jitter and shimmer . . . 28

3.2 Monte Carlo uncertainty propagation . . . . . . . . . . . . . . . . . 35

3.2.1 Oversampling effect . . . . . . . . . . . . . . . . . . . . . 37

3.2.2 Amplitude resolution effect . . . . . . . . . . . . . . . . . 42

3.2.3 Background noise effect . . . . . . . . . . . . . . . . . . . 44

3.2.4 Extraction algorithm effect . . . . . . . . . . . . . . . . . . 46

3.3 Cross-talk contribution . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Final considerations on the evaluation of the uncertainty of stability
metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4.1 Time and Amplitude contribution . . . . . . . . . . . . . . 52

3.4.2 Analytical Error propagation: . . . . . . . . . . . . . . . . 52

3.4.3 Monte Carlo Error propagation of the quantization contribution 52

3.4.4 Cross-talk error contribution . . . . . . . . . . . . . . . . . 54

4 Evaluation of the measuring chain contributions to the features uncer-
tainty 55



viii Contents

4.1 Uncertainty evaluation strategy . . . . . . . . . . . . . . . . . . . . 55

4.2 Monte Carlo Sampling . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 Perturbative method and Markov chain Monte Carlo generation
algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 Considerations about the proposed algorithms . . . . . . . . . . . . 67

4.4.1 Target distribution discretization . . . . . . . . . . . . . . . 67

4.4.2 Periods and amplitudes correlation . . . . . . . . . . . . . . 71

4.5 Time, spectral and cepstral characteristics of the artificial vowels . . 72

5 Evaluation of the uncertainty contributions of the whole measuring
chain 80

5.1 Effects of the extraction algorithm on stability and CPPS metrics
(perturbative method) . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.1.1 Evaluation of the generation method effects on stability met-
rics (path 1) . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.1.2 Evaluation of the extraction contribution to the period and
amplitude uncertainty (path 2) . . . . . . . . . . . . . . . . 86

5.1.3 Evaluation of the extraction uncertainty contributions of
stability metrics (path 2) . . . . . . . . . . . . . . . . . . . 88

5.1.4 Evaluation of the extraction contribution to CPPS features
uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2 Evaluation of the MCMC generation method . . . . . . . . . . . . . 92

5.3 Final considerations on the extraction uncertainty evaluation . . . . 94

5.3.1 Generation method evaluation (path 1) . . . . . . . . . . . . 94

5.3.2 Extraction algorithm uncertainty evaluation (path 2) . . . . 96

5.3.3 Comparison between PM and MCMC generation methods . 96

5.4 Effects of the acquisition device on stability and CPPS metrics (PM) 99

5.4.1 Effects of the non-idealty of the chain . . . . . . . . . . . . 101



Contents ix

5.4.2 Evaluation of the acquisition contribution to period and am-
plitude uncertainty . . . . . . . . . . . . . . . . . . . . . . 106

5.4.3 Evaluation of the acquisition uncertainty contribution . . . . 106

5.4.4 Evaluation of the acquisition contribution to CPPS features
uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.5 Evaluation of the whole chain contribution on stability and CPPS
metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.5.1 Microphone position 1 (golden standard) . . . . . . . . . . 112

5.5.2 Microphone position 2 . . . . . . . . . . . . . . . . . . . . 117

5.5.3 Microphone position 3 . . . . . . . . . . . . . . . . . . . . 118

5.5.4 Microphone position 4 . . . . . . . . . . . . . . . . . . . . 119

5.5.5 Reference microphone . . . . . . . . . . . . . . . . . . . . 120

5.5.6 Smartphone microphone . . . . . . . . . . . . . . . . . . . 122

5.6 Final considerations and comparisons on the whole chain contribution123

5.6.1 Microphone positioning and type comparison . . . . . . . . 123

5.6.2 Effects of the measuring chain length on the features uncer-
tainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6 Machine learning algorithms 127

6.1 The logistic regression . . . . . . . . . . . . . . . . . . . . . . . . 127

6.1.1 Weighted logistic regression . . . . . . . . . . . . . . . . . 130

6.2 A metrologic approach to the logistic regression . . . . . . . . . . . 130

6.2.1 Correlation evaluation . . . . . . . . . . . . . . . . . . . . 131

6.2.2 First approach: negligible correlation . . . . . . . . . . . . 132

6.2.3 General approach: mixed-terms evaluation . . . . . . . . . 133

6.3 Feature and model selection . . . . . . . . . . . . . . . . . . . . . 134

6.3.1 Proposed feature and model selection . . . . . . . . . . . . 137

6.4 Training experiments . . . . . . . . . . . . . . . . . . . . . . . . . 141



x Contents

6.4.1 Using original data . . . . . . . . . . . . . . . . . . . . . . 142

6.4.2 Using artificial data . . . . . . . . . . . . . . . . . . . . . . 143

6.5 Training experiments results on extracted features (EXT contribution)145

6.5.1 Training experiments using original data . . . . . . . . . . . 146

6.5.2 Training experiments using artificial data (boosting technique)150

6.6 Training experiments results on whole chain data (ACO+ACQ+EXT
contribution) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.7 Classification models validation . . . . . . . . . . . . . . . . . . . 158

6.7.1 Validation of the models trained with the original data . . . 159

6.7.2 Boosting method validation . . . . . . . . . . . . . . . . . 160

6.8 Results discussion and comparisons . . . . . . . . . . . . . . . . . 162

6.8.1 Effects of Bias removal . . . . . . . . . . . . . . . . . . . . 162

6.8.2 Effects of mixed terms evaluation . . . . . . . . . . . . . . 163

6.8.3 Boosting technique using the artificial data . . . . . . . . . 164

6.8.4 Measuring chain length . . . . . . . . . . . . . . . . . . . . 166

6.8.5 Models validation . . . . . . . . . . . . . . . . . . . . . . . 168

7 Conclusions 171

7.1 Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.1.1 Stability metrics: the time-base aging negligibly affects the
pseudo-period evaluations . . . . . . . . . . . . . . . . . . 171

7.1.2 Stability metrics: the time-base tolerance does not affects
the stability metrics . . . . . . . . . . . . . . . . . . . . . . 172

7.1.3 Stability metrics: the time-base resolution is the main uncer-
tainty contribution for period metrics . . . . . . . . . . . . 172

7.1.4 Stability metrics: the amplitude resolution is NOT the main
uncertainty contribution for amplitude metrics . . . . . . . . 172

7.1.5 Stability metrics: the analytical uncertainty propagation is
easy to obtain for some simple metrics . . . . . . . . . . . . 173



Contents xi

7.1.6 Stability metrics: the Monte Carlo uncertainty propagation
highlighted a bias in some metric evaluations . . . . . . . . 174

7.1.7 Stability metrics: the higher the sampling rate is the lower is
the uncertainty of period metrics . . . . . . . . . . . . . . . 174

7.1.8 Stability metrics: the higher the amplitude resolution is the
lower is the uncertainty of amplitude metrics . . . . . . . . 175

7.1.9 Stability metrics: the background noise negligibly affects
the stability metrics if the extraction algorithm contribution
is not considered . . . . . . . . . . . . . . . . . . . . . . . 176

7.1.10 Stability metrics: the extraction algorithm affects the stabil-
ity metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 176

7.1.11 The cross-talk effect on voice features is negligible . . . . . 177

7.2 Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

7.2.1 Everyone is unique, even with respect to themselves . . . . 177

7.2.2 Everyone has approximately the same vocal apparatus . . . 178

7.2.3 The Monte Carlo Perturbative method is better than the
Markov Chain Monte Carlo method . . . . . . . . . . . . . 178

7.3 Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

7.3.1 The Monte Carlo generation algorithm is not perfect but it
works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

7.3.2 The extraction algorithm is not perfect . . . . . . . . . . . . 180

7.3.3 The acquisition device negligibly affects the voice features . 181

7.3.4 The whole measuring chain affects the voice features . . . . 181

7.4 Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

7.4.1 Machine learning: a metrologic approach to the logistic
regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

7.4.2 Training experiments: removing the non-classified subjects
improves the classification accuracy . . . . . . . . . . . . . 183



xii Contents

7.4.3 Training experiments: removing the bias has a negligible
effect on classification metrics . . . . . . . . . . . . . . . . 184

7.4.4 Training experiments: evaluating the mixed terms improves
the classification metrics . . . . . . . . . . . . . . . . . . . 184

7.4.5 Training experiments: the artificial data can be used as a
boosting technique . . . . . . . . . . . . . . . . . . . . . . 185

7.4.6 Training experiments: the length of the measuring chain
affects the performance of the classification algorithms . . . 185

7.4.7 Validation experiments: the classification metrics are lower
if an unbalanced dataset is used . . . . . . . . . . . . . . . 186

7.5 Final Conclusions: a conceptual link to the introduction of this
manuscript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

References 189

Appendix A Features equations 193



List of Figures

1.1 An unsafe safe-driving task . . . . . . . . . . . . . . . . . . . . . . 2

1.2 A safe safe-driving task . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 A safe and repeatable safe-driving task . . . . . . . . . . . . . . . . 4

1.4 A statistical evaluation of a driver braking ability . . . . . . . . . . 5

1.5 Measuring method to evaluate the reaction time of a driver using
two sensors producing a statistical evaluation . . . . . . . . . . . . 6

2.1 Contact microphone and microphone in air positioning . . . . . . . 12

2.2 Mean ages of the balanced dataset . . . . . . . . . . . . . . . . . . 14

2.3 An example of a sustained vowel. The red markers represent the
pseudo-periods starting and ending times and the green ones repre-
sent the peak-to-peak amplitudes. . . . . . . . . . . . . . . . . . . . 15

2.4 Autocorrelation function of a vowel signal . . . . . . . . . . . . . . 16

2.5 Feature extraction algorithm . . . . . . . . . . . . . . . . . . . . . 18

2.6 Cepstrum extraction sequence . . . . . . . . . . . . . . . . . . . . 22

2.7 Cepstrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.8 Cepstral peak prominence smoothed . . . . . . . . . . . . . . . . . 24

3.1 Main uncertainty contributions for pseudo-periods and amplitudes
evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Distribution of the term SUMsgn normalized respect to (N-2) . . . . 30

3.3 Sensitivity coefficient of the analytical evaluation of jitter uncertainty. 31



xiv List of Figures

3.4 FN distribution for shimmer . . . . . . . . . . . . . . . . . . . . . . 32

3.5 Sensitivity coefficient heatmap for shimmer . . . . . . . . . . . . . 33

3.6 Monte Carlo uncertainty propagation of jitter for two vowels emitted
by the same subject . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.7 Oversampling effect on jitter (a) and shimmer (b) evaluations . . . . 39

3.8 Comparison between two oversampling factors for Expected versus
evaluated jitter. The dashed and solid lines represent the linear regres-
sions of the experimental points respectively for an oversampling
factor of 1 and 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.9 Bit resolution effect on jitter (a) and shimmer (b) evaluations . . . . 43

3.10 Comparison between two amplitude resolutions for expected versus
evaluated shimmer. The dashed and solid lines represent the linear
regressions of the experimental points respectively for an amplitude
resolution of 10 bit and 16 bit . . . . . . . . . . . . . . . . . . . . . 44

3.11 Noise effect on jitter (a) and shimmer (b) evaluations . . . . . . . . 46

3.12 Noise effect on jitter (a) and shimmer (b) evaluations considering
the features extracted from the clean signals as golden standards . . 47

3.13 Experimental setup of the cross-talk evaluation of an audio device . 49

3.14 Schematic of the LabVIEW script implemented to evaluate the cross-
talk of the audio device . . . . . . . . . . . . . . . . . . . . . . . . 50

3.15 Cross-talk evaluation of the audio device as a function of disturbance
frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1 Architecture of the proposed method for the measuring chain error
evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 An example of an original vowel signal in blue and an artificial one
generated with the proposed resampling method in orange. The
vertical blue and orange bars represent the periods start and ending
points respectively of the original and artificial signals. . . . . . . . 58



List of Figures xv

4.3 An example of the period evolution of three vowel repetitions from
the same subject. The red time scale is not linear due to the variability
of the period evaluations and thus is an approximate scale . . . . . . 59

4.4 Period duration distribution of three vowel repetitions from the same
PD subject (a), HE subject (b) and PA subject (c) . . . . . . . . . . 60

4.5 Consecutive period difference distributions of three vowel repetitions
from the same PD subject (a), HE subject (b) and PA subject (c) . . 60

4.6 Amplitude distributions of three vowel repetitions from the same PD
subject (a), HE subject (b) and PA subject (c) . . . . . . . . . . . . 61

4.7 Consecutive amplitude difference distribution of three vowel repeti-
tions from the same PD subject (a), HE subject (b) and PA subject
(c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.8 Example of a period random walk perturbed by a random jump
extracted from the consecutive difference distributions . . . . . . . 62

4.9 Example of an original and generated periods and amplitudes dis-
tributions (top) and time evolutions (bottom) using the Perturbative
method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.10 Example of an original and generated periods and amplitudes distri-
butions (top) and time evolutions (bottom) using the Markov Chain
Monte Carlo Method . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.11 An example of poor quantisation of the period distribution (a), Con-
secutive difference period distribution (b) and the empirical cumula-
tive distribution function (c) of a PA subject . . . . . . . . . . . . . 68

4.12 A detailed view of the quantisation effect on the determination of
the empirical cumulative function of Fig. 4.11 (c) . . . . . . . . . . 70

4.13 A detailed view of the quantisation effect on the determination of
the empirical cumulative function of Fig. 4.11 (c) and the effect of
curve smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.14 An example of a scatter plot of periods and amplitudes extracted from
a vowel emitted by a PA subject. The amplitude scale is normalised
respect to a full-scale range of ±1 a.u. so the peak-to-peak amplitude
is in a range between 0 and 2 a.u. . . . . . . . . . . . . . . . . . . . 72



xvi List of Figures

4.15 Web link to download audio examples of an original vowel for the
three clinical classes . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.16 Web link to download audio examples of an artificial vowel, re-
synthesized with the PM method, for the three clinical classes . . . 73

4.17 Web link to download audio examples of an artificial vowel, re-
synthesized with the MCMC method, for the three clinical classes . 73

4.18 An example of spectra comparison between the original vowel, an
artificial one generated with PM and an artificial vowel generated
with MCMC for a PD subject (a), a HE subject (b) and a PA subject (c) 75

4.19 Example of a bad joint between consecutive resampled periods and
the methods used to smooth-out the discontinuity . . . . . . . . . . 76

4.20 Example of the effect of joint discontinuity in the frequency domain
and how the smoothing methods acts on the relative spectra . . . . . 77

4.21 Example of the effect of different generation methods on CPPS
distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.22 Example of the effect of smoothing methods on the CPPS distributions 79

5.1 Architecture of the extraction algorithm contribution evaluation method 81

5.2 An electrical measurement analogy with the proposed evaluation
method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3 Scatter plot of 90 original and 900 generated jitter and shimmer (a)
and a detailed example of 90 generated vowels from three repetitions
of three subjects (PD, HE, PA) (b). . . . . . . . . . . . . . . . . . . 84

5.4 Evaluation of generation mean bias and dispersion of jitter (a) and
shimmer (b) for the three clinical classes. . . . . . . . . . . . . . . 86

5.5 Mean error evaluation for the three clinical classes for pseudo-
periods (a) and amplitudes (b) measurements. . . . . . . . . . . . . 87

5.6 Scatter plot of generated (MC) and measured (ART) jitter and shimmer 88

5.7 Evaluation of extraction mean bias and dispersion of jitter (a) and
shimmer (b) for the three clinical classes. . . . . . . . . . . . . . . 90



List of Figures xvii

5.8 Mean bias and dispersion evaluations of artificial and original Mean
CPPS (a). A detailed view is shown in (b) . . . . . . . . . . . . . . 92

5.9 Relative accuracy of pseudo-periods values represented in a double
precision format . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.10 Mean bias and dispersions generation uncertainty comparison of
jitter (a) and shimmer (b) for the three clinical classes. . . . . . . . 97

5.11 Mean bias and dispersions extraction uncertainty comparison of jitter
(a) and shimmer (b) for the three clinical classes. . . . . . . . . . . 98

5.12 Mean CPPS uncertainty comparison between generation methods . 99

5.13 Architecture of the evaluation method for the acquisition contribution100

5.14 Schematic of the acquisition contribution evaluation . . . . . . . . . 100

5.15 An example of gain and offset error between an original and an
acquired signal both normalised to 1 a.u. . . . . . . . . . . . . . . . 102

5.16 An example of an original (in blue) and the acquired (in red) signals
time aligned with the cross-correlation method . . . . . . . . . . . . 104

5.17 An example of a scatter plot of an acquired vs. original signal . . . 105

5.18 (ACQ+EXT) contribution of mean bias and dispersion evaluations
of jitter (a) and shimmer (b) for the three clinical classes. . . . . . . 107

5.19 Mean CPPS uncertainty comparison between the ACQ+EXT and
EXT contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.20 Architecture of the whole chain uncertainty contributions evaluation 110

5.21 The head piece of the HATS with a bluetooth earset (a) and a
schematic diagram of the mouth simulator (b) . . . . . . . . . . . . 110

5.22 HATS in-axis frequency response (a) and sound pressure level distri-
bution around the mouth simulator (b) . . . . . . . . . . . . . . . . 111

5.23 Microphone position 1 . . . . . . . . . . . . . . . . . . . . . . . . 113

5.24 Mean bias and dispersion evaluations of jitter (a) and shimmer (b)
for the three clinical classes of the whole chain contribution (CM
position 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114



xviii List of Figures

5.25 Mean bias and dispersion evaluations of Mean CPPS of the whole
chain contribution (CM position 1) . . . . . . . . . . . . . . . . . . 116

5.26 Microphone position 2 . . . . . . . . . . . . . . . . . . . . . . . . 117

5.27 Microphone position 3 . . . . . . . . . . . . . . . . . . . . . . . . 118

5.28 Microphone position 4 . . . . . . . . . . . . . . . . . . . . . . . . 119

5.29 Acoustic uncertainty contribution evaluation for a reference micro-
phone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.30 Acoustic uncertainty contribution evaluation for smartphone micro-
phone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.31 A comparison between different microphone positioning and types
for jitter (a), shimmer (b), and CPPS (c) evaluations . . . . . . . . . 124

5.32 A comparison between different chain lengths for jitter (a), shimmer
(b), and CPPS (c) evaluations . . . . . . . . . . . . . . . . . . . . . 126

6.1 An example of the sigmoid function used in a logistic regression
analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.2 An example of rc correlation matrix. The cells in solid white rep-
resent the correlations that were evaluated with a low significance
level (p-value>0.05). . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.3 Flow chart of a common feature and model selection algorithm. . . 135

6.4 Flow chart of the proposed model training algorithm. . . . . . . . . 138

6.5 Predicted probabilities of the PD vs. HE subset using two features.
The highlighted red areas represent the subset of non-classified
subjects. All the accuracy metrics are expressed as %. . . . . . . . . 139

6.6 Classification results for the PD vs. HE subset using original data. . 148

6.7 Classification results for the PD vs. PA subset using original data. . 149

6.8 Classification results for the PD vs. HE subset using artificial data. . 152

6.9 Classification results for the PD vs. PA subset using artificial data. . 153

6.10 Classification results for the PD vs. HE subset using original data
extracted from the whole chain. . . . . . . . . . . . . . . . . . . . . 156



List of Figures xix

6.11 Classification results for the PD vs. PA subset using original data
extracted from the whole chain. . . . . . . . . . . . . . . . . . . . . 157

6.12 Mean ages of the validation subset. . . . . . . . . . . . . . . . . . . 158

6.13 Effect of Bias removal on the classification metrics. . . . . . . . . . 163

6.14 Effect of mixed terms evaluation on the classification metrics. . . . 164

6.15 Accuracy metrics comparison between models with different number
of features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.16 Accuracy metrics comparison between models with different number
of features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.17 A comparison between the accuracy metrics of the trained models
and the accuracy metrics of the predictions of the validation subset. . 168

6.18 A comparison between the accuracy metrics of the trained models
and the accuracy metrics of the predictions of the validation subset
(data boosting, PD vs. HE). . . . . . . . . . . . . . . . . . . . . . . 169

6.19 A comparison between the accuracy metrics of the trained models
and the accuracy metrics of the predictions of the validation subset
(data boosting, PD vs. PA). . . . . . . . . . . . . . . . . . . . . . . 170



List of Tables

3.1 Oversampling effect on stability metrics dispersions for different
oversampling factors . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Oversampling effect on Expected jitter and shimmer compared to
the Evaluated measurements . . . . . . . . . . . . . . . . . . . . . 40

3.3 Bit resolution effect on stability metrics dispersions for different
number of bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Noise effect on stability metrics dispersions for different NSR . . . 45

3.5 Extraction algorithm contribution for different oversampling factors,
bit resolutions and NSRs respect to golden standard measurements
(highlighted in golden color) . . . . . . . . . . . . . . . . . . . . . 48

4.1 Skewness and Excess Kurtosis of consecutive difference distributions
of periods and amplitudes: mean values (standard errors) . . . . . . 68

5.1 A conceptual analogy between the proposed method and an electrical
measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 Generated features bias - BIASMC−OR(class) . . . . . . . . . . . . . 85

5.3 Generated features dispersions - DISPMC(class) . . . . . . . . . . . 85

5.4 Measured Original dispersions - DISPOR(class) . . . . . . . . . . . 86

5.5 Pseudo-periods and amplitudes mean extraction error - u(T ), u(A) . 87

5.6 Measured artificial bias of the extraction contribution - BIASARTEXT−MC(class) 89

5.7 Measured artificial dispersions of the extraction contribution - DISPARTEXT (class) 89



List of Tables xxi

5.8 Measured artificial bias of CPPS metrics - BIASARTEXT−OR(class) . . 91

5.9 Measured artificial dispersion of CPPS metrics - DISPARTEXT (class) 91

5.10 Measured original dispersion of CPPS metrics - DISPOREXT (class) . 91

5.11 Generated features bias (MCMC) - BIASMC−OR(class) . . . . . . . 93

5.12 Generated features dispersion (MCMC) - DISPMC(class) . . . . . . 93

5.13 Pseudo-periods and amplitudes mean extraction uncertainty (MCMC)
- u(T ), u(A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.14 Measured artificial bias of the extraction contribution (MCMC) -
BIASART−MC(class) . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.15 Measured artificial dispersions of the extraction contribution (MCMC)
- DISPART (class) . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.16 Measured artificial bias of CPPS metrics (MCMC) - BIASART−OR(class) 94

5.17 Measured artificial dispersions of CPPS metrics (MCMC) - DISPART (class) 94

5.18 Mean Gain and Offset errors and their relative standard errors of the
acquisition device . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.19 Mean Gain and Offset errors and their relative standard errors of the
acquisition device . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.20 Pseudo-periods and amplitudes mean extraction uncertainty of the
(ACQ+EXT) contribution - u(T ), u(A) . . . . . . . . . . . . . . . . 106

5.21 Measured artificial bias of ACQ+EXT contribution - BIASARTACQ−MC(class)106

5.22 Measured artificial dispersion of ACQ+EXT contribution - DISPARTACQ(class)107

5.23 Measured artificial bias of CPPS metrics for the (ACQ+EXT) contri-
bution - BIASARTACQ−OR(class) . . . . . . . . . . . . . . . . . . . . 108

5.24 Measured artificial dispersions of CPPS metrics for the (ACQ+EXT)
contribution - DISPARTACQ−OR(class) . . . . . . . . . . . . . . . . . 108

5.25 Measured artificial bias of the whole chain contribution (CM position
1) - BIASARTACO−MC(class) . . . . . . . . . . . . . . . . . . . . . . 113

5.26 Measured artificial dispersions of the whole chain contribution (CM
position 1) - DISPARTACO(class) . . . . . . . . . . . . . . . . . . . . 113



xxii List of Tables

5.27 Pseudo-periods and amplitudes mean uncertainty of the whole chain
contribution (CM position 1) - u(T), u(A) . . . . . . . . . . . . . . 114

5.28 Measured artificial bias of CPPS metrics of the whole chain contri-
bution (CM position 1) - BIASARTACO−OR(class) . . . . . . . . . . . 115

5.29 Measured artificial dispersion of CPPS metrics of the whole chain
contribution (CM position 1) - DISPARTACO−OR(class) . . . . . . . . 115

5.30 Measured artificial bias of the whole chain contribution (CM position
2) - BIASARTACO−MC(class) . . . . . . . . . . . . . . . . . . . . . . 117

5.31 Measured artificial dispersions of the whole chain contribution (CM
position 2) - DISPARTACO(class) . . . . . . . . . . . . . . . . . . . . 117

5.32 Measured artificial bias of CPPS metrics of the whole chain contri-
bution (CM position 2) - BIASARTACO−OR(class) . . . . . . . . . . . 117

5.33 Measured artificial dispersions of CPPS metrics of the whole chain
contribution (CM position 2) - DISPARTACO−OR(class) . . . . . . . . 118

5.34 Measured artificial bias of the whole chain contribution (CM position
3) - BIASARTACO−MC(class) . . . . . . . . . . . . . . . . . . . . . . 118

5.35 Measured artificial dispersion of the whole chain contribution (CM
position 3) - DISPARTACO(class) . . . . . . . . . . . . . . . . . . . . 118

5.36 Measured artificial bias of CPPS metrics of the whole chain contri-
bution (CM position 3) - BIASARTACO−OR(class) . . . . . . . . . . . 119

5.37 Measured artificial dispersion of CPPS metrics of the whole chain
contribution (CM position 3) - DISPARTACO−OR(class) . . . . . . . . 119

5.38 Measured artificial bias of the whole chain contribution (CM position
4) - BIASARTACO−MC(class) . . . . . . . . . . . . . . . . . . . . . . 119

5.39 Measured artificial dispersion of the whole chain contribution (CM
position 4) - DISPARTACO(class) . . . . . . . . . . . . . . . . . . . . 120

5.40 Measured artificial bias of CPPS metrics of the whole chain contri-
bution (CM position 4) - BIASARTACO−OR(class) . . . . . . . . . . . 120

5.41 Measured artificial dispersion of CPPS metrics of the whole chain
contribution (CM position 4) - DISPARTACO−OR(class) . . . . . . . . 120



List of Tables xxiii

5.42 Measured artificial bias of the whole chain contribution (RM) -
BIASARTACO−MC(class) . . . . . . . . . . . . . . . . . . . . . . . . 121

5.43 Measured artificial dispersion of the whole chain contribution (RM)
- DISPARTACO(class) . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.44 Measured artificial bias of CPPS metrics of the whole chain contri-
bution (RM) - BIASARTACO−OR(class) . . . . . . . . . . . . . . . . . 121

5.45 Measured artificial dispersion of CPPS metrics of the whole chain
contribution (RM)- DISPARTACO−OR(class) . . . . . . . . . . . . . . 121

5.46 Measured artificial bias of the whole chain contribution (SP) - BIASARTACO−MC(class)122

5.47 Measured artificial dispersion of the whole chain contribution (SP) -
DISPARTACO(class) . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.48 Measured artificial bias of CPPS metrics of the whole chain contri-
bution (SP) - BIASARTACO−OR(class) . . . . . . . . . . . . . . . . . 122

5.49 Measured artificial dispersion of CPPS metrics of the whole chain
contribution (SP) - DISPARTACO−OR(class) . . . . . . . . . . . . . . 123

6.1 CS and PS accuracy metrics for the PD vs. HE subset. . . . . . . . 147

6.2 CS and PS accuracy metrics for the PD vs. PA subset. . . . . . . . . 147

6.3 CS and PS accuracy metrics for the PD vs. HE subset (boosted). . . 150

6.4 CS and PS accuracy metrics for the PD vs. PA subset (boosted). . . 151

6.5 CS and PS accuracy metrics for the PD vs. HE subset (whole chain). 154

6.6 CS and PS accuracy metrics for the PD vs. PA subset (whole chain). 155

6.7 CS and PS accuracy metrics for the PD vs. HE subset (validation). . 159

6.8 CS and PS accuracy metrics for the PD vs. PA subset (validation). . 160

6.9 CS and PS accuracy metrics for the PD vs. HE subset (validation,
boosted). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.10 CS and PS accuracy metrics for the PD vs. PA subset (validation,
boosted). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.11 Coefficients and uncertainties of a 6 features model (last row of Tab.
6.3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166



xxiv List of Tables

6.12 Selected features comparison between the models trained with the
short and long measuring chain. . . . . . . . . . . . . . . . . . . . 167



List of Abbreviations and Acronyms

ARMS Root mean square value of the amplitude

apq Amplitude Perturbation Quotient

fo Fundamental frequency

GE Gain Error

HNR Harmonics to Noise Ratio

jit Local jitter

jitabs Absolute jitter

rap Relative Average Perturbation

shi Local shimmer

shidB Absolute shimmer

SPL Sound Pressure Level

V/UV % Voiced-Unvoiced ratio

vAm Coefficient of Amplitude variation

v fo Coefficient of Fundamental frequency variation

ACO Acoustic contribution

ACQ Acquisition contribution



xxvi List of Abbreviations and Acronyms

ADC Analog to Digital Converter

CFS Cross Fade Smoothing

CPPS Cepstral Peak Prominence Smoothed

CS Common model and features Selection

DAC Digital to Analog Converter

DAQ Digital AcQuisition device

DC Direct Current

EXT Extraction algorithm contribution

FFT Fast Fourier Transform

GLM Generalized Linear Model

GUM Guide to the evaluation of Uncertainty in Measurements

HE Healthy

HY Hoehn-Yahr rating scale

INL Integral NonLinearity

KS Kolmogorov-Smirnov

LR Logistic Regression

LSB Least Significant Bit

MAS Moving average smoothing

MCMC Markov chain Monte Carlo

MH Metropolis Hastings

NSR Noise to Signal Ratio

PA Pathologic non-Parkinsonian

PD Parkinson’s Disease



List of Abbreviations and Acronyms xxvii

PM Perturbative method

ppq Pitch Period Perturbation Quotient

PS Proposed model and features Selection

RMS Root Mean Square

SNR Signal to Noise Ratio

SR Sampling Rate

UPDRS Unified Parkinson’s Disease Rating Scale

WOE Weight of Evidence



Chapter 1

Introduction

1.1 General introduction

The main objective of this work consists in implementing an artificial intelligence
that produces clinical predictions, which has the following characteristics:

• safety: the training and the predictions of an artificial intelligence should be
safe for the patient

• repeatability: repeated training and predictions should give always the same
outcome if the experimental conditions do not change.

• trustablity: the prediction should be given in terms of confidence and risk in
order to leave the final decision to the patient or to the clinician

• traceability: an incorrect prediction should be back-traced to the source which
caused the error

• accountability: the responsibility of the prediction should never lie with the
patient or the clinician. The responsibility of an incorrect prediction should
always lie with the artificial intelligence

• adaptablity: the artificial intelligence should be able to choose the best set
of features which maximises the prediction accuracy in various experimental
set-ups.
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Keeping in mind such criteria, a series of analogies with "natural intelligences" will
be presented in the following sections

1.2 A conceptual analogy with a "natural" intelligence

The following scenario is considered: a person wants to take safe-driving lessons.
One of the tasks asked to the driver to pass the final exam is to demonstrate his ability
to brake the car in a given space as shown in Fig. 1.1.

Fig. 1.1 An unsafe safe-driving task

As shown in Fig. 1.1, the task consists in accelerating the car until it reaches a
speed of 100 km/h. Once the car reaches the stop sign S the driver have to try to stop
it before hitting a brick wall. This is a practical example of a bad designed training
task, because if the car reaches the wall with an high speed the car crashes, the driver
dies and the driving teacher gets arrested. Such training experiment does not fulfill
the safety characteristics described earlier and no one with a little common sense
would agree to try this experiment.
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1.3 Safety: how to stop a car?

In order to make this experiment safe the brick wall have to be removed. A possible
solution is depicted in Fig. 1.2

Fig. 1.2 A safe safe-driving task

In the example scenario depicted in Fig 1.2, the drivers are asked to stop after
200 m beyond the stop sign without having a stop sign at the end of the breaking area
or a mark on the road. In this scenario each driver will stop the car after a distance
which will be evaluated by its own perception of distance, so everyone will stop the
car in different positions. Such a training experiment does not fulfill the repeatability
characteristics defined in the list above, because it is impossible to evaluate if the
drivers are actually able to stop the car before hitting the wall.

1.4 Repeatability: how to train to stop a car?

So how to make such training experiment repeatable? A possible solution is depicted
in Fig. 1.3
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Fig. 1.3 A safe and repeatable safe-driving task

Replacing the brick wall with a soft curtain can make the training experiment
repeatable because if the car hits the curtain nothing happens. With this setup a safe
series of training experiments is possible and also an evaluation of the driver ability
of braking the car is easy to implement.

1.5 Trustability: how to be confident of the braking

One way to evaluate such ability is to measure the distance between the car and the
curtain rest position after the car has completely stopped. Repeating the experiment
for a reasonable number of times, the stopping distances can be collected to build a
statistical description of the experiment as shown in Fig. 1.4.
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Fig. 1.4 A statistical evaluation of a driver braking ability

With this setup, the driver could decide if he is willing to perform the final
exam, basing his choice on the cumulative probability of hitting the obstacle. After
thousand of trials, the definition of a confidence-risk framework can be implemented
in order to decide whether or not to perform the final exam. So, if the driver wants to
have a 99 % confidence of not hitting the obstacle he is taking an 1 % risk of hitting
it. If such a risk is low enough for the driver, he could decide to take a chance and
try the final exam.

1.6 Traceability: who to blame when something goes
wrong?

The statistical evaluation, depicted in Fig. 1.4 is useful to determine the cumulative
probability of hitting the wall but it does not allow to distinguish the human contri-
bution from the machine contribution. If something goes wrong it is impossible to
establish the responsibility of a possible accident. Let’s exemplify the human error
contribution as simply caused by his reaction time using two sensors as shown in
Fig. 1.5



6 Introduction

Fig. 1.5 Measuring method to evaluate the reaction time of a driver using two sensors
producing a statistical evaluation

In this example, a photocell sensor S1 starts a timer that is stopped when the driver
pushes the sensor S2 mounted on the brake pedal. According to this measurement,
it is possible to evaluate statistically the reaction time ∆t of the driver respect to a
visual signal indicating the start of the braking area.

1.7 Accountability: how to discriminate the human
from the machine

If the driving instructor wants to be sure that the car mechanics does not affects the
result of the brake, an automatic braking system could be mounted to reduce the
reaction time as close as zero. Such a breaking system could be a simple electro-
mechanical actuator mounted on the brake pedal to simulate the driver foot push
on the pedal. The actuator can be connected via wireless to the S1 sensor to be
activated as soon as the car crosses the sensor. Using this setup, the driving instructor
can evaluate the probability of hitting the wall using a repeatable and trusted brake
actuator. if the probability of hitting the wall is close to 0 %, then the responsibility
of an accident lies just on the driver reaction time ∆t and not on the car mechanics.
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1.8 Adaptability: how to train a "natural intelligence"

Before the driver decides if he wants to take the risk of hitting the obstacle, he needs
to evaluate his ability to take the correct decision. In this particular case the decision
is clear: you have to brake the car! How to do it is not only a matter of car mechanics
and dynamics physics, but also the driver perception of the experiment is highly
involved in the decision [1]. In this example some of our senses are involved and
in particular the sight and the sense of touch. The sight is a fundamental sense to
evaluate the residual distance between the car and the obstacle, while the sense of
touch is what gives to the driver the perception of car acceleration through the push
of the seat on his back and the tension of the arm muscles flexing on the wheel. Also
the hearing could give some informations on the car speed and spatial localisation
but, respect to the sight and the sense of touch, such sense is less considered in such
experience. All this informations coming from our senses have a natural importance
hierarchy depending on the task we are performing. For this example a reasonable
hierarchy could be:

1. sight (perception of residual distance)

2. touch (perception of acceleration)

3. hearing (perception of speed and body balance)

4. smell (no useful perception)

5. taste (no useful perception)

This hierarchy depends on the confidence one has in each of the senses, which is
given by the reliability of the metric perception of the task that the subject is carrying
out. If the braking area in Fig. 1.1 is extended to 500 m the sense of sight becomes
less relevant in the execution of the task because it would take just a glance from time
to time to evaluate the residual distance. In this alternative scenario the hierarchy
could be:

1. touch (perception of acceleration)

2. sight (perception of residual distance)

3. hearing (perception of speed and body balance)
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4. smell (no useful perception)

5. taste (no useful perception)

In fact the execution of such a task also depends on more complex perception
models regarding the external environment, like the proprioception (perception of
body positioning in space) and objective permanence (the ability of predicting the
temporal evolution of a body in space, even when the body cannot be sensed). In
this case the driver is allowed to get distracted and look at something other than the
remaining distance and trust his own proprioception and his objective permanence to
evaluate the residual distance between the car and the obstacle [2] [3].

1.9 Main topics of this thesis

The paradigms described in the previous sections were used to design an artificial
intelligence capable of discriminating patients with the Parkinson’s Disease (PD) ,
from an HEalthy control group (HE) and a PAthologic non-Parkinsonian (PA) set of
patients.

1.9.1 The Parkinson’s Disease

The Parkinson’s Disease is a degenerative disorder which affects the central nervous
system. The Parkinson’s disease affects the production of dopamine in an area of the
brain called substantia nigra. The symptoms include tremor, bradykinesia (slowness
of the movements), limb rigidity and can also have an effect on voice production.
To assess the clinical status of a PD patient some international rating scales have
been developed. The most used is the UPDRS (Unified Parkinson’s Disease Rating
Scale) [4] developed in 1980s and updated in 2019. The UPDRS scale is based on
an empirical evaluation of some aspects of the daily living of the PD patients and on
a motor skills examination performed by a neurologist. In particular, the UPDRS
scale is composed of four parts:

• Part I: non-motor experiences of daily living (13 questions);

• Part II: motor experiences of daily living (13 questions);
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• Part III: motor examination (18 questions);

• Part IV: motor complications (6 questions).

For each question it is necessary to assign a score from 0 to 4. The total cumula-
tive score is in a range between 0 (no disability) and 199 (total disability) [4, 5].
Another common scale used for PD assessment is the Hoehn-Yahr (HY) scale [5],
which is used to evaluate the disease status and its progression over time. It has five
grades ordered according to the severity of the disease:

• 0: no signs of disease;

• 1: symptoms on one side only (unilateral)

• 2: symptoms on both sides but no impairment of balance

• 3: balance impairment, mild to moderate disease, physically independent

• 4: severe disability, but still able to walk or stand unassisted

• 5: needing a wheelchair or bedridden unless assisted

1.9.2 Effects of the Parkinson’s Disease on voice production

The Parkinson’s Disease affects also the phonatory system and, in fact, the UPDRS
score includes qualitative speech evaluations in parts 2 and 3. The Parkinson’s
Disease, which affects the motor system, makes difficult also the voice production.
In particular the most common symptoms that can occur in voice production are:

• Hypophonia: loss of tonality and modulation; in same cases patients show
total loss of the voice (aphonia)

• Monotone voice

• Stuttering: progressive acceleration of words and uncontrolled repetitions

• Dysarthria: difficulty in speaking, incorrect pronunciation of sentences
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Several studies have been carried out on voice emission of PD patients [6] [7] [8] [9]
[10] [11], which are based on the analysis of vocal material using machine learning
techniques. In the majority of such studies the most recurring voice features are the
vowel stability metrics (i.e. jitter and shimmer) and other spectral measurements
such as the Harmonics to noise ratio. Another important voice quality measurement
is the Cepstral Peak Prominence Smoothed (CPPS), which evaluates the harmonicity
of a subject voice. Such a measurement has been used in several studies [12] [13]
[14] to try to relate the CPPS evaluation to the Parkinsons’ Disease status and its
evolution over time. The CPPS is also adopted as a generic voice quality indicator to
assess the health status for different voice pathologies [15] as well as to evaluate the
general quality of Normophonic Subjects [16] (the healthy control group HE studied
in this work).

1.9.3 Voice features and their uncertainties

Based on the existing literature, the above-mentioned voice features were analyzed
in this work. In particular, such features are extracted from audio recordings of
sustained vowels /a/ acquired with a microphone in air.
Regarding the uncertainty of the considered features, some studies have been carried
out [17] [18] using parametric mechanical models of the human phonatory apparatus.
According to author’s knowledge, at the time of the writing of this manuscript, no
studies have been found in the literature about the analytical evaluation of the voice
stability metrics uncertainty. Moreover, a Monte Carlo uncertainty propagation of
such voice features has not been carried out yet, so no studies are present in the
scientific literature about this topic.
In order to fill this gap, this work tries to evaluate the uncertainty of voice features
using different approaches. An analytical evaluation of some simple stability metrics,
such as jitter and shimmer, was carried out, as presented in Chapter 3. Moreover,
in the same chapter, a Monte Carlo uncertainty propagation of the stability metrics
used in this work will be presented.
For this work, one of the main objective is to separate the human contribution from
the machine contribution to the voice features uncertainty using a metrological
approach, as will be showed in Chapter 4 and Chapter 5. In Chapter 4, a novel vowel
synthesis method is proposed to evaluate the uncertainty of the voice features used
to train classification algorithms for the recognition of the Parkinson’s Disease. A
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similar synthesis method [19] was implemented to produce synthetic voice samples
with target arbitrary jitter and shimmer, where a perceptual assessment of the quality
of these synthetic voices was performed by trained listeners. Using the proposed
synthesis method, the effects of the measuring chain perturbations on voice features
uncertainty were studied, as reported in Chapter 5. In order to evaluate if such
perturbations may affect the training and the predictions of a binary classification
algorithm, the original and synthetic vowels were used to train and validate logistic
regression models, as will be shown in Chapter 6.



Chapter 2

Materials and methods

2.1 Acquisition Devices

For the present work, the voices of the involved subjects were recorded using a cheek
condenser microphone in air (MIPRO MU 55-HR) connected to a portable audio
recorder (Edirol Roland R-09HR). The sampling rate of the audio recorder was set to
44100 Sa/s and the bit resolution to 16 bit. The input gain of the audio recorder was
set in order to have an input level around -6 dBfs, as indicated by the recorder display.
The microphone capsule was placed in front of the mouth opening at a distance in
a range between 2 cm and 4 cm. The subjects’ voices were also recorded using a
contact piezoelectric microphone placed on the neck, as shown in Fig. 2.1:

Fig. 2.1 Contact microphone and microphone in air positioning

Both contact and in-air microphone were connected to the recorder through a
split Y cable. The contact microphone was used to conduct other voice experiments
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which will not be presented in this manuscript. The reason for this choice can be
understood if the architecture of the whole characterization experiment is considered,
as will be showed in Sec. 5. For the work presented in this manuscript, the author
wanted to discriminate the human contribution from the machine contribution to
the vocal features uncertainty substituting the subject under test with an artificial
human simulator. This simulator is a Brüel & Kjær Head And Torso Simulator
(HATS) which has a loudspeaker placed inside tits mouth, as shown in Fig. 5.21
(b). Unfortunately, the HATS is not equipped with a vocal folds simulator, therefore
placing the contact microphone on the simulator’s neck is meaningless. Without
being able to replicate the input stimulus using the simulator, the characterization
of the whole measuring chain was not possible and the recordings acquired with
contact microphone were discarded for this work.
Both microphones need to be powered by a low DC voltage applied to the terminals
of the microphones. Such voltage is called plug-in power and commonly is set
between 3 V and 5 V depending on the power supply of the recorder. The elec-
tric audio signal coming from microphones is DC decoupled by series capacitors
mounted on the recorder circuitry. Commonly the output impedance of a plug-in
powered microphone is 2.2 kΩ so this value was taken as a reference in some of the
experiments performed for this work .

2.2 Recordings

The audio recordings were collected at "Città della Salute, Torino". Three classes of
voices were recorded:

• Parkinson patients (PD): number of subjects N=44 (29 Male, 15 Female) ,
mean age 67, standard deviation 13

• Healthy subjects (HE): N=58 (29 M, 29 F), mean age 31, standard deviation
15

• Pathological non-Parkinsonian patients (PA): N=61 (25 M, 36 F), mean age
52, standard deviation 16

The PD group was diagnosed by two Neurologists which assigned a clinical
evaluation to each patient through UPDRS and Hoehn yahr evaluation scales. The



14 Materials and methods

voice health status for the remaining classes was certified by endoscopic analysis.

The three subsets are very unbalanced regarding the age, so a subject selection
was performed in order to balance age and gender. In particular, the 10 youngest PD
subjects and the 10 oldest HE subjects were selected in order to balance the ages.
For the PA dataset, the subjects was selected in order to balance the ages with the
PD and HE dataset. The dataset used in this work is composed by 10 subjects from
each class:

• Parkinson patients (PD): N=10 (5 M, 5 F), mean age 52, standard deviation 6

• Healthy subjects (HE): N=10 (5 M, 5 F), mean age 51, standard deviation 7

• Pathological non-Parkinsonian patients (PA): N=10 (5 M, 5 F), mean age 52,
standard deviation 6

In the plot in Fig. 2.2, the mean ages and standard deviation of each class are showed:

Fig. 2.2 Mean ages of the balanced dataset

The recordings took place in a public, non-acoustic clinic room with closed doors
and windows. During the recordings, the people inside the ambulatory room were
asked to stay as quiet as possible. Some background noise was found in the audio
recordings and, to evaluate it, the Signal to Noise ratio (SNR) of the recordings was
measured. For the three classes, the average SNR was found to be as high as 30 dB.
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2.3 Tasks

The tasks asked to the three groups consisted in the repetition of three /a/ phonemes
at a confortable pitch, level and duration. The three repetitions take the total number
of audio recordings analyzed in this manuscript to 90. The subjects were asked also
to read a phonetically balanced text in Italian. In addition, a minute of free speech
on a topic of subject’s choice was recorded. For this work, all attention was focused
on the vowel repetitions. This was done in order to develop a method to evaluate the
voice features uncertainties through the generation of artificial vowels and use the
collected informations to train weighted classification models.

2.4 Extracted features

As already stated, for this work just the sustained vowels have been considered. The
sustained vowels are pseudo-periodic signals with variable periods, amplitudes and
spectral characteristics. As shown in Fig. 2.3 pseudo-periods and amplitude markers
can be set over a vowel signal to identify their time evolution.

Fig. 2.3 An example of a sustained vowel. The red markers represent the pseudo-periods
starting and ending times and the green ones represent the peak-to-peak amplitudes.
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2.4.1 Algorithm for pseudo-period and amplitude extraction

To evaluate the pseudo-period lengths and amplitudes, the autocorrelation method
was implemented. Such a method consists in multiplying a signal frame, containing
at least two pseudo-periods, with a delayed version of the same signal using the Eq.
2.1 [20]:

Ac(lag) =
N

∑
i=0

s(i) · s(i+ lag) (2.1)

where s(i) is the signal frame, s(i+ lag) is the signal frame delayed by lag and N is
the number of samples of the current frame. Collecting autocorrelation values Ac at
different lags an example plot as in Fig. 2.4 can be obtained.

Fig. 2.4 Autocorrelation function of a vowel signal

The plot in Fig. 2.4 represent an autocorrelation curve of a vowel signal acquired
with a sampling rate of 44100 Sa/s and then linearly oversampled by a factor of 8.
In this way the oversampled signal wave will have a sample rate of 352800 Sa/s.
The autocorrelation function assumes the maximum value at lag 0 and such value
corresponds to the power of the signal frame (s(t)2). The lag of the first maximum
highlighted in red is called the period lag and it has two important properties:

• The lag itself identifies the length of the pseudo-period expressed in samples

• The autocorrelation value at the period lag can be used to estimate the har-
monicity of the signal
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For an ideal periodic signal, multiplying a frame vector to itself has the same result
of multiplying a vector to a version of itself delayed by a period T . In such condition
the peak of autocorrelation at lag 0 is equal to the peak at lag T . For a vowel signal
the period peak is mostly of the time lower than the power peak. To evaluate the
harmonicity H the following ratio [20] is calculated:

H =
Ac(T )/Ac(0)

[1−Ac(T )]/Ac(0)
(2.2)

where H is the harmonicity, Ac(T ) is the autocorrelation at lag T and Ac(0) is the
autocorrelation at lag 0 (the power of the signal frame). According to Eq. 2.2, the
period peak Ac(T ) is normalized to the peak Ac(0) in order to refer the peak to the
power of the frame. For an ideal periodic signal Ac(T ) = Ac(0) and then H tends to
infinite, while for an inharmonic signal (Ac(T )<< Ac(0)), H tends to 0. To evaluate
the Harmonics to Noise Ratio parameter (HNR), a logarithmic scale is applied:

HNR = 10 ·Log10(H) (dB) (2.3)

Sometimes, especially for rising envelope transients and in general with noisy voices,
the lag peak could be higher than the power peak. In such conditions, H can assume
negative values so the the logarithm can not be calculated. To fix this problem, a
simple moving average between the normalized autocorrelations Ac(T )/Ac(0) of
consecutive frames is sufficient. The algorithm used for this work is a synchronous
autocorrelation method that performs the pseudo-periods extraction and amplitude
evaluations of the signals. The main algorithm characteristic is the evaluation of
the HNR [20] in order to discriminate valid (Harmonic), from invalid (unHarmonic)
signal frames. Such a discrimination is not critical for healthy voices where the HNR
parameter is mostly above 0 dB. Unhealthy voices as in the PD and PA subsets can
lead to negative HNR evaluations, which corresponds to signals where the Harmonic
component has an energy which is lower than the noise level. In such conditions,
the extraction of pseudo-periods is a very difficult task so the frames evaluated with
an HNR < 0 are labeled as invalid and they are not processed for feature extraction
purposes. An additional condition is set to label the frames valid or not and it is
a frequency jump condition. If the current frequency evaluation is more than half
octave higher or lower than the previous frequency then the frame is labeled as invalid.
Such condition helps to avoid octave jumps that occurs when processing unsteady
and harsh voices. When an octave jump event occurs, the previous frequency is
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stored for subsequent comparisons, but the evaluated frequency is discarded. The
extraction algorithm used in this work can be summarized by the flow-chart in Fig.
2.5

Fig. 2.5 Feature extraction algorithm

As shown in the flow-chart, the ONSET variable is initially set to 0 and a new
frame is acquired from the vowel signal. If the Root Mean Square (RMS) of the
current frame i is less than the mean RMS of the entire signal divided by 2 then the



2.4 Extracted features 19

Silence variable is incremented and a new frame is acquired. If the RMS condition is
met, the ONSET variable is evaluated and if it is equal to 0 a new frame is acquired.
If the ONSET variable is equal to 1, the HNR and the relative frequency jump
between consecutive frames ∆ fo(i)

fo(i−1) are evaluated. If the HNR is greater than 0 dB
and the relative frequency jump is less than an half octave, the frame is labeled as
valid, the Voiced variable is incremented and the features of the frame are extracted.
If the HNR and frequency jump conditions are not met then the ONSET is set to 0,
the Unvoiced variable is incremented and a new frame is collected. For this work,
the vowel signal was normalized to the absolute peak of the entire signal so the
amplitude is expressed in arbitrary units (a.u.). The length of the frame is fixed and
is equal to the maximum evaluable pseudo-period (≈ 12 ms), while the frame time
shift is equal to the previous evaluated pseudo-period.

2.4.2 Period and amplitude stability metrics

For clarity, this work focus mostly on two measurements: local jitter (jit) and local
shimmer (shi)

jit =
N

N −1
· ∑

N−1
i=1 |Ti −Ti+1|

∑
N
i=1 Ti

·100 (%) (2.4)

shi =
N

N −1
· ∑

N−1
i=1 |Ai −Ai+1|

∑
N
i=1 Ai

·100 (%) (2.5)

where Ti are the vowel estimated pseudo-periods and Ai the corresponding peak-to-
peak amplitudes. Other stability metrics have been considered for this work. In this
manuscript a unique identificative number is associated to such metrics:

1. jit: Local jitter (%) - Eq. 2.4

2. jitabs: Absolute jitter (µs)

3. rap: Relative Average Perturbation (%)

4. ppq: Pitch Period Perturbation Quotient (%)

5. v fo: Coefficient of Fundamental frequency variation (%)

6. shi: Local shimmer (%) - Eq. 2.5
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7. shidB : Absolute shimmer (dB)

8. apq: Amplitude Perturbation Quotient (%)

9. vAm: Coefficient of Amplitude variation (%)

The definition of these parameters is provided in Appendix A

2.4.3 Other period and amplitude metrics

From the pseudo-period extraction algorithm depicted in Fig. 2.5, additional parame-
ters are extracted from the vowel signals:

• Harmonics to noise ratio HNR: described by Eq. 2.3 (dB)

• Fundamental frequency fo: defined as fo = 1/T (Hz)

• Root mean square value of the amplitude: ARMS =
√

(∑N
n=1 s2

n)/N (a.u.)

In particular, the ARMS values are calculated from the signals that were normalized
to 1. The peak normalization of the signals causes a loss of information about the
original signal RMS. The recordings took place in a very busy public clinic room
where the patients were visited by the Neurologist before the recordings. An absolute
calibration of the cheek microphone was tested with an adapted acoustic reference
calibrator to fit the size of the microphone capsule. The microphone calibration
would have made it possible to obtain information about the absolute Sound Pressure
Level (SPL) . However, the evaluation of the SPL also depends on the distance of the
microphone, which in this work could not be fixed accurately due to several factors
such as the time required to complete the task and the patients facial morphology.
The area around the mouth shows an important variation in sound intensity, as shown
by several studies . Vocal emission patterns have a great variation even in artificial
simulators of human voice, as will be shown in Sec. 5.5 (Fig. 5.22). Furthermore
it has not been possible to set the same gain for each of the recordings, which was
set in order to have an average level of -6 dBfs for each of the recordings. For this
reason the author preferred to not perform absolute SPL comparisons between sub-
jects, so the peak normalization was carried out on vowel signals to simulate a real
world application where the repeatability of the signal acquisition procedure cannot
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be guaranteed, as in the case of unsupervised acquisition or when using different
microphones such as the internal microphone of a smartphone.
The collected sequences of HNR, fo and ARMS have the same length of the sequences
of the extracted pseudo-periods and amplitudes. The sequences of extracted pa-
rameters were transformed in statistical distribution which can be described with
statistical metrics in order to reduce the size of collected data and to achieve a more
representative identification of each vowel. In particular the following descriptive
statistics are calculated:

• Mean value

• Median value

• Mode value

• Range

• Standard deviation

• 5◦ percentile

• 95◦ percentile

• Skewness

• Kurtosis

For this manuscript, the localization metrics such as mean, median and mode have
not been considered for the fo parameters because such values depends on the
subject will and ability to produce high or low pitched vowels. In a similar way, the
localization parameters of the descriptive statistics of the ARMS evaluations may be
altered by the signal normalization described earlier. For this reason such metrics
have been considered as non informative and potentially as a source of errors for
the classification algorithms. The last extracted feature is the Voiced-Unvoiced ratio
V/UV % , defined as the ratio between the number of harmonic (HNR > 0) and
inharmonic frames (HNR < 0).
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2.4.4 Cepstral Peak Prominence Smoothed (CPPS)

The harmonicity of the signal can be evaluated through cepstral measurement. The
word "Cepstrum" comes from the anagram of spectrum and it is a transformation of
the signal spectrum. In particular each frame is multiplied with a Hanning window
to minimize the effects of non coherent sampling. A Fourier transform is performed
to the windowed frame and then transformed with a log10 function and an another
Fourier transform is taken on such frame. The module of such transform is called
"Cepstrum".

Cp = 20 ·Log10|F{20 ·Log10(|F{s(t)}}|) (dB) (2.6)

where Cp is the cepstrum vectror, F is the Fourier transform of the variable and s(t)
is the signal time series. The cepstrum can be plotted as a function of the variable
called "quefrency" (anagram of frequency) to obtain a curve similar to the last row
of the example in Fig. 2.7

Fig. 2.6 Cepstrum extraction sequence
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As shown in Fig. 2.6, the time series frame is windowed with a Hanning function
and the module of the Fourier transform is calculated. The logarithm of the module
spectrum is then transformed with a Fourier transform to obtain the curve in the
bottom left. To better evaluate such a transformation, the cepstrum is converted in a
logarithmic scale. The role of the second Fourier transform on the spectrum array
is to highlight the periodicity in the spectrum. The spectrum of a sustained vowel
has an harmonic appearance as can be noticed in Fig. 2.7, so the harmonic peaks are
positioned on integer multiples of the fundamental frequency fo. The most important
feature of a cepstrum is the cepstral peak as shown in Fig 2.7

Fig. 2.7 Cepstrum

Such a peak is positioned at a quefrency equal to the estimated pseudo-period
length and its prominence, evaluated from the noise floor, is a measure of signal
harmonicity. In fact the capability of the Fourier transform of finding periodicity in
signals can be adapted to find periodicity in the frequency domain. An harmonic
spectrum with a low noise floor is seen as a periodic wave with a certain offset and
amplitude from the successive Fourier transform performed to obtain the cepstrum.
Therefore the more the amplitude of the spectrum is (distance between harmonics
peaks and noise floor) the higher the cepstral peak will be. As shown in Fig 2.7, the
cepstrum curve can be very noisy and estimating the prominence of the cespstral
peak can be a challenging task, especially when the audio recordings are performed
in a non-treated room [21]. To fix this problem, a two dimensional smoothing of
collected cepstrum frames is performed [15] [16] [12] [22]. The cepstra sequence is
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first smoothed in the time domain with a moving average filter with a frame size of
7 samples [23] [24]and then is smoothed in the quefrency domain using the same
moving average filter. Once the collected cepstra were smoothed, for each cepstrum
the regression line of the noise floor is estimated from 1 ms to the end of the cepstrum.
The value of 1 ms was chosen to exclude the frequencies above 1 kHz where very
small harmonic energy is present in vowels signals. The height of the projection
of the smoothed cepstral peak on the tendency line is the evaluated Cepstral peak
prominence smoothed (CPPS) for the current frame, as shown in Fig 2.8

Fig. 2.8 Cepstral peak prominence smoothed



Chapter 3

Uncertainty evaluation of the
extracted parameters

The main goals of this chapter are the identification and the evaluation of the contri-
butions that affect the uncertainty of the extracted parameters. The first part of this
chapter refers to the uncertainty analysis of pseudo-period and amplitude stability
parameters defined in chapter 2.4.2, paying particular attention to the quantization
error. The second part analyses the error contribution of the extraction algorithm
by means of a re-synthesis method that provides reference signals, which allow the
error due to the extraction algorithms to be evaluated.

3.1 Uncertainty evaluation of period and amplitude
stability metrics

The period and amplitude stability metrics defined in Sec. 2.4.2 are evaluated starting
from measured sequences of pseudo-periods and amplitudes. The uncertainty of
these measured sequences affect the stability-metrics uncertainty. The first step
consists in identifying the main uncertainty contributions of pseudo-period and
amplitude measurements, which are:

• time-base tolerance

• time-base drift
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• time resolution

• gain error

• integral nonlinearity

• amplitude resolution

• noise

• extraction algorithm

The contributions described in the list above can be depicted in the diagram in Fig.
3.1

Fig. 3.1 Main uncertainty contributions for pseudo-periods and amplitudes evaluations

The figure 3.1 summarizes the uncertainty contributions that have been taken into
account, where u(F(T,A)) represents the standard uncertainty of the generic feature f,
which depends on pseudo-period (T) and amplitude (A). The noise affects more the
extraction algorithm than the feature evaluation itself as will be showed in the next
sections.

3.1.1 Time-base tolerance, aging and resolution

The contribution of time-base tolerance affects the sampling phase of the analog-
digital conversion of the Analog to Digital Converter (ADC) and thus all the time
measurements. To evaluate the effect of time base tolerance and aging the time
measurements were modeled using the formula:

Ti =
ni

sri
(3.1)
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where ni is the number of samples that corresponds to the period Ti and that is
assumed as exact, while sri is the sampling rate affected by tolerance and aging:

sri = srn · (1± ε ± k ·∆t) (3.2)

where srn is the nominal sampling rate, ε is a relative tolerance, k is a relative time
drift expressed in s−1 and ∆t is the duration of the acquisition interval. Combining
the equations 3.1 and 3.1 the number of counted samples can be expressed as:

ni = Ti · sri = Ti · [srn · (1± ε ± k ·∆t)] = ni0 · (1± ε ± k ·∆t) (3.3)

where ni0 = Ti · srn is the expected number of samples. Substituting ni in Eq. 3.1:

Ti = Ti0 ±Ti0 · (ε + k ·∆t) (3.4)

where k ·∆t is the linear time drift over the time interval ∆t and Ti is the duration of
the i-th period. An evaluation of the effect of aging on time measurements can be
done considering a vowel with a duration in the order of 10 s. Considering a worst
case scenario of a commercial Room Temperature Crystal Oscillator (RTXO), with
an aging time drift k = 10−6 month−1 ≈ 3.8 ·10−13 s−1, the term k ·∆t is in the order
of 10−12, which corresponds to 10−6 ppm, so the aging uncertainty contribution can
be considered as negligible.
A tolerance ε of the timing crystal frequency affects negligibly the evaluation of
periods duration. As an example, a pessimistic clock tolerance in the order of 100
ppm, on a typical clock frequency of 11.28 MHz, leads to a frequency error of
1128 Hz. Assuming that there is no drift caused by the clock divisor circuit, the
standard audio sampling frequency of 44100 Sa/s will have an error around 4.41 Sa/s.
Regarding the period evaluation error, an example of the effect of a positive clock
error ε around 100 ppm can be evaluated on a 10 ms period measurement as:

Ti = Ti0 · (1+ ε)≈ 10.001 ms (3.5)

As shown in this particular example, the timing crystal tolerance can produce an im-
portant effect on time measurements. However, the tolerance ε on the timing crystal
frequency on period stability evaluations has no effect due to the relative nature of
such measurement. As an example the effect of tolerance on jitter measurements can
be evaluated by the following equation:
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jit∗= N
N−1 ·

∑
N−1
i=1 |Ti0·(1±ε)−T(i+1)0·(1±ε)|

∑
N
i=1 Ti0·(1±ε)

·100= N
N−1 ·

∑
N−1
i=1 |Ti0−T(i+1)0|

∑
N
i=1 Ti0

·100= jit (3.6)

As shown in Eq. 3.6 the terms (1± ε) cancel out in the jitter equation so no
effect is expected due to the timing crystal frequency tolerance.
Another important contribution on time measurements is caused by the finite res-
olution of the ADC time-base. Because of the lack of synchronicity between the
input signal and the time-base, the start and ending instants of each evaluated pseudo-
period have an absolute uncertainty of ±1 sample corresponding to a sampling period
of ±1 Ts. The period evaluation, which is the difference between the ending and start-
ing instants will have an absolute uncertainty of ±2 samples. If this uncertainty is
supposed to be caused by a random perturbation with an uniform distribution extend-
ing from -2 Ts to +2 Ts the period uncertainty is evaluated as 4 ·Ts/

√
12 = 2 ·Ts/

√
3

As an example, with a sampling rate sr = 44100 Sa/s the sampling period is Ts = 22.6
µs, so u(T ) is in the order of 26 µs. Considering the fundamental frequency of a
vowel between 80 Hz and 400 Hz, the relative uncertainty is in a range between
0.2 % and 1 %. These values are larger than the tolerance (10−4) and the aging
(10−12) uncertainty contributions. In conclusion, the time-base resolution of time
measurements is the main contribution to the pseudo-period uncertainty.

3.1.2 Analytical uncertainty propgation of jitter and shimmer

In this section, the analytical evaluation of features uncertainty is carried out for
some of the period and amplitude stability measurements as recommended by the
Guide to the evaluation of uncertainty in meaurements (GUM) [25]. In particular,
the uncertainty propagation of jitter and shimmer is carried out according to the
following general equation:

u(F) =

√√√√ N

∑
j=1

N

∑
i=1

(
∂F
∂Xi

· ∂F
∂X j

) ·σXi j (3.7)

where F is a generic feature, Xi, j are the input variables and σXi j is the variance-
covariance matrix. If the correlation between input variables is negligible, a simpli-
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fied version of the equation can be used:

u(F) =

√
N

∑
i=1

(
∂F
∂Xi

·σXi)
2 (3.8)

The feature jitter is a function of measured pseudo-periods Ti, according to equation
2.4, and then the corresponding uncertainty can be obtained as:

u(shi)=u(A)·
√

1
(∑Ai)2

·{N·shi2+2·( 100·N
N−1 )2·[(N−1)−∑

N−2
i=1 sign(Ai−Ai+1)·sign(Ai+1−Ai+2)]} (3.9)

u( jit) = u(T ) ·C(T,N) (3.10)

where u(T ) is the period evaluation uncertainty and C(T,N) is the sensitivity coeffi-
cient of jit with respect to T , which depends on the period T and the number N of
processed periods. With reference to the sensitivity coefficient C(T,N), particular
attention is paid towards the term:

SUMsgn =
N−2

∑
i=1

sign(Ti −Ti+1) · sign(Ti+1 −Ti+2) (3.11)

Such a term depends on the temporal evolution of consecutive periods and its
statistical evaluation was performed on the balanced dataset described in Sec. 2.2
to evaluate its order of magnitude. In particular, it was evaluated as a fraction of
the number of consecutive pseudo-periods couples (N-2). This choice is justified
considering the extremal case of a strictly rising or falling periods sequence, where
the product of the sign functions is 1 so that SUMsgn = (N −2).

FN = SUMsgn/(N −2) (3.12)

as shown in Fig. 3.2 FN can vary from -0.5 and 0.3 with a median value of -0.2.
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Fig. 3.2 Distribution of the term SUMsgn normalized respect to (N-2)

Substituting the evaluated median value of FN and assuming also a mean period
duration T = ∑Ti/N, the term (∑Ti)

2 becomes (N ·T )2 so the Eq. 3.9 becomes a
function of N,T , jit and FN :

u( jit) = u(T ) ·
√

1
(N·T )2 · {N · jit2 +2 · (100·N

N−1 )
2 · [(N −1)− (N −2) ·FN ]} (3.13)

Assuming a vowel with a fundamental frequency of 100 Hz and a variable duration
from 1 to 10 s, a jitter in the range from 0.1 & to 5 % and FN =−0.2, the sensitivity
coefficient depends just on jit and N (C(T,N)→C( jit,N)) and the representation
of such term can be depicted as in the heatmap in Fig. 3.3
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Fig. 3.3 Sensitivity coefficient of the analytical evaluation of jitter uncertainty.

As shown in Fig. 3.3, the sensitivity factor is lower for larger amounts of collected
pseudo-periods and a weakest dependence on the evaluated jitter can be noticed.

To evaluate the order of magnitude of jitter uncertainty, the period measurement
uncertainty u(T ), evaluated in the previous section is considered. In this example,
with a sampling rate sr = 44100 Sa/s, u(T ) is in the order of 2.6 ·10−5 s. If a 100 Hz
vowel with a 5 s duration and a jitter of 5 % is considered, the sensitivity coefficient is
around 700 (%/s). Multiplying such a sensitivity coefficient by u(T ), the uncertainty
of jitter measurements is u( jit) = 0.018 %. For the same vowel example, substituting
the minimum and maximum values of the evaluated FN (-0.5 and 0.3), the respective
propagated uncertainties are 0.02 % and 0.014 % . If such values are compared to
the scale of jitter measurements extracted from the dataset defined in Sec. 2.2, which
ranges from 0.12 % to 5.35 %, their relative uncertainties spans from 0.3 % to 16 %.
For shimmer measurements (shi), thanks to the fact that Eq. 2.5 has the same mathe-
matical structure of jit (Eq. 2.4), the same considerations can be made substituting
the periods measurements Ti with peak-to-peak amplitude measurements Ai. To
evaluate the influence of FN on amplitude sequences, the same evaluation on our
dataset was performed, obtaining the result that is summarized in Fig. 3.4.
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Fig. 3.4 FN distribution for shimmer

As shown in Fig. 3.4, the FN term has a median value of -0.23 with a more
prominent peak relative to the period duration evaluations. In order to evaluate the
sensitivity coefficients for shimmer measurements, a mean constant value A=1 a.u.
(half of the full scale range) was set for the amplitude measurements. In this way,
the term (∑Ai)

2 becomes (N ·A)2. In this way is possible to evaluate the sensitivity
coefficient C(shi,N) and the representation of such term can be depicted as in the
heatmap in Fig. 3.5
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Fig. 3.5 Sensitivity coefficient heatmap for shimmer

The heatmap in Fig. 3.5 highlights that the sensitivity coefficient has a small de-
pendence on N and is almost insensitive with respect to the parameter shi, though the
sensitivity coefficient values are lower if compared to the jitter sensitivity coefficient.
For shi measurements, an uncertainty contribution is the amplitude resolution, which
affects the evaluation of peak-to-peak amplitudes. As showed for the period quantisa-
tion contribution, a uniform random perturbation of ±1 LSB can affect the amplitude
evaluations. Another amplitude uncertainty contribution is the Integral Nonlinearity
(INL), which for a medium quality ADC is stated by the manufacturer as high as ±2
LSB on the instantaneous amplitude measurement. The third contribution is the gain
error, which for a medium level ADC is stated as the 0.05 % of the full-scale. To
express each uncertainty contributions in LSB, an ADC with 16 bit of resolution is
considered. A peak normalization is applied to the input signals in order to measure
a maximum absolute amplitude of 1 a.u. If a signal with an average peak-to-peak
amplitude of 1 a.u. (i.e. 0.5 a.u. peak amplitude) is considered, the main amplitude
uncertainty are:

• Quantisation: LSBQ =±1 LSB
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• Integral Nonlinearity: LSBINL =±2 LSB

• Gain Error: LSBGE = GE(%) ·Sin ·2Nb−1 = 0.0005 ·0.5 ·215 =±8 LSB

where LSBQ, LSBINL and LSBGE are respectively the quantisation, INL and GE con-
tributions expressed in LSB. GE(%) is the gain error and Sin is the signal amplitude
expressed in a.u.. These contribution are supposed to have an uniform distribu-
tion extended between the LSB limits listed above, so the quadratic sum of each
contribution is performed using the following equation:

uLSB(A) =

√
2 · (

LSBQ√
12

)2 +2 · (LSBINL√
12

)2 +2 · (LSBGE√
12

)2 ≈ 2.5 LSB (3.14)

the quadratic terms are multiplied by 2 to consider that the peak-to-peak am-
plitude measurement is the difference between two instantaneous signal codes.
Considering this specific example, the uncertainty of amplitude measurements is
u(A) = uLSB(A)/216 ≈ 3.8 ·10−5 a.u.. As already done in the previous case, the shim-
mer uncertainty can be evaluated considering a vowel with a fundamental frequency
of 100 Hz and 5 seconds duration. For a 10 % shi, the corresponding sensitivity
coefficient is close to 7 (%/a.u.). Multiplying this term by the amplitude uncertainty
leads to a shimmer uncertainty u(shi) = 0.0004 %. Such a value is negligible if
compared to the scale of shimmer measurement extracted from the dataset defined
in Sec. 2.2, which ranges from 1.14 % to 18.5 %. Such values lead to a relative
uncertainty ranging from 0.002 % to 0.03 %. This example is to be considered as a
typical application, even though ADC with lower performances ratings exist. If we
consider an ADC with GE(%) = 0.5 % then uLSB(A)≈ 24 LSB, u(shi)≈ 0.002%
and the range of relative uncertainties on shimmer measurements spans between
0.01 % and 0.035 %.
The same analytical procedure can be adopted for the uncertainty evaluations of the
other stability metrics defined in Appendix A (rap, ppq, apq). Due to their nested
mathematical architecture, it proved to be very challenging to propagate through the
analytical method. Therefore, a numeric Monte Carlo Error propagation was carried
out to solve this problem.
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3.2 Monte Carlo uncertainty propagation

To evaluate the effect of perturbations on period and amplitude stability measure-
ments, a Monte Carlo error propagation was performed. Particular attention has been
paid to the uncertainty contribution caused by the quantisation of time and amplitude
measurements. The method is based on the perturbation of extracted periods and
amplitudes with random vectors with specific statistical distributions. In the previous
section it was highlighted that the main uncertainty contribution for time stability
measurements is the quantisation of the time-base. For this reason, to evaluate
the effects of quantisation noise on period estimations, a random uniform variable
between -1 and 1 was added to each pseudo period evaluation expressed as counted
samples. The uncertainty of amplitude measurements is affected by the quantisation
of the amplitude scale and other effect such as the Integral Non Linearity (INL) and
the Gain Error, as shown in the previous section. To evaluate the effects of such
perturbations on amplitude estimations, a random uniform variable between -2.5
LSB and 2.5 LSB was added to each pseudo amplitude evaluation. Each perturbed
period and amplitude sequence was transformed in the stability metrics described
in Appendix 1A. This procedure was repeated 106 times to produce an array of
perturbed values for each stability metrics and the statistical distributions of such
arrays were extracted. As an example, the statistical distribution of the perturbed shi
obtained from two vowels uttered by the same subject is depicted in Fig. 3.6.
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Fig. 3.6 Monte Carlo uncertainty propagation of jitter for two vowels emitted by the same
subject

In Fig. 3.6 the blue and orange distributions are respectively relative to the first
and second extracted vowels. The vertical solid lines represent the expected jitter
values obtained from the un-perturbed pseudo-period sequences and the dotted lines
represent the dispersion of the perturbed distributions expressed by the equation:

DISP = c(95 %) · std(FMC) (3.15)

where std(FMC(i)) is the standard deviation of the Monte Carlo simulation dis-
tributions, c(95%) is a coverage factor calculated as the t-student inverse with a
confidence limit of 95%. As shown in Fig. 3.6, BIAS (1) and BIAS (2) were eval-
uated as the distance between expected value and the mean value of the perturbed
distributions:

BIAS = FMC −Fexp (3.16)

where FMC is the feature mean value calculated from the Monte Carlo simulation
and Fexp is the feature expected value. For the parameters where the absolute value
operator is present in the definition ( jit, jitabs, rap, ppq, shi, shiabs, apq), the Monte
Carlo evaluations showed a significative bias respect to the expected (unperturbed)
value. Such an effect is caused by the presence of the absolute value in the features
formulae, which is responsible for a strictly positive accumulation of consecutive
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differences. This assumption suggests that a bias is always present in the evaluation
when the input variables are perturbed. A further analysis on the available dataset
showed that this bias is not constant neither among different subjects nor among
different vowels uttered by the same subject. For this reason, such a bias cannot be
considered a systematic effect and then it has to be combined to the other uncertainty
contributions. To take into account the measurement bias, the following relation was
used to evaluate the measurement uncertainty with a 95% confidence level:

UF(bias)(class) =
∑

Ns
i=1

√
BIAS(i)2 +DISP(i)2

Ns
(3.17)

where Ns is the number of subjects of each class. In a similar way, a Mean dispersion
parameter was defined as:

DISPF(class) =
∑

Ns
i=1 DISP(i)

Ns
(3.18)

Such metrics were evaluated in order to separate the bias contribution from the
dispersion contribution and to compare their order of magnitude.

3.2.1 Oversampling effect

The stability metrics were extracted from recordings with a sampling rate of 44100
Sa/s and a bit resolution of 16 bit. To simulate the effect of different sampling rates
on the feature uncertainties, a linear oversampling of the audio signal was applied
using the Matlab function resample [26]. The resample function performs a linear
interpolation of the original signal and applies a FIR antialiasing filter to compensate
the high frequency effects caused by the interpolation process. the The Monte Carlo
error propagation was performed for four different oversampling factors:

• 1 (44100 Sa/s)

• 2 (88200 Sa/s)

• 4 (176400 Sa/s)

• 8 (352800 Sa/s)



38 Uncertainty evaluation of the extracted parameters

The table 3.1 summarises the mean uncertainties, calculated using Eq. 3.17 and 3.18,
for each stability metrics and each clinical class.

Table 3.1 Oversampling effect on stability metrics dispersions for different oversampling
factors

DISPF(class) - oversampling=1 (bit resolution=16bit)
Class jit (%) jitabs µs rap (%) ppq (%) v fo (%) SHI (%) shiabs (dB) apq (%) vAm (%)
PD 2.4·10−2 1.5 1.6·10−2 1.5·10−2 1.8·10−2 5.7·10−4 5.4·10−5 3.7·10−4 2.4·10−2

HE 1.5·10−2 9.1·10−1 1.0·10−2 9.6·10−3 1.3·10−2 4.0·10−4 3.7·10−5 2.5·10−4 1.5·10−2

PA 2.9·10−2 1.4 1.9·10−2 1.8·10−2 2.1·10−2 6.3·10−4 5.8·10−5 3.9·10−4 2.9·10−2

DISPF(class) - oversampling=2 (bit resolution=16bit)
Class jit (%) jitabs (µs) rap (%) ppq (%) v fo (%) shi (%) shiabs (dB) apq (%) vAm (%)
PD 1.3·10−2 7.9·10−1 8.6·10−3 8.0·10−3 8.9·10−3 5.7·10−4 5.4·10−5 3.7·10−4 3.8·10−4

HE 8.2·10−3 4.8·10−1 5.7·10−3 5.2·10−3 6.4·10−3 4.0·10−4 3.7·10−5 2.5·10−4 2.7·10−4

PA 1.6·10−2 7.9·10−1 1.0·10−2 9.6·10−3 1.1·10−2 6.3·10−4 5.8·10−5 3.9·10−4 4.0·10−4

DISPF(class) - oversampling=4 (bit resolution=16bit)
Class jit (%) jitabs (µs) rap (%) ppq (%) v fo (%) shi (%) shiabs (dB) apq (%) vAm (%)
PD 6.6·10−3 4.1·10−1 4.5·10−3 4.1·10−3 4.4·10−3 5.7·10−4 5.4·10−5 3.7·10−4 3.8·10−4

HE 4.4·10−3 2.6·10−1 3.0·10−3 2.8·10−3 3.2·10−3 4.0·10−4 3.7·10−5 2.5·10−4 2.7·10−4

PA 8.2·10−3 4.1·10−1 5.5·10−3 5.1·10−3 5.4·10−3 6.3·10−4 5.8·10−5 3.9·10−4 4.0·10−4

DISPF(class) - oversampling=8 (bit resolution=16bit)
Class jit (%) jitabs (µs) rap (%) ppq (%) v fo (%) shi (%) shiabs (dB) apq (%) vAm (%)
PD 3.3·10−3 2.1·10−1 2.3·10−3 2.1·10−3 2.2·10−3 5.7·10−4 5.4·10−5 3.7·10−4 3.8·10−4

HE 2.3·10−3 1.3·10−1 1.6·10−3 1.5·10−3 1.6·10−3 4.0·10−4 3.7·10−5 2.5·10−4 2.7·10−4

PA 4.2·10−3 2.1·10−1 2.8·10−3 2.6·10−3 2.7·10−3 6.3·10−4 5.8·10−5 3.9·10−4 4.0·10−4

As shown in Table 3.1, the amplitude related measurements are not affected by
the oversampling factor, as expected. The period related measurements dispersions
seem to consistently decrease as the oversampling factor increase. In Fig. 3.7 an
example of Mean absolute uncertainties (Eq. 3.17) and dispersions (Eq. 3.18) of
jitter and shimmer measurements is shown.
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(a) (b)

(c)

Fig. 3.7 Oversampling effect on jitter (a) and shimmer (b) evaluations

The bars in the plots of Fig. 3.7 represent the dispersion DISPF of jitter and
shimmer for the three classes (PD in blue, HE in red, PA in yellow). The red asterisks
represent the extended uncertainties U jit(bias) evaluated using Eq. 3.17. As shown in
the plot, the distance between U jit(bias) and the DISPjit decreases as the oversampling
rises, highlighting that the BIAS contribution on Eq. 3.17 have less influence on time
stability metrics for higher oversampling factors. To evaluate the effect of the bias on
jitter and shimmer measurements, the Tab. 3.2 reports the differences between the
average expected jitter and shimmer and the average of the evaluated ones obtained
as the mean values of the Monte Carlo simulation (FMC).
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Table 3.2 Oversampling effect on Expected jitter and shimmer compared to the Evaluated
measurements

oversampling=1 (bit resolution=16bit)
Class Exp. jit (%) Eval. jit (%) Exp. shi (%) Eval. shi (%)
PD 0.62 0.71 5.75 5.75
HE 0.32 0.47 2.8 2.8
PA 0.44 0.56 4.19 4.19

oversampling=2 (bit resolution=16bit)
Class Exp. jit (%) Eval. jit (%) Exp. shi (%) Eval. shi (%)
PD 0.64 0.66 5.79 5.79
HE 0.31 0.36 2.8 2.8
PA 0.44 0.48 4.18 4.18

oversampling=4 (bit resolution=16bit)
Class Exp. jit (%) Eval. jit (%) Exp. shi (%) Eval. shi (%)
PD 0.63 0.64 5.83 5.83
HE 0.32 0.34 2.81 2.81
PA 0.44 0.45 4.18 4.18

oversampling=8 (bit resolution=16bit)
Class Exp. jit (%) Eval. jit (%) Exp. shi (%) Eval. shi (%)
PD 0.64 0.64 5.82 5.82
HE 0.32 0.33 2.81 2.81
PA 0.44 0.44 4.18 4.18

As shown in Tab. 3.2, regarding shimmer measurements, no differences can be
noted between expected and evaluated shimmer. For a sampling rate of 44100 Sa/s,
a common value for consumer level recording devices, the difference between the
expected and evaluated jit is not negligible and it can produce relative uncertainties
up to 46 % for the HE class. As reported in Tab. 3.2, this difference is reduced for
higher oversampling factors. From this considerations it is evident that sampling
the signal at higher sampling rates or post process it with a linear oversampling
can noticeably reduce the uncertainties on stability metrics. Such a practice can
be very computationally expensive and not efficient if implemented in embedded
and portable devices. Another way to reduce the stability metrics uncertainty may
be the implementation of a compensation method to correct such effects for lower
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oversampling factors (or lower sampling rates). As an example, in Fig. 3.8 the
evaluated jitter, respect to the expected values using two different oversampling
factor (1, 8), is presented.

Fig. 3.8 Comparison between two oversampling factors for Expected versus evaluated
jitter. The dashed and solid lines represent the linear regressions of the experimental points
respectively for an oversampling factor of 1 and 8

Fig. 3.8 highlights a clear difference between different oversampling factors.
The linear regression of The data extracted using an oversampling factor of 8 is
clearly more linear than the data extracted without the oversampling of the signal. A
significative difference between the bias of the compared oversampling factors can be
noticed in the regression without oversampling. Moreover, the slope of the regression
line without oversampling is significatively lower than 1 and this fact suggests that
without any correction the jitter evaluations will be overestimated, above all for
low jitter values. To correct this issue, the inverse of the linear regression with no
oversampling can be calculated. For this particular example the correction equation
would be:

jit =
jit∗−o

m
=

jit∗−0.15
0.91

(3.19)
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where jit is the corrected jitter, jit∗ is the evaluated one, m and o are respectively the
slope and offset of the linear regression. Such an operation could correct the effect
of low sampling rates at low jitter values, but the residual contribution that is related
to the identification of the coefficients m and o of by the linear regression have to be
considered in the uncertainty budget.

The same considerations can be made for each measurement where the absolute
value is present ( jit, jitabs, rap, ppq).

3.2.2 Amplitude resolution effect

To evaluate the effect of amplitude resolution on the stability metrics, the signals
were bit-reduced using the Matlab function uencode [27] which is capable of ver-
tically resampling a signal to a given number of bits. The average uncertainties
using Eqs.3.17 and 3.18 for each feature are summarized in Tab. 3.3. For this
characterisation the oversampling factor was set to 8.

Table 3.3 Bit resolution effect on stability metrics dispersions for different number of bits

DISPF(class) - resolution=10 bit (oversampling=8)
Class jit (%) jitabs (µs) rap (%) ppq (%) v fo (%) shi (%) shiabs (dB) apq (%) vAm (%)
PD 3.8·10−3 2.3·10−1 2.5·10−3 2.3·10−3 2.2·10−3 5.5·10−2 5.3·10−3 2.5·10−2 2.5·10−2

HE 4.4·10−3 2.4·10−1 2.8·10−3 2.6·10−3 1.7·10−3 9.1·10−2 8.4·10−3 2.1·10−2 1.7·10−2

PA 5.2·10−3 2.7·10−1 3.4·10−3 3.1·10−3 2.8·10−3 8.3·10−2 7.6·10−3 2.8·10−2 2.6·10−2

DISPF(class) - resolution=12 bit (oversampling=8)
Class jit (%) jitabs (µs) rap (%) ppq (%) v fo (%) shi (%) shiabs (dB) apq (%) vAm (%)
PD 3.8·10−3 2.3·10−1 2.5·10−3 2.3·10−3 2.3·10−3 9.8·10−3 9.4·10−4 5.9·10−3 6.1·10−3

HE 4.4·10−3 2.4·10−1 2.8·10−3 2.6·10−3 1.7·10−3 9.2·10−3 8.5·10−4 4.1·10−3 4.3·10−3

PA 5.2·10−3 2.7·10−1 3.4·10−3 3.2·10−3 2.8·10−3 1.2·10−2 1.1·10−3 6.3·10−3 6.5·10−3

DISPF(class) - resolution=16 bit (oversampling=8)
Class jit (%) jitabs (µs) rap (%) ppq (%) v fo (%) shi (%) shiabs (dB) apq (%) vAm (%)
PD 3.8·10−3 2.3·10−1 2.5·10−3 2.3·10−3 2.3·10−3 5.7·10−4 5.4·10−5 3.7·10−4 3.8·10−4

HE 4.4·10−3 2.4·10−1 2.8·10−3 2.6·10−3 1.7·10−3 4.0·10−4 3.7·10−5 2.5·10−4 2.7·10−4

PA 5.2·10−3 2.6·10−1 3.4·10−3 3.2·10−3 2.8·10−3 6.3·10−4 5.8·10−5 3.9·10−4 4.0·10−4

The jit and shi evaluated uncertainties presented in Tab 3.3 are depicted in Fig.
3.9:
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(a) (b)

(c)

Fig. 3.9 Bit resolution effect on jitter (a) and shimmer (b) evaluations

As shown in Fig. 3.9, the amplitude resolution does not affect the jitter evalua-
tions while it has an evident influence on shimmer evaluations. As an example, the
correction method proposed for jitter evaluations (Fig. 3.8) can be applied to the
shimmer evaluations as shown in Fig. 3.10.
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Fig. 3.10 Comparison between two amplitude resolutions for expected versus evaluated
shimmer. The dashed and solid lines represent the linear regressions of the experimental
points respectively for an amplitude resolution of 10 bit and 16 bit

As shown in Fig. 3.10, the shimmer correction is fairly unnecessary due to the
enhanced linearity of the evaluated regression (m ≈ 1, o ≈ 0).

3.2.3 Background noise effect

To evaluate the effect of noise on the extraction of voice features, a Gaussian white
noise was added to the original acquired audio signals using the Matlab function
wgn [28]. To give a target Noise to signal ratio (NSR) to the signals under test, the
ARMS of the original signal was evaluated to establish the noise level to add to the
original signal using the following equation:

ARMS(noise) = ARMS(signal) ·10
NSR
20 (3.20)

It is necessary to specify that for "clean signal" it is intended that the background
noises levels (environmental and electronics noises), of the signals under test, should
be lower than any noise level analysed in this experiment. As already stated in
Sec.2.2, the original background SNR was estimated as high as 30 dB (NSR<-30
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dB), so a NSR of -18 dB was chosen as minimum target NSR for the added noise.
For the same reason the other test NSR were chosen as -12 dB and -6 dB. In table
3.4 the mean uncertainties, calculated using Eqs.3.17 and 3.18, for each stability
metrics and each clinical class are presented.

Table 3.4 Noise effect on stability metrics dispersions for different NSR

DISPF(class) - NSR=NSRclean
Class jit (%) jitabs (µs) rap (%) ppq (%) v fo (%) shi (%) shiabs (dB) apq (%) vAm (%)
PD 3.8·10−3 2.3·10−1 2.5·10−3 2.3·10−3 2.2·10−3 5.5·10−2 5.3·10−3 2.5·10−2 2.5·10−2

HE 4.4·10−3 2.4·10−1 2.8·10−3 2.6·10−3 1.7·10−3 9.1·10−2 8.4·10−3 2.1·10−2 1.7·10−2

PA 5.2·10−3 2.7·10−1 3.4·10−3 3.1·10−3 2.8·10−3 8.3·10−2 7.6·10−3 2.8·10−2 2.6·10−2

DISPF(class) - NSR=-18 dB
Class jit (%) jitabs (µs) rap (%) ppq (%) v fo (%) shi (%) shiabs (dB) apq (%) vAm (%)
PD 3.8·10−3 2.3·10−1 2.5·10−3 2.3·10−3 2.3·10−3 9.8·10−3 9.4·10−4 5.9·10−3 6.1·10−3

HE 4.4·10−3 2.4·10−1 2.8·10−3 2.6·10−3 1.7·10−3 9.2·10−3 8.5·10−4 4.1·10−3 4.3·10−3

PA 5.2·10−3 2.7·10−1 3.4·10−3 3.2·10−3 2.8·10−3 1.2·10−2 1.1·10−3 6.3·10−3 6.5·10−3

DISPF(class) - NSR=-12 dB
Class jit (%) jitabs (µs) rap (%) ppq (%) v fo (%) shi (%) shiabs (dB) apq (%) vAm (%)
PD 3.8·10−3 2.3·10−1 2.5·10−3 2.3·10−3 2.3·10−3 5.7·10−4 5.4·10−5 3.7·10−4 3.8·10−4

HE 4.4·10−3 2.4·10−1 2.8·10−3 2.6·10−3 1.7·10−3 4.0·10−4 3.7·10−5 2.5·10−4 2.7·10−4

PA 5.2·10−3 2.6·10−1 3.4·10−3 3.2·10−3 2.8·10−3 6.3·10−4 5.8·10−5 3.9·10−4 4.0·10−4

DISPF(class) - NSR=-6 dB
Class jit (%) jitabs (µs) rap (%) ppq (%) v fo (%) shi (%) shiabs (dB) apq (%) vAm (%)
PD 3.8·10−3 2.3·10−1 2.5·10−3 2.3·10−3 2.3·10−3 5.7·10−4 5.4·10−5 3.7·10−4 3.8·10−4

HE 4.4·10−3 2.4·10−1 2.8·10−3 2.6·10−3 1.7·10−3 4.0·10−4 3.7·10−5 2.5·10−4 2.7·10−4

PA 5.2·10−3 2.6·10−1 3.4·10−3 3.2·10−3 2.8·10−3 6.3·10−4 5.8·10−5 3.9·10−4 4.0·10−4

The results of this evaluation are depicted in Fig. 3.11, where the mean uncer-
tainty for jitter and shimmer measurements is reported.



46 Uncertainty evaluation of the extracted parameters

(a) (b)

(c)

Fig. 3.11 Noise effect on jitter (a) and shimmer (b) evaluations

As shown in Fig. 3.11, a negligible effect can be noticed in the jitter and shimmer
evaluations. This is due to fact that the noise, in this case, is added to the signal
and then the sequences of pseudo-periods and amplitudes are extracted. Perturbing
these sequences with MC generations has no effect on the dispersions and biases of
the evaluated metrics. To evaluate the effect of noise on the extraction of stability
metrics, the contribution of the extraction algorithm to the total uncertainty has to be
evaluated.

3.2.4 Extraction algorithm effect

To evaluate the contribution of the extraction algorithm to the total uncertainty, the
mean absolute error was evaluated taking as reference measurements the features
extracted from the signal with the lowest noise level:

Fexp(−18dB) = Fexp(−12dB) = Fexp(−6dB) = Fexp(NSRclean) (3.21)

In this way, the original signal without any added noise is taken as a "golden
standard" for this work, substituting Fexp(NSRclean) in Eq 3.17. Improving the
recording technique and using better recording devices and algorithms could produce
a more reliable reference signal, however the term "golden standard" used in this
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section is intended as relative to this specific work. In Fig. 3.12, an example of
the dispersions and U jit(bias) for jitter and shimmer evaluation is presented. As in
the previous cases the height of the bar represent the dispersions DISPF(class) (Eq.
3.18) and the red asterisks represent the extended uncertainty UF(bias)(class) (Eq.
3.17).

(a) (b)

(c)

Fig. 3.12 Noise effect on jitter (a) and shimmer (b) evaluations considering the features
extracted from the clean signals as golden standards

The plots in Fig. 3.12 shows clearly that the signals with the highest noise level
(-6 dB) highlight higher uncertainties in the evaluation of jitter and shimmer. In par-
ticular, the contribution of the uncertainty associated to the bias looks predominant
respect with the dispersions.
To get a global evaluation of the uncertainty including the contribution of the ex-
traction algorithm, the Eq. 3.17 is calculated using as Fexp the one relative to the
best measurement conditions in order to refer each measurement to a "golden stan-
dard", as already done for the noise contribution (Eq.3.21). In particular for the
oversampling measurements:

Fexp(ovrsmp = 1) = Fexp(ovrsmp = 2) = Fexp(ovrsmp = 4) = Fexp(ovrsmp = 8)
(3.22)
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and for the bit reduction measurements:

Fexp(bit = 10) = Fexp(bit = 12) = Fexp(bit = 16) (3.23)

To get an overview of the extraction algorithm contribution, the Tab. 3.5 shows the
error of each evaluated feature averaged along the three clinical classes. The golden
standard for each evaluation is highlighted.

Table 3.5 Extraction algorithm contribution for different oversampling factors, bit resolutions
and NSRs respect to golden standard measurements (highlighted in golden color)

Features: jit (%) jitabs (µs) rap (%) ppq (%) v fo (%) shi (%) shiabs (dB) apq (%) vAm (%)
Oversampling effect on UF(bias) respect to the golden standard (factor=8)

8 4.3·10−3 2.4·10−1 2.8·10−3 2.6·10−3 2.2·10−3 5.2·10−4 4.9·10−5 3.3·10−4 3.4·10−4

4 1.5·10−2 8.3·10−1 1.0·10−2 9.3·10−3 8.5·10−3 1.5·10−2 1.6·10−3 7.9·10−3 1.7·10−2

2 4.5·10−2 2.5 2.9·10−2 2.8·10−2 2.2·10−2 3.7·10−2 4.2·10−3 2.0·10−2 3.6·10−2

1 1.1·10−1 6.4 7.1·10−2 7.8·10−2 4.6·10−2 6.0·10−2 6.1·10−3 3.1·10−2 4.2·10−2

Bit resolution effect on UF(bias) respect to the golden standard (bit=16)
16 4.3·10−3 2.4·10−1 2.8·10−3 2.6·10−3 2.2·10−3 5.2·10−4 4.9·10−5 3.3·10−4 3.4·10−4

12 6.6·10−3 3.7·10−1 4.4·10−3 3.9·10−3 5.4·10−3 1.7·10−2 1.7·10−3 1.3·10−2 1.5·10−2

10 8.8·10−3 4.7·10−1 5.9·10−3 5.5·10−3 8.1·10−3 1.7·10−1 1.6·10−2 1.3·10−1 6.4·10−2

Noise effect on UF(bias) respect to the golden standard (NSR=NSRclean)
NSRclean 4.4·10−3 2.4·10−1 2.8·10−3 2.6·10−3 2.2·10−3 5.2·10−4 4.8·10−5 3.3·10−4 3.4·10−4

NSR=-18 dB 3.9·10−2 2.1 2.6·10−2 2.5·10−2 2.3·10−2 7.6·10−1 6.8·10−2 4.6·10−1 1.6
NSR=-12 dB 1.2·10−1 6.6 7.6·10−2 8.0·10−2 5.6·10−2 1.8 1.6·10−1 1.1 3.2
NSR=-6 dB 3.5·10−1 1.9·101 2.1·10−1 2.2·10−1 1.3·10−1 3.6 3.1·10−1 2.3 5.9

The data on Tab. 3.5 shows that the sampling rate (oversampling) and the
vertical resolution can have a relevant effect on the evaluation of pseudo-periods and
amplitudes stability metrics performed by the extraction algorithm. Such contribution
does not affect the evaluation dispersion but just the bias contribution as seen in Fig.
3.12

3.3 Cross-talk contribution

The data used in the uncertainty evaluations of this work was collected using a
portable audio recorder which captured the signals from two microphones: a contact
throat microphone and a microphone in air. All the evaluations carried out in this
manuscript have been performed on the signals from the microphone in air. It is
possible that the signal coming from the contact microphone affected the signal from
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the microphone in air because of the cross-talk effect. In multi-channel electronic
acquisition devices, the cross-talk is an effect due to the internal circuitry of the
device under test. To evaluate the possibility that, recording two signals at the
same time the cross-talk can affect the acquisition, an experimental measurement
was carried out. This evaluation was carried out as a side measurement of a larger
experiment on the cross-talk effects on Digital AcQuisition devices (DAQ) , which
resulted in the publication of a paper on the IEEE Transactions on Instrumentation
and Measurement Journal [29]. The device used for this characterization is the
ZOOM H2N, an handheld recording microphone which is capable of capturing
the signal from up to four microphones in different configurations. In a common
application the cross-talk effect for this device is not an issue since the embedded
microphones capture an acoustic field which already has a natural signal "overlap"
in the acoustic domain. For this reason a sound coming from the left is detected also
in the right channel and the recorded signal will be always higher than any cross-talk
voltage generated at the electronics level. For applications where the LINE IN input
is used some issues can arise if different kind of devices are connected. The LINE
IN input can accept line level signals (output impedance 600 Ω, Output voltage
max. 1V) as well as electret microphone signals (output impedance 2.2 kΩ, average
voltage 10 mV). To power the electret microphones , a pull-up resistor is connected
to the right and left channels of the LINE IN input giving a constant voltage around
1.5 V. This kind of input configuration is commonly called plug-in. In this setup,
a line level disturbance was applied to the Left channel to evaluate the effect of a
large signal disturbance on Right channel. To simulate the presence of an electret
microphone, a 2.2 kΩ resistor was connected between the Right channel and ground.
Such a measurement was performed implementing the experimental architecture
thath is shown in Fig. 3.13.

Fig. 3.13 Experimental setup of the cross-talk evaluation of an audio device
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As shown in Fig. 3.13, an arbitrary function generator (Tektronix AFG-3252),
which is controlled via USB interface by a LabVIEW Virtual Instrument (VI) running
on a PC, is connected to the input Left channel of the audio recording system and
configured to produce sinusoidal voltage signals at different frequencies. The voltage
signal on the Left channel is set to have a peak-to-peak amplitude which produces a
RMS full scale level of -6 dBfs as indicated by the audio device display. The input
channel R is connected to ground through the 2.2 kΩ resistor RL.

Fig. 3.14 Schematic of the LabVIEW script implemented to evaluate the cross-talk of the
audio device

As shown in Fig. 3.14, the VI acquires signal samples from the two active
channels and process them in order to estimate the disturbance source at the L
channel and the error term at the R channel. The Sampling Rate SR of each channel
is set to 44100 Sa/s. The collection of signals is performed by the LabVIEW Express
VI Acquire sound.vi and the collected samples are processed with a flat-top window
and then converted in the frequency domain through a Fast Fourier Transform (FFT)
algorithm using the LabVIEW module Amplitude and Phase Spectrum.vi. In order
to obtain a reliable measurement of the rms value, repeated frames are averaged in
the time domain until a minimum Signal to Noise Ratio (SNR) of 40 dB is obtained.
The SNR is estimated as the ratio between the rms at the tested frequency by the
rms of all the other spectral components. The peak-to-peak amplitude values of the
disturbance signal AL and the error term AR are evaluated as the FFT modules at the
index corresponding to the tested frequency. The ratio between such rms values is
calculated to estimate the cross-talk according to the equation:

CT = 20 · log10(
AR

AL
) (3.24)
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The evaluation of CT (i) was carried out at different frequencies from 100 Hz
to 22050 Hz with 100 Hz step. The evaluation of CT (i) as a function of frequency
produced the plot shown in Fig. 3.15

Fig. 3.15 Cross-talk evaluation of the audio device as a function of disturbance frequency

As shown in Fig. 3.15, the cross-talk can reach values as high as -50 dB at low
frequencies while it is lower for higher frequencies. The average noise background
level of the audio recordings was evaluated measuring an average SNR higher than
30 dB. The audio files were peak-normalised such that the background noise level
is as low as -30 dBfs. The maximum evaluated cross-talk (≈-47 dBfs) is lower than
the background noise level, so no or negligible effect is expected when using both
channel of the device under test.

3.4 Final considerations on the evaluation of the un-
certainty of stability metrics

The presented section highlights the main uncertainty contributions in the extraction
of vocal features commonly used in speech analysis and diagnosis.
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3.4.1 Time and Amplitude contribution

The effects of time-base tolerance and aging on vocal features uncertainties have
been investigated. Due to the relative architecture of jitter, a frequency drift over time
does not affect the evaluation, thanks to the fact that the measured events (vowels),
lasts lot less than a typical frequency drift that can become relevant after hours of
operation. An extreme case scenario of a 100 ppm frequency tolerance on timing
crystal has been analysed and the results showed that the period measurements are
not significantly affected.

3.4.2 Analytical Error propagation:

A GUM oriented analysis on jitter uncertainty evaluation has been performed in
order to evaluate the order of magnitude of the propagated uncertainty. This analysis
highlighted the difficulties in the uncertainty propagation of period and amplitude
stability features. In particular some terms such as SUMsgn (Eq. 3.11) can not
be analytically reduced so a statistical evaluation of such term using our dataset
became necessary to evaluate the jitter and shimmer errors. To have a hint on
the order of magnitude on jit and shi measurement, a common acquisition device
with a sampling rate of 44100 Sa/s and an amplitude resolution of 16 bit has been
considered. For the jit uncertainty, the main contribution was identified as the time-
base quantisation which leads to a relative uncertainty between 0.3 % and 16 %. This
consideration highlights that the sampling rate of the ADC plays an important role
on the evaluation of jit. For the shi uncertainty, considering a medium quality ADC,
relative uncertainties were estimated between. 0.004 % 0.07 %. This consideration
suggests that the shi measure is less sensitive to the ADC amplitude characteristics
(quantisation, INL, GE), as will be highlighted in the next conclusions.

3.4.3 Monte Carlo Error propagation of the quantization contri-
bution

The Monte Carlo uncertainty propagation has been performed in order to evaluate
the uncertainty contributions of the stability metrics, which can be challenging to
propagate analytically. The uncertainty evaluation of the Monte Carlo propagation
showed to be comparable to the analytical propagation. As an example, the quanti-
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sation uncertainty contribution on jit, evaluated through the analytical method, is
u( jit) =0.018 %, which is comparable to the one obtained through the Monte Carlo
simulation with oversampling=1 (0.015 %<DISPjit<0.029 %) as shown on Tab. 3.1
and Fig. 3.7a.
The Monte Carlo simulation showed an evident bias error in the evaluation of period
stability parameters where the absolute value operator is present in their definition.
Such a bias is not constant for every subjects and even for different vowels produced
by the same subject. To compensate such a bias, the Monte Carlo simulations per-
formed in this work seems to be the best option thanks to the fact that, this algorithm,
showed good evaluation performances even using a relatively small number of trials.
A characterisation of the uncertainty contributions relative to a "golden standard"
of the measurement was carried out. In particular, an example of jitter evaluation
with a low oversampling factor (1) was characterised respect to the evaluation ob-
tained with the maximum oversampling factor (8) through a linear regression of
the experimental data. In a research application, where the execution time of the
extraction algorithms is not a critical issue, the best practice should be to maximize
the sampling parameters (sampling rate and bit resolution) in order to minimize the
measurement uncertainty. For this work, the sampling parameters that minimize the
stability metrics uncertainties were identified as:

• Sampling Rate 44100 ·8 = 352800 Sa/s

• Bit resolution 16 bit

In a more consumer oriented application, the computational power (and so the
algorithm execution time) budget have to be balanced with the cost of the device. In
this scenario, the sampling parameters could be lowered at the expense of a rising
of measurement uncertainties. To take into account this uncertainties a correction
method can be applied to the extracted features, as shown in Fig. 3.8, in order to
develop a more computational efficient device using low cost components.
The effect of additive noise has been investigated and, as expected, it has negligible or
no effect on the estimation of extracted features if the contribution of the extraction
algorithm is considered as negligible. To evaluate how the extraction algorithm
affects the stability metrics, an evaluation of measurement error respect to a golden
standard (jitter and shimmer extracted from the clean signal) was performed. Such
an evaluation showed enormous bias errors caused by the extraction algorithm which
has proved to be very sensitive to the background noise level.
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3.4.4 Cross-talk error contribution

As shown in the plot of Fig. 3.15, the cross-talk error contribution can affect the
acquired signals depending on the evaluated frequency. The maximum cross-talk
was evaluated at 100 Hz and is close to -47 dBfs and the minimum value is reached
around 2.5 kHz. The human voice, when a sustained vowel is emitted, show most of
its spectral energy in a band which ranges from 100 Hz and 1 kHz. In such a range
the evaluated cross-talk error is lower than the environmental background noise
level of the recordings, which was estimated as low as -30 dBfs. For this reason the
cross-talk contribution have a negligible effect on the total measurement uncertainty.



Chapter 4

Evaluation of the measuring chain
contributions to the features
uncertainty

This chapter analyses the uncertainty contributions on the feature evaluation of the
entire measuring chain. Differently from what has been described in the previous
chapter, several issues arise when the uncertainty contribution of each component of
the measuring chain has to be evaluated.

4.1 Uncertainty evaluation strategy

The single contributions to the total features, uncertainties coming from the measur-
ing chain and from environmental conditions such as background noise, have to be
evaluated in order to determine their influence in the measurement. Some aspects of
the measuring chain can be evaluated a priori as showed in the previous sections (3),
where the error evaluation of uncertainty contributions due to time and amplitude
quantisation have been obtained. This was possible because the statistical nature of
the disturbance is known, so a Monte Carlo simulation is advisable to evaluate the
quantization effect. The main focus and challenge of this work is to evaluate the
whole measuring chain error contribution and to achieve this result the architecture,
that is summarized in Fig. 4.1, is proposed:
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Fig. 4.1 Architecture of the proposed method for the measuring chain error evaluation

The proposed error evaluation method depicted in in Fig. 4.1 is based on four
evaluation steps:

1. Extraction and sampling: The subject vowel is recorded with a microphone
including the contribution of the background noise (green dashed lines). The
microphone transforms the acoustic signal into an electrical signal (blue dotted
lines). The acquisition module represent the sampling device used to record
the subject voice, thus obtaining an audio data signal (red dashed lines). The
audio signal is processed by an extraction algorithm that produces measured
time sequences of pseudo-periods TM(N) and amplitudes AM(N) that can
be combined to obtain the metrics described in Chapter 3. The extracted
pseudo-periods and amplitudes are then fed to a Monte Carlo sampling algo-
rithm, which produces reference time sequences of pseudo-periods TR(N) and
amplitudes AR(N) that can be combined to obtain reference features FR(MC)

2. Extraction uncertainty evaluation: An artificial signal is synthesised using
as reference the sequence of generated TR(N) and AR(N). The artificial ref-
erence signal is fed back to the extraction algorithm and new sequences of
pseudo-periods TM(N) and amplitudes AM(N) are extracted and combined
to obtain measured artificial features FM(ART ). FR(MC) and FM(ART ) are
compared to obtain an evaluation of the extraction uncertainty u[F(Extr.)]

3. Acquisition+Extraction error evaluation: The artificial test signal is con-
verted into the electrical domain by means of a Digital to Analog Converter
(DAC) and fed back to the acquisition device through the use of a cable. The
same procedure applied to evaluate the extraction error is adopted to evaluate
the Extraction and Acquisition contribution u[F(Acq.+Extr)].



4.1 Uncertainty evaluation strategy 57

4. Whole chain error evaluation: The artificial signal, after being transformed
in the electrical domain, is amplified and then fed to a loudspeaker mounted
inside a torso simulator as will be showed in the next sections. In this way
the artificial signal is converted in the acoustic domain and recorded by a
microphone connected to the acquisition device. Using the same procedures
of the previous steps, an evaluation of the whole chain error contribution
u[F(Mic.+Acq.+Extr.)] is obtained.

The architecture depicted in Fig. 4.1 is a four step feedback error evaluation
algorithm, that produces a test signal which is capable of "jumping" between dif-
ferent dimensional domains in order to test each part of the measuring chain. The
comparison between known and measured features occurs from the second iteration
onwards because a dimensional domain transformation is needed to perform a further
extraction. To achieve the domain transformation, a signal resampling method was
proposed for this work. In the first iteration of the evaluation model in Fig. 4.1 a
sequence of pseudo-periods lengths and amplitudes is produced. Such sequences can
be visualised as "markers" on the time evolution of the vowel signal as shown in Fig.
2.3. The resampling method was performed using the Matlab functions interp1 [30]
and linspace [31] and an amplitude re-normalization using simple multiplications
and divisions according to the code reported below:

/pseudo-code/
for each period i:
new_period(i)= linspace(1,’original length’,’new length’)
* ’new amplitude’/’original amplitude’);
period(i)=interp1(’original_range’, ’original_period’ , new_period(i)) ;
test_signal=vertcat(test_signal,period(i))
end

The algorithm described above resamples the audio signal of each period to the
desired new length and then re-normalize its amplitude to the desired one. The
resampled periods are then concatenated using the Matlab function vertcat [32] to
produce a test signal as showed in Fig. 4.2.
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Fig. 4.2 An example of an original vowel signal in blue and an artificial one generated with
the proposed resampling method in orange. The vertical blue and orange bars represent the
periods start and ending points respectively of the original and artificial signals.

As shown in Fig. 4.2, the artificial vowel signal slightly differ from the orig-
inal one in terms of amplitude and periods duration. The signal produced by the
resampling algorithm has the same spectral characteristics as the original signal
but a perturbed sequence of pseudo-periods and amplitudes. The artificial signal
concatenation have to deal with invalid frames as described in chapter 2. For dyspho-
nic voices, inharmonic frames could be produced during the phonation task. Such
frames are dropped during the feature extraction so also the artificial signal should
have the same inharmonic frames dropped. To guarantee the coherence between
the original and artificial signal, the invalid frames are concatenated to the artificial
signal without any period or amplitude transformation. Differently from the Monte
Carlo evaluation of the quantization uncertainty showed in Sec. 3.2, the perturbation
of the input measurements is not known. The uncertainty contribution of the measur-
ing chain could be evaluated if the input signal were perfectly repeatable. In such
ideal conditions, the uncertainty could be evaluated as the dispersion of repeated
measurements using the same input stimulus and a statistical characterisation of
the perturbation could also be possible. Unfortunately, the features extracted from
vocal signals are not repeatable neither among the same clinical class nor among the
same subject repetitions. Moreover the statistical distribution of extracted periods
and amplitude showed to be different for every subject and task in our test dataset.
From these considerations it was concluded that, to obtain a test signal with the same
statistical characteristics as the original signal, a sampling of the pseudo-period and
amplitude sequences were necessary, as will be described in the next section.
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4.2 Monte Carlo Sampling

To produce a test signal which is statistically comprable to the original signal, a study
on the statistical nature of pseudo-period and amplitudes of vowel signal was carried
out on our dataset. As an example, the evolution of pseudo-periods duration of three
vowels uttered by the same subject (PD) is shown in Fig. 4.3

Fig. 4.3 An example of the period evolution of three vowel repetitions from the same subject.
The red time scale is not linear due to the variability of the period evaluations and thus is an
approximate scale

The evolution of pseudo-periods duration clearly resemble a random walk with
different length and dispersion for vowels produced by the same subject. A statistical
analysis of the pseudo-periods and amplitude sequences highlighted the absence
of a statistical model which can adapt to each subject or to each clinical class.
Moreover, even if the same subject emits consecutive vowels, the extracted periods
and amplitudes showed very different statistical distributions. As an example, the
statistical distribution of three repetitions of the vowel /a/ is reported in Fig. 4.4 for
the three clinical classes.
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(a) (b) (c)

Fig. 4.4 Period duration distribution of three vowel repetitions from the same PD subject (a),
HE subject (b) and PA subject (c)

As shown in Fig. 4.4, the period duration distributions can be very different in
terms of positioning, dispersion and shape. The period duration distribution may
depend on multiple factors such as vocal education, age, gender and health status. A
recurrent evaluation on the metrics described in the previous section is the difference
of consecutive periods which represent an important measurement to evaluate the
voice frequency stability. A study on our dataset has been carried out to evaluate
that statistical distributions of consecutive period differences as expressed by the
following equation.

∆Ti = Ti −Ti−1 (4.1)

The statistical distributions of ∆Ti can be obtained from the sequence and plotted as
shown in Fig. 4.5 i

(a) (b) (c)

Fig. 4.5 Consecutive period difference distributions of three vowel repetitions from the same
PD subject (a), HE subject (b) and PA subject (c)



4.2 Monte Carlo Sampling 61

As shown in Fig. 4.5, the distributions of consecutive periods differences are less
influenced by the vocal performances and exhibit a enhanced repeatability respect to
the case of periods distribution. Such distributions follow a bell shaped curve which
is zero centred and the repeatability of dispersion is affected by the health status.
For the pseudo-period peak-to-peak amplitude evaluation, the same analysis has
been carried out on three vowel repetitions of three subjects from each clinical class
as shown in Fig. 4.6

(a) (b) (c)

Fig. 4.6 Amplitude distributions of three vowel repetitions from the same PD subject (a), HE
subject (b) and PA subject (c)

As shown in the examples in Fig. 4.6, the distributions of amplitudes highlight
a very high variability in terms of positioning, dispersion and shape respect to
the case of periods distributions. The statistical study on the consecutive amplitude
differences has been carried out, as already done for the pseudo-periods case, defining
the following equation:

∆Ai = Ai −Ai−1 (4.2)

An example of the statistical distributions of consecutive amplitude differences is
shown in Fig. 4.7 for three vowel repetitions of three subjects from each clinical
class.
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(a) (b) (c)

Fig. 4.7 Consecutive amplitude difference distribution of three vowel repetitions from the
same PD subject (a), HE subject (b) and PA subject (c)

The “bell” shape of the distributions, which is independent to the subject, may
suggest that the consecutive period differences are dominated mainly by physical
phenomena. Such phenomena depends on the ability of the phonatory system to
jump from a period to the next which is limited by mechanical restrictions such as
elasticity, thickness, density and length of the vocal folds. Such an important aspect
allows to model the time sequence of periods as a perturbative random walk based
on the extracted sequences of periods and amplitudes as shown in Fig. 4.8

Fig. 4.8 Example of a period random walk perturbed by a random jump extracted from the
consecutive difference distributions
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The plot in Fig. 4.8 represent a temporal evolution of an extracted pseudo-
period sequence (in red) and a perturbed sequence (in blue). Each pseudo-period
perturbation is randomly extracted from the consecutive difference distribution
represented by the green bell curves. The method described in Fig. 4.8 can be
formalized using the following equations:

T p
i = Ti +Tp ; Tp = f−1

ecd f (∆T )(RT ) (4.3)

Ap
i = Ai +Ap ; Ap = f−1

ecd f (∆A)(RA) (4.4)

RT ,RA ∈ ℜ ∈ [RT,A(min),RT,A(max)] ∈ [0,1]

where T p
i is the perturbed period, Ti is the original unperturbed period. f−1

ecd f (∆T )(RT )

is the inverse of the empirical cumulative distribution function which has as argument
a random variable RT with a uniform probability density function. The choice of such
a variable, which ranges from zero to one, is limited between two values: RT (min)
and RT (max). Such limits are defined by the equations:

RT (min) = fecd f (∆T )[max(∆Tmin,T
p

i−1 −Ti +∆Tmin)]

RT (max) = fecd f (∆T )[min(∆Tmax,T
p

i−1 −Ti +∆Tmax)]

where ∆Tmin and ∆Tmax are respectively the minimum and maximum consecutive
period difference. For the perturbed amplitudes the same considerations have to be
made. The definition of the terms RT (min) and RT (max) limits the choice of the
uniform random number between two values that may differ from 0 and 1. This
assures that the generated random jump will not exceed the maximum original jump
between two consecutive periods or amplitudes. For clarity sake, in this manuscript I
will refer to this method as Perturbative Method (PM).
Another way to produce test signals with comparable statistical distributions is the
Markov chain Monte Carlo (MCMC) method, which is based on the free evolution
of a random walk:

T p
i = T p

i−1 +Tp ; Tp = f−1
ecd f (∆T )(RT ) (4.5)

Ap
i = Ap

i−1 +Ap ; Ap = f−1
ecd f (∆A)(RA) (4.6)

RT ,RA ∈ ℜ ⊂ [0,1]
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where T p
i−1 is the previous generated random period. For this work the Metropolis-

Hastings (MH) [33] algorithm has been used to accept or reject the proposed period
and amplitude perturbations, as will be showed on the next section. Once the Monte
Carlo generation has produced at least as many samples as the original sequence,
the statistical distribution of the generated random walk have to be compared to the
target distributions of the extracted pseudo-periods and amplitudes. This is achieved
using the Kolmogorov-Smirnov two-sample test (KS) [34], as will be showed in the
next section.

4.3 Perturbative method and Markov chain Monte
Carlo generation algorithm

In order to formalize the methods described in the previous section, the Monte Carlo
generation algorithm has been implemented in Matlab. The proposed algorithm is
here reported as a pseudo-code. In some points of the algorithm the word “OR” and
“AND” are reported in capital letters to highlight the logic valence of the algorithm
step.

1. Using the Matlab function histcounts [35] target discrete statistical distribu-
tions of periods DT and amplitudes DA are produced using the Freedman-
Draconis method [36] to choose the best number of bins.

2. The difference between consecutive samples is calculated to obtain distri-
butions D∆T and amplitudes D∆A, the relative empirical cumulative curves
are estimated using the Matlab function ecdf [37] and such curves are then
smoothed using the function smooth [38]

3. The exit condition is based on the two samples Kolmogorov-Smirnov test
(using the Matlab function kstest2 [39] with a confidence level of 99 %). The
exit condition is met if the target distribution of periods is compatible with the
generated one AND if the target distribution of amplitudes is compatible with
the generated one.

4. Until the exit condition is not satisfied OR the generated sequence is shorter
than the original do:
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4.1. a period and an amplitude jump is generated and added to the the original
one using Eq. 4.3 and 4.4 if adopting PM or added to the previous step
if using Eq. 4.5 and 4.6 if adopting MCMC

4.2. generate proposal period count as: min(1,Dt(i)/Dt(i-1)) (same for ampli-
tudes)

4.3. if an uniform random number between 0 and 1 is less than proposal, the
sample is accepted, otherwise is rejected (Metropolis-Hastings). The
acceptance condition have to be met for both period AND amplitude
proposal.

4.4. -for MCMC: if the length of the generated array is equal to the original
one shift the array to the left removing the first sample and concatenating
the proposal (burn-in removal)
-for PM: if the length of the generated array is equal to the original
one substitute the first sample with a new proposal, at the next iteration
substitute the next sample and so on

4.5. refresh the generated periods and amplitudes distributions and the exit
condition defined in step 3.

As an example the plots of distributions and sequences generated with the two
methods are presented in Fig. 4.9 and Fig. 4.10
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Fig. 4.9 Example of an original and generated periods and amplitudes distributions (top) and
time evolutions (bottom) using the Perturbative method

Fig. 4.10 Example of an original and generated periods and amplitudes distributions (top)
and time evolutions (bottom) using the Markov Chain Monte Carlo Method
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Between the two methods, the PM seems to be the most reliable and efficient
in terms of similarity to the original distribution and sequences and in terms of
acceptance conditions. The main issue with the MCMC method is that the random
generation is less dependent to the original sequence and the statistical compatibility
obtained with the KS test could be not reached at the end of the generation. The
first generated samples are most always accepted by the MH algorithm because the
correspondent distributions are still “empty” and unrepresentative. The first set of
samples of a MCMC generation is called burn-in period and commonly is removed
from the sequence in order to give the MCMC algorithm the time to reach its target
distribution. To solve this problem, the generated sequence is shifted to the left
(smaller periods counts) once the generation has reached the same length of the
original sequence, removing the first sample and concatenating the next at the end of
the generation array.
In Sec. 4.5, a comparison between the perceptual, spectral and temporal character-
istics of the artificial vowels generated with the PM and MCMC methods will be
carried out to evaluate their performances.

4.4 Considerations about the proposed algorithms

The algorithms used in this work has some critical issues that can produce unrep-
resentative samples during the Monte Carlo generation. The main source of error
in the generation of samples is the quantization of target and proposed distributions
and their relative cumulative functions.

4.4.1 Target distribution discretization

To transform a pseudo-period time sequence in a statistical distribution, a discretiza-
tion of the input time series must be performed. Several methods are available
to choose a suitable input variable discretization, such as the Friedman-Draconis
method used in this work. As an example, in Fig. 4.11, the empirical period dis-
tribution (a), the consecutive difference distribution (b) and cumulative difference
distribution (c) for a PA subject are shown for a pseudo-periods evaluation:
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(a) (b) (c)

Fig. 4.11 An example of poor quantisation of the period distribution (a), Consecutive
difference period distribution (b) and the empirical cumulative distribution function (c) of a
PA subject

As can be noted in Fig. 4.11 (a), the empirical target period distribution can
be very different from a continuous theoretical distribution and it can produce a
unrepresentative statistical model for some of the evaluated subjects.
The best case scenario would be to find an analytical representation of the distribu-
tions in order to overcome the issues rising from the discretization of input variables.
As already highlighted in the previous sections, the empirical statistical distributions
of pseudo-periods and amplitudes are far from being repeatable even if these distribu-
tions are relative to vowels emitted from the same subject. Regarding the consecutive
difference distributions, bell shaped curves with an enhanced repeatability have been
found. In order to evaluate the statistical characteristics of the consecutive difference
distributions, a study on the available dataset has been performed. In particular, the
mean excess kurtosis and skewness parameters have been evaluated for each clinical
class:

Table 4.1 Skewness and Excess Kurtosis of consecutive difference distributions of periods
and amplitudes: mean values (standard errors)

Class Skewness D∆T Exc. Kurtosis D∆T Skewness D∆A Exc. Kurtosis D∆A

PD -0.2 (0.1) 9 (3) 0.09 (0.09) 4 (1)
HE 0.13 (0.09) 10 (4) -0.009 (0.07) 12 (5)
PA -0.2 (1.4) 2.9 (0.1) -0.03 (0.06) 1.9 (0.4)

The skewness parameter evaluates the symmetry of a distribution and for a per-
fectly symmetric distribution, such as a Gaussian, the skewness value is 0. The
Kurtosis parameter evaluates the “closeness” to a normal distribution which has
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a theoretical kurtosis value of 3. In Tab. 4.1 the mean values of excess kurtosis,
calculated as the kurtosis minus 3, are reported. The consecutive amplitudes differ-
ence distributions seems to be more symmetric than the period distributions and no
prevalence of left-right asymmetry can be noticed considering the mean values and
the standard error of the skewness values. The excess kurtosis values instead, show a
significative distance from 0 (the theoretical value for a normal distribution) and the
prevalence of positive values, which indicates that the distributions are “leptokurtic”
and therefore they have "fatter tails", that tend to 0 slower, if compared to a normal
distribution. Such considerations exclude the possibility of fitting the distribution
curves of consecutive differences with a Gaussian function in order to produce Monte
Carlo samples that come from a continuous distribution. This practical limit has an
important relevance in the Monte Carlo generation algorithm. The empirical period
difference distribution and its relative cumulative function suffer from the choice of
the number of bins, even though this choice is delegated to a general criterion such
as the Friedman-Draconis method. The target distributions are used as reference
for the MH algorithm to accept or reject a proposal sample. In fact, the statistical
nature of the MH algorithm allow to have less representative target distributions at
the expense of the computational power necessary to produce the proposal samples.
Regarding the consecutive period difference empirical cumulative function, a coarse
quantisation, as shown in Fig. 4.12, can lead to repeated proposal samples which
can produce an unrepresentative proposal distribution:
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Fig. 4.12 A detailed view of the quantisation effect on the determination of the empirical
cumulative function of Fig. 4.11 (c)

To avoid the issues due to the quantization of target distributions, a smoothing
on the empirical cumulative function is performed using the Matlab function smooth,
which is a simple moving average filter. Moreover, a linear interpolation between
consecutive values of the empirical cumulative function is performed in order to
produce proposal samples with an arbitrary resolution. In Fig. 4.13 a detailed view
of the smoothing and interpolating method is shown.
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Fig. 4.13 A detailed view of the quantisation effect on the determination of the empirical
cumulative function of Fig. 4.11 (c) and the effect of curve smoothing

4.4.2 Periods and amplitudes correlation

The acceptance criteria of the MH algorithm and the KS test are performed on period
and amplitude proposal distributions.The acceptance criterion is evaluated using
an AND condition to join the results of compatibility tests of proposed periods
and amplitudes. This means that the proposed periods and amplitudes are tested
independently from each other. This operation is possible only if the evaluated
periods and amplitudes are negligibly correlated. In fact, if the periods and amplitude
are correlated, the proposal of a new amplitude is dependent on the proposed period
and therefore, the joint test using an AND condition is meaningless. To evaluate
the feasibility of the acceptance tests, a study on the Pearson correlation coefficient
(ρ = σTA

σT ·σA) on the available dataset has been performed. As an example, in Fig.
4.14 the plot of coupled pseudo-periods and amplitudes is shown for a PA subject
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Fig. 4.14 An example of a scatter plot of periods and amplitudes extracted from a vowel
emitted by a PA subject. The amplitude scale is normalised respect to a full-scale range of
±1 a.u. so the peak-to-peak amplitude is in a range between 0 and 2 a.u.

The results of such a study showed a negligible correlation for the three clinical
classes. In particular the mean correlation coefficient is -0.02 for the PD subset, -0.05
for the HE subset and 0.03 for the PA dataset. Each correlation coefficient has been
evaluated with a p-value<0.05. The low correlation between periods and amplitudes
justifies the choice of the independent logic tests used to accept new samples through
the MH algorithm and to accept the final proposal distribution using the KS test.

4.5 Time, spectral and cepstral characteristics of the
artificial vowels

The domain transformation performed by the resampling algorithm is capable of
producing artificial signals with the same statistical characteristics of the original
in terms of period and amplitude sequences. From a perceptual point of view, the
original and the artificial signal can be evaluated downloading the audio files using
the QR codes from Figs. 4.15, 4.16 and 4.17 (Clicking on the QR code opens the
web link).
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(a) PD (OR) (b) HE (OR) (c) PA (OR)

Fig. 4.15 Web link to download audio examples of an original vowel for the three clinical
classes

(a) PD (PM) (b) HE (PM) (c) PA (PM)

Fig. 4.16 Web link to download audio examples of an artificial vowel, re-synthesized with
the PM method, for the three clinical classes

(a) PD (MCMC) (b) HE (MCMC) (c) PA (MCMC)

Fig. 4.17 Web link to download audio examples of an artificial vowel, re-synthesized with
the MCMC method, for the three clinical classes

https://www.dropbox.com/s/dvpc764ij5cp1ra/PD_OR.wav?dl=0
https://www.dropbox.com/s/62di7kdr0z0htjt/HE_OR.wav?dl=0
https://www.dropbox.com/s/qchdo41qewyto6r/PA_OR.wav?dl=0
https://www.dropbox.com/s/z71e84hlqda5cvq/PD_ART_PM.wav?dl=0
https://www.dropbox.com/s/nd5358cm6abzxu7/HE_ART_PM.wav?dl=0
https://www.dropbox.com/s/jdybzngn4a52qnz/PA_ART_PM.wav?dl=0
https://www.dropbox.com/s/cmqpsutf55omlhw/PD_ART_MCMC.wav?dl=0
https://www.dropbox.com/s/wfoscc7um5o28wg/HE_ART_MCMC.wav?dl=0
https://www.dropbox.com/s/vc05bwpaht18053/PA_ART_MCMC.wav?dl=0
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As can be heard from the audio files, the PM method sounds clearly better than
the MCMC method. This is caused by the fact that the MCMC method may produce
periods and amplitudes sequences that are not "natural" for a human voice, even
though the generated sequences are statistically comparable to the original ones.
For this work some spectral measurement have been implemented to enlarge the
set of available features, so the artificial test signals should have the same spectral
characteristics of the original ones.

As an example, the peak-normalized spectra (with a resolution of 2.7 Hz), for the
three clinical classes using the PM and MCMC methods are presented in Fig. 4.18
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(a)

(b)

(c)

Fig. 4.18 An example of spectra comparison between the original vowel, an artificial one
generated with PM and an artificial vowel generated with MCMC for a PD subject (a), a HE
subject (b) and a PA subject (c)
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As shown in Fig. 4.18, the spectra of the artificial vowel are very similar except
for the noise floor in the frequency range from 0 to 1 kHz, which seems more
pronounced for subjects with high period and amplitude instability (PD and PA).
The lowest noise floor in this frequency range is produced by the PM algorithm. In
such a range the period and perturbations applied by the resampling algorithm to the
original signal could produce some spectral artefacts which are caused by:

• mismatched joints between consecutive periods

• offset errors caused by the amplitude re-normalization

• excessive (yet possible) periods or amplitude perturbations respect the original
signal

The joint mismatch between consecutive periods, as shown in Fig. 4.19, has
showed to be an important issue with the proposed concatenation method. Such
impulses are relatively rare but their presence in the signal may cause instantaneous
wide-band rising of the spectrum, as appear in Fig. 4.20.

Fig. 4.19 Example of a bad joint between consecutive resampled periods and the methods
used to smooth-out the discontinuity
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Fig. 4.20 Example of the effect of joint discontinuity in the frequency domain and how the
smoothing methods acts on the relative spectra

This problem has been limited filtering the samples around the joint point using a
moving average smoothing (MAS) algorithm as shown in Fig. 4.19. Another method
that has been tested to solve the problem of mismatched joints is the cross-fade
smoothing (CFS). Such a method is similar to the overlap-add technique, where a
windowed frame is added to the next with an overlap which is less than the frame
length. For this work the overlap length has been chosen as the mean period divided
by 20. In this way, the overlap region for the current period wave is the last twentieth
of a period and the twentieth before the first sample of the next period that is being
concatenated. In this way, for a vowel with an average frequency of 100 Hz the
overlap length is 0.5 ms and for a vowel of 400 Hz the overlap length is 0.125
ms. These practical limits have also been chosen in order to not over smoothing
the high frequency content of the signal and therefore, for a 100 Hz vowel, the
frequencies interested in the smoothing process are higher than 2 kHz. For this work,
a Hanning window has been used to scale the overlap region. As an example, a
comparison of the two methods for a PD vowel originally sampled at 44100 Sa/s and
then oversampled by a factor of 8 is reported in Fig. 4.19 and 4.20 The choice of
the joint smoothing method can affect the time series signal as well as the spectrum.
In particular the spectra seem influenced at very high frequencies, higher than the
original Nyquist frequency. Such a consideration may suggest that the choice of
the joint smoothing method should not affect the signal, because the effects of such
a choice fall in a frequency range that is well above the voice spectrum band. In
practice the presence of mismatched joints can heavily influence the extraction of
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pseudo-periods which is performed through a synchronous autocorrelation algorithm,
as shown in Sec. 2.4.1.
The spectral issues already showed in the previous paragraph suggest that the re-
synthesis algorithm could alter also the cepstrum and, consequently, the CPPS
measurements. The rising of the noise floor at low frequencies, which present in
the PD example spectrum in Fig. 4.18 (a), can affect the ratio between harmonic
energy and inharmonic energy of the spectrum. As an example, the effect of different
generation methods on the statistical distribution of extracted CPPS from the original
signal and from the artificial ones is presented in Fig. 4.21

Fig. 4.21 Example of the effect of different generation methods on CPPS distributions

As shown in Fig 4.21, the PM and MCMC method showed similar performances
regarding the statistical distribution of extracted CPPS. A slight shift toward smaller
CPPS values can be noticed in the plot in Fig. 4.21. Such a bias will be extensively
analysed in the next section. An example of the effect of different smoothing methods
on a CPPS distribution is shown in Fig. 4.22:
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Fig. 4.22 Example of the effect of smoothing methods on the CPPS distributions

As shown in Fig. 4.22, a little shift toward lower CPPS values is evident for
each smoothing methods. The best smoothing method seems the CFS because of the
reduced distance between the mean values despite a rising in the standard deviation.
This behaviour has been noted in each considered subject and clinical class.



Chapter 5

Evaluation of the uncertainty
contributions of the whole measuring
chain

This chapter concerns the evaluation of the uncertainty contributions of the various
measuring chain components. In particular three principal contributions can be
identified

1. Extraction algorithm contribution (EXT)

2. Acquisition contribution (ACQ)

3. Acoustic contribution (ACO)

The uncertainty contributions were evaluated adding one contribution at a time in
order to evaluate the effects of an increasingly long measuring chain.

1. Extraction algorithm contribution (EXT)

2. Acquisition + Extraction contribution (ACQ+EXT)

3. Acoustic + Acquisition + Extraction contribution (whole chain - (ACQ+EXT+ACO))
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5.1 Effects of the extraction algorithm on stability and
CPPS metrics (perturbative method)

In order to evaluate the uncertainty associated to the extraction algorithm a separation
between the different uncertainty contributions must be performed. As shown in
Fig. 5.1, a recursive error evaluation architecture was implemented to evaluate the
uncertainty contribution of each measuring chain component. The first part of the
evaluation focuses on the period and amplitude stability metrics described in section
2.4.2

Fig. 5.1 Architecture of the extraction algorithm contribution evaluation method

The scheme in Fig. 5.1, performs various uncertainty evaluations at each of the
path indicated by the numbers above the arrows:

• Path 1: the voice of the subject is recorded by the acquisition system and the
audio data signal is processed in order to extract sequences of pseudo-periods
and amplitudes TM(N) and AM(N). At the same time, the extracted periods
and amplitudes are used as statistical reference to produce random Reference
sequences of period and amplitude TR(N) and AR(N). The extracted and
generated pseudo-periods and amplitudes are then used to calculate a set of
Measured features FM(OR) and reference features FR(MC), where OR stands
for original and MC stands for Monte Carlo.

• Path 2: the sequence of generated pseudo-periods and amplitudes are used to
produce an artificial test signal using the resampling method described in Sec.
4.1. The new sequences of pseudo-periods and amplitudes TM(N) and AM(N)

are compared to the reference sequences to obtain an average evaluation of
periods and amplitude uncertainties u(T ) and u(A). At the same time TM(N)
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and AM(N) are used to produce a set of measured features FM(ART ), where
ART stands for artificial. Such features are compared to the reference ones
FR(MC) to obtain an estimation of the extraction uncertainty. The artificial
features are also compared to the original ones to produce an mean overall
estimation of the measurement error.

For the first step (path 1, described in Sec. 4.1) of the proposed uncertainty
evaluation technique, a feature generation method was developed in order to evaluate
the capability of producing artificial features which are compatible to the original
ones. To clarify such a concept, a parallel analogy with voltage measurements can
be made as shown in Fig. 5.2

Fig. 5.2 An electrical measurement analogy with the proposed evaluation method

The scheme in Fig. 5.2 depicts the proposed method on the left, which is
compared to an electrical measurement on the right. In the electrical measurement
described above, suppose we have previous knowledge of a physical phenomenon
that should produce a voltage of 1 V. Suppose that we have just an uncalibrated
voltmeter which estimates the voltage at Vmeas = 0.97 V (step 1). If a more accurate
voltmeter is not available, the uncertainty of the measurement can not be evaluated.
If a more accurate voltage generator is available instead, the voltmeter under test
can be calibrated respect to a trusted reference voltage source. If we have no
previous knowledge of the physical phenomenon and the expected voltage, the
calibration should start from the value stated by the untrusted voltmeter Vmeas =Vexp

and measure again a voltage V ∗
meas with the voltmeter to evaluate the bias as the

difference Vexp −V ∗
meas. Sometimes is not possible to set the reference voltage to the

same value of the measured one because the voltages can be set only in a quantized
fashion so a little difference between Vexp −Vmeas is expected. In practice the choice
of a reference voltage to calibrate the voltmeter is not critical unless the chosen
voltage is very different from the one being evaluated. For clarity sake the Table 5.1
summarizes the role of the three performed evaluations:
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Table 5.1 A conceptual analogy between the proposed method and an electrical measurement

VOICE FEATURES VOLTAGES
MC-OR:
is an evaluation of how much close
the reference feature is to the one being evaluated

Vexp −Vmeas:
is an evaluation of how much close
the reference voltage is to the one being evaluated

ART-MC:
is an evaluation of the measurement error
referred to a trusted "feature generator"

V ∗
meas −Vexp:

is an evaluation of measurement error
referred to a trusted voltage generator

ART-OR:
is an evaluation of the measurement error
when a reference feature is not available

V ∗
meas −Vmeas:

is an evaluation of how much close the trusted voltage
is to the untrusted one after the calibration

The green row on Tab. 5.1 highlights the importance of this evaluation in the
uncertainty estimation method proposed for this work.
In order to minimise the uncertainties due to quantization, all the evaluations were
carried out using the “Golden Standard” parameters described in Sec. 3.2.4. In
particular the oversampling factor was set to 8 and the bit resolution to 16. For each
subject and repetition of the task, 10 artificial vowels were synthesised to produce a
dataset that includes 900 entries (30 subject x 3 repetitions x 10 artificial repetitions),
that were combined to the original 90 repetitions of the task to get a total of 990
entries. For each repetition, the seed of the Monte Carlo random generation is
initialized to the incremental count of the file being processed.

5.1.1 Evaluation of the generation method effects on stability
metrics (path 1)

The first step (path 1 described in Sec. 4.1 of the uncertainty evaluation estimates the
capability of the Monte Carlo sampling algorithm to produce sets of features that are
comparable with the extracted ones, in a similar way of the electrical example of Tab.
5.1, where an expected Vexp is set to characterize the voltmeter. The first important
consideration to make is strictly bounded to the concept of trust in measurements.
The statistical compatibility between the sequences of extracted pseudo-periods and
amplitudes and the sequences of the generated ones, as shown in the algorithm in
Sec. 4.3 (step 3), is a necessary but not sufficient condition to obtain sets of features
compatible to the original ones. As an example, a scatter plot of measured and
generated jitter and shimmer is shown in Fig. 5.3



84 Evaluation of the uncertainty contributions of the whole measuring chain

(a) (b)

Fig. 5.3 Scatter plot of 90 original and 900 generated jitter and shimmer (a) and a detailed
example of 90 generated vowels from three repetitions of three subjects (PD, HE, PA) (b).

As shown In Fig. 5.3, the generated features ((FR(MC) - red dots) show an
overall bias with respect to the original ones (FM(OR) - blue Xs). A detailed view of
original and generated jitter and shimmer values, are shown in Fig. 5.3 (b), which
were extracted from three repetitions of a vowel from three subjects. The bias and
the dispersion of the generated data seem to depend on the jitter and shimmer values.
To investigate the bias and dispersions of the generated features, the mean bias using
Eq. 5.1 and mean dispersion using Eq. 5.2 for each clinical class was evaluated
for the comparisons between Original (FM(OR)) and Generated (FR(MC)) stability
metrics. The mean bias and dispersion for each class were evaluated on the dataset
defined in Sec. 2.2 (10 subjects x 3 repetitions = 30 vowels) using the following
equations:

BIASMC−OR(class) =
∑

30
j=1(

∑
10
i=1 F i j

R (MC)−F j
M(OR)

10 )

30
(5.1)

DISPMC(class) =
∑

30
j=1

√
∑

10
i=1(F

i j
R (MC)−F j

R(MC))2

10

30
(5.2)

where F i j
R (MC) is the array of 10 generated features for the j−th vowel, F j

M(OR)

is the array of extracted features and F j
R(MC) = ∑

10
i=1 F i j

R (MC)/10 is the array of
features averaged every 10 generations for the j−th vowel. It is easy to demonstrate
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that the dispersion parameter can also be evaluated as the mean of the standard
deviation of the distances F i j

R (MC)−F j
M(OR). The data presented in Tab. 5.2

summarizes the results of the bias evaluation of the generated stability metrics
respect to the original ones.

Table 5.2 Generated features bias - BIASMC−OR(class)

Class jit (%) jitabs (µs) rap (%) ppq (%) v f0 (%) shi (%) shiabs (dB) apq (%) vAm (%)
PD 0.065 3.9 0.041 0.056 -0.054 1.1 0.1 0.68 -0.27
HE 0.048 2.9 0.031 0.041 -0.04 0.63 0.057 0.38 -0.39
PA 0.055 2.9 0.034 0.049 -0.042 0.75 0.069 0.53 -0.025

As shown in Tab. 5.2, the features extracted from generated period and amplitude
sequences show both positive and negative biases with respect to the original values.
The highest bias, if compared to the expected values, appears to affect more the
shimmer evaluation of the PD class. The dispersion of generated points have also
been evaluated using Eq. 5.2 as reported in Tab. 5.3:

Table 5.3 Generated features dispersions - DISPMC(class)

Class jit (%) jitabs (µs) rap (%) ppq (%) v f0 (%) shi (%) shiabs (dB) apq (%) vAm (%)
PD 0.02 1.3 0.01 0.01 0.02 0.22 0.02 0.13 0.15
HE 0.01 0.7 0.01 0.01 0.01 0.08 0.007 0.05 0.08
PA 0.02 1.1 0.02 0.01 0.02 0.15 0.01 0.09 0.14

Once again the highest dispersion affects the shimmer evaluation of the PD class.
In order to compare the dispersion of generated features to the natural dispersion of
the subjects, the Eq. 5.2 has been modified as follow:

DISPOR(class) =
∑

10
j=1

√
∑

3
i=1(F

i j
M (OR)−F j

M(OR))2

3

10
(5.3)

where F i j
M (OR) is the array of original features for the j−th subject and the i−th

vowel repetition and F j
M(OR) is the averaged array along the three repetitions. The

evaluated dispersions of the task repetitions are reported in Tab. 5.4:
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Table 5.4 Measured Original dispersions - DISPOR(class)

Class jit (%) jitabs (µs) rap (%) ppq (%) v f0 (%) shi (%) shiabs (dB) apq (%) vAm (%)
PD 0.19 11 0.12 0.09 0.29 1.30 0.11 0.95 6.2
HE 0.09 5.7 0.06 0.05 0.27 0.74 0.06 0.48 3.8
PA 0.33 15 0.18 0.22 0.46 1.3 0.11 0.9 4.6

The original mean dispersion values of each class is almost always higher than
the dispersion of generated features. As an example, in Fig. 5.4 the plots of bias and
dispersion of the generation uncertainty contribution are compared to the original
dispersion for jitter and shimmer measurements.

(a) (b)

Fig. 5.4 Evaluation of generation mean bias and dispersion of jitter (a) and shimmer (b) for
the three clinical classes.

As shown in Fig. 5.4, the dispersion parameters of the generated jitter and
shimmer is lower than the intra-subject dispersion. This considerations will be
discussed later in the conclusion of this chapter.

5.1.2 Evaluation of the extraction contribution to the period and
amplitude uncertainty (path 2)

In order to evaluate the period and amplitude extraction uncertainty, the raw data
from the period and amplitude extraction algorithm was analysed as shown in Fig.



5.1 Effects of the extraction algorithm on stability and CPPS metrics (perturbative
method) 87

2.3. To evaluate such an uncertainty, the root mean squared difference between
coupled samples was evaluated:

u(T ) =

√
∑

N
i=1(T

i
MC −T i

EXT )
2

N
(5.4)

A similar equation was used to evaluate the amplitude extraction error. The results
of this analysis are reported in Tab. 5.5

Table 5.5 Pseudo-periods and amplitudes mean extraction error - u(T ), u(A)

Class u(T) (µs) u(A) (a.u.)
PD 32 0.02
HE 29 0.01
PA 32 0.03

The results of this analysis highlight the uncertainty contribution of the extraction
algorithm on evaluating sequences of periods and amplitudes. The averaged values
of period extraction uncertainties does not seem to depend on the clinical class, while
for the amplitude, the HE class shows a lower value respect to the other classes. In
Fig. 5.5 the plots of pseudo-period and amplitude uncertainty is presented.

(a) (b)

Fig. 5.5 Mean error evaluation for the three clinical classes for pseudo-periods (a) and
amplitudes (b) measurements.
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The evaluated period uncertainty has the same order of magnitude of the sampling
period of the recordings used to perform this evaluation (1/(44.1 kSa/s) ≈ 22 µs) so
the contribution of the extraction algorithm is similar to the quantisation contribution
evaluated in Sec. 3.1.2 (≈ 26 µs). Regarding the amplitude uncertainty evaluation,
the recordings were normalized to have a maximum absolute peak of 1 so that the
full scale range spans from -1 to 1. The evaluated uncertainty is considerably larger
than the amplitude uncertainty evaluated in Sec. 3.1.2 (≈ 3.8·10−5 a.u.).

5.1.3 Evaluation of the extraction uncertainty contributions of
stability metrics (path 2)

To evaluate the uncertainty contribution of the extraction algorithm, the artificial
signal is processed by the extraction algorithm to obtain the measured features
FM(ART ). Using the dataset defined in Sec. 2.2, an example of a scatter plot of
generated and measured jitter and shimmer is presented in Fig. 5.6 .

Fig. 5.6 Scatter plot of generated (MC) and measured (ART) jitter and shimmer
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The distance between generated and extracted data seems less evident in the
scatter plot of generated FR(MC) and measured FM(MC) jitter and shimmer as can
be noted in Fig. 5.6. To investigate the errors of measured and generated features,
the mean distance for each clinical class was evaluated for the comparisons between
Generated (MC) and Artificial (ART ) features. For the ART −MC bias evaluation,
900 generated entries were compared to the matching 900 extracted entries. using
the following equation:

BIASARTEXT−MC(class) =
∑

300
i=1 F i

M(ARTEXT )−F i
R(MC)

300
(5.5)

To evaluate the dispersions of the extracted artificial features the following equation
was used:

DISPARTEXT (class) =
∑

30
j=1

√
∑

10
i=1(F

i j
M (ARTEXT )−F j

M(ARTEXT ))2

10

30
(5.6)

The data presented in Tab. 5.6 and Tab. 5.7 summarizes the results of the evaluation
of Eq. 5.5 and Eq. 5.6.

Table 5.6 Measured artificial bias of the extraction contribution - BIASARTEXT−MC(class)

Class jit (%) jitabs (µs) rap (%) ppq (%) v f0 (%) shi (%) shiabs (dB) apq (%) vAm (%)
PD -0.02 -1.4 -0.02 -0.02 0.02 -0.07 -0.006 -0.032 0.051
HE -0.02 -1.3 -0.02 -0.01 0.02 -0.02 -0.003 -0.007 0.260
PA -0.01 -0.8 -0.01 -0.01 0.02 -0.07 -0.006 -0.037 -0.002

Table 5.7 Measured artificial dispersions of the extraction contribution - DISPARTEXT (class)

Class jit (%) jitabs (µs) rap (%) ppq (%) v f0 (%) shi (%) shiabs (dB) apq (%) vAm (%)
PD 0.02 0.9 0.010 0.011 0.02 0.22 0.020 0.13 0.16
HE 0.01 0.7 0.007 0.006 0.02 0.08 0.008 0.05 0.09
PA 0.02 1.1 0.014 0.015 0.03 0.18 0.016 0.10 0.13

Comparing the data presented in Tab. 5.7 and Tab. 5.3, it can be noted that
the bias change between the two step evaluation, while the dispersions have very
similar values. As an example, in Fig. 5.7 the plots of bias and dispersion of
the extraction contribution are compared to the generation dispersion for jitter and
shimmer measurements.
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(a) (b)

Fig. 5.7 Evaluation of extraction mean bias and dispersion of jitter (a) and shimmer (b) for
the three clinical classes.

As shown in Fig. 5.7, the dispersion of the extracted jitter and shimmer is
comparable to the dispersion of the generated ones. Respect to the example in Fig.
5.4 a negative bias is present for jitter and shimmer evaluations. In the previous
section the uncertainty of the extracted amplitudes was estimated around 0.02 a.u,
which is noticeably larger than the analytical estimation of ≈ 3.8·10−5 a.u.. Such
consideration can explain the larger dispersion of the extracted shimmer values
(≈ 10−1 %) respect to the quantisation contribution evaluated in Sec. 3.1.2 (≈ 3
·10−4 %).

5.1.4 Evaluation of the extraction contribution to CPPS features
uncertainty

The weak point of the proposed re-synthesis method is the alteration of the spectral
and cepstral characteristics of the original vowels as shown in Sec. 4.5. The proposed
re-synthesis method is not capable of producing sequences of known and trusted
CPPSs, therefore any alteration of such values have to be intended as a contribution
to the measurement uncertainty. Without a trusted CPPS synthesis method it is
impossible to attribute the difference between original and artificial CPPS values to
the re-synthesis or to the extraction method. For this reason the bias on CPPS metrics
is evaluating comparing the 30 original (OR) extracted features with the CPPS
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metrics extracted from the 300 artificial signals (ART) as shown in the equation:

BIASARTEXT−OR(class) =
∑

30
i= j(

∑
10
i=1 F i j

M (ARTEXT )−F j
M(OR)

10 )

30
(5.7)

In Tab. 5.8 and Tab. 5.9, the bias and dispersion evaluation are reported for the CPPS
metrics defined in Sec. 2.4.4, using Eq. 5.7 for the bias evaluation and Eq. 5.6 for
the dispersion evaluation.

Table 5.8 Measured artificial bias of CPPS metrics - BIASARTEXT−OR(class)

Class Mean (dB) Median (dB) Mode (dB) Std (dB) Range (dB) 5°perc. (dB) 95°perc. (dB) Skewness (%) Kurtosis (%)
PD -0.51 -0.53 -0.42 0.09 0.30 -0.68 -0.35 0.06 -0.17
HE -0.24 -0.24 -0.30 0.02 0.33 -0.27 -0.22 -0.05 0.34
PA -0.39 -0.37 -0.31 -0.01 0.21 -0.39 -0.39 -0.02 0.05

Table 5.9 Measured artificial dispersion of CPPS metrics - DISPARTEXT (class)

Class Mean (dB) Median (dB) Mode (dB) Std (dB) Range (dB) 5°perc. (dB) 95°perc. (dB) Skewness (%) Kurtosis (%)
PD 0.06 0.07 0.54 0.06 0.79 0.18 0.11 0.13 0.37
HE 0.04 0.05 0.42 0.03 0.62 0.10 0.08 0.09 0.27
PA 0.06 0.07 0.51 0.05 0.64 0.14 0.14 0.12 0.25

As reported in Tab. 5.8 and 5.9, the bias and dispersion seem negligible if
compared to the scale of CPPS evaluations, which ranges from 0 to 26 dB. To have
a comparison with the original dispersion of CPPS metrics, the data in Tab. 5.10
summarise the evaluated intra-subject dispersions.

Table 5.10 Measured original dispersion of CPPS metrics - DISPOREXT (class)

Class Mean (dB) Median (dB) Mode (dB) Std (dB) Range (dB) 5°perc. (dB) 95°perc. (dB) Skewness (%) Kurtosis (%)
PD 0.4 0.4 0.6 0.2 1.8 0.7 0.4 0.3 0.9
HE 0.7 0.7 0.9 0.1 1.1 0.8 0.5 0.3 0.7
PA 1.2 1.2 1.4 0.2 1.5 1.5 1.1 0.3 0.4

As can be noted in Tab. 5.10, the original intra-subject dispersions DISPOREXT (class)
are higher than the artificial dispersions DISPARTEXT (class). An example of bias and
dispersion of extracted and original mean CPPS is reported in Fig. 5.8
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(a) (b)

Fig. 5.8 Mean bias and dispersion evaluations of artificial and original Mean CPPS (a). A
detailed view is shown in (b)

5.2 Evaluation of the MCMC generation method

The same evaluations performed for the PM generation method were performed
using artificial signals generated with the MCMC method. In particular, the sequence
of the tables presented in this section is:

• Evaluation of the generation method effects on stability metrics (Bias: Tab.
5.11; Dispersion: Tab. 5.12)

• Evaluation of period and amplitude uncertainty (Tab. 5.13)

• Evaluation of the extraction uncertainty contribution on stability metrics (Bias:
Tabs. 5.14; Dispersion: Tab. 5.15)

• Evaluation of the extraction contribution to CPPS features uncertainty (Bias:
Tab. 5.16; Dispersion: Tab. 5.17)

The considerations on the presented data will be extensively covered in the next
section.
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Table 5.11 Generated features bias (MCMC) - BIASMC−OR(class)

Class jit (%) jitabs (µs) rap (%) ppq (%) v f0 (%) shi (%) shiabs (dB) apq (%) vAm (%)
PD -0.17 -9.5 -0.12 -0.05 -0.05 -0.88 -0.06 0.68 -0.71
HE -0.13 -8.9 -0.09 -0.03 -0.10 -0.47 -0.04 0.56 -0.57
PA -0.25 -11.0 -0.18 -0.11 -0.03 -1.00 -0.08 0.77 -0.77

Table 5.12 Generated features dispersion (MCMC) - DISPMC(class)

Class jit (%) jitabs (µs) rap (%) ppq (%) v f0 (%) shi (%) shiabs (dB) apq (%) vAm (%)
PD 0.02 1.20 0.01 0.02 0.19 0.23 0.02 0.32 2.80
HE 0.01 0.82 0.01 0.01 0.15 0.13 0.01 0.19 2.70
PA 0.02 1.10 0.01 0.02 0.21 0.20 0.02 0.25 2.60

Table 5.13 Pseudo-periods and amplitudes mean extraction uncertainty (MCMC) - u(T ),
u(A)

Class u(T) (µs) u(A) (a.u.)
PD 49 0.05
HE 53 0.04
PA 58 0.05

Table 5.14 Measured artificial bias of the extraction contribution (MCMC) -
BIASART−MC(class)

Class jit (%) jitabs (µs) rap (%) ppq (%) v f0 (%) shi (%) shiabs (dB) apq (%) vAm (%)
PD 0.220 12 0.140 0.090 0.093 0.180 0.013 -0.006 -0.330
HE 0.160 11 0.094 0.062 0.073 0.097 0.008 0.002 -0.064
PA 0.360 17 0.220 0.200 0.180 0.250 0.021 0.032 -0.150

Table 5.15 Measured artificial dispersions of the extraction contribution (MCMC) -
DISPART (class)

Class jit (%) jitabs (µs) rap (%) ppq (%) v f0 (%) shi (%) shiabs (dB) apq (%) vAm (%)
PD 0.03 1.60 0.02 0.02 0.19 0.26 0.02 0.32 2.70
HE 0.02 1.60 0.02 0.01 0.13 0.13 0.01 0.18 2.70
PA 0.04 1.80 0.02 0.03 0.21 0.24 0.02 0.26 2.60
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Table 5.16 Measured artificial bias of CPPS metrics (MCMC) - BIASART−OR(class)

Class Mean (dB) Median (dB) Mode (dB) Std (dB) Range (dB) 5°perc. (dB) 95°perc. (dB) Skewness (%) Kurtosis (%)
PD -0.7 -0.6 -0.6 0.15 0.5 -1.0 -0.4 0.02 -0.2
HE -0.4 -0.4 -0.4 0.08 0.8 -0.5 -0.3 -0.03 0.2
PA -0.5 -0.4 -0.5 0.08 0.8 -0.7 -0.4 -0.13 0.2

Table 5.17 Measured artificial dispersions of CPPS metrics (MCMC) - DISPART (class)

Class Mean (dB) Median (dB) Mode (dB) Std (dB) Range (dB) 5°perc. (dB) 95°perc. (dB) Skewness (%) Kurtosis (%)
PD 0.07 0.09 0.6 0.07 0.8 0.2 0.12 0.1 0.3
HE 0.05 0.06 0.4 0.04 0.7 0.1 0.09 0.1 0.3
PA 0.08 0.10 0.6 0.06 0.7 0.2 0.13 0.1 0.4

5.3 Final considerations on the extraction uncertainty
evaluation

From the data presented in the previous sections, some interesting considerations
can be made. For clarity reasons such conclusive remarks will be faced separately to
better understand each evaluation step.

5.3.1 Generation method evaluation (path 1)

The reliability of the proposed method is based on the trust on the Monte Carlo
sampling algorithm, which produces sets of features that are known with high
accuracy. This is due to the fact that the generated periods and amplitudes are
numbers with a floating point 64 bit double-precision (IEEE 754 format).
As shown in Sec. 3.1.2, the absolute uncertainty of pseudo-period measurements of
a vowel sampled at 44100 Sa/s is around 26 µs. In the same section, the absolute
uncertainty on amplitude measurements, for a signal sampled with a resolution of 16
bit, were estimated approximately as 3.8 ·10−5 a.u.. Regarding the pseudo-period
extraction uncertainty evaluated in Sec. 5.1.2, the measured uncertainty (29-32 µs)
is very close to the one analytically estimated. The evaluated amplitude uncertainty
in Sec. 5.1.2 show larger values (0.01-0.03 a.u.) if compared to the one analytically
evaluated.
A generated period is not prone to the limits of the sampling process, since the
resolution of any generated period or amplitude depends on the precision format of
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the number representation. In a double precision number, the first 12 bits are used to
represent the sign and the exponent of the number expressed in scientific notation.
The remaining 52 bits are used to represent the number which is multiplied by the
exponent as:

Double = (−1)sign · (1+
52

∑
i=1

b52−i ·2−i)∗2exp−1023 (5.8)

where Double is the floating-point number, sign is the first bit, exp is the exponent
represented by 11 bits, and (1+∑

52
i=1 b52−i ·2−i) is called mantissa and it is a number

with 52 bit precision. The numbers in this format are represented with an uncertainty
that depends on the number value. In the Matlab environment the function "eps"
returns the floating-point relative accuracy of a given number. As an example the
representation of pseudo-periods values from 2.5 ms (0.0025 s) to 10 ms (0.01 ms)
have a relative accuracy that is depicted in Fig. 5.9

Fig. 5.9 Relative accuracy of pseudo-periods values represented in a double precision format

As shown In Fig. 5.9, the relative accuracy changes as the represented pseudo-
period varies. As an example, a 0.01 s period length (100 Hz), would be represented
with a relative accuracy of ≈ 1.7 ·10−18, thus giving an absolute period uncertainty
of ≈ 1.7 ·10−20 s, which is much less than the evaluated one. Finally if the Tabs. 5.3
and 5.4 and the plots of Fig. 5.4 are considered, one should notice that the dispersion
of the generated features are always lower than the intra-subject dispersion. Such a
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consideration highlights that the generation method produces artificial values that
are statistically closer to the single original vowel, used as a reference, instead of
being scattered within the subject natural dispersion of task repetitions.

5.3.2 Extraction algorithm uncertainty evaluation (path 2)

Looking at the Tabs. 5.6, 5.7 and plots in Fig. 5.7, biases and dispersions can
be noticed in each feature evaluation. In particular the dispersion of the extracted
artificial features FM(ART ) are statistically comparable to the dispersion of the
generated reference features FR(MC). This consideration may suggest that the
extraction algorithm only adds some bias contribution to the uncertainty (as can
be noted in Fig. 5.7 (b)), while leaving unchanged the dispersion of the reference
features. The evaluation of the pseudo-periods and amplitudes extraction uncertainty
highlighted a comparable contribution respect with the uncertainty evaluations in
sections 3.1.2 and 3.2. In particular, the extraction period uncertainty estimation is
very close to the quantisation period, therefore if the evaluation of period uncertainty
is substituted in Eq. 3.13, a jitter uncertainty around 0,02 % is expected. Such
expected uncertainty is very close to the values in the first column of Tab. 5.7. The
evaluation of the extraction bias allows to correct such an effect if a sufficient number
of artificial vowels is produced, as will be showed in the next chapter.
Regarding the CPPS estimation uncertainties, the negligible entity of bias and
dispersions may suggest that the re-synthesis method proposed for this work is quite
"transparent" for the cepstral characteristics of the signal. This fact could allow to
consider any alteration of the CPPS metrics as caused by the experimental set-up
contributions and not to the re-synthesis method itself.

5.3.3 Comparison between PM and MCMC generation methods

The uncertainty assessment methods carried out using the MCMC method produced
different evaluations of each feature uncertainty. In particular the MCMC generation
method seems to produce similar dispersions to the PM method, while the bias
evaluation highlighted a larger and less repeatable estimation between the subjects
respect to the PM method as shown in Fig. 5.10
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(a) (b)

Fig. 5.10 Mean bias and dispersions generation uncertainty comparison of jitter (a) and
shimmer (b) for the three clinical classes.

In order to evaluate if the MCMC method produces artificial vowels whose
stability metrics are correctly measured by the extraction algorithm, the extraction
contribution was evaluated as summarised in Tabs. 5.14 and 5.15. The MCMC
method shows a worst behaviour as concerning the biases which are larger and more
dispersed between the subjects of each class. Again the evaluated dispersions seem
compatible between the generation methods even though the ones relative to the PM
method seem smaller. Such considerations can be noticed in Fig. 5.11
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(a) (b)

Fig. 5.11 Mean bias and dispersions extraction uncertainty comparison of jitter (a) and
shimmer (b) for the three clinical classes.

For the mean CPPS evaluation the two analysed methods seem to be equivalent,
even though the MCMC method produces less dispersed biases, as shown in Fig.
5.12.
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Fig. 5.12 Mean CPPS uncertainty comparison between generation methods

From the consideration made in this conclusive remarks the best generation
method seems the perturbative method. For this reason, in the next section, just the
PM was used to produce the artificial vowels.

5.4 Effects of the acquisition device on stability and
CPPS metrics (PM)

The second part of the measuring chain uncertainty evaluation is focused on the
acquisition device used to record the original voice samples. To evaluate the uncer-
tainty contribution of the acquisition device, the test signals were converted into an
electrical signal using a Digital to Analog Converter as shown in Fig. 5.13.
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Fig. 5.13 Architecture of the evaluation method for the acquisition contribution

As shown in Fig. 5.14, the transformation of the vowel signals from the digital
domain to the electrical domain was carried out using an audio interface device
(MOTU Audio Express), which is connected with a USB cable to a computer. The
output of the audio interface has a DC output impedance of about 100 Ohm and the
acquisition device expects a plug-in power impedance (in the range of 1 kΩ to 3 kΩ).
To simulate the presence of such an impedance, a 2.2 kΩ resistor was connected
between the input terminal of the left channel and ground. For the same reason, the
right channel was connected to ground with a 2.2 kΩ resistor.

Fig. 5.14 Schematic of the acquisition contribution evaluation

In the scheme in Fig. 5.13, respect to the architecture depicted in Fig. 5.1, the
measured artificial features can be compared between two domains:

• Digital domain Features FM(ARTEXT )

• Electrical domain Features FM(ARTACQ)
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For this evaluation, the MC-OR comparison is exactly like the comparison performed
for the extraction uncertainty evaluation, so the bias and dispersion are the same
of Tabs. 5.2, 5.3 and 5.4. To avoid excessive effort in recording 900 separate files,
a long file was built concatenating the original vowels followed by ten repetitions
of the relative artificial vowel. At the same time, a marker file that contains the
starting and ending time of each vowel is created for later use. The file, which is
almost 2 hours long, is played by a wave editor (e.g. Audacity) and recorded by the
acquisition device. Once the recording was completed, the recorded file is extracted
from the acquisition device memory and processed to produce separate audio files. In
particular, a cross-correlation is performed between the digital and the acquired file
to determine the gross delay between the two waves. In order to align each couple of
vowel signals over time, a finer cross-correlation between the signal of the digital
and acquired vowel is performed. In particular the digital vowel is trimmed between
the time markers previously saved so the signal of the acquired vowel can be aligned
using the cross-correlation.

5.4.1 Effects of the non-idealty of the chain

When there is an electrical connection between the output of the audio device and
the input of the acquisition device some issues regarding the voltage scales of the
two devices may arise. In fact, even tough we expect an unitary transformation when
using a cable, the acquired signal is not identical to the expected digital signal. This
fact are caused by some critical issues that can affect the measuring chain as well as
the uncertainty evaluation chain (in this section the audio output device as shown in
Fig. 5.13). In particular, such effect may be caused by:

• Gain error

• Offset error

• Sampling rate perturbations

• DAC-ADC Sampling rate mismatch

• Frequency response

• Chain non-linearity
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As an example, in ideal conditions, the coincidence between the minimum and
maximum values of the digital and the acquired signals is expected. In practice, even
after a normalization, the minimum and maximum values could be different and the
amplitude transfer function may not be unitary as shown in Fig. 5.15.

Fig. 5.15 An example of gain and offset error between an original and an acquired signal
both normalised to 1 a.u.

The plot in Fig. 5.15 shows an example case where the original Vor and the
acquired Vacq signals were normalized to 1 a.u. so the maximum value for both is 1
a.u.. In this example the effect of gain and offset error produces an overestimation of
the minimum value of the acquired signal. In a research oriented application, where
a trustable arbitrary function generator is available, the gain and offset errors can
be attributed to the acquisition device and thus a characterization of this device is
possible. If using a consumer level DAC as a reference device, such as the audio
device used in this evaluation, the non-ideality of this chain cannot be characterized
unless a trusted digital acquisition system is used to charecterize the DAC. Evaluating
the gain and offset of such transfer function could help to correct the amplitude
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values removing the offset O and dividing for the gain G as defined in the equations:

G =
max(Vacq)−min(Vacq)

max(Vor)−min(Vor)
(5.9)

O = max(Vacq)−G ·max(Vor) (5.10)

V ∗
acq =

Vacq −O
G

(5.11)

where Vor is the original digital amplitude, Vacq is the acquired digital amplitude
and V ∗

acq is the corrected acquired amplitude. In order to try to evaluate these issues,
without using professional level instruments, a characterization of the whole feedback
chain (Audio interface + Acquisition device) was carried out. To evaluate the gain
and offset error of the device under test, a study on the artificial vowels dataset with
900 entries was performed in order to produce mean estimations of G and O for the
three clinical classes:

Table 5.18 Mean Gain and Offset errors and their relative standard errors of the acquisition
device

Class G stdERR(G) O stdERR(O)
PD 0.9980 0.0006 -0.0047 0.0006
HE 0.9978 0.0003 -0.0022 0.0003
PA 0.9992 0.0003 -0.0010 0.0003

As shown in Tab. 5.19, the Gain G are close to 1, even though a relative error
of about 0.2 % was evaluated. The offsets O are close to 0 and their relative errors
around 0.3 %.
In a practical application, such kind of method can lead to an inaccurate evaluations
of the gain and offset errors because of the phase and spectral distortions introduced
by the acquisition device or the audio interface as shown in Fig. 5.16:
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Fig. 5.16 An example of an original (in blue) and the acquired (in red) signals time aligned
with the cross-correlation method

As shown in Fig. 5.16, after the time alignment carried out through the application
of the cross-correlation method, the phase and the amplitude of the original and
acquired signal may vary at different time instants. This may be partly due to a
slight difference between the sampling rate of the DAC on the output audio interface
and the sampling rate of the ADC on the input acquisition device (asynchronous
sampling). Moreover the frequency response of the acquisition device (or the audio
interface) may be not "flat" and some differences in the shape of the signal waves is
expected between the original an the acquired signal.
To take into account such a misalignment, a regression method could be used
to statistically evaluate gain and offset errors. As shown in Fig. 5.17 the phase
and spectral difference between the time aligned signals can produce non unitary
responses and the XY plot of the two signals highlights a variable phase alignment.
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Fig. 5.17 An example of a scatter plot of an acquired vs. original signal

Such a technique can produce very different gain and offset error estimations,
respect to the previously proposed method, as summarised in Tab. 5.19.

Table 5.19 Mean Gain and Offset errors and their relative standard errors of the acquisition
device

Class G stdERR(G) O stdERR(O)
PD 0.9855 6 ·10−4 1 ·10−5 2 ·10−8

HE 0.9313 3 ·10−3 1 ·10−5 5 ·10−8

PA 0.9578 2 ·10−3 1 ·10−5 4 ·10−8

As shown in Tab. 5.19, the values of G lead to a relative gain error in a range
between 2 % and 7 %. The evaluated offsets O are smaller than the ones evaluated
with the previously proposed method and they produce a relative offset error of about
0.001 %.
This considerations may suggest that a correction method could be implemented
to reduce the features uncertainties. For this work, such a correction did not take
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place to evaluate the effects that these contributions have on the evaluation of voice
features, as will be showed in the next section.

5.4.2 Evaluation of the acquisition contribution to period and
amplitude uncertainty

As already done in the previous section, the evaluation of extracted pseudo-periods
and amplitudes uncertainty was carried out on the signals recorded with the ac-
quisition device. The data presented in Tab. 5.20 summarizes the results of this
evaluation.

Table 5.20 Pseudo-periods and amplitudes mean extraction uncertainty of the (ACQ+EXT)
contribution - u(T ), u(A)

Class u(T) (µs) u(A) (a.u.)
PD 38 0.04
HE 34 0.04
PA 38 0.04

As shown in Tab. 5.20 the period and amplitude uncertainty has increased slightly
respect to the case of the extraction contribution (uEXT (T )≈ 31 µs, uEXT (A)≈ 0.02
a.u.).

5.4.3 Evaluation of the acquisition uncertainty contribution

To evaluate the acquisition uncertainty contribution, the bias were evaluated using
Eq. 5.5. The results of this evaluation are summarised in Tab. 5.21 and Tab. 5.22

Table 5.21 Measured artificial bias of ACQ+EXT contribution - BIASARTACQ−MC(class)

Class jit (%) jitabs (µs) rap (%) ppq (%) v f0 (%) shi (%) shiabs (dB) apq (%) vAm (%)
PD -0.02 -1.1 -0.02 -0.02 0.03 -0.3 -0.03 -0.13 0.03
HE -0.02 -1.2 -0.02 -0.01 0.02 -0.1 -0.01 -0.04 0.23
PA -0.01 -0.7 -0.01 -0.01 0.02 -0.1 -0.01 -0.08 0.03
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Table 5.22 Measured artificial dispersion of ACQ+EXT contribution - DISPARTACQ(class)

Class jit (%) jitabs (µs) rap (%) ppq (%) v f0 (%) shi (%) shiabs (dB) apq (%) vAm (%)
PD 0.01 0.9 0.009 0.010 0.02 0.19 0.017 0.13 0.15
HE 0.01 0.8 0.008 0.007 0.01 0.08 0.007 0.05 0.08
PA 0.02 1.1 0.014 0.015 0.02 0.15 0.014 0.09 0.13

To evaluate the results summarized in Tabs. 5.21 and 5.22, the bias and dispersion
of the ACQ+EXT contribution are compared to the contributions that are due to the
extraction (EXT) algorithm only, obtaining the outcomes summarized in Fig. 5.18.

(a) (b)

Fig. 5.18 (ACQ+EXT) contribution of mean bias and dispersion evaluations of jitter (a) and
shimmer (b) for the three clinical classes.

As shown in Fig. 5.18, the ARTACQ −MC dispersions are compatible with those
of the ARTACQ −MC evaluation. The biases for the jitter evaluation are compatible
with the contribution comparison ARTACQ −MC, while for the shimmer evaluation
higher negative biases are clearly visible. Such effect is due to the gain and offset
error as described in Sec. 5.4.1. The evaluation of the dispersion of the (ACQ+EXT)
contributions are very similar to the dispersion of the EXT contribution only, so a
negligible effect is expected on stability metrics. The evaluation of the extraction
bias allows to correct such an effect if a sufficient number of artificial vowels is
produced, as will be showed in the next chapter.
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5.4.4 Evaluation of the acquisition contribution to CPPS features
uncertainty

As already done for the extraction contribution, the effect of the acquisition device
on CPPS features uncertainty was analysed. The results of this analysis are presented
in Tabs. 5.23 and 5.24:

Table 5.23 Measured artificial bias of CPPS metrics for the (ACQ+EXT) contribution -
BIASARTACQ−OR(class)

Class Mean (dB) Median (dB) Mode (dB) Std (dB) Range (dB) 5°perc. (dB) 95°perc. (dB) Skewness (%) Kurtosis (%)
PD -0.6 -0.6 -0.5 0.093 0.3 -0.7 -0.4 0.06 -0.19
HE -0.2 -0.1 -0.2 -0.004 0.2 -0.2 -0.3 -0.13 0.38
PA -0.5 -0.6 -0.6 0.013 0.3 -0.5 -0.5 0.06 -0.04

Table 5.24 Measured artificial dispersions of CPPS metrics for the (ACQ+EXT) contribution
- DISPARTACQ−OR(class)

Class Mean (dB) Median (dB) Mode (dB) Std (dB) Range (dB) 5°perc. (dB) 95°perc. (dB) Skewness (%) Kurtosis (%)
PD 0.06 0.08 0.6 0.06 0.7 0.2 0.10 0.13 0.4
HE 0.04 0.05 0.4 0.03 0.6 0.1 0.07 0.09 0.3
PA 0.06 0.08 0.5 0.05 0.6 0.1 0.13 0.11 0.2

To evaluate the effect of the acquisition device on the mean CPPS measurements,
a comparison between the EXT and the ACQ+EXT contributions is depicted in Fig.
5.19.
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Fig. 5.19 Mean CPPS uncertainty comparison between the ACQ+EXT and EXT contribution

As shown in Fig. 5.19, the dispersion of the mean CPPS are comparable with
the dispersion of the EXT contribution. The evaluated biases are comparable with
the EXT contribution and their repeatability (the size of the green bars) is increased
respect with the EXT contribution. For this reason the ACQ contribution to mean
CPPS uncertainties can be considered as negligible.

5.5 Evaluation of the whole chain contribution on sta-
bility and CPPS metrics

The third part of the measuring chain uncertainty evaluation is focused on the
microphone used to capture the acoustic waves. In Fig. 5.20, the architecture of the
evaluation method is presented.
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Fig. 5.20 Architecture of the whole chain uncertainty contributions evaluation

To evaluate the uncertainty contribution of the whole chain, the test signals were
converted into an electrical signal by using an audio interface device (MOTU Audio
Express) connected with a USB cable to a computer. The output of the audio device
was connected to a power amplifier (Alpine MRP-F200) powered with a 12 V battery.
The output of the audio amplifier goes to the input of a torso simulator (Brüel &
Kjær HATS Head and Torso Simulator type 5128) as shown in Fig. 5.21

(a) (b)

Fig. 5.21 The head piece of the HATS with a bluetooth earset (a) and a schematic diagram of
the mouth simulator (b)

The torso simulator represents the final link in the uncertainty evaluation chain
and the first of the measuring chain. Such a torso simulator takes the place of the
subject, who cannot produce the input stimulus with an acceptable repeatability.
The torso simulator, instead, produces acoustic waves that are highly repeatable and
reproducible in terms of extracted features. All the specifications of the HATS are
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known and extensively reported in the specifications manual. As an example, the
Talk Frequency Response (TFR) at 25 mm from the mouth opening is reported in
Fig. 5.22 (a) along the sound pressure level distribution around the mouth (b).

(a) (b)

Fig. 5.22 HATS in-axis frequency response (a) and sound pressure level distribution around
the mouth simulator (b)

The TFR evaluated by the manufacturer at a distance 25 mm has a fairly "flat"
response in the frequency range of a sustained vowel. The microphone distance of
25 mm used in this evaluation has the same order of magnitude of the distance of the
microphone in air adopted in the recordings of the vowels used in this work (between
20 mm and 40 mm).

The HATS was placed inside the anechoic room of the Department of Energy of
the Polytechnic of Turin and the same microphone in air used in the collection of
vowel samples, a cheek headset microphone (CM, MIPRO MU 55-HR), was placed
on the HATS head. Moreover, a reference microphone (RM, NTI Audio M4261) was
placed at 1 meter from the HATS mouth. Another measurement was performed using
a smartphone (SP, Iphone X) placed in the standard video-call position. The cheek
microphone were tested in 4 different positions around the HATS mouth. To sum
up, a total of 6 evaluations was carried out to evaluate the whole chain uncertainty
contributions:

1. CM Position 1 (golden standard): 20 mm from the mouth opening, in axis
with its center (Fig. 5.23)

2. CM Position 2: 20 mm from the mouth opening, 20 mm above the mouth
plane (Fig. 5.26)
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3. CM Position 3 20 mm from the mouth opening, 20 mm under the mouth plane
(Fig. 5.27)

4. CM Position 4: 40 mm from the mouth opening, in axis with its right corner
(Fig. 5.28)

5. RM Reference microphone: 1 m from the mouth opening (5.29)

6. SP IphoneX: 50 cm from the mouth opening (5.30)

With this setup, the evaluation of the measurement uncertainty includes the acoustic
domain and it makes possible to study the possible perturbations of features caused
by microphone placement and type.
The input gain of the acquisition device, connected to the cheek microphone, was
set to produce a measured full-scale level of -6 dBfs indicated by the acquisition
device display. In a similar way, the input gain of the audio interface, connected
to the reference microphone, was set to measure a full-scale level of -6 dBfs, as
indicated by the audio interface display. As regarding the smartphone recordings,
they were carried out using the iOS application "Voice Memos" and the smartphone
was placed 50 cm from the HATS face. The position of the smartphone was set in
order to place the HATS face in the center of the frame captured by the smartphone
front video-camera. In this way the standard position of a video-call was simulated.
All the evaluations were carried out setting an appropriate output gain on the uncer-
tainty evaluation chain (DAC + AMP in Fig. 5.20). The output gain of the uncertainty
evaluation chain was set in order to produce a Sound Pressure Level (SPL) around
70 dB [40] measured by a calibrated Sound Level Meter placed at a distance of 1 m
from the mouth opening.

5.5.1 Microphone position 1 (golden standard)

The first evaluation tries to replicate the experimental conditions of the original
acquisition. The cheek microphone is placed at 20 mm from the mouth opening in
axis with its center, aligned with the tip of the nose. This microphone position is
approximately the same used in each of the original recordings, for this reason this
evaluation is considered as the golden standard respect to the other 3 positions. In
Fig. 5.23 the positioning of the cheek microphone on the HATS head is shown.
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Fig. 5.23 Microphone position 1

As already done in the previous sections, bias and dispersion of stability metrics
extracted from the 900 artificial signals are presented in Tabs. 5.25 and 5.26. The term
ACO refers to the contribution evaluated in the acoustic domain, which coincides
with the whole chain contribution.

Table 5.25 Measured artificial bias of the whole chain contribution (CM position 1) -
BIASARTACO−MC(class)

Class jit (%) jitabs (µs) rap (%) ppq (%) v f0 (%) shi (%) shiabs (dB) apq (%) vAm (%)
PD -0.004 -0.3 -0.004 -0.011 0.01 0.27 0.017 0.35 2.9
HE -0.012 -0.6 -0.011 -0.009 0.02 0.08 0.005 0.09 1.6
PA 0.043 1.7 0.022 0.019 0.05 0.12 0.008 0.10 1.2

Table 5.26 Measured artificial dispersions of the whole chain contribution (CM position 1) -
DISPARTACO(class)

Class jit (%) jitabs (µs) rap (%) ppq (%) v f0 (%) shi (%) shiabs (dB) apq (%) vAm (%)
PD 0.01 1.20 0.012 0.012 0.02 0.20 0.018 0.14 0.18
HE 0.01 0.71 0.007 0.007 0.02 0.07 0.007 0.05 0.15
PA 0.02 0.93 0.011 0.014 0.02 0.14 0.012 0.09 0.14

As can be noted in Fig. 5.24, the biases of the whole chain are higher and more
dispersed than the biases of the extraction contribution (short chain). The dispersion
is clearly comparable to the extraction contribution dispersion.
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(a) (b)

Fig. 5.24 Mean bias and dispersion evaluations of jitter (a) and shimmer (b) for the three
clinical classes of the whole chain contribution (CM position 1)

Evaluation of the whole chain contribution to period and amplitude uncer-
tainty

As already done in the previous sections, the evaluation of extracted pseudo-periods
and amplitudes uncertainty was carried out on the acoustic waves emitted by the
HATS and recorded with the acquisition device. The data presented in Tab. 5.27
summarizes the results of such evaluation.

Table 5.27 Pseudo-periods and amplitudes mean uncertainty of the whole chain contribution
(CM position 1) - u(T), u(A)

Class u(T) (µs) u(A) (a.u.)
PD 43 0.1
HE 37 0.1
PA 41 0.1

As shown in Tab. 5.27, the period uncertainty is slightly larger than the one eval-
uated for the extraction and the acquisition contribution. The amplitude uncertainty
for the whole chain contribution instead, is an order of magnitude larger than the
extraction contribution. This is caused by the offset and gain error as shown in Sec.
5.4.1.
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Evaluation of the whole chain uncertainty contribution to CPPS features

The effect of the whole chain on CPPS metrics was investigated as already done in
the previous sections. The results of this evaluation are reported in Tabs. 5.28 and
5.29:

Table 5.28 Measured artificial bias of CPPS metrics of the whole chain contribution (CM
position 1) - BIASARTACO−OR(class)

Class Mean (dB) Median (dB) Mode (dB) Std (dB) Range (dB) 5°perc. (dB) 95°perc. (dB) Skewness (%) Kurtosis (%)
PD -0.6 -0.6 -0.6 0.05 0.2 -0.7 -0.5 0.060 -0.12
HE 0.8 0.8 0.8 -0.02 0.3 0.7 0.7 -0.160 0.52
PA 0.2 0.2 0.2 -0.05 0.1 0.3 0.2 0.002 0.01

Table 5.29 Measured artificial dispersion of CPPS metrics of the whole chain contribution
(CM position 1) - DISPARTACO−OR(class)

Class Mean (dB) Median (dB) Mode (dB) Std (dB) Range (dB) 5°perc. (dB) 95°perc. (dB) Skewness (%) Kurtosis (%)
PD 0.07 0.08 0.5 0.06 0.7 0.2 0.12 0.13 0.4
HE 0.07 0.07 0.4 0.04 0.6 0.1 0.09 0.09 0.3
PA 0.08 0.10 0.5 0.05 0.6 0.1 0.12 0.11 0.2

As shown in Fig. 5.25 higher biases are noticeable in the HE and PA classes for
mean CPPS measurements. The dispersion of the mean CPPS, instead is comparable
with the dispersion of the extraction contribution.



116 Evaluation of the uncertainty contributions of the whole measuring chain

Fig. 5.25 Mean bias and dispersion evaluations of Mean CPPS of the whole chain contribution
(CM position 1)

For the next microphone evaluations, the sequence of the presented data will be
the same presented in this section:

• Evaluation of the whole chain uncertainty contribution on stability metrics
(bias and dispersion)

• Evaluation of the whole chain uncertainty contribution to CPPS features (bias
and dispersion)
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5.5.2 Microphone position 2

Fig. 5.26 Microphone position 2

Table 5.30 Measured artificial bias of the whole chain contribution (CM position 2) -
BIASARTACO−MC(class)

Class jit (%) jitabs (µs) rap (%) ppq (%) v f0 (%) shi (%) shiabs (dB) apq (%) vAm (%)
PD -0.002 -0.2 -0.003 -0.007 0.009 0.6 0.04 0.55 3.5
HE -0.014 -0.7 -0.013 -0.010 0.022 0.1 0.01 0.14 1.8
PA 0.048 2.0 0.025 0.022 0.054 0.3 0.03 0.23 1.6

Table 5.31 Measured artificial dispersions of the whole chain contribution (CM position 2) -
DISPARTACO(class)

Class jit (%) jitabs (µs) rap (%) ppq (%) v f0 (%) shi (%) shiabs (dB) apq (%) vAm (%)
PD 0.02 1.1 0.011 0.011 0.02 0.21 0.019 0.14 0.19
HE 0.01 0.8 0.008 0.008 0.08 0.07 0.007 0.04 0.09
PA 0.02 0.9 0.012 0.013 0.02 0.14 0.012 0.09 0.14

Evaluation of the whole chain uncertainty contribution to CPPS features

Table 5.32 Measured artificial bias of CPPS metrics of the whole chain contribution (CM
position 2) - BIASARTACO−OR(class)

Class Mean (dB) Median (dB) Mode (dB) Std (dB) Range (dB) 5°perc. (dB) 95°perc. (dB) Skewness (%) Kurtosis (%)
PD -0.5 -0.5 -0.4 0.07 0.3 -0.6 -0.4 0.06 -0.09
HE 1.0 1.1 1.0 0.01 0.6 1.0 1.0 -0.09 0.44
PA 1.0 1.1 1.2 -0.02 0.2 0.9 0.9 -0.10 0.04
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Table 5.33 Measured artificial dispersions of CPPS metrics of the whole chain contribution
(CM position 2) - DISPARTACO−OR(class)

Class Mean (dB) Median (dB) Mode (dB) Std (dB) Range (dB) 5°perc. (dB) 95°perc. (dB) Skewness (%) Kurtosis (%)
PD 0.07 0.08 0.5 0.06 0.7 0.2 0.1 0.1 0.5
HE 0.13 0.14 0.4 0.05 0.6 0.2 0.2 0.1 0.3
PA 0.32 0.33 0.6 0.08 0.7 0.3 0.3 0.1 0.3

5.5.3 Microphone position 3

Fig. 5.27 Microphone position 3

Table 5.34 Measured artificial bias of the whole chain contribution (CM position 3) -
BIASARTACO−MC(class)

Class jit (%) jitabs (µs) rap (%) ppq (%) v f0 (%) shi (%) shiabs (dB) apq (%) vAm (%)
PD -0.002 -0.2 -0.003 -0.009 0.02 0.35 0.023 0.41 3.2
HE -0.011 -0.5 -0.011 -0.008 0.03 0.08 0.005 0.09 1.6
PA 0.041 1.6 0.020 0.018 0.05 0.11 0.006 0.01 1.3

Table 5.35 Measured artificial dispersion of the whole chain contribution (CM position 3) -
DISPARTACO(class)

Class jit (%) jitabs (µs) rap (%) ppq (%) v f0 (%) shi (%) shiabs (dB) apq (%) vAm (%)
PD 0.02 1.3 0.014 0.014 0.03 0.22 0.021 0.15 0.64
HE 0.01 0.7 0.007 0.006 0.01 0.07 0.007 0.04 0.09
PA 0.02 0.9 0.012 0.014 0.02 0.14 0.013 0.09 0.14
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Evaluation of the whole chain uncertainty contribution to CPPS features

Table 5.36 Measured artificial bias of CPPS metrics of the whole chain contribution (CM
position 3) - BIASARTACO−OR(class)

Class Mean (dB) Median (dB) Mode (dB) Std (dB) Range (dB) 5°perc. (dB) 95°perc. (dB) Skewness (%) Kurtosis (%)
PD 0.06 3.4 0.04 0.05 -0.05 1.5 0.13 1.1 2.8
HE 0.03 2.1 0.02 0.03 -0.02 0.7 0.06 0.5 1.1
PA 0.11 4.9 0.06 0.08 0.04 0.8 0.07 0.6 0.9

Table 5.37 Measured artificial dispersion of CPPS metrics of the whole chain contribution
(CM position 3) - DISPARTACO−OR(class)

Class Mean (dB) Median (dB) Mode (dB) Std (dB) Range (dB) 5°perc. (dB) 95°perc. (dB) Skewness (%) Kurtosis (%)
PD 0.02 1.3 0.014 0.014 0.03 0.22 0.021 0.15 0.64
HE 0.01 0.7 0.007 0.006 0.02 0.07 0.007 0.04 0.09
PA 0.02 0.9 0.012 0.014 0.02 0.14 0.013 0.09 0.14

5.5.4 Microphone position 4

Fig. 5.28 Microphone position 4

Table 5.38 Measured artificial bias of the whole chain contribution (CM position 4) -
BIASARTACO−MC(class)

Class jit (%) jitabs (µs) rap (%) ppq (%) v f0 (%) shi (%) shiabs (dB) apq (%) vAm (%)
PD 0.002 -0.03 0.00001 -0.007 0.01 0.5 0.036 0.5 3.4
HE -0.011 -0.49 -0.01100 -0.008 0.03 0.1 0.008 0.1 1.7
PA 0.049 2.00 0.02600 0.024 0.05 0.2 0.015 0.2 1.5
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Table 5.39 Measured artificial dispersion of the whole chain contribution (CM position 4) -
DISPARTACO(class)

Class jit (%) jitabs (µs) rap (%) ppq (%) v f0 (%) shi (%) shiabs (dB) apq (%) vAm (%)
PD 0.02 1.1 0.01 0.01 0.02 0.21 0.02 0.14 0.18
HE 0.01 0.6 0.01 0.01 0.02 0.08 0.01 0.05 0.09
PA 0.02 0.9 0.01 0.01 0.02 0.14 0.01 0.09 0.15

Evaluation of the whole chain uncertainty contribution to CPPS features

Table 5.40 Measured artificial bias of CPPS metrics of the whole chain contribution (CM
position 4) - BIASARTACO−OR(class)

Class Mean (dB) Median (dB) Mode (dB) Std (dB) Range (dB) 5°perc. (dB) 95°perc. (dB) Skewness (%) Kurtosis (%)
PD -0.5 -0.5 -0.5 0.06 0.24 -0.6 -0.3 0.08 -0.14
HE 0.8 0.8 0.8 0.02 0.65 0.8 0.8 -0.06 0.42
PA 0.7 0.7 0.77 -0.04 0.04 0.7 0.6 -0.07 0.04

Table 5.41 Measured artificial dispersion of CPPS metrics of the whole chain contribution
(CM position 4) - DISPARTACO−OR(class)

Class Mean (dB) Median (dB) Mode (dB) Std (dB) Range (dB) 5°perc. (dB) 95°perc. (dB) Skewness (%) Kurtosis (%)
PD 0.1 0.1 0.6 0.07 0.7 0.2 0.1 0.1 0.3
HE 0.1 0.1 0.4 0.04 0.7 0.1 0.1 0.1 0.2
PA 0.2 0.2 0.6 0.07 0.7 0.2 0.2 0.1 0.3

5.5.5 Reference microphone

Fig. 5.29 Acoustic uncertainty contribution evaluation for a reference microphone
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Table 5.42 Measured artificial bias of the whole chain contribution (RM) -
BIASARTACO−MC(class)

Class jit (%) jitabs (µs) rap (%) ppq (%) v f0 (%) shi (%) shiabs (dB) apq (%) vAm (%)
PD 0.1 0.1 0.6 0.07 0.7 0.2 0.2 0.1 0.3
HE 0.1 0.1 0.4 0.04 0.7 0.1 0.1 0.1 0.3
PA 0.2 0.2 0.6 0.07 0.7 0.2 0.2 0.1 0.3

Table 5.43 Measured artificial dispersion of the whole chain contribution (RM) -
DISPARTACO(class)

Class jit (%) jitabs (µs) rap (%) ppq (%) v f0 (%) shi (%) shiabs (dB) apq (%) vAm (%)
PD 0.02 1.2 0.01 0.01 0.02 0.2 0.02 0.1 0.2
HE 0.02 1.0 0.01 0.01 0.05 0.2 0.02 0.1 0.3
PA 0.02 1.1 0.01 0.02 0.03 0.2 0.02 0.1 0.1

Evaluation of the whole chain uncertainty contribution to CPPS features

Table 5.44 Measured artificial bias of CPPS metrics of the whole chain contribution (RM) -
BIASARTACO−OR(class)

Class Mean (dB) Median (dB) Mode (dB) Std (dB) Range (dB) 5°perc. (dB) 95°perc. (dB) Skewness (%) Kurtosis (%)
PD -0.3 -0.3 -0.2 0.07 0.3 -0.4 -0.2 0.08 -0.17
HE 0.5 0.5 0.4 0.07 0.9 0.3 0.6 -0.07 0.40
PA 0.8 0.8 0.9 -0.01 0.2 0.8 0.77 -0.08 0.02

Table 5.45 Measured artificial dispersion of CPPS metrics of the whole chain contribution
(RM)- DISPARTACO−OR(class)

Class Mean (dB) Median (dB) Mode (dB) Std (dB) Range (dB) 5°perc. (dB) 95°perc. (dB) Skewness (%) Kurtosis (%)
PD 0.1 0.1 0.5 0.1 0.8 0.2 0.2 0.1 0.4
HE 0.3 0.3 0.5 0.1 0.7 0.4 0.3 0.1 0.3
PA 0.2 0.2 0.6 0.1 0.7 0.3 0.2 0.1 0.3
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5.5.6 Smartphone microphone

Fig. 5.30 Acoustic uncertainty contribution evaluation for smartphone microphone

Table 5.46 Measured artificial bias of the whole chain contribution (SP) -
BIASARTACO−MC(class)

Class jit (%) jitabs (µs) rap (%) ppq (%) v f0 (%) shi (%) shiabs (dB) apq (%) vAm (%)
PD -0.05 -2.9 -0.03 -0.03 -0.02 -0.1 -0.02 0.09 2.1
HE -0.03 -1.9 -0.02 -0.02 0.03 -0.2 -0.02 -0.12 1.1
PA -0.03 -1.7 -0.02 -0.02 0.07 -0.5 -0.05 -0.34 -1.2

Table 5.47 Measured artificial dispersion of the whole chain contribution (SP) -
DISPARTACO(class)

Class jit (%) jitabs (µs) rap (%) ppq (%) v f0 (%) shi (%) shiabs (dB) apq (%) vAm (%)
PD 0.01 0.9 0.010 0.010 0.02 0.20 0.018 0.13 0.1
HE 0.01 0.9 0.009 0.008 0.03 0.08 0.008 0.05 0.2
PA 0.02 1.3 0.016 0.016 0.03 0.14 0.013 0.09 0.1

Evaluation of the whole chain uncertainty contribution to CPPS features

Table 5.48 Measured artificial bias of CPPS metrics of the whole chain contribution (SP) -
BIASARTACO−OR(class)

Class Mean (dB) Median (dB) Mode (dB) Std (dB) Range (dB) 5°perc. (dB) 95°perc. (dB) Skewness (%) Kurtosis (%)
PD -1.20 -1.20 -1.20 0.07 0.20 -1.30 -1.10 0.10 -0.19
HE 0.02 0.03 -0.04 -0.02 0.36 0.05 -0.04 -0.07 0.42
PA -0.04 -0.01 0.04 -0.05 -0.02 -0.01 -0.16 -0.09 0.04
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Table 5.49 Measured artificial dispersion of CPPS metrics of the whole chain contribution
(SP) - DISPARTACO−OR(class)

Class Mean (dB) Median (dB) Mode (dB) Std (dB) Range (dB) 5°perc. (dB) 95°perc. (dB) Skewness (%) Kurtosis (%)
PD 0.11 0.12 0.5 0.06 0.7 0.2 0.14 0.1 0.4
HE 0.07 0.07 0.4 0.04 0.6 0.1 0.09 0.1 0.3
PA 0.11 0.12 0.5 0.05 0.6 0.2 0.15 0.1 0.2

5.6 Final considerations and comparisons on the whole
chain contribution

In this section a comparison between the different microphone positioning and
types will be performed in order to determine if microphone perturbations can alter
the evaluation of biases and dispersions. A comparison between the uncertainty
evaluations for different measuring chain lengths will be also presented.

5.6.1 Microphone positioning and type comparison

As showed in Tabs. from 5.25 to 5.46, the dispersion of the evaluated features seem
to not depend on the microphone positioning or type. Such consideration is high-
lighted in the plot in Fig. 5.31, where the dispersion parameters for jitter, shimmer
evaluations seem comparable across each microphone positioning and type. The
biases of jitter evaluations are clearly comparable between the different microphone
positions and also with the reference microphone. The jitter bias obtained in the
evaluation of the Iphone microphone is the only one that is not comparable with the
other microphone positions and the reference microphone. Regarding the shimmer
evaluation some more variety on the biases is present between the comparisons. The
mean CPPS evaluations showed more varied dispersion and biases which seem to
depend on the clinical class. In particular the PD class shows negative biases while
the HE and PA class highlights positive biases as shown in Fig. 5.31 (c).
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(a)

(b)

(c)

Fig. 5.31 A comparison between different microphone positioning and types for jitter (a),
shimmer (b), and CPPS (c) evaluations
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5.6.2 Effects of the measuring chain length on the features un-
certainty

To evaluate the contributions of the measuring chain components to the total feature
uncertainty, a comparison between the evaluations performed in sections 5.1, 5.4 and
5.5 is presented. As shown in Fig. 5.32, no difference is highlighted between the
dispersion evaluations while some difference is noticeable in the bias evaluations.
In particular the biases seem compatible for the Extraction (EXT) and the Acquisi-
tion+Extraction (ACQ+EXT) evaluation for jitter and mean CPPS measurements.
The bias for shimmer and mean CPPS evaluations seem to change drastically as the
measuring chain length increases.
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(a) (b)

(c)

Fig. 5.32 A comparison between different chain lengths for jitter (a), shimmer (b), and CPPS
(c) evaluations



Chapter 6

Machine learning algorithms

In this chapter the uncertainty evaluations performed in the previous sections will
be used to implement a simple machine learning algorithm. Such an algorithm
produces binary classifications that separate Parkinsonian subjects from Healthy and
Pathological non-parkinsonian subjects.

6.1 The logistic regression

The logistic regression (LR) is a non-linear statistical model which is used to separate
binary variables as in the case of pathological subject respect to an healthy control
group. The logistic regression belongs to the class of generalized linear models
(GLM) that uses the logistic function to model a binary dependent variable. In
GLM regression analysis, this function is called link function because it transforms
a linear combination into the desired target function. The logarithm of the odds
(log-odds) for the positive class is a linear combination of independent variables Xi

called predictors:

l = log
p

1− p
= Θ

T ·X ; Θ
T ·X = β0 +β1 ·X1 +β2 ·X2 + · · ·+βN ·XN (6.1)

where p = p(y = 1|x) is the probability of belonging to the positive class and βi are
the regression coefficients. Inverting Eq. 6.1 the probability is obtained:

p =
eΘT ·X

1+ eΘT ·X =
1

1+ e−(ΘT ·X)
(6.2)
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The probability evaluated with Eq. 6.2 can be visualized as in Fig. 6.1

Fig. 6.1 An example of the sigmoid function used in a logistic regression analysis.

As shown in Fig. 6.1, an example of an ideal Target response (red dashed line) is
compared to some probability sigmoids with different coefficients β1. The higher
the coefficient β1, the steeper the sigmoid curve.
The aim of the logistic regression in binary classification problems is to reduce the
distance between the regressed curves and an ideal step function between 0 and 1.
To find the best combination of coefficients a minimisation problem must be solved

Θr = argminΘJ(Θ) (6.3)

where Θr are the regressed coefficients and J is an objective cost function defined as
the negative log conditional likelihood:

J(Θ) =−log
NS

∏
i=1

pΘ(y(i)|x(i)) =−
NS

∑
i=1

logpΘ(y(i)|x(i)) (6.4)

where pΘ(y(i)|x(i)) is the conditional probability of having a y(i) response given an
input x(i) and NS is the number of training samples. To minimise this function several
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methods have been implemented, in particular the least squared difference, gradient
descent and the Newton method are commonly adopted by machine learning soft-
wares. Such methods try to solve the partial derivatives of J(Θ) (Eq. 6.4) respect with
the coefficients Θ to find the local minimum of the log-likelihood using deterministic
or stochastic approaches. The search for the best regressed coefficients performed
by the learning algorithm gives as results a set of best estimates of the coefficients.
The learning algorithm can give also an estimate of the coefficient variances and
covariances which can be used to evaluate the goodness of the regression model.
The output of the logistic regression 6.2 is a continuous probability of belonging to a
given positive class. To obtain a binary classification, the probability is compared
to a fixed threshold commonly equal to 0.5 (50 %). If the probability is higher than
the threshold then the data belongs to the positive class and, if lower, to the negative
class. The trained model produces predictions which are compared to the true class
label to obtain the following metrics:

• TP.: True Positive - Number of predictions correctly classified as belonging to
the positive class

• TN.: True Negative - Number of predictions correctly classified as belonging
to the negative class

• FP.: False Positive - Number of predictions incorrectly classified as belonging
to the positive class

• FN.: False Negative - Number of predictions incorrectly classified as belonging
to the negative class

Such quantities can be used to calculate some model metrics:

Accuracy =
T P+T N

T P+T N +FP+FN
·100 (%) (6.5)

Sensitivity =
T P

T P+FN
·100 (%) (6.6)

Speci f icity =
T N

T N +FP
·100 (%) (6.7)

The Accuracy metrics is the most important parameter in classification models and
it gives an evaluation of the fraction of correctly classified data. The Sensitivity
metrics measures the fraction of data belonging to the positive class that is correctly
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predicted by the classification model. The Speci f icity metrics measures the fraction
of data belonging to the negative class that is correctly predicted by the classification
model.

6.1.1 Weighted logistic regression

To take advantage of the uncertainty evaluation techniques described in the previous
sections, the evaluated uncertainties can be used as weights in the learning process.
To weight the samples, a modified version of the objective cost function is used:

Jw(Θ) =−
NS

∑
i

wi · logpΘ(y(i)|x(i)) (6.8)

where wi are adimensional weights. Such formulation is often used in the training of
surveyed data and especially in the case of an unbalanced dataset where different
weight of evidence (WOE) [41] can be given to the input data. In this work the
inverse of mean value of the relative uncertainties of the considered features was
chosen as a weighting coefficient:

wi =
1

(∑
NF
j

U(F i
j)

F i
j

)/NF

(6.9)

where
U(F i

j)

F i
j

is the relative expanded uncertainty of the j-th feature for the i-th

sample and NF is the number of features used in the training of the model.

6.2 A metrologic approach to the logistic regression

To evaluate the uncertainty of the prediction model, an analytical uncertainty propa-
gation was carried out on the probability Eq. 6.2, as showed in Section 3.1.2:

p =
eΘT ·X

1+ eΘT ·X =
1

1+ e−(ΘT ·X)
(6.10)
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The partial derivatives with respect to features and coefficients of the probability
equations are calculated to obtain the sensitivity coefficients:

∂ pi

∂Fj
= β j · pi · (1− pi) (6.11)

∂ pi

∂β0
= pi · (1− pi)

∂ pi

∂β j
= Fj · pi · (1− pi)

j ∈ [1 . . .NF ]

where NF is the number of considered features. In this way, an analytical evaluation
of the probability uncertainty can be obtained using the uncertainty propagation
formula. One should note that the sensitivity coefficients are equal to zero for
perfect predictions (pi =0 %, pi =100 %) an their effect increases as the prediction
probabilities approach the value 50 %.

6.2.1 Correlation evaluation

The evaluation of correlation between couples of features Fj and couples of model
coefficients β j is a common practice in machine learning model training. To evaluate
the effects of correlation between features and coefficients, an absolute conditional
Pearson correlation matrix is calculated using the equation:

|rc|= |r| ·S+S (6.12)

S = (pvalue ≤ 0.05) (6.13)

r =
σXY

σX ·σY
(6.14)

where |r| is the absolute Pearson correlation matrix given by the ratio between
σXY , which is the covariance between feature X and Y and σX ·σY , which is the
product of the feature standard deviation. S is a logic binary condition that is 1
when the X-Y correlation is significative with a confidence level of 95 % and S is
its logic complement. According to Eq. 6.12, the correlations estimated with a high
significance level will have a |rc|< 1 and those that are not significative or perfectly
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correlated will have a |rc|= 1. The conditional correlation matrix of Eq. 6.12 can be
represented by a heatmap as shown in Fig 6.2.

Fig. 6.2 An example of rc correlation matrix. The cells in solid white represent the correla-
tions that were evaluated with a low significance level (p-value>0.05).

As shown in the heatmap, the correlation coefficients can be very high and a
considerable number of features couples show a correlation which has not been
possible to evaluate with a high significance level (solid white cells).

6.2.2 First approach: negligible correlation

If the correlation between features is low enough, a simplified uncertainty evaluation
can be performed using Eq. 3.8, here reported for clarity:

u(p) =

√
N

∑
i=1

(
∂ p
∂Fi

·u(Fi))2 +(
∂ p
∂βi

·u(βi))2 (6.15)
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The uncertainties u(Fi) of the features Fi can be extracted from the uncertainty
evaluation techniques showed in the previous sections. The uncertainties u(βi) of
the model coefficients βi are given by the training process which produces an array
of coefficients uncertainties. As an example, the Matlab function fitglm gives an
estimation of the coefficients along with their respective standard errors which are
evaluated with a certain p-value. The condition that allows to consider the mixed
effects as negligible is a necessary but not sufficient condition which can be explained
considering the correlation in Eq. 6.14. Considering a special case where σX ≈ σY

σXY = r ·σ2
X = r ·σ2

Y (6.16)

The relation above states that the covariance term between X and Y is r times the
variance term of X or Y. To have a significative difference between the covariance
and the variance terms a r<0.1 (r2 = 0.01) could be a feasible choice because it
guarantees a difference of an order of magnitude between the two terms.

6.2.3 General approach: mixed-terms evaluation

As previously stated, the low correlation between features is a necessary condition
to consider the mixed effects as negligible. From a general point of view this
assumption is not true, because the covariance terms multiply combinations of
sensitivity coefficients which can be very large and sometimes can produce even
negative terms. To solve this issue, a general matrix formulation is used to calculate
the uncertainty:

u(p) =
√

J ·COV · JT (6.17)

where COV is the variance-covariance matrix and J is the Jacobian of the input
features:

Ji j(F) =
∂ pi

∂Fj
; j ∈ [1 . . .NF ] ; i ∈ [1 . . .NS] (6.18)

Ji j(β ) =
∂ pi

∂β j
; j ∈ [1 . . .NF +1] ; i ∈ [1 . . .NS] (6.19)

where NF is the number of considered features, NS is the number of samples of
the dataset, Ji j(F) is the NS ×NF Jacobian matrix of the features, Ji j(β ) is the
NS × (NF +1) Jacobian matrix of the coefficients. Due to the different dimensions
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of the Jacobian and covariance matrices, the equation 6.17 can be rewritten as the
square root of two terms:

u(p) =
√

JFCOVFJT
F + JβCOVβ JT

β
(6.20)

6.3 Feature and model selection

For this work a brute force approach was used to select the combination of features
to train the logistic regression models. To accept or reject a feature combination
some common criteria have to be met:

• Correlation between each of the features lower than a certain threshold, evalu-
ated with a high significance level (p-value<0,05)

• Model coefficients evaluated with high significance (p-value<0,05)

In order to find the best LR model that separates the classes, a model score metrics,
using the equations described in equations 6.5 to 6.7, can be defined:

Score = Accuracy−|Sensitivity−Speci f icity| (6.21)

Using the Eq. 6.21, the feature selection algorithm can choose the model which
maximises the accuracy, balancing the Sensitivity and Specificity at the same time.
In Fig. 6.3 the flow-chart of a Common feature and model selection algorithm is
shown:
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Fig. 6.3 Flow chart of a common feature and model selection algorithm.

As shown in the flow-chart in Fig. 6.3, a non-repeated combination of 45 features
grouped in sets of 2,3,4,5 and 6 features is set using the Matlab function nchoosek.
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The number of non-repeated features combinations is given by the equation:(
n
k

)
=

n!
k! · (n− k)!

(6.22)

where n is the total number of extracted features and k is the number of considered
features. Considering n=45 extracted features (see the Appendix A for a detailed list)
and k ranging from 2 to 6 features, the number of possible non-repeated combinations
are:

• k=2:
(n

k

)
= 990

• k=3:
(n

k

)
= 14190

• k=4:
(n

k

)
= 148995

• k=5:
(n

k

)
= 1221759

• k=6:
(n

k

)
= 8145060

As showed in the list, the number of combination to test can reach very high values
so the feature selection algorithm becomes more computationally expensive as the
number of considered features rises. The algorithm depicted in Fig. 6.3 has two
principal components (highlighted by dashed boxes):

• Feature selection (green box)

• Model training (red box)

For each feature combination, the conditional correlation matrix |rc| is evaluated
using Eq. 6.12. If the i j feature combination have a |rc| less than a certain threshold
value the combination is valid and a Logistic Regression model is trained. If the LR
coefficients are estimated with a high significance level the model Score is evaluated
using Eq. 6.21. This evaluation goes on until every combination of features was
tested. The trained model with the highest score is labeled as the best model. The
algorithm depicted in Fig. 6.3 represent a common feature and model selection and
to compare it to the proposed method it will be referred as common selection (CS) .



6.3 Feature and model selection 137

6.3.1 Proposed feature and model selection

The proposed feature and model selection (PS) uses the informations achieved in the
previous section to produce weighted classification models. To take into account the
features uncertainty evaluations, a modified version of the model training component
(red dashed box), shown in Fig. 6.3 is presented in Fig. 6.4.
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Fig. 6.4 Flow chart of the proposed model training algorithm.

As shown in the figure, an alternative model training algorithm is inserted after
the correlation check module and before the score evaluation. Such module trains
a LR model using the candidate set of features weighting each sample using Eq.
6.9. Moreover, the uncertainty of each predicted probability is evaluated to produce
a confidence interval around the probability values. An example of two features
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logistic regression model is presented in Fig. 6.5 to better understand the selection
mechanism .

Fig. 6.5 Predicted probabilities of the PD vs. HE subset using two features. The highlighted
red areas represent the subset of non-classified subjects. All the accuracy metrics are
expressed as %.

As shown in Fig. 6.5, an example of two features (apq and ARMS(mean), see the
Appendix A for details) trained model is presented. The plot on the top row represent
the CS model (purple line, unweighted) and the PS model (blue line, weighted)
predicted probabilities of belonging to the HE class or the PD class. The predicted
probability values were sorted in ascending order to obtain the typical sigmoid curve.
As shown in Fig. 6.5, the determination of a confidence interval around the predicted
probabilities allow to define a third class of "non-classified" subjects (the red areas
on the top and bottom plots). Such subjects have a predicted probability range which
intersects the decisional threshold of 0.5. Removing the indeterminate predictions,
the middle plot of Fig. 6.5 is obtained. The probability confidence intervals can be
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projected on the features hyperplane, as shown in the bottom plot of Fig. 6.5. From a
metrologic point of view, the subjects who fall in the red area are just indeterminate
and nothing can be done about it except taking more measurements hoping that the
confidence intervals will shrink after such an operation. Such a threshold comparison
experiment is a very common practice in the metrologic evaluation of car speed
performed by automatic road speedometers. Commonly the tolerance for the car
speed evaluated by a speedometer is set around ±5 km/h to take into account the
accuracy of the driver in evaluating the car speed through the speedometer mounted
in the car dashboard. So if the speed limit of a particular road is 80 km/h, any
speed between 75 km/h and 85 km/h should be considered as indeterminate. How to
deal with such an indetermination? In Italy the indetermination is solved using an
Italian legal paradigm known as "presunzione di innocenza" which can be roughly
translated to "innocent until proven guilty". So, in an indetermination situation, the
government cannot prove beyond any reasonable doubt that the car was actually
going over 80 km/h and the driver is automatically considered as innocent. Using a
similar paradigm new classification metrics were defined:

• Accuracy of the proposed selection method (PS): the non-classified are classi-
fied (the probability confidence interval is not considered):

AccuracyPS =
(T P+T N)

(T P+T N +FP+FN)
(6.23)

• Pessimistic Accuracy: the non-classified are False:

Accuracyp =
(T Pc +T Nc)

T P+T N +FP+FN
(6.24)

• Realistic Accuracy: the non-classified are not considered:

Accuracyr =
(T Pc +T Nc)

(T Pc +T Nc +FPc +FNc)
(6.25)

• Optimistic Accuracy: the non-classified are True:

Accuracyo =
(T Pc +T Nc)+(N −Nc)

(T P+T N +FP+FN)
(6.26)
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• Fraction of classified: the fraction of classified subjects with respect to the
total number of samples:

Fc =
Nc

N
(6.27)

where the subscript c refers to the samples whose predictions have confidence inter-
vals that do not intersect the decisional threshold, N is the total number of samples
and Nc is the number of classified samples. According to the new metrics, an evalua-
tion of worst case scenario (pessimistic accuracy) and best case scenario (optimistic
accuracy) can be performed giving more information about the classification perfor-
mances of the prediction models. A new score definition is proposed modifying Eq.
6.21 to maximise the performance of the selected model :

Scorep = Accuracyp −|Sensitivity−Speci f icity| (6.28)

where Accuracyp is the pessimistic accuracy. In this way the optimization process
tries to maximise the pessimistic accuracy, which strongly depends on the Fraction
of classified, while balancing sensitivity and specificity.

6.4 Training experiments

The production of artificial vowels tries to replace the ability of the subject to produce
repeated tasks in a reproducible way. According to this procedure, it is possible to
evaluate the effect of the measuring chain uncertainty contributions on the training
of the classification algorithm. Some training experiments were carried out on the
subjects dataset to evaluate the performance of the proposed method. The models
were evaluated using the two approaches described in sections 6.2.2 and 6.2.3:

1. first approach: negligible correlation - |rc|< 0.1 (r2 < 0.01)

2. general approach: mixed-terms evaluation |rc|< 0.7 (r2 ≲ 0.5)

A common training experiment (CS) as described in Sec. 6.3 was performed (setting
|rc|< 0.7) to compare the classification performances with the ones of the proposed
method (PS). Each dispersion parameter was multiplied by a coverage factor chosen
using the inverse T-student with a 95 % confidence limit (≈ 2). For each original
vowel 10 artificial vowels were generated using the re-synthesis method described in
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Sec. 4.1. A total of 900 artificial vowels were generated for the three clinical classes
(PD, HE, PA). The Original and artificial data were combined in different ways to
evaluate the differences between the models:

6.4.1 Using original data

Four combinations are possible when using the original dataset to train the models

1. Training data=Original data (FM(OR))
Data uncertainty=squared sum of bias plus two times the standard error of
the artificial data (Eq. 6.33)
Prediction uncertainty: no mixed-terms evaluation (Eq. 6.15)

2. Training data=Original data (FM(OR))
Data uncertainty=squared sum of bias plus two times the standard error of
the artificial data (Eq. 6.33)
Prediction uncertainty: with mixed-terms evaluation (Eq. 6.20)

3. Training data=Original data (bias removed, FM(OR)∗, Eq. 6.30)
Data uncertainty=two times the standard error of the artificial data (Eq. 6.32)
Prediction uncertainty: no mixed-terms evaluation (Eq. 6.15)

4. Training data=Original data (bias removed, FM(OR)∗, Eq. 6.30)
Data uncertainty=two times the standard error of the artificial data (Eq. 6.32)
Prediction uncertainty: with mixed-terms evaluation (Eq. 6.20)

The bias removal process is carried out considering the bias evaluations performed
in the previous section, i.e. using Eq. 5.5 as in Section 5.1.3, where an average
evaluation for each class was presented. For this training experiment, a different bias
value for each i-th vowel was considered modifying Eq. 5.5 in order to obtain an
evaluation of the bias of each i vowel using Eq. 6.29:

BIASART−MC(i) =
∑

10
j=1 F j

M[ARTEXT (i)]−F j
R [MC(i)]

10
(6.29)

This bias evaluation can be used to correct the input data respect to a trusted source.
The BIAS can be removed from the original data matrix FM(OR) using Eq. 6.30

F i
M(OR)∗ = F i

M(OR)−BIASART−MC(i) (6.30)
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where F i
M(OR)∗ is the original features matrix after the bias correction. The dis-

persion of the original data is evaluated as the standard error of the corresponding
measured artificial data:

DISPART (i) =

√
∑

10
j=1(F

j
M [ARTEXT (i)]−F j

M [ARTEXT (i)])2

10√
10

(6.31)

The uncertainty of the i− th feature is evaluated as two times the standard error of
the the artificial data when the bias is removed (using Eq. 6.30) from the original
data F i

M(OR):
UOR(i) = 2 ·DISPART (i) (6.32)

If the bias is not removed, a different uncertainty parameter is calculated including
the bias contribution:

UOR(i) =
√

(BIASART−MC(i))2 + ·(2 ·DISPART (i))2 (6.33)

In this way, the original data, bias corrected (F i
M(OR)∗) or not (F i

M(OR)), is con-
sidered as an "expected mean value" surrounded by a cloud of 10 artificial values,
which have a dispersion equal to the one evaluated in the previous sections. The
standard error, which is the standard deviation divided by the square root of the
number of samples, is considered as the uncertainty of an averaging process which
actually never took place in this experiment. This happens because of the impossibil-
ity of asking to a subject to produce identical tasks in order to separate the human
contribution from the machine contribution.

6.4.2 Using artificial data

The proposed method can work also as a data boosting procedure to increase the
size of the training dataset. To take advantage of such a method, four different
combinations of input data have to be defined:

1. Training data=Artificial data (FM(ART ))
Data uncertainty=squared sum of bias plus two times the standard deviation
of the artificial data (Eq. 6.38)
Prediction uncertainty: no mixed-terms evaluation (Eq. 6.15)
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2. Training data=Artificial data (FM(ART ))
Data uncertainty=squared sum of bias plus two times the standard deviation
of the artificial data (Eq. 6.38)
Prediction uncertainty: with mixed-terms evaluation (Eq. 6.20)

3. Training data=Artificial data (bias removed, FM(ART )∗, Eq. 6.35)
Data uncertainty=standard deviation of the artificial data (Eq. 6.36)
Prediction uncertainty: no mixed-terms evaluation (Eq. 6.15)

4. Training data=Artificial data (bias removed, FM(ART )∗, Eq. 6.35)
Data uncertainty=standard deviation of the artificial data (Eq. 6.36)
Prediction uncertainty: with mixed-terms evaluation (Eq. 6.20)

According to these choices, each of the data of the artificial clouds have a certain
probability of belonging to its distribution, which is equal to the standard deviation
multiplied by a coverage factor. The bias removal process is different in this case
because of the generation uncertainties seen in Sec. 5.1.1. To consider the artificial
data as representative of the original vowel from which they were generated, their
values should be scattered around the original data. To achieve this, the generation
bias, evaluated in Sec. 5.1.1 and the extraction bias, evaluated in Sec. 5.1.3, have
to be removed from the artificial data. The equations 6.29, 6.30 and 6.31 are then
modified as follows:

BIASART−MC−OR(i) =
∑

10
j=1 F j

M[ARTEXT (i)]−F j
R [MC(i)])

10
+

∑
10
j=1 F j

M[MC(i)]−F i
M(OR))

10
(6.34)

F i
M(ART )∗ = F i

M(ART )−BIASART−MC−OR(i)
(6.35)

DISPART (i) =

√
∑

10
j=1(F

k
M[ARTEXT (i)]−F j

M[ARTEXT (i)])2

10
(6.36)

The uncertainty of the i-th feature is evaluated as two times the standard deviation of
the the artificial data when the bias is removed (using Eq. 6.34) from the artificial
data F i

M(ART ) :
UART (i) = 2 ·DISPART (i) (6.37)
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If the bias is not corrected, a different equation is used to include the bias contribution
:

UART (i) =
√
(BIASART−MC−OR(i))2 + ·(2 ·DISPART (i))2 (6.38)

6.5 Training experiments results on extracted features
(EXT contribution)

The model metrics in this section are relative to the models trained with the features
and their uncertainties extracted from the "short" measuring chain (using the architec-
ture described in Sec. 5.1. The uncertainty evaluations of the extraction contribution
were used to train the weighted logistic regressions and to evaluate the probability
confidence intervals. In particular, the evaluated metrics in this section are:

• CS features: selected features of the common feature and model selection
algorithm defined in Sec. 6.3 (green column)

• PS features: selected features of the proposed feature and model selection
algorithm defined in Sec. 6.3.1 (light blue column)

• CS Accuracy: prediction accuracy (Eq. 6.5) of the common feature and model
selection algorithm defined in Sec. 6.3 (green column)

• PS Accuracy: prediction accuracy (Eq. 6.23) of the proposed feature and
model selection algorithm defined in Sec. 6.3.1, (light blue column)

• AUC: area under curve, a metric which measures the ability of the model to
distinguish between classes.

• Sens.: sensitivity, as defined in Eq. 6.6

• Spec.: specificity, as defined in Eq. 6.7

• Fraction of classified: as defined in Eq. 6.27

• Pess. Acc.: pessimistic accuracy, as defined in Eq. 6.24

• Real. Acc.: realistic accuracy, as defined in Eq. 6.25

• Opt. Acc.: optimistic accuracy, as defined in Eq. 6.26



146 Machine learning algorithms

• Scorep: proposed model score, as defined in Eq. 6.28

The columns after the PS Acc report the model metrics of the PS algorithm. For
graphical reasons, the selected features are identified with a number corresponding
to the features reported in the Appendix A. The rows highlighted in red represent a
failure of the feature and model selection algorithm in finding a set of features and/or
a model that meet the conditions described in sections 6.3 and 6.3.1.

6.5.1 Training experiments using original data

In this section, the results of the training experiments using the original data is
presented. The data were pre-processed removing or not the bias using Eq. 6.30.
The Data uncertainty were evaluated using equations 6.32 or 6.33. The probability
uncertainty was evaluated using equations 6.15 or 6.20. The models were trained to
find the best combination of features which maximises the score given by equations
6.21 and 6.28. The classification metrics in this section are not validated but an
example of the model validations will be presented in Sec. 6.7. A summary of the
results is shown in Tabs. 6.1 and 6.2.

PD vs. HE training results

In Tab. 6.1 the results of the training experiments for the PD vs. HE subset are
presented. The numbers of the selected features refer to the equations and definitions
summarised in the Appendix A.
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Table 6.1 CS and PS accuracy metrics for the PD vs. HE subset.

N° Features
Mixed

terms eval.
Bias

removal
CS

Features
PS

Features
CS

Acc %
PS

Acc %
AUC % Sens. % Spec. %

Fraction of
classified %

Pess.
Acc. %

Real.
Acc. %

Opt.
Acc %

Scorep%

2 No No 11 28 8 28 87 88 93 96 92 87 82 94 95 77
2 Yes No 11 28 8 29 87 90 94 96 89 93 87 93 93 80
2 No Yes 7 28 8 28 93 90 93 96 92 88 83 94 95 79
2 Yes Yes 7 28 1 12 93 88 89 89 89 93 83 89 90 83
3 No No 10 30 31 6 30 31 90 88 92 96 88 85 78 92 93 70
3 Yes No 10 30 31 9 11 28 90 90 94 93 93 93 87 93 93 86
3 No Yes 10 30 32 8 29 40 88 88 96 93 91 83 77 92 93 75
3 Yes Yes 10 30 32 6 12 28 88 93 93 93 93 95 88 93 93 88
4 No No 5 11 30 31 5 7 30 31 93 88 96 96 91 83 78 94 95 73
4 Yes No 5 11 30 31 7 9 17 29 93 90 94 97 96 92 88 96 97 88
4 No Yes 5 10 30 31 8 9 28 40 93 90 99 96 92 87 82 94 95 78
4 Yes Yes 5 10 30 31 7 12 28 40 93 92 93 93 93 97 90 93 93 90
5 No No 5 9 13 15 29 4 5 9 29 40 90 87 99 95 95 65 62 95 97 61
5 Yes No 5 9 13 15 29 5 10 12 30 31 90 92 96 93 90 95 87 91 92 83
5 No Yes 4 5 9 29 40 1 5 9 29 40 88 87 97 92 91 78 72 91 93 71
5 Yes Yes 4 5 9 29 40 6 9 12 28 40 88 90 95 93 93 97 90 93 93 90
6 No No Not Found Not Found
6 Yes No Not Found 5 9 10 12 29 40 88 97 93 92 88 82 92 93 81
6 No Yes Not Found Not Found
6 Yes Yes Not Found 1 8 9 12 28 40 93 97 96 96 90 87 96 97 87

PD vs. PA training results

In Tab. 6.2 the results of the training experiments for the PD vs. PA subset are
presented. The numbers of the selected features refer to the equations and definitions
summarised in the Appendix A.

Table 6.2 CS and PS accuracy metrics for the PD vs. PA subset.

N° Features
Mixed

terms eval.
Bias

removal
CS

Features
PS

Features
CS

Acc %
PS

Acc %
AUC % Sens. % Spec. %

Fraction of
classified %

Pess.
Acc. %

Real.
Acc. %

Opt.
Acc %

Scorep%

2 No No 32 37 9 28 77 67 69 75 59 77 52 67 75 36
2 Yes No 31 37 5 43 77 70 72 76 71 88 65 74 77 60
2 No Yes 31 37 32 37 77 75 90 89 81 58 50 86 92 42
2 Yes Yes 31 37 31 38 77 77 82 83 70 93 72 77 78 59
3 No No 31 34 43 32 34 43 85 75 95 100 91 47 45 96 98 36
3 Yes No 31 34 43 1 5 38 85 70 73 76 75 88 67 75 78 66
3 No Yes 31 34 43 32 34 43 80 78 94 94 92 48 45 93 97 44
3 Yes Yes 31 34 43 14 23 38 80 78 82 78 78 90 70 78 80 70
4 No No Not Found Not Found
4 Yes No Not Found 5 7 12 38 72 75 74 75 85 63 75 78 62
4 No Yes Not Found Not Found
4 Yes Yes Not Found 22 31 34 43 78 84 82 77 90 72 80 82 66
5 No No Not Found Not Found
5 Yes No Not Found 5 9 12 32 38 77 88 88 79 83 70 84 87 61
5 No Yes Not Found Not Found
5 Yes Yes Not Found 5 8 16 41 42 67 84 78 73 82 62 76 80 56
6 No No Not Found Not Found
6 Yes No Not Found Not Found
6 No Yes Not Found Not Found
6 Yes Yes Not Found 2 5 12 16 41 42 72 78 71 74 72 52 72 80 49

The results in Tabs. 6.1 and 6.2 are depicted in Figs. 6.6 and 6.7 where the CS,
PS, realistic, pessimistic and optimistic Accuracy are presented.
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(a) 2 Features (b) 3 Features

(c) 4 Features (d) 5 Features

(e) 6 Features

Fig. 6.6 Classification results for the PD vs. HE subset using original data.
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(a) 2 Features (b) 3 Features

(c) 4 Features (d) 5 Features

(e) 6 Features

Fig. 6.7 Classification results for the PD vs. PA subset using original data.
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6.5.2 Training experiments using artificial data (boosting tech-
nique)

The results of the training experiments using the artificial data are presented in this
section. The data were pre-processed removing or not the bias using Eq. 6.35.
The Data uncertainty were evaluated using equations 6.36 or 6.37. The probability
uncertainty was evaluated using equations 6.15 or 6.20. The models were trained to
find the best combination of features which maximises the score given by equations
6.21 and 6.28. The classification metrics in this section are not validated, but an
example of the model validations will be presented in Sec. 6.7. A summary of the
results is shown in Tabs. 6.3 and 6.4.

PD vs. HE training results

In Tab. 6.3 the results of the training experiments for the PD vs. HE subset are
presented. The numbers of the selected features refer to the equations and definitions
summarised in the Appendix A.

Table 6.3 CS and PS accuracy metrics for the PD vs. HE subset (boosted).

N° Features
Mixed

terms eval.
Bias

removal
CS

Features
PS

Features
CS

Acc %
PS

Acc %
AUC % Sens. % Spec. %

Fraction of
classified %

Pess.
Acc. %

Real.
Acc. %

Opt.
Acc %

Scorep%

2 No No 10 29 2 31 89 81 85 85 80 91 75 83 85 70
2 Yes No 10 29 8 34 89 90 94 95 87 96 88 91 91 80
2 No Yes 10 34 6 34 92 86 92 97 88 90 84 93 93 75
2 Yes Yes 10 34 10 29 92 90 91 89 93 93 85 91 92 81
3 No No 11 28 43 11 27 34 91 91 95 96 94 78 74 95 96 73
3 Yes No 11 28 43 11 34 43 91 92 97 93 92 95 89 93 93 88
3 No Yes 11 22 34 8 28 36 93 88 96 96 92 89 84 94 95 80
3 Yes Yes 11 22 34 11 34 37 93 93 95 93 93 97 90 93 93 90
4 No No 11 23 34 37 7 22 27 34 93 92 94 96 96 79 76 96 97 76
4 Yes No 11 23 34 37 7 12 34 43 93 93 94 93 93 97 91 93 93 90
4 No Yes 14 16 30 8 9 12 29 97 91 96 96 96 86 82 96 97 82
4 Yes Yes 14 16 30 11 34 37 44 97 93 96 93 93 98 92 93 93 91
5 No No 9 10 32 34 42 7 27 31 34 42 95 92 97 96 95 80 77 96 97 76
5 Yes No 9 10 32 34 42 7 12 28 31 43 95 93 96 93 93 98 92 93 93 91
5 No Yes 4 9 34 39 40 11 27 30 31 42 99 95 95 97 93 97 92 95 95 88
5 Yes Yes 4 9 34 39 40 4 9 28 39 40 99 99 100 100 100 92 92 100 100 91
6 No No 8 9 23 34 37 40 8 9 23 34 38 40 98 98 100 100 100 86 85 100 100 85
6 Yes No 8 9 23 34 37 40 1 5 8 30 31 37 98 95 99 97 96 96 93 96 97 92
6 No Yes 9 11 14 32 34 38 4 9 12 34 39 40 100 99 100 100 100 92 91 100 100 91
6 Yes Yes 9 11 14 32 34 38 4 9 34 39 40 44 100 100 100 100 100 95 95 100 100 95

PD vs. PA training results

In Tab. 6.4 the results of the training experiments for the PD vs. PA subset are
presented. The numbers of the selected features refer to the equations and definitions
summarised in the Appendix A.
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Table 6.4 CS and PS accuracy metrics for the PD vs. PA subset (boosted).

N° Features
Mixed

terms eval.
Bias

removal
CS

Features
PS

Features
CS

Acc %
PS

Acc %
AUC % Sens. % Spec. %

Fraction of
classified %

Pess.
Acc. %

Real.
Acc. %

Opt.
Acc %

Scorep%

2 No No 32 43 9 28 76 66 69 70 64 84 57 67 73 50
2 Yes No 32 43 8 32 76 72 73 70 75 89 65 72 75 60
2 No Yes 32 37 8 31 77 65 68 66 68 81 55 67 73 53
2 Yes Yes 32 37 31 43 77 77 81 86 72 95 75 79 80 62
3 No No 6 34 43 32 33 38 84 80 98 96 96 60 57 96 98 57
3 Yes No 6 34 43 8 34 38 84 84 92 89 84 91 79 86 88 75
3 No Yes 15 34 38 15 34 37 83 80 87 86 83 75 63 84 88 60
3 Yes Yes 15 34 38 15 34 37 83 80 86 85 82 92 77 84 85 74
4 No No 8 32 33 42 8 30 32 38 90 89 100 100 100 72 72 100 100 71
4 Yes No 8 32 33 42 8 32 33 37 90 89 98 93 91 91 84 92 93 82
4 No Yes 10 29 32 43 10 32 34 38 87 85 97 96 95 73 70 95 97 70
4 Yes Yes 10 29 32 43 15 30 32 42 0 85 95 93 92 88 82 92 93 81
5 No No 8 23 32 33 38 5 8 32 33 38 90 90 100 99 100 72 71 99 100 71
5 Yes No 8 23 32 33 38 5 8 32 33 37 90 90 98 93 92 92 85 93 93 84
5 No Yes 10 14 29 32 43 7 23 32 34 38 90 89 97 95 95 73 69 95 96 68
5 Yes Yes 10 14 29 32 43 10 30 32 38 41 90 85 98 93 92 90 83 93 93 83
6 No No 5 8 32 33 34 38 5 8 30 32 34 38 92 91 100 100 97 74 72 98 99 69
6 Yes No 5 8 32 33 34 38 8 12 30 32 34 42 92 91 96 95 94 89 84 95 95 84
6 No Yes 16 30 32 37 41 45 7 23 30 32 34 38 93 86 99 97 95 73 71 96 97 69
6 Yes Yes 16 30 32 37 41 45 10 12 30 32 34 37 93 88 94 93 93 92 85 93 93 85

The results in Tabs. 6.3 and 6.4 are depicted in Figs. 6.8 and 6.9 where the CS,
PS, realistic, pessimistic and optimistic Accuracy are presented.
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(a) 2 Features (b) 3 Features

(c) 4 Features (d) 5 Features

(e) 6 Features

Fig. 6.8 Classification results for the PD vs. HE subset using artificial data.
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(a) 2 Features (b) 3 Features

(c) 4 Features (d) 5 Features

(e) 6 Features

Fig. 6.9 Classification results for the PD vs. PA subset using artificial data.
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6.6 Training experiments results on whole chain data
(ACO+ACQ+EXT contribution)

PD vs. HE training results

In this section the results of the training experiments using the original data extracted
from the audio recordings using the HATS (see Sec. 5.5) is presented. The data were
pre-processed removing or not the bias using Eq. 6.35. The Data uncertainty were
evaluated using equations 6.36 or 6.37. The probability uncertainty was evaluated
using equations 6.15 or 6.20. The models were trained to find the best combination
of features which maximises the score given by equations 6.21 and 6.28. The
classification metrics in this section are not validated, but an example of the model
validations will be presented in Sec. 6.7. A summary of the results is shown in Tabs.
6.5 and 6.6. In Tab. 6.5 the results of the training experiments for the PD vs. HE
subset are presented. The numbers of the selected features refer to the equations and
definitions summarised in the Appendix A.

Table 6.5 CS and PS accuracy metrics for the PD vs. HE subset (whole chain).

N° Features
Mixed

terms eval.
Bias

removal
CS

Features
PS

Features
CS

Acc %
PS

Acc %
AUC % Sens. % Spec. %

Fraction of
classified %

Pess.
Acc. %

Real.
Acc. %

Opt.
Acc %

Scorep %

2 No No 11 28 10 28 87 92 92 92 92 83 77 92 93 76
2 Yes No 11 28 10 29 87 90 91 90 93 93 85 91 92 82
2 No Yes 8 33 10 28 87 92 92 92 92 83 77 92 93 76
2 Yes Yes 8 33 10 29 87 90 91 90 93 93 85 91 92 82
3 No No 10 30 31 10 22 31 90 80 88 89 88 85 75 88 90 74
3 Yes No 10 30 31 5 7 29 90 92 93 93 93 95 88 93 93 88
3 No Yes 10 30 31 10 22 31 90 80 88 89 88 85 75 88 90 74
3 Yes Yes 10 30 31 10 30 31 90 90 93 90 89 95 85 89 90 84
4 No No 5 11 30 31 10 22 30 31 93 92 96 96 92 85 80 94 95 76
4 Yes No 5 11 30 31 4 5 31 42 93 90 95 93 93 95 88 93 93 88
4 No Yes 5 10 30 31 10 22 30 31 90 92 96 96 92 85 80 94 95 76
4 Yes Yes 5 10 30 31 5 11 30 31 90 88 96 93 93 93 87 93 93 86
5 No No 5 9 13 15 29 4 5 12 31 42 90 90 100 100 100 63 63 100 100 63
5 Yes No 5 9 13 15 29 6 12 30 31 40 90 92 94 93 93 95 88 93 93 88
5 No Yes 4 5 9 31 39 4 5 9 31 37 90 92 99 96 96 77 73 96 97 73
5 Yes Yes 4 5 9 31 39 5 10 12 30 31 90 88 95 93 93 95 88 93 93 88
6 No No Not found Not found
6 Yes No Not found 1 5 12 31 40 42 90 98 93 93 92 85 93 93 85
6 No Yes Not found Not found
6 Yes Yes Not found 5 6 9 12 29 41 90 93 93 93 93 87 93 93 86

PD vs. PA training results

In Tab. 6.6 the results of the training experiments for the PD vs. PA subset are
presented. The numbers of the selected features refer to the equations and definitions
summarised in the Appendix A.
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Table 6.6 CS and PS accuracy metrics for the PD vs. PA subset (whole chain).

N° Features
Mixed

terms eval.
Bias

removal
CS

Features
PS

Features
CS

Acc %
PS

Acc %
AUC % Sens. % Spec. %

Fraction of
classified %

Pess.
Acc. %

Real.
Acc. %

Opt.
Acc %

Scorep %

2 No No 32 37 31 38 77 73 87 82 76 57 45 79 88 39
2 Yes No 32 37 31 38 77 73 82 78 75 92 70 76 78 67
2 No Yes 32 37 31 38 77 73 87 82 76 57 45 79 88 39
2 Yes Yes 32 37 31 38 77 73 82 78 75 92 70 76 78 67
3 No No 31 34 43 32 34 43 85 80 96 94 93 55 52 94 97 51
3 Yes No 31 34 43 5 31 43 85 73 81 73 73 93 68 73 75 68
3 No Yes 31 34 43 32 34 43 85 80 96 94 93 55 52 94 97 51
3 Yes Yes 31 34 43 1 5 38 85 73 75 74 72 93 68 73 75 67
4 No No Not found Not found
4 Yes No Not found 12 23 38 40 73 74 73 73 87 63 73 77 63
4 No Yes Not found Not found
4 Yes Yes Not found 5 12 32 37 77 86 82 75 93 73 79 80 66
5 No No Not found Not found
5 Yes No Not found 5 9 12 32 38 78 85 84 78 87 70 81 83 64
5 No Yes Not found Not found
5 Yes Yes Not found 9 12 23 32 37 80 88 81 79 83 67 80 83 65
6 No No Not found Not found
6 Yes No Not found Not found
6 No Yes Not found Not found
6 Yes Yes Not found 9 12 14 23 32 37 80 94 86 89 67 58 88 92 56

The results in Tabs. 6.5 and 6.6 are depicted in Figs. 6.10 and 6.11 where the CS,
PS, realistic, pessimistic and optimistic Accuracy are presented.
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(a) 2 Features (b) 3 Features

(c) 4 Features (d) 5 Features

(e) 6 Features

Fig. 6.10 Classification results for the PD vs. HE subset using original data extracted from
the whole chain.
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(a) 2 Features (b) 3 Features

(c) 4 Features (d) 5 Features

(e) 6 Features

Fig. 6.11 Classification results for the PD vs. PA subset using original data extracted from
the whole chain.
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6.7 Classification models validation

In order to validate the models trained in the previous sections, a subset of subjects
was extracted from the dataset. During the research activities, due to the difficulties
in accessing public health facilities due to the Covid 19 emergency, the validation
dataset could not be balanced in terms of subject age as in the case of the training
subset. The validation subset includes:

• Parkinson patients (PD): N=10 (5 M, 5 F), mean age 59, standard deviation 7

• Healthy subjects (HE): N=10 (5 M, 5 F), mean age 36, standard deviation 9

• Pathological non-Parkinsonian patients (PA): N=10 (5 M, 5 F), mean age 46,
standard deviation 12

Fig. 6.12 Mean ages of the validation subset.

The audio files of the validation subset were processed in order to extract the
features and evaluate the extraction uncertainty as shown in Sec. 5.1. The features
and the relative uncertainties were used to predict the classification of PD, HE and
PA subjects using the models trained in the previous sections. The tables 6.7 and 6.8
summarise the results of the classification metrics.



6.7 Classification models validation 159

6.7.1 Validation of the models trained with the original data

In this section the models trained with the original data, as described in Sec. 6.5.1,
were used to predict the health status of the PD vs. HE subset and the PD vs. PA
subset.

PD vs. HE validation results

Table 6.7 CS and PS accuracy metrics for the PD vs. HE subset (validation).

N° Features
Mixed

terms eval.
Bias

removal
CS

Acc %
PS

Acc %
AUC % Sens. % Spec. %

Fraction of
classified %

Pess.
Acc. %

Real.
Acc. %

Opt.
Acc %

Scorep %

2 No No 70 75 83 93 64 85 68 80 83 39
2 Yes No 70 75 82 88 62 97 73 76 77 47
2 No Yes 73 75 81 90 65 90 72 80 82 47
2 Yes Yes 73 72 83 71 84 88 68 77 80 56
3 No No 75 75 83 93 68 82 67 82 85 42
3 Yes No 75 75 75 78 68 95 70 74 75 60
3 No Yes 68 70 76 89 52 80 58 73 78 22
3 Yes Yes 68 70 78 81 68 87 65 75 78 52
4 No No 65 65 62 86 50 87 60 69 73 24
4 Yes No 65 73 83 87 64 92 70 76 78 47
4 No Yes 63 68 79 92 46 83 58 70 75 12
4 Yes Yes 63 70 78 82 63 92 67 73 75 47
5 No No 65 62 63 71 53 67 42 63 75 23
5 Yes No 65 63 52 76 44 90 55 61 65 23
5 No Yes 63 67 70 79 57 85 58 69 73 36
5 Yes Yes 63 75 78 79 64 90 65 72 75 50
6 No No Not found Not found
6 Yes No Not found 63 56 80 45 87 57 65 70 22
6 No Yes Not found Not found
6 Yes Yes Not found 78 84 82 72 88 68 77 80 58
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PD vs. PA validation results

Table 6.8 CS and PS accuracy metrics for the PD vs. PA subset (validation).

N° Features
Mixed

terms eval.
Bias

removal
CS

Acc %
PS

Acc %
AUC % Sens. % Spec. %

Fraction of
classified %

Pess.
Acc. %

Real.
Acc. %

Opt.
Acc %

Scorep %

2 No No 49 63 90 96 70 58 51 88 93 25
2 Yes No 49 60 74 33 96 91 58 63 67 -5
2 No Yes 54 70 99 100 82 65 60 92 95 42
2 Yes Yes 54 72 85 83 59 98 70 71 72 47
3 No No 54 86 100 100 100 54 54 100 100 54
3 Yes No 54 60 71 36 92 89 58 65 68 2
3 No Yes 49 84 99 100 93 58 56 97 98 49
3 Yes Yes 49 70 80 58 92 88 67 76 79 33
4 No No Not found Not found
4 Yes No 49 70 70 48 100 81 60 74 79 7
4 No Yes Not found Not found
4 Yes Yes 51 82 90 86 83 91 77 85 86 75
5 No No Not found Not found
5 Yes No 53 86 98 96 95 77 74 95 96 73
5 No Yes Not found Not found
5 Yes Yes 54 72 76 52 91 77 56 73 79 17
6 No No Not found Not found
6 Yes No Not found Not found
6 No Yes Not found Not found
6 Yes Yes Not found 65 64 47 95 63 46 72 82 -2

6.7.2 Boosting method validation

The models trained with the boosting method described in Sec. 6.5.2 were used
to predict the subject’s class using data extracted from the validation subset. The
original data were boosted using the methods described in the previous sections.
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PD vs. HE validation results (boosting method)

Table 6.9 CS and PS accuracy metrics for the PD vs. HE subset (validation, boosted).

N° Features
Mixed

terms eval.
Bias

removal
CS

Acc %
PS

Acc %
AUC % Sens. % Spec. %

Fraction of
classified %

Pess.
Acc. %

Real.
Acc. %

Opt.
Acc %

Scorep %

2 No No 74 71 85 75 72 80 59 74 79 56
2 Yes No 74 77 83 90 63 95 74 78 79 47
2 No Yes 75 77 82 90 62 92 71 77 79 43
2 Yes Yes 75 75 71 78 69 97 72 74 75 63
3 No No 74 73 80 85 69 83 65 78 82 48
3 Yes No 74 74 84 79 72 95 72 76 77 65
3 No Yes 68 76 81 86 66 87 67 77 80 47
3 Yes Yes 68 75 78 79 69 98 73 75 75 64
4 No No 77 74 77 89 65 83 65 79 82 41
4 Yes No 77 79 87 87 74 92 75 81 83 61
4 No Yes 70 77 83 84 77 85 69 81 84 62
4 Yes Yes 70 75 79 78 69 97 72 74 75 63
5 No No 71 75 90 93 73 71 60 83 88 40
5 Yes No 71 69 85 62 81 95 68 71 73 48
5 No Yes 68 72 77 77 72 85 63 75 78 58
5 Yes Yes 68 68 76 75 63 91 63 70 72 52
6 No No 68 68 80 82 56 87 61 71 75 35
6 Yes No 68 64 78 64 67 94 61 65 67 58
6 No Yes 45 72 76 78 69 93 69 74 76 59
6 Yes Yes 45 70 80 76 64 99 70 70 71 58

PD vs. PA validation results (boosting method)

Table 6.10 CS and PS accuracy metrics for the PD vs. PA subset (validation, boosted).

N° Features
Mixed

terms eval.
Bias

removal
CS

Acc %
PS

Acc %
AUC % Sens. % Spec. %

Fraction of
classified %

Pess.
Acc. %

Real.
Acc. %

Opt.
Acc %

Scorep %

2 No No 56 67 86 93 42 81 58 72 77 7
2 Yes No 56 58 67 79 40 88 52 59 64 13
2 No Yes 58 52 55 66 35 76 40 53 65 10
2 Yes Yes 58 77 88 83 76 88 70 80 82 64
3 No No 59 83 96 100 86 71 68 95 96 53
3 Yes No 59 87 96 97 91 89 84 94 95 78
3 No Yes 53 84 90 90 83 67 58 87 91 51
3 Yes Yes 53 84 88 85 81 84 70 83 86 66
4 No No 71 90 98 100 89 72 69 96 97 58
4 Yes No 71 89 98 100 81 92 84 92 93 66
4 No Yes 58 89 96 100 90 77 74 95 96 64
4 Yes Yes 58 86 96 100 76 86 77 90 91 53
5 No No 76 86 97 100 80 74 69 93 95 49
5 Yes No 76 84 97 100 72 91 80 88 89 52
5 No Yes 66 87 99 100 95 76 74 98 98 69
5 Yes Yes 66 88 96 100 84 93 86 92 93 70
6 No No 67 89 96 100 79 70 64 92 95 43
6 Yes No 67 87 95 100 74 89 80 89 90 54
6 No Yes 47 91 99 100 95 79 78 98 98 73
6 Yes Yes 47 89 94 93 88 96 88 91 91 82
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6.8 Results discussion and comparisons

This section summarizes the obtained data in order to highlight the main results of the
training experiments. In particular the effect of Bias removal, mixed terms evaluation,
data boosting will be analysed. Moreover a comparison between the classification
performances of the "short" measuring chain (considering just the feature extraction
contribution) and the performances of the whole measuring chain will be discussed.
Lastly, a discussion on the data presented for the validation experiments will be
carried out in order to evaluate the prediction capability of the proposed classification
methods.

6.8.1 Effects of Bias removal

As shown in Tabs. 6.1, 6.2 and in the plots in Fig. 6.6, 6.7, the accuracy metrics of
the proposed method does not seem to improve after the Bias removal. As shown in
the plot in Fig. 6.13 a comparison between the accuracy metrics obtained without the
mixed terms evaluation is presented. The trained models, using a variable number
of features between 2 and 5, are compared removing or not the bias as shown in
Eq. 6.30. From the plot in Fig. 6.13, no improvement is noticeable in terms of
realistic, pessimistic and optimistic accuracy when the Bias is removed except for
the 5 features model, where a relevant increase in the pessimistic accuracy is present.
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Fig. 6.13 Effect of Bias removal on the classification metrics.

6.8.2 Effects of mixed terms evaluation

As shown in Tabs. 6.1, 6.2 and in the plots in Fig. 6.6, 6.7, the accuracy metrics of
the proposed method are highly affected by the mixed terms evaluation of features
and model coefficient uncertainties. As in the previous case, the models trained with
or without the mixed terms evaluation, using the bias removal process, are compared
for a number of features from 2 to 5. As shown in Fig. 6.14, the mixed terms
evaluation of uncertainties leads to a reduction of the distance between pessimistic
and optimistic accuracy, thus giving more robust classification models. This is due to
the reduction of the confidence interval around each probability value, which implies
a reduced number of non-classified subjects and thus a higher pessimistic accuracy
and fraction of classified. One should note that increasing the number of features
makes impossible to find a combination of features that meet the correlation condition
(|r|<0.1) that was set to consider the mixed terms of the uncertainty as negligible as
shown in Sec. 6.2.2. In fact, looking at Tabs. 6.1 and 6.2 the number of "Not found"
model increases as the number of used features rises. This issue is partially solved
evaluating the mixed terms of the uncertainty with a higher correlation (|r|<0.7). The
mixed terms on Eq. 6.20 (the synthetic formulation of Eq. 3.7) may be negative, so
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the contribution of the quadratic terms of the uncertainty propagation equation is
limited, thus the confidence interval size of the predicted probabilities is reduced.
This fact leads to an increased fraction of classified and, consequently, a higher
pessimistic accuracy.

Fig. 6.14 Effect of mixed terms evaluation on the classification metrics.

Another way to improve the classification metrics consists in increasing the size
of the dataset, as showed in the next section.

6.8.3 Boosting technique using the artificial data

As shown in the previous section, the best training practice for the classification
model seems to be to evaluate the mixed-terms of the uncertainties and, even though
a negligible effect is noticed, removing the bias from the training data. For this reason
the plot in Fig. 6.15 shows only the non-validated accuracy metrics of the models
trained with the artificial data that were treated removing the bias and evaluating the
uncertainty mixed terms.
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Fig. 6.15 Accuracy metrics comparison between models with different number of features.

Looking at Tabs 6.3 and 6.4, accuracy values of 100 % are present and such fact
is often a sign of perfect separation which causes a large gap between the classes in
the feature hyperplane. In such cases the metrologic frequentist approach does not
allow to consider the gap area as a "dead zone" where no data is present and never
will be. The frequentist approach forces us to consider the decisional boundary as
a bundle of curves with very large coefficients uncertainties. In order to avoid this
issue the perfect separation models was discarded for the boosting method searching
for models with a score as high as the one being discarded. As an example, let’s
consider the last row of Tab 6.3, which reports the accuracy metrics for the PD vs.
HE classification using 6 features with bias removal and mixed terms evaluation.
Such a model reports a 100 % weighted, realistic and optimistic accuracy. Such
model has the following coefficients:
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Table 6.11 Coefficients and uncertainties of a 6 features model (last row of Tab. 6.3).

β0 β1 β2 β3 β4 β5 β6

Coefficients
Estimates

786 -477 -7 -885 -27 162 24

Standard
Errors

79 48 0.7 90 3 17 4

Coefficients
relative Errors

10 % 10 % 10 % 10 % 10 % 11 % 15 %

The data presented in Tab. 6.11 show very large coefficients are present. As
shown in Fig. 6.1, for high absolute values of the coefficient, the slope of the
central part of the sigmoid rises tending to a step function. This fact may reduce the
contribution of the features in sum of Eq. 6.1, so even a small feature variation may
produce very large exponents in Eq. 6.2. The effect of such a perfect separation on
prediction accuracy can be noticed in the validation of the trained models.

6.8.4 Measuring chain length

In this section, the non-validated Accuracy metrics of the short chain (Extraction
contribution, EXT) and the long chain (Acoustic contribution, ACO) are compared.
In Fig. 6.16 a comparison between the accuracy metrics obtained from the datasets
extracted from the short chain (S) and the long chain (L) is presented. The compari-
son is performed using the models trained with the bias removal and the mixed terms
evaluation for a number of features ranging between 2 and 6.
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Fig. 6.16 Accuracy metrics comparison between models with different number of features.

As shown in Fig. 6.16 , the accuracy metrics obtained from the short and long
measuring chain are comparable. However the accuracy metrics of the long chain
shows reduced performances in terms of realistic, pessimistic and optimistic accuracy
except for the model with 2 features. The models from the short and the long chain
have selected different sets of features as summarised in Tab. 6.12.

Table 6.12 Selected features comparison between the models trained with the short and long
measuring chain.

N° Features
Short chain

features
Long chain

features
2 jit, HNRmode HNRmean, ARMS(med)
3 shi, HNRmode, ARMS(mean) HNRmean, ARMS(mode), ARMS(std)
4 shiabs, HNRmode, ARMS(mean), CPPSstd v fo, HNRmed , ARMS(mode), ARMS(std)
5 shi, vAm, HNRmode, ARMS(mean), CPPSstd v fo, HNRmean, HNRmode, ARMS(mode), ARMS(std)
6 jit, apq, vAm, HNRmode, ARMS(mean), CPPSstd v fo, shi, vAm, HNRmode, ARMS(med), CPPSrange

As shown in Tab. 6.12, the selected features are almost always different for the
short and long chain models. However, the corresponding selected features for the
two chains belong to the same feature families (stability, HNR , fo, ARMS, CPPS).
This consideration may suggest that the training of the models may change if a
perturbation of the measuring chain is introduced, but the "informativeness" of some
features remains unchanged. This behaviour may be conceptually compared to the



168 Machine learning algorithms

behaviour of a natural intelligence as described in Sec. 1.8. When the environmental
set-up of the training experiment is perturbed, the selected features used to evaluate
a decision may change to better adapt to the new conditions.

6.8.5 Models validation

In this section a comparison between the accuracy metrics of the unvalidated model
and the validation predictions will be discussed. In Fig. 6.17, a comparison of
the accuracy metrics of the unvalidated models and the accuracy of the predictions
performed on the validation set is shown. The selected data were processed in
order to remove the bias and the models were trained considering the mixed terms
evaluations. The comparison was carried out using the original data of the PD and
HE subset as features input.

(a)

Fig. 6.17 A comparison between the accuracy metrics of the trained models and the accuracy
metrics of the predictions of the validation subset.

As shown in Fig. 6.17, the accuracy metrics of the predictions performed on the
validation subset are considerably lower than the accuracy metrics of the unvalidated
models. As an example, the realistic accuracies of the validation predictions (yellow
circles) are in a range between 72 % and 77 %, while for the training accuracy such
a range is between 89 % and 96 %. This effect can be caused by the fact that the
validation dataset is unbalanced with respect to the ages of the subjects that compose
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it and is also unbalanced with respect to the average age of the training dataset. The
same analysis was carried out using the models trained with the boosting method.
The selected data were processed in order to remove the bias and the models were
trained considering the mixed terms evaluations. In Fig. 6.18 an example of the
accuracy metrics of Trained and Validated predictions is depicted.

(a)

Fig. 6.18 A comparison between the accuracy metrics of the trained models and the accuracy
metrics of the predictions of the validation subset (data boosting, PD vs. HE).

As shown in Fig. 6.18, the accuracy metrics of the predictions on the validation
subset are noticeably lower than the training accuracy metrics. As an example,
the realistic accuracies of the validation predictions (yellow circles) are in a range
between 75 % and 78 %, while for the training accuracy such a range is between
91 % and 100 % Considering the PD vs. PA classification results reported in Tab.
6.7.2 higher accuracy were obtained from the prediction of the validation dataset, as
shown in Fig. 6.19.
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(a)

Fig. 6.19 A comparison between the accuracy metrics of the trained models and the accuracy
metrics of the predictions of the validation subset (data boosting, PD vs. PA).

From the plot of Fig. 6.19, is clearly visible that the accuracy metrics of the
training and the validation accuracy are comparable. This may be caused by the fact
that the ages of the PD vs. PA subset (PD=59, PA=46) are more balanced than the
ages of the PD vs. HE subset (PD=59, PA=36), therefore the trained models are
more representative for the subjects whose ages are closer to the ages of the training
dataset (≈ 52 years).
These considerations on the accuracy metrics of the validation predictions, highlight
the importance of having balanced datasets to train and validate the classifications
models. Due to the difficulties in accessing in public health structures during the
Covid-19 sanitary emergency, the collection of more data to train and validate the
classification models was not possible.



Chapter 7

Conclusions

In this section, the final conclusions of the work described in this manuscript will be
presented. For clarity reasons the chapters from 3 to 6 will be discussed separately
in order to draw the main conclusions for each topic of this manuscript.

7.1 Chapter 3

In this chapter, the conclusions for the evaluations carried out in Chapter 3 will be
presented.

7.1.1 Stability metrics: the time-base aging negligibly affects the
pseudo-period evaluations

The effect of the aging of the timing crystal on period measurement was analysed
in Sec. 3.1.1. A worst case scenario of a commercial Room Temperature Crystal
Oscillator, with an aging time drift k = 10−6 month−1, was evaluated using Eq. 3.4.
Considering a vowel with a duration of 10 s, the relative uncertainty contribution
to period measurements was estimated as 10−6 ppm, therefore it can be considered
negligible.
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7.1.2 Stability metrics: the time-base tolerance does not affects
the stability metrics

The effect of a tolerance on the timing crystal frequency was faced in Sec. 3.1.1. A
pessimistic clock tolerance of 100 ppm was considered to evaluate its effect on period
measurement and the stability metrics. Although the tolerance can considerably
affect the period evaluation, it has no effect on some stability metrics. In particular
the stability metrics equations which have the periods Ti at the denominator are not
affected by the tolerance because the terms (1+ε) cancel out in the metrics equation
as exemplified in Eq. 3.6. The timing tolerance affects the jitabs evaluations (see Eq.
A.2) and, for a 100 ppm clock tolerance, the relative uncertainty is 0.01 %.

7.1.3 Stability metrics: the time-base resolution is the main un-
certainty contribution for period metrics

As stated in Sec. 3.6, the resolution of the ADC time base has an important effect on
the evaluation of period durations. The absolute uncertainty for a period measurement
was considered as caused by a random perturbation with an uniform distribution,
therefore it was estimated as 2 ·Ts/

√
3, where Ts is the sampling period. For a vowel

sampled at 44.1 kSa/s, the uncertainty was estimated as u(T )≈ 26 µs, therefore the
relative contribution of the time-base resolution was estimated in a range between
0.2 % and 1 %. These values are higher than the aging and tolerance contributions
so the time-base resolution is the main uncertainty contribution to pseudo-period
evaluations and thus to the stability metrics. As shown in Sec. 3.2.1, an oversampling
of the signal can reduce the effect of the time-base resolution on the period stability
metrics.

7.1.4 Stability metrics: the amplitude resolution is NOT the main
uncertainty contribution for amplitude metrics

An analysis of the amplitude uncertainty contribution was carried out in Sec. 3.1.2,
where three contributions were identified: Quantisation, Integral Nonlinearity (INL)
and Gain Error (GE). Considering these contributions as caused by a random per-
turbation with an uniform distribution, for a signal sampled with a 16 bit amplitude
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resolution, the amplitude uncertainty was estimated as uLSB(A) ≈ 2.5 LSB. This
evaluated uncertainty was used as a reference perturbation for the Monte Carlo
propagation presented in Sec . 3.2. Considering a full scale range of ±1 a.u., the
amplitude uncertainty was evaluated as u(A)≈ 3.8 ·10−5 a.u., therefore it may be
considered as negligible. However, other uncertainty contributions can affect the
amplitude metrics and they are caused by the difficulties in setting an adequate
input gain for each of the subjects. In a real life application, in example when the
recordings are collected with a smartphone, the microphone gain settings cannot
be guaranteed. An approximated gain setting could be performed in order to give
the same headroom for each of the recordings (ARMS(mean) =-6 dBfs for this work).
However the setting of each recordings gain was performed by hand by the author
taking as a reference the ARMS level indicated by the portable recorder display. For
this reason the author cannot guarantee that each recording was recorded with the
same ARMS(mean) level, therefore a signal normalization was applied to each of the
recordings in order to compare them.

7.1.5 Stability metrics: the analytical uncertainty propagation
is easy to obtain for some simple metrics

A GUM oriented analytical propagation of jitter and shimmer metrics uncertainty was
presented in Sec. 3.1.2. The analytical propagation formula for jitter measurements
was obtained as in Eq. 3.9. Such a formulation depends on pseudo-periods Ti and
the number of evaluated periods N. The jitter uncertainty equation was represented
as the product of the uncertainty u(T ) and a sensitivity coefficient C(T,N). To have
an evaluation of the order of magnitude of the jitter uncertainty, a parametrization of
the sensitivity coefficient was carried out to obtain Eq. 3.13 so that the sensitivity
coefficient becomes a function of jit, N and a fractional term FN (Eq. 3.12) To
evaluate the term FN , a statistical evaluation on the available dataset was carried
out, as shown in Fig. 3.2. Replacing the median value of this statistical analysis, an
evaluation of the sensitivity coefficient was carried out, as shown in the heatmap in
Fig. 3.3. Considering a common case scenario of a vowel with a duration of 5 s and
a fundamental frequency of 100 Hz, sampled at 44.1 kSa/s. , the absolute standard
uncertainty of the jitter was estimated as u( jit) = 0.018 %. Considering the range of
jitter measurement of the available dataset, its relative uncertainty was estimated in a
range from 0.3 % to 16 %.
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The same procedure was applied to the shimmer uncertainty evaluation, substituting
the pseudo-periods Ti with the amplitudes Ai. A statistical analysis of the term
FN was carried out and the sensitivity coefficient was parametrized as in the jitter
case. Considering the amplitude uncertainty contribution described in the previous
conclusions, the shimmer uncertainty was evaluated for a vowel with a 5 s duration,
a fundamental frequency of 100 Hz, sampled with an amplitude resolution of 16
bit, and its value was estimated as u(shi) = 0.0004 %. Considering the range of
shimmer measurement of the available dataset, its relative uncertainty was estimated
in a range from 0.02 % to 0.6 %.
As stated in Sec. 3.1.2, the analytical propagation of some stability metrics can be
a very challenging task, especially for those equations with a nested mathematical
structure (i.e. ppq in Eq. A.4 and apq in Eq. A.8). For these reasons a Monte Carlo
uncertainty propagation was carried out, as described in the next section.

7.1.6 Stability metrics: the Monte Carlo uncertainty propaga-
tion highlighted a bias in some metric evaluations

A Monte Carlo uncertainty propagation on the stability metrics was carried out in Sec.
3.2. The sequences of pseudo-periods and amplitudes, extracted from the recordings
of the available dataset, were perturbed considering the uncertainty contributions
described in Sec. 3.1.2, ±1 Ts for the periods perturbation and ±2.5 LSB for the
amplitudes. This propagation highlighted a bias in each stability metrics where
the absolute value operator is present in the equation, i.e. for each stability metric
with the exception of v fo (Eq. A.5) and vAm (Eq. A.9). This happens because the
absolute value operator guarantees a strictly positive accumulation of the perturbation
contribution causing a bias in the evaluation of the considered metric.

7.1.7 Stability metrics: the higher the sampling rate is the lower
is the uncertainty of period metrics

To evaluate the effect of the time-base resolution on stability metrics, a linear
oversampling of the vowel signals was carried out to simulate different sampling
rates. Starting from the original sampling rate of 44.1 kSa/s, four oversampling
factors were tested: 1, 2, 4 and 8, where the oversampling factor 1 corresponds to
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the original sampling rate. The results presented in Tab. 3.1 highlight a reduced
uncertainty on period stability metrics for higher oversampling factors, therefore for
higher sampling rates. In particular the dispersion and bias contribution of the period
metrics is lower for higher oversampling factors. To limit the effects of low sampling
rates on jitter evaluations, a compensation method has been proposed comparing the
expected (unperturbed) jitter values and the extracted ones using two oversampling
factors: 1 and 8. As depicted in Fig. ??, the linear regression of extracted vs.
expected jitter values shows a linear relation for the oversampling factor 8. Keeping
the original sampling rate of 44.1 kSa/s (oversampling factor 1), the extracted jitter
values are more dispersed than in the case of oversampling 8. The linear regression
obtained from this data highlighted a slope of 0.91 and an offset of 0.15 % with a
larger RMSE. Using these informations, a compensation of the jitter uncertainty is
possible removing the offset and dividing for the slope as exemplified in 3.19. As
expected, the amplitude stability metrics are not affected by the oversampling factor.

7.1.8 Stability metrics: the higher the amplitude resolution is
the lower is the uncertainty of amplitude metrics

To evaluate the effect of amplitude resolution on stability metrics, a bit reduction of
the vowel signals was carried out to simulate different amplitude resolutions. Three
bit resolutions were tested: 10 bit, 12 bit and 16 bit. The results presented in Tab.
3.3 highlight a reduced uncertainty on period stability metrics for higher amplitude
resolutions. In particular the dispersion and bias contribution of the period metrics
is lower for higher bit resolutions. As expected, the period stability metrics are
not affected by the amplitude resolution. Differently from the jitter case, the linear
regression, evaluated using the expected and extracted shimmer values, showed a
very linear relation between the just mentioned data, so the compensation method is
useless for shimmer measurements when using lower amplitude resolutions.
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7.1.9 Stability metrics: the background noise negligibly affects
the stability metrics if the extraction algorithm contribu-
tion is not considered

An analysis on the effect of background noise on stability measurements was carried
out in Sec. 3.2.3. For this evaluation, a white gaussian noise was added to the
original signals in order to obtain three target NSRs: -18 dB, -12 dB and -6 dB. If
the sequences of extracted pseudo-periods and amplitudes are considered to be free
of uncertainty, the background noise have a negligible effect on stability metrics as
reported in Tab. 3.4. This is due to the trust the experimenter has on the capability
of the extraction algorithm in evaluating given sequences of pseudo-periods and
amplitudes.

7.1.10 Stability metrics: the extraction algorithm affects the sta-
bility metrics

If the extraction algorithm is considered as "not perfect", a definition of a golden
standard measurement is useful to evaluate the effect of different sampling rates,
amplitude resolutions and background noise levels. Considering the data obtained in
the previous evaluation, the golden standard parameters were set as:

• oversampling factor: 8

• amplitude resolution: 16 bit

• noise NSR <−30 dBfs.

Comparing the stability metrics extracted using different configurations for oversam-
pling, amplitude resolution and noise level with the one extracted using the golden
standard, an important effect can be noticed in the stability metrics uncertainties, as
reported in Tab. 3.5. In particular, comparing the worst case scenario with the golden
standard, the background noise can produce a jitter uncertainty which covers three
orders of magnitude, while for shimmer measurement, the uncertainty can cover a
range of five orders of magnitude. The effect of the extraction algorithm contribution
was extensively analysed in Sec. 5.1.3.
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7.1.11 The cross-talk effect on voice features is negligible

The cross-talk effect on voice features was evaluated in Sec. 3.3. This evaluation
was carried out on a consumer level portable recorder (very similar to the one used
for the acquisition of the original vowels) and produced the result depicted in Fig.
3.15, where a maximum cross-talk of -47 dB was found at low frequency (≈ 100 Hz)
and the minimum of -70 dB around 2.5 kHz. Considering the Signal to Noise Ratio,
that was statistically evaluated from the normalized audio recordings close to -30
dBfs, the effect of cross-talk can be considered as negligible on the evaluated voice
features using the ZOOM H2N portable recorder. Considering that the recorder used
for the subject’s voice collection is also a consumer device, it is quite safe to say that
the cross-talk effect can be considered negligible for consumer level audio recorders.

7.2 Chapter 4

In this chapter, the conclusions for the evaluations carried out in Chapter 4 will be
presented.

7.2.1 Everyone is unique, even with respect to themselves

To evaluate the uncertainty contributions of each component of the measuring chain,
the architecture depicted in Fig. 4.1 was used. In order to achieve these evaluations, a
novel vowel re-synthesis method has been proposed in Sec. 4.1. The artificial vowels
should have comparable statistical characteristics of pseudo-periods and amplitudes
with respect to the original ones, therefore a study on the statistical distributions
of pseudo-periods and amplitudes was carried out, as described in Sec. 4.2. This
study highlighted that the distributions of pseudo-periods and amplitudes may be
very different in terms of positioning, dispersion and shape. Such a variability was
found among different subjects and even between the vowel repetitions of the same
subject, as shown in Figs. 4.4 and 4.6. For this reason an apriori distribution of the
pseudo-periods and amplitudes can not be defined.
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7.2.2 Everyone has approximately the same vocal apparatus

The distributions of the consecutive differences of pseudo-periods and amplitudes,
showed zero-centred bell-shaped distributions, as shown in Figs. 4.5 and 4.7. These
distributions are way more repeatable than the pseudo-periods and amplitude distribu-
tions. This characteristics may be associated more to the physical limits of the vocal
apparatus than to the subject ability in producing a sustained vowel. A preliminary
study on the normality of the consecutive difference distributions was carried out
to evaluate if fitting these distributions with a Gaussian curve was possible. This
study evaluated the mean skewness and excess kurtosis parameters of the consecutive
differences distributions of pseudo-periods to have a measure of their normality.
The skewness values reported in Tab. 4.1 are close to 0, therefore the consecutive
difference distribution are highly symmetrical. The excess kurtosis values, instead,
are very far from 0 so the distributions are leptokurtic. This statistical evaluation
forced the author to adopt the Monte Carlo sampling method described in Sec. 4.3,
which consider each sampled vowel as a "unique" phonation event.

7.2.3 The Monte Carlo Perturbative method is better than the
Markov Chain Monte Carlo method

The artificial vowels were re-synthesised taking as a reference the sampled dis-
tributions of pseudo-periods and amplitudes and their correspondent consecutive
difference distributions. Two generation methods have been proposed: the Perturba-
tive method and the Markov Chain Monte Carlo method. To compare these methods,
a perceptual evaluation can be performed by the reader, downloading the audio
examples using the QR codes in Figs. 4.15, 4.16 and 4.17. As can be noted listening
to the audio files, the vowels re-synthesised with the PM method sounds way more
realistic than the ones re-synthesised with the MCMC method. This is due to the fact
that the MCMC method, despite it produces comparable statistical distributions with
respect to the original ones, is not "bounded" to the original periods and amplitudes
time sequences, unlike the PM method. The performances of the two methods were
evaluated also in terms of spectral and cepstral characteristics of the artificial vowels.
As can be noticed in Fig. 4.18, the PM method seems to affect less the mean spectrum
of the example vowel, if compared to the MCMC method. Moreover an example
evaluation of the CPPS is depicted in Fig. 4.21, where negligible differences can
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be noticed between the distributions relative to the two methods, even though both
method seem to cause a shift of the distribution toward smaller values of CPPS. This
effect was extensively evaluated in Chapter 5.

7.3 Chapter 5

In this chapter, the conclusions for the evaluations carried out in Chapter 5 will be
presented.

7.3.1 The Monte Carlo generation algorithm is not perfect but
it works

In Sec. 5.1.1, an evaluation of the performances of the PM Monte Carlo generation
method was presented. As can be noticed in the example in Fig. 5.3, the artificial
vowels present some bias and dispersion with respect to the original vowels and
these contributions were evaluated as reported in Tab. 5.2 and Tab. 5.3. Regarding
the dispersion of the artificial stability metrics, the evaluation of the intra-subject
dispersion reported in Tab. 5.4 highlighted that the dispersion of the generated
stability metrics is smaller than the intra-subject dispersion. Such a consideration
highlights that the generation method produces artificial values that are statistically
closer to the single original vowel, used as a reference, instead of being scattered
within the subject natural dispersion of task repetitions.
The electrical analogy depicted in Fig. 5.2 has been used to explain the role of the
Monte Carlo generation method in the proposed uncertainty evaluation technique.
The Monte Carlo method is considered as a trusted feature generator, therefore if
the reference values that produces have a bias with respect to the original value it is
not a critical issue unless the generated values are too far from the original one. The
generation bias reported in Tab. 5.2 is lower than intra-subject dispersions reported
in Tab. 5.4, so the generated metrics fall "inside" the subject natural dispersion.
Anyway, the generation bias, as well as all the other biases caused by the measuring
chain components, is not a critical issue if a reasonable number of artificial vowel
is produced because the bias can be removed from the features evaluation as it was
showed in chapter 6.
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7.3.2 The extraction algorithm is not perfect

An evaluation of the uncertainty contributions of the extraction algorithm to periods
and amplitudes measurements was carried out in Sec. 5.1.2. The data presented
in Tab. 5.5 represent the signals that were pre-processed adopting the golden stan-
dard parameters: oversampling=8, amplitude resolution=16 bit. The pseudo-period
uncertainties reported in Tab. 5.5 are similar to the sampling period at 44.1 kSa/s
(Ts ≈ 22 µs) and to the period uncertainty evaluated in Sec. 3.6 (u(T ) ≈ 26 µs).
These values are considerably higher than the values obtained with the analytical
evaluation carried out in Sec. 3.6, where an uncertainty equation u(T ) = 2 ·Ts/

√
3

has been defined. Using this equation and considering a Ts = 22 µs/8 ≈ 2.8 µs
the uncertainty should be u(T )≈ 3.8 µs. This consideration may suggest that the
quantisation is not the main period uncertainty contribution, as stated before, and the
extraction algorithm adds some uncertainty to the pseudo-periods evaluations.
Regarding the amplitude uncertainty, the evaluations presented in Tab. 5.5 are notice-
ably higher than the values evaluated with the analytical method (u(A)≈ 10−4a.u.).
The same considerations made for the extraction contribution on pseudo-periods
uncertainty can be sustained for the amplitude uncertainty. As stated for the period
uncertainty evaluation, the amplitude contributions (resolution, INL, GE) are not the
main uncertainty contributions, therefore some uncertainty is added by the extraction
algorithm.
The bias and dispersion uncertainty contributions on the stability metrics were eval-
uated in Sec. 5.1.3. The data presented in Tab. 5.6, highlights a negative bias for
every stability metrics except for v fo and vAm, unlike the case of the generation bias,
which presented positive biases for every metrics except for v fo and vAm. Regarding
the dispersion evaluations, summarised in Tab. 5.7, the obtained results are compa-
rable to the generation dispersion evaluated in Sec. 5.1.1, therefore the extraction
algorithm contribution to the data dispersion can be considered as negligible.
To evaluate the cepstral characteristics of the generation method, the CPPS metrics
of the artificial vowels were evaluated by the extraction algorithm and compared to
the metrics extracted from the original vowels. The bias evaluations reported in Tab.
5.8, highlighted both negative and positive biases for all the metrics. As reported
by the comparison between the artificial and the original metrics, the dispersion of
the artificial metrics is lower than the dispersion of the original ones. In conclusion,
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the re-synthesis method alters just the sequences of periods and amplitudes of the
original vowel leaving the cepstral characteristics unchanged.

7.3.3 The acquisition device negligibly affects the voice features

Using the architecture depicted in Fig. 5.13, the evaluation of the acquisition de-
vice contribution to the features uncertainty was carried out on a consumer level,
portable audio recorder, connected as in the diagram of Fig. 5.14. The effects of
non ideality of the chain were analysed in Sec. 5.4.1, where the offset and gain
errors were estimated using two different evaluation methods. The results of this
analysis highlighted the difficulties in evaluating the gain and offset errors because
of the non linearity of the acquisition and evaluation chain (DAC+ADC), therefore
the compensation of these uncertainty contributions has not been performed for this
work.
The uncertainties reported in Tab. 5.20, represent the acquisition and extraction
(ACQ+EXT) uncertainty contributions to pseudo-period and the amplitude measure-
ments. The values in Tab. 5.20 are higher than the uncertainties of the extraction
contribution, even though they are comparable. As expected, the non ideality of
the DAC+ADC chain negligibly affects the period stability metrics, but it has an
important effect on the amplitude metrics as summarised in Tab. 5.21 and 5.22.
The CPPS metrics, extracted from the artificial vowel acquired with the acquisition
device, were evaluated as summarised in Tab. 5.23 ad Tab. 5.24. The results showed
negligible differences between the ACQ+EXT and the EXT contributions to CPPS
metrics uncertainty in terms of bias and dispersion, therefore the ACQ contribution
can be considered as negligible.

7.3.4 The whole measuring chain affects the voice features

In order to evaluate the acoustic domain contributions to the features uncertainty, a
human simulator (Head And Torso Simulator, HATS) was used to produce acoustic
waves using as a reference the artificial vowels, as can be noticed in the architecture
in Fig. 5.20. The substitution of the human subject with the simulator represent
the final link to evaluate and separate the human contribution from the machine
contribution to features uncertainty. This is possible thanks to the fact that using
the HATS, the experimental conditions of repeatablity and reproducibility are met,
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therefore repeated measurements of the artificial vowel features were carried out
to evaluate the effect of perturbations in the acoustic domain. In particular four
microphone positions of the Cheek Microphone (CM) were tested along an iPhoneX
and a reference microphone. As summarised in the Tables from 5.25 to 5.49, the
dispersion contribution of the whole chain (ACO+ACQ+EXT) is comparable to the
dispersion of the previous evaluations (ACQ+EXT and EXT). An important effect
can be noticed in the bias of the amplitude stability metrics. This consideration is
confirmed by the data presented in Tab. 5.27, where the amplitude uncertainties u(A)
raised by an order of magnitude respect to the ACQ+EXT contribution, while the
period uncertainty u(T ) has raised slightly.
The effect of the whole chain on the CPPS features was evaluated and negligible
differences can be noticed between the dispersions and biases of the various exper-
imental setups. This is true except for the data relative to the recordings with the
SmartPhone (SP) where large biases were evaluated on the CPPS metrics as shown
in Fig. 5.31.

7.4 Chapter 6

In this chapter, the conclusions for the evaluations carried out in Chapter 6 will
be presented. The uncertainty evaluations presented in the previous chapters were
used to train weighted logistic regression models and to define a confidence-risk
framework for the predicted probabilities of these models.

7.4.1 Machine learning: a metrologic approach to the logistic
regression

The definition of a metrologic framework to evaluate the effect of features and model
uncertainty was described in Sec. 6.2. The analytical uncertainty evaluation of
predicted probabilities was carried out considering two approaches:

• Negligible correlation (the mixed terms of the uncertainty propagation are
considered as negligible with respect to the squared terms) Eq. 6.15

• The correlation is evaluated Eq. 6.17.
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The uncertainty evaluations described in Chapter 5 were used to evaluate the features
bias in order to be able to remove it from the original data. In particular, the bias
contribution was removed or not in order to evaluate its effect on the classification
metrics. The uncertainty of the features was used to define prior weights (Eq. 6.9) so
that the set features evaluated with a low mean relative uncertainty are considered
more by the proposed weighted logistic regression, whose cost function is defined
in Eq. 6.8. The analytical propagation of the predicted probabilities has made
possible a definition of a confidence interval around these values. Such a confidence
interval may intersect or not the decisional threshold (0.5), therefore a third class of
non-classified has been proposed to define new classification metrics:

• Pessimistic Accuracy

• Realistic Accuracy

• Optimistic Accuracy

• Fraction of classified

Using these metrics, training and validation experiments were carried out to evaluate
the effect of different data processing techniques and different evaluation approaches.

7.4.2 Training experiments: removing the non-classified subjects
improves the classification accuracy

The plots in Figs. 6.6 and 6.7, report the classification metrics, proposed in Sec.
6.3.1, of the models trained using different number of features and adopting the
uncertainty evaluation strategy described in Sec. 6.2.2 and Sec 6.2.3. As can be
noticed from the plots, the realistic accuracy Accrealistic is always higher than the
accuracy AccPS of the proposed selection method (PS) and almost always higher
than the accuracy AccCS of the common selection method (CS). This means that
removing the non classified improves the classification accuracy (Accrealistic>AccPS),
because the non-classified predictions have a number of false predictions greater
than the number of true predictions (FPNC +FNNC > T PNC +T NNC). The second
consideration that can be done is that the proposed method showed almost always
better classification metrics than the common feature and model selection, therefore
the proposed method showed overall better performances than a common method.
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7.4.3 Training experiments: removing the bias has a negligible
effect on classification metrics

To evaluate the effect of bias on the classification prediction, the training of the
models was performed without the mixed terms evaluation (approach 1, negligible
correlation). These models were trained processing the input data in order to remove
or not the bias evaluated in Sec. 5.1.3 and Sec. 5.1.4. As can be noted in the plot
if Fig . 6.13, the bias removal process do not improve significatively the accuracy
metrics of the models trained with the PD vs. HE subset if the mixed terms of
the uncertainty are considered as negligible. The same considerations can be done
looking at the plots in Fig. 6.6, where even for the accuracy metrics obtained with
the mixed terms evaluation no significative difference can be noticed, even though
slightly higher accuracy metrics are showed for 5 and 6 features models (Fig. 6.6 (d)
(e)). The same consideration can be made for the PD vs. PA classification, as can
be noted from the plots in Fig. 6.7. Regarding the accuracy metrics of the models
trained with the artificial data slight improvements of the accuracy metrics can be
noticed, especially for the PD vs. PA classification, as shown in Fig. 6.8.

7.4.4 Training experiments: evaluating the mixed terms improves
the classification metrics

The effect of considering the mixed terms of the features uncertainty was evaluated
by means of a comparison with the accuracy metrics of the models trained without
the mixed terms evaluation, as shown in Sec. 6.8.2. As shown in Fig. 6.14, training
the classification models using the uncertainty evaluation strategy described in Sec.
6.2.3 produces higher accuracy metrics than the approach described in 6.2.2. This
happens because the mixed terms on Eq. 6.20 may be negative, so the contribution
of the quadratic terms of the uncertainty propagation equation is limited, thus the
confidence interval size of the predicted probabilities is reduced. This fact leads to
an increased fraction of classified and, consequently, a higher pessimistic accuracy.
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7.4.5 Training experiments: the artificial data can be used as a
boosting technique

The recordings of the vowels used to perform the analysis presented in this manuscript
were carried out between November 2018 and and October 2019. Unfortunately, the
author and the research group realized soon that the collected data were unbalanced
in terms of subjects ages. In spring 2020 a new data collection campaign should have
took place but, due to the restrictions to non-medical workforce, such a campaign
never took place and the restriction lasted until the time this manuscript is being
written. In order to solve the problem with the scarcity of data, the idea of generating
artificial vowels, to perform the analysis presented in this manuscript, came to the
author’s mind in April 2020. The features extracted from the artificial vowels were
used to train weighted logistic regression models to obtain the classification metrics,
reported in Sec. 6.5.2 and briefly discussed in Sec. 6.8.3, as depicted in Fig. 6.8
and 6.9. As already stated, the effect of bias removal and mixed term evaluation
are visible on the plots and, in particular, the pessimistic accuracy seems to im-
prove if the bias is removed and the mixed terms are evaluated. The realistic and
the weighted accuracy reached values up to 100 %, as well as the accuracy of the
common selection method. It is important to note that these values are the accuracies
of the unvalidated models, as discussed in Sec. 6.8.5. An analysis of the 6 feature
model for the PD vs. HE classification highlighted very high βi coefficients with
high relative uncertainties, as reported in Tab. 6.11. This means that the trained
model may produce a large separation between the classes in the features hyperplane.
For this reason, the models with 5 and 6 features can not be considered as reliable
because of their high epistemic uncertainty [42], which is caused by the difficulties
in defining a reasonably small confidence interval for the decision threshold curves
in the features hyperspace

7.4.6 Training experiments: the length of the measuring chain
affects the performance of the classification algorithms

An evaluation of the effect of the measuring chain length was carried out in Sec.
6.6 and briefly discussed in Sec. 6.8.4. Comparable stability metrics were found
between the long measuring chain (ACO+ACQ+EXT) and the short one (EXT), as
shown in Fig. 6.16. Despite having comparable performance, the trained models
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have chose different sets of features, as reported in Tab. 6.12. This behaviour may be
conceptually redirected to one of the characteristics an artificial intelligence should
have: the adaptability. Such a characteristic was discussed in the Introduction of
this manuscript in Sec. 1.8. In conclusion, when the environmental set-up of the
training experiment is perturbed, the selected features used to evaluate a decision
may change to better adapt to the new conditions.

7.4.7 Validation experiments: the classification metrics are lower
if an unbalanced dataset is used

Due to the difficulties on accessing in public health structures due to the Covid-19
emergency, the validation dataset could not be balanced in terms of subjects age
as in the case of the training subset. The validation dataset is composed by older
PD subjects and younger HE and PA subjects with respect to the training dataset.
This analysis was carried out in Sec. 6.7 and briefly discussed in Sec. 6.8.5. As can
be noticed in Fig. 6.17 and Fig. 6.18, the validation of the trained models for the
PD vs. HE subset highlighted reduced accuracy metrics for the models trained with
the original data and for the data-boosted models. The models trained with the PD
vs. PA subset, instead, are slightly more balanced in terms of subjects age and with
respect to the mean ages of the training dataset (≈ 52 years). This consideration
highlights the importance of having balanced datasets when performing training and
validation experiments.
Comparing the validated realistic accuracies of the PD vs. HE classification models
(maximum 77 %) with the accuracies of the validated models found in the literature
(≈ 95 % for [7] and ≈ 81 % for [8]), the models proposed in this work present
lower values of accuracy. Anyway the author’s intent has never been to reach higher
accuracies with respect to the existent literature, but to produce predictions that can
be inserted in a confidence-risk framework. In conclusion: the author never wanted
to be the best, just the more honest.
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7.5 Final Conclusions: a conceptual link to the intro-
duction of this manuscript

Safety

Uttering some vowels on a microphone can be considered a safe activity if it is
done for a reasonable short amount of time. Substituting the human subject with
an artificial one (HATS) allow the experimenters to perform thousand of repeated
measurements of one vowel without involving the subject that has produced it.

Repeatability

Considering the conclusions stated in Sec. 7.3.4 and the ones stated in Sec. 7.4.6,
the uncertainty contributions of the measuring chain were characterized, and their
effects on the classification algorithm performance were evaluated. According to
these evaluations, the whole measuring chain, which begins with the microphone and
ends with a predicted probability, can be considered repeatable. This was possible
tanks to the substitution of the original subject with the artificial subject.

Trustability

The definition of a confidence-risk framework, described in Sec. 6.3.1, allow to
produce clinical predictions along with their respective confidence intervals. This
feature allows the patient and his doctor to have an evaluation on the trust that can
be given to each single prediction. Moreover, the definition of the accuracy metrics
described in Sec. 6.3.1, allows to have an evaluation of the trust that can be given to
the classification algorithm, defining pseudo-confidence intervals for the accuracy
metrics. These intervals are defined in a range between the pessimistic and the
optimistic accuracy, therefore they give an information on the distance between
worst case accuracy and the best case accuracy.

Traceability

As already stated in the conclusions of Sec. 7.3.4 and Sec. 6.8.4, the entire mea-
surement chain was made traceable, starting from the acoustic domain up to the
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prediction domain. This was possible tanks to the substitution of the original subject
with the artificial subject.

Accountability

Substituting the human subject with the artificial one removes the human dispersion
contribution from the uncertainty budget, therefore the responsibility of each predic-
tion always lies with the artificial intelligence and its artificial body (the measuring
chain).

Adaptability

As exemplified in Sec. 1.8, the informativeness of the environmental features may be
altered if the experimental conditions change. As already stated in the conclusions
of Sec.6.8.4, when a perturbation of the measuring chain is introduced, the proposed
model and features selection method choose different sets of features to better adapt
the models to the uncertainty contributions of the features.
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Appendix A

Features equations

In this Appendix a list of the features used for this work is presented. The identifica-
tive numbers define the feature numbers used in the Tables of Chapter 6.

1. Local jitter:

jit =
N

N −1
· ∑

N−1
i=1 |Ti −Ti+1|

∑
N
i=1 Ti

·100 (%) (A.1)

2. Absolute jitter:

jitabs =
106

N −1
·

N−1

∑
i=1

|Ti −Ti+1| (µs) (A.2)

3. Relative Average Perturbation (RAP3):

rap =
N

N −2
·

∑
N−2
i=1 |Ti − (1

3 ∑
r=i+1
r=i−1 Tr)|

∑
N
i=1 Ti

·100 (%) (A.3)

4. Pitch Period Perturbation Quotient (PPQ5):

ppq =
N

N −4
·

∑
N−4
i=2 |Ti − (1

5 ∑
r=i+2
r=i−2 Tr)|

∑
N
i=1 Ti

·100 (%) (A.4)

5. Coefficient of Fundamental frequency variation:

v fo =

√
1
N ·∑N

i=1( fi − f )2

f
·100 (%) ; fi =

1
Ti

; f =
1
N

N

∑
1

fi (A.5)
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6. Local shimmer:

shi =
N

N −1
· ∑

N−1
i=1 |Ai −Ai+1|

∑
N−1
i=1 Ai

·100 (%) (A.6)

7. Absolute shimmer:

shiabs =
1

N −1
·

N−1

∑
i=1

|20 · log10
Ai+1

Ai
| (dB) (A.7)

8. Amplitude Perturbation Quotient (APQ11):

apq =
N

N −10
·

∑
N−10
i=5 |Ti − ( 1

11 ∑
r=i+5
r=i−5 Tr)|

∑
N
i=1 Ti

·100 (%) (A.8)

9. Coefficient of Amplitude variation:

vAm =

√
1
N ·∑N

i=1(Ai −A)2

A
·100 (%) ; A =

1
N

N

∑
1

Ai (A.9)

Harmonics to noise ratio:

HNR = 10 ·Log10(
Ac(T )/Ac(0)

[1−Ac(T )]/Ac(0)
) (dB) (A.10)

10. Mean HNR (dB)

11. Median HNR (dB)

12. Mode HNR (dB)

13. HNR Range (dB)

14. HNR Standard deviation (dB)

15. HNR 5◦ percentile (dB)

16. HNR 95◦ percentile (dB)

17. HNR Skewness (a.u.)

18. HNR Kurtosis (a.u.)
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Fundamental Frequency:
fo = 1/T (Hz) (A.19)

19. Mean fo (Hz)

20. Median fo (Hz)

21. Mode fo (Hz)

22. fo Range (Hz)

23. fo Standard deviation (Hz)

24. fo 5◦ percentile (Hz)

25. fo 95◦ percentile (Hz)

26. fo Skewness (a.u.)

27. fo Kurtosis (a.u.)

Amplitude Root Mean Square Value:

ARMS =

√
(

N

∑
n=1

s2
n)/N (a.u.) (A.28)

28. Mean ARMS (a.u.)

29. Median ARMS (a.u.)

30. Mode ARMS (a.u.)

31. ARMS Range (a.u.)

32. ARMS Standard deviation (a.u.)

33. ARMS 5◦ percentile (a.u.)

34. ARMS 95◦ percentile (a.u.)

35. ARMS Skewness (a.u.)

36. ARMS Kurtosis (a.u.)
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Cepstral Peak Prominence Smoothed (CPPS):
see Sec. 2.4.4 for the algorithm details.

37. Mean CPPS (dB)

38. Median CPPS (dB)

39. Mode CPPS (dB)

40. CPPS Range (dB)

41. CPPS Standard deviation (dB)

42. CPPS 5◦ percentile (dB)

43. CPPS 95◦ percentile (dB)

44. CPPS Skewness (a.u.)

45. CPPS Kurtosis (a.u.)

46. Voiced/unvoiced: Nperiods(HNR>0)
Nperiods(HNR≤0) ·100 (%)
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