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Abstract  
 
Italy, a nerve center for Western culture, holds the largest number of artistic and cultural assets declared 
World Heritage by UNESCO. From the Romans to the present day, an ever-growing infrastructure 
system, rich in tunnels, bridges and viaducts, has been the expression of a high engineering expertise.  
For the management of   the aforementioned complex infrastructure heritage, the development of 
automated control and maintenance plans is one of the issues on which the engineering and research 
community focuses its resources and efforts. In this study, an approach is proposed to automate the 
process of classifying defects in tunnels using deep learning techniques to protect and maintain the 
concrete tunnel lining. The acquisition of images from non-destructive monitoring techniques, such as 
Ground Penetrating Radar, within a supervised learning process allows the creation of an effective tool 
for the automatic detection of severe defects such as cracks, anomalies, and voids. The obtained results   
provided for a high degree of accuracy in identifying the tunnels’ structural condition. The use of the 
developed strategy, based on machine learning and non-invasive inspection techniques, is cost-
effective for infrastructure managers. Such a procedure reduces both the number of invasive 
interventions on the tunnel lining and the time and cost associated with employing specialized 
technicians. 
. 
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1. Introduction and related works 
 
The Italian context is of significant importance due to the presence of artistic and cultural sites, most of 
which have been declared World Heritage by UNESCO. Bridges, tunnels, and viaducts stand out among 
these heritage works as examples of remarkable engineering techniques.  
The two largest mountain chains in Italy, the Alps and the Apennines, have always been natural 
obstacles to mobility, leading man to carved tunnels into the rock. For this reason, over time, many 
tunnels have been built to overcome these natural barriers to facilitate the exchange of people and 
goods.  
Between 1964 and 1984, the most important Italian tunnels were built: Mont Blanc Tunnel (1965), 
Fresjus Tunnel (1980), Gran San Bernardo Tunnel (1964) and Gran Sasso Tunnel (1984). 
Those listed are only the most famous and outstanding examples of civil engineering. 
However, until the 1980s, infrastructures were characterized by a significant plano-altimetric flexibility 
that minimized the use of tunnels. The road layout evolved over time, becoming more dominatedby 
straight and curves with large radiuses, as well as an increase in the number of tunnels. These last, 
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conforming to current guidelines and being object of an increasing attention, represent an effective 
solution to reduce impact on the natural landscape.  
In the Civil Engineering field, development, and research of possible indicators of structural state 
alteration have been increasingly interesting. These indicators aim at providing an "early warning" in 
case of upcoming danger.   
Today, the Italian engineering heritage is formed by an increasing number of buildings which may be 
subject to collapses and failures. These events are caused by non-linear phenomena and 
disproportionate behavior. For this reason, the adoption of investigation technologies based on non-
destructive techniques (NDT) and artificial intelligence (AI) is pivotal. 
The possibility to use these techniques for risk predictive models, structural stability assessment, and 
optimization purposes for design is very interesting... 
In particular, image diagnosis is the most widely used methodology for structural condition analysis.  
The proposed work is focused on tunnels; however, this concept can be reasonably applied to other 
civil structures such as bridges. 
The issue of tunnel safety became very important especially after the catastrophic events of Mont Blanc 
and Tauern. For this reason, several European countries have adopted specific safety protocols 
following Directive 2004/54/EC "Minimum safety requirements for tunnels in the Trans-European Road 
Network". 
The structural conditions are mainly influenced by deterioration and presence of voids that can worsen 
the structural conditions [1]. Other factors affecting the structural state are freeze-thaw cycles in the 
case of not water-proofed tunnels [2] [3], the presence of construction defects, and damages due to 
seismic actions [4]. 
Investigations and inspections are traditionally carried out by periodic and visual observations through 
non-destructive and non-invasive techniques. However, these methodologies are affected by several 
critical issues such as the cost of operator training, the strong subjectivity of the data interpretations, 
and the time required to perform them. 
In this paper, a strategy based on a multilevel convolutional neural network for damage detection and 
classification is presented. 
The aim is to  detect and classify potential damage in structures through the synergy of artificial 
intelligence algorithm and structural health monitoring (SHM) techniques [6]. 
This would allow the creation of a rapid and robust tool that can provide a during maintenance phase 
by setting up structural conditionmapping. 
 

2. AI and Convolutional neural network 
 
The motivation for the great interest in artificial intelligence techniques, especially in the field of Civil 
Engineering, lies in the amazing key concept of such methodology: the ability to automate the problems 
resolutions and the activities typically carried out by the human mind.  
The strengths of these techniques are the computation speed and, first of all, the ability to automatic 
manage a large number of data.  
Within the artificial intelligence field, this research is based on deep learning (DL) techniques that can 
solve different problems starting from experimental data [7] by means of the artificial neural networks.  
However, the process of extracting the needed information to perform a correct image classification is 
not immediate.   
The result of a correct classification is based on the training process, where the images provided as 
input are associated with the associatedclassification. The network is then tested on a set of images to 
assess its accuracy and robustness.  
Among the several neural networks, a Convolutional Neural Network was chosen. It is based on the 
convolution mathematical operation where a series of layers are intended to receive, resize, and extract 
significant features from images by translating the analyzed images into categories [8].  
A training process based on a large amount of images, such as the present case, would haveimplied 
excessive computational time. For this reason. the technique of "transfer learning" was applied. It uses 
pre-trained neural networks determining a fast network configuration and a promising accuracy even 
with less training data. These networks are pre-trained on the ImageNet Large Scale Visual Recognition 
Challenge (ILSVRC) classification and location dataset, based on 100000 training image, 50000 
validation images and 100000 test images [9,10]. 
 
 
 

3. Techniques: Ground Penetrating Radar, Algorithm, and Image pre-processing 
 
3.1 Ground Penetrating Radar  
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Ground Penetrating Radar (GPR) [11] was chosen from among the various non-destructive investigation 
methodologies (NDTs) [12] for detection of defects in tunnel lining. Due to its ease of use and transport 
[13] and its penetration capacity, this instrument has proved to be a valuable tool for damage detection, 
location, and classification.  
It is based on the transmission of pulses of electromagnetic waves of frequency in the studied material 
using an antenna with a frequency between 10 and 2600 MHz. The dielectric characteristics of the 
material significantly affect the propagation of that pulse.  
The study was based on a GPR campaign focused on Italian tunnels, most dated from 1960 to 1980. 
Two types of GPR were used in that campaign. The first utilizes a dual-frequency antenna, the second 
a high-frequency antenna. Tables 1 and 2 summarize the technical characteristics.  
The outputs of this techniqueare profiles with a vertical axis indicating the depth of the examined 
thickness and a horizontal axis representing the structural progressive distance. The described profiles 
were interpreted by specialized technicians during the campaign. An example of a GPR profile with 
relative interpretations is shown in Figure 1.   

 
 
Table 1. Technical characteristics of GPR with dual frequency antenna. 

 

GPR with dual frequency antenna features value 

Min. number of channels 4 

Pulse repetition frequency (kHz) 400 

Range (nsec) 0-9999 

Min.number of scans/second 400 

Power (Volt) 12 

Primary dual-frequency antenna (MHz) 400-900 

Secondary dual-frequency antenna (MHz) 200-600 

 
 
Table 2. Technical characteristics of GPR with high-frequency antenna. 

 

GPR high frequency antenna features value 

Min. number of channels 4 

Pulse repetition frequency (kHz) 400 

Range (nsec) 0-9999 

Min.number of scans/second 400 

Power (Volt) 12 

High-frequency antenna (GHz) ≥2 
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Figure 1. An example of a GPR profile with defect patterns interpretation [14] 

3.2 Algorithm and Image pre-processing 
 
Among the several pre-trained networks, Resnet-50 was chosen and was applied within the 
programming environment MATLAB 2020b.   
The network, designed in 2015 by Kaiming He et al [15], is composed by 177 layers, of which 1 is fully 
connected, while 49 are convolutional. The strength of this network is the presence of "residual/skip 
connections" that base their operation on the presence of activating functions such as the Softmax layer 
and the Linear Unit Rectified (Relu). 
The presence of skip connection reduces the problems related to the excessive depth of the network 
allowing to learn the differences between input and output layer. The choice fell on this network for its 
high depth and very low computational level for the resolution of classification problems. Input data of 
the algorithm are the GPR profiles described above. However, before using GPR profiles as input data 
they have been subject to previous operations, such as removing axes, applying filters to reduce the 
effect of noise, noise tails, and interference, by the Data Provider. Then, each profile was divided into 
elements of variable size through the free online module PineTools. A data augmentation technique was 
used to increase the data by rotating the images with respect to the vertical axis, as several literature 
studies suggest [15–17]. 
 

4. The multi-level damage classification 
 
The adopted network allowed the implementation of a multi-level hierarchical procedure.  Seven models 
were created, each performing a binary classification.  The minimum number of samples in each class 
was used to balance the classes in each level to avoid imbalance issues between them. By moving from 
the lowest to the highest levels, more detailed knowledge can be gained about the presence and type 
of structural damage. This approach aims to associate a degree of attention to the critical issues that 
deserve a thorough examination of the ongoing structural decay. When a new GPR profile is analyzed, 
it can be associated with one of the 14 classes, as described in Table 3. 
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Table 3. The 14 Classes of the multi-level classification  

 

 Class names Descriptions 

LEVEL 1 

C1: Healthy and reinforcing 
images associated with healthy 
structural conditions and with the 
possible presence of reinforcement 

C2: Damaged 
images with at least one or more 
types of damage. 

LEVEL 2a 
C3: Healthy 

images associated with healthy 
structural conditions 

C4: Reinforcement images with reinforcement,  

LEVEL 2b 

C5: Warning mix 
Images combinated with of two or 
more types of damage. 

C6: Warning all 
images corresponding to the 
presence of a single type of damage. 

LEVEL 3 

C7: Crack 
Images in this class are characterized 
by the presence of cracks 

C8 
Images in this class may present 
anomalies, simply voids, 
detachment, or excavation. 

LEVEL 4 

C9: Anomaly 
Images in this class show 
abnormalities, i.e., inhomogeneities 
within the cover casting. 

C10: Mixed voids 
Images in this class show the 
presence of voids of several 

LEVEL 5 

C11: Simply empty 

Images in this class are associated 
with the presence of medium-sized 
and deep voids. 
 

C12 
The images in this class are related 
to detachment and excavation 
phenomena 

LEVEL 6 

C13: Detachment 
This phenomenon produces external 
voids, also presenting some cracks. 
 

C14: Excavation 
This phenomenon brings internal 
voids with large dimensions 
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5. Results 
 
The propsed work has shown very promising results, such as a maximum value of accuracy for level 5 
equal to 98.3% and for the other levels, however, greater than 90.4%. These accuracy values are 
derived from the confusion matrices of each level, as shown in the table 4. Such matrices represent 
one of several useful methods for defining the classification algorithm performance. Their rows 
showing the real classes and their columns representing the predicted labels. The accuracy value is 
determined by the ratio of the matrix trace to the total sum of its terms. Each level of the proposed 
classification shows the accuracy value and the confusion matrix related to an arithmetic average of 
the results obtained from the application of K-fold cross validation. For each classification, the 
elements were randomly divided into k groups (with k equal to 10) of which (k-2) were used for 
network training, one for validation, and one for testing.  The term k was assumed equal to 10 
because, according to several empirical studies, this value produced estimates of the test error rate 
that were not affected by either excessive bias or high variance [18,19,20]. 

Table 4. Confusion matrices for the 6 levels 

 

 Confusion Matrices 
Performance 

Metric 

Level 1 

Real Class C1: Predicted C2: Predicted 

Accuracy: 92.6% C1 93.3% 6.7% 

C2 8.1% 91.9% 

Level 2a 

Real Class C3: Predicted C4: predicted 

Accuracy: 97.3% C3 98.4% 1.6% 

C4 3.9% 96.1% 

Level 2b 

Real Class C5: Predicted C6: Predicted 

Accuracy: 90.4% C5 90.9% 9.1% 

C6 10.1% 89.9% 

Level 3 

 

Real Class C7: Predicted C8: Predicted 

Accuracy: 95.9% C7 92.7% 7.3% 

C8 0.9% 99.1% 

Level 4 

Real Class C9: Predicted C10: Predicted 

Accuracy: 91.8% C9 94.9% 5.1% 

C10 11.3% 88.7% 

Level 5 

Real Class C11: Predicted C12: Predicted 

Accuracy: 98.3% C11 98.8% 1.2% 

C12 2.2% 97.8% 

Level 6 Real Class C13: Predicted C14: Predicted Accuracy: 95.3% 
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C13 96.6% 3.4% 

C14 5.9% 94.1% 

 

 

6. Conclusion 
 

In this paper, a hierarchical approach of a multilevel classification related to GPR profiles of highway 
tunnel linings is reported. Its goal is to create an automated defect classification system. The multilevel 
classification concerns 7 different CNN models trained through the transfer learning technique, 
starting from the pre-trained Resnet-50 network. The present work describes the use of artificial 
intelligence algorithm, as a structural health monitoring (SHM) technique, highlighting the its 
potentialities and reliability for the automatic classification of tunnel defects. This could be crucial. in 
a perspective of potential safeguard and maintenance of the Italian infrastructural heritage.  
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