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Abstract

This thesis presents several works aimed at the advancement of the field of data com-
pression across several types of signals. In particular it deals with the development
of new techniques for the compression of video, multi-spectral images and SAR raw
data.

In all of these fields the advancement of the compression methodologies is
fundamental. In the case of video, the ease of access to high-resolution cameras and
the resulting deluge of content in the current social media environment makes the
creation of new video-compression techniques necessary to respond to this explosion
of data generated. For multi-spectral images and SAR raw data, compression is quite
important especially when in a remote-sensing setting, in which the throughput for
the communication channel can be quite limited.

The first few chapters describe our work on video coding. Due to the recent
advancements achieved with deep learning, especially for image and video processing
problems, we decided to develop a deep learning algorithm for video compression.
In particular, we developed tools to improve the inter-prediction performance of
current video coding standards, like H.265/HEVC. Inter-prediction is a fundamental
step in most video compression algorithms, whose aim is to take advantage of the
correlation between different frames in a video sequence.

This problem was tackled in two ways: first we developed a filter-generating
network capable of predicting a given frame starting from previous ones. We then
considered a different approach and concentrated on taking the estimates already
provided by the motion-compensation algorithm and enhancing them using previous
frames as guide. The designed network is a CNN united with an optical flow network
used to align the previous frames to the one that is being enhanced. This method
was implemented in the standard H.265/HEVC and we were capable to achieve an
average reduction of the Bjøntegaard metric for rate-distortion of -1.69 %.
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The following chapters describe our experiments with the low-complexity coding
standard for multi-spectral and hyper-spectral images CCSDS 123.0 B-2.

First, we experimented its use for the compression of SAR raw data. SAR is a
form of radar, so its raw captures are not actual images, but are instead a grid of
complex numbers which describe the echoed signal from the environment in response
to an emitted impulse from the sensor. These samples are difficult to compress as
they have very limited correlation with each other. Furthermore, in remote sensing
settings like earth observation from satellites, the algorithm must be low-complexity,
due to hardware limitations.

For this reason, we tried to test the performance achieved by the standard CCSDS
123.0 B-2. This is advantageous because this standard would already be available
in modern satellites, and the overall processing architecture would not be burdened
by another compression algorithm for SAR data. After few experiments we man-
aged to beat the de-facto standard for the task: block-adaptive quantization. This
methodology was adopted in the Horizon 2020 project EO-Alert.

The last work proposed concerns the reduction of optical data sent to ground
segments from satellites by skipping the pixels covered by clouds. In remote sensing,
clouds are problematic as they represent regions of a captured image which do
not provide useful information to the ground segment. We successfully designed
multiple techniques to effectively skip the pixels of the image covered by clouds,
and to correctly signal the skipped areas to the ground segment. This was achieved
by replacing the cloudy regions with dummy values designed to minimize the rate
in the file compressed using CCSDS 123.0 and by finding ways to transmit a map
of the pixels affected by clouds to the ground. Thanks to this work is possible to
significantly reduce the amount of data sent from satellites.
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Chapter 1

Introduction

1.1 Topic of the thesis

Compression is the search for compact representations of data, for purposes such as
the decrease in memory requirements, and faster transmission between source and
destination. The advancement and development of new compression techniques is
quite important in order to respond to the explosion of content generated every day,
both from humans and automatic sensors.

In this thesis three problems are examined: video compression, data-reduction
for multi-spectral earth observation images (via cloud screening) and compression
for SAR raw data.

1.1.1 Video compression

In our works concerning video compression, we focused on the use of deep learning,
after the great successes such techniques achieved in the last few years, particularly
in the fields of image and video processing.

Video compression is a very complex task and trying to create a deep learning
algorithm capable of beating the performance of the current generation of video
coding standards would have been unfeasible. For this reason, we concentrated our
efforts in developing deep learning tools to support and improve the performance
achieved by already existing video compression standards. It has to be noted that the
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tools we developed were tested to work for the current standard H.265/HEVC [1],
but, since all the modern video coding standards share the same basic architecture,
the techniques we designed are not really dependent on any particular codec, and
could be implemented in any of the currently available compression algorithms.

Both of the video coding tools we describe tackle a particular step of the video
compression architecture: inter-prediction. Inter-prediction is the algorithm that the
codec uses to remove the redundancy present in video due to the high amount of
correlation between neighboring frames. This inter-frame correlation is the greatest
source for compression in video signals.

Inter-prediction is used to generate an estimate of a frame based on previously
compressed ones, so that the encoder has to transmit just the difference between the
real frame and the estimate. This difference is called the residual. The prediction
is generated by a process called motion-compensation, which is a rudimentary
algorithm that produces very artifacted estimates and requires the transmission of
side information (the so-called motion-vectors) to function.

Frame prediction

Identifying these limitations of the currently employed inter-prediction algorithms,
we designed two alternatives. First, we created a convolutional neural network (CNN
[2]) designed to predict the current frame based on previous ones. This approach
would be advantageous in multiple ways: first, since the prediction would not be
dependent on the use of side information, it could reduce the dimension of the final
compressed file. Secondly, by using a more advanced algorithm for prediction, it
would be possible to predict more complex forms of motion than the ones modelled
by motion-compensation.

Taking inspiration from [3] we created a network capable of generating pixel-
adaptive convolutional filters, that are applied on the previous frame to generate an
estimate of the current one. The filters were estimated by using the three frame that
precede the one that is being predicted.
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Motion-compensated frame enhancement

The previous idea was reworked: instead of designing a network which tries to
fully generate the predicted frame, we decided that it was more practical to keep
the motion-compensation algorithm of the codec and to use a neural network to
improve the quality of the generated prediction. We called this network MMCE-Net
(Multiframe Motion-Compensation Enhancement Network).

MMCE-Net generates the enhanced version of the motion-compensated frame
(MC-frame) by taking as input the motion-compensated frame itself, plus two
previous frames of the video sequence. These two previous frames are first registered
to the motion-compensated frame using the optical flow network PWC-Net [4].
The MC-Frame plus the registered versions of the two previous frames is fed to a
Dn-CNN [5].

This algorithm was implemented inside the video compression algorithm, and
we were capable to achieved an improvement in terms of rate-distortion measured
using the Bjøntegaard metric [6] of -1.69%.

1.1.2 SAR raw data compression

The following section describes our work in the field of SAR raw data compression.
SAR stands for Synthetic Aperture Radar, and since it is a radar architecture, the
raw captures are not images, but are instead the echoed signal from the examined
environment in response to an impulse emitted by the sensor. SAR raw data takes the
form of a grid of complex samples weakly correlated to one another, which makes
compression arduous.

In our case, we needed to choose a SAR raw data compression algorithm to be
employed on-board of a satellite designed for the Horizon 2020 project EO-Alert [7].
To accommodate the hardware requirements of the satellite, the chosen algorithm
needed to have low complexity.

Following the work in [8], we tested the performance of low-complexity standard
for multi-spectral and hyper-spectral image compression CCSDS 123.0-B-2 [9] on
SAR raw data captures. The use of this algorithm is advantageous because it was
already implemented on-board of satellites for the compression of multi-spectral and
hyper-spectral images. Its viability for SAR raw data compression would allow to
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simplify the processing architecture of the satellite, by using a single compression
algorithm to work on multiple forms of data.

After extensive testing we verified that CCSDS 123.0-B-2 can be used for SAR
raw data compression, managing to achieve compression performance which surpass
the de-facto standard for the task, block adaptive quantization (BAQ [10]). This
methodology was then employed in the Horizon 2020 project EO-Alert.

1.1.3 Data reduction for multi-spectral images via cloud screen-
ing

The last work described in the thesis, involves again the use of standard CCSDS
123.0-B-2. One great problem in earth observation is that portions of the transmitted
data from the satellites are not usable due to the presence of clouds, which obscure
the land the satellite is trying to observe.

In this work we developed multiple techniques to allow the transmission only of
the valid pixels captured by the satellite, and to effectively skip the pixels affected by
clouds. The correct reconstruction on ground is made possible by correctly signaling
the skipped pixels. All the techniques documented in this chapter were designed to
be compliant with the standard CCSDS 123.0-B-2.

1.2 Thesis organization

The rest of this document is structured in the following way:

• Chapter 2 provides some useful background information about the basics of
deep learning, the inner workings of the compression standards H.265/HEVC
for video, and CCSDS 123.0-B-2 for multi-spectral images.

• Chapter 3 describes the design of a network for frame prediction for the
purpose of video compression.

• Chapter 4 describes the evolution of the work presented in chapter 3: a neural
network for the enhancement of motion-compensated frames for the purpose
of video compression.
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• Chapter 5 describes our work for SAR raw data compression using the CCSDS
standard.

• Chapter 6 describes the work on cloud-screening for data reduction in a remote
sensing setting, again inside the framework of the CCSDS standard.

1.3 Publications

These are the published paper throughout the duration of the PhD:

1. Nicola Prette, Enrico Magli, and Tiziano Bianchi. Using CCSDS image
compression standard for SAR raw data compression in the H2020 EO-Alert
project. In European Workshop on On-Board Data Processing (OBDP2019),
2019.

2. Martina Cilia, Nicola Prette, Enrico Magli, Bernhard Sang, and Stefano Pier-
accini. Onboard data reduction for multispectral and hyperspectral images via
cloud screening. In IGARSS 2020 - 2020 IEEE International Geoscience and
Remote Sensing Symposium, pages 6230-6233, 2020.

3. Nicola Prette, Diego Valsesia, and Tiziano Bianchi. Deep multiframe enhance-
ment for motion prediction in video compression. In 28th IEEE International
Conference on Electronics, Circuits, and Systems (ICECS), pages 1-6, 2021.

4. Nicola Prette, Diego Valsesia, Tiziano Bianchi, Enrico Magli, Matteo Naccari,
and Attilio Fiandrotti. Deep motion-compensation enhancement in video
compression. Electronics Letters, 58, 04 2022.



Chapter 2

Background

2.1 Video Compression and the H.265/HEVC coding
standard

This chapter provides a basic description of the video coding standard H.265/HEVC.
This will be useful since this standard has a central role in much of our work on video
compression. A general overview can be found in [1], while for a more in-depth look
the book [11] is recommended. The explantion provided in this chapter are based on
these two sources.

H.265/HEVC was designed jointly by the ITU-T Video Coding Experts Group
(VCEG) and by the ISO/IEC Moving Pictures Expert Group (MPEG). Together they
form the Joint Collaborative Team on Video Coding (JCT-VC). H.265/HEVC is the
successor of H.264/MPEG-4 AVC [12], and it has been followed by H.266/MPEG-4
VVC [13].

2.1.1 Overview

Despite the years of iteration on the design, in broad strokes H.265/HEVC shares
the same kind of architecture as H.261 [14] (the first of the video coding standards
developed by ITU-T) and all its successors. It can be described as a sort of Differ-
ential Pulse-Code Modulation (DPCM), in the sense that the compressed samples
are generated by quantizing and encoding a difference between the original sample
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Fig. 2.1 Simplified diagram of the architecture of video compression standard H.265/HEVC

and an estimate computed by the algorithm. This estimate is constructed based on
previous samples.

It is an hybrid architecture, because it employs together two different forms
of prediction: intra-prediction and inter-prediction. Intra-prediction generates the
estimated sample by taking advantage of the correlation present between samples
inside the same frame, while inter-prediction uses the correlation between different
frames.

A diagram displaying the various components of the architecture of H.265/HEVC
can be seen in figure 2.1.

Each input frame is split in square sections called Coding Tree Units (CTU)
which are processed sequentially. The encoding of the first frame of the image is
done purely through intra-prediction, while for the following frames each CTU can
be coded using either intra- or inter-prediction (but mostly the latter of the two).

Inter-prediction is achieved in two steps. First, the motion between a reference
picture, chosen from a collection of previously encoded frames, and the target one is
extracted. This motion information is then used to generate a prediction through a
process called motion-compensation.

At this point, the predicted CTU is subtracted from the input one to generate a
residual signal. A linear spatial transform is applied to this residual, and then the
obtained coefficients are quantized and entropy coded. This compressed stream is
sent to the decoder together with the prediction information.
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In order to make the decoding of the file possible, the encoder needs to generate
every prediction with information that would be available at the decoder while
processing. For this reason, the structure of the decoder is replicated inside the
encoder: an inverse transform is applied to the residual which is then summed to the
predicted signal. This first reconstruction is then enhanced using the de-blocking and
SAO filters to obtain the final reconstructed frame. These reconstructed frames go to
form the Decoded Picture Buffer, which is used for the purpose of inter-prediction.

In the following section we will provide a broad description of some of the main
components of this architecture, posing most of the emphasis on the inter-prediction
segment, which will be the focus of our work on video compression.

2.1.2 Components of the architecture

Coding units and other partitions of the frame

As it was mentioned in the overview, inside the architecture of H.265/HEVC the
frame is split in square block sections called Coding Tree Units (CTU). This is a
more flexible version of what in the previous iterations of the standard were called
macroblocks. The CTU is composed by three Coding Tree Blocks (CTB), each
associated with one band (one luma channel and two chroma channels). This naming
convention is kept for all the other ways to partition the frame: unit refers to a
partition across all channels while block refers to its corresponding partition over
a single channel. The luma CTB can be created in three possible sizes in pixels:
64×64, 32×32, 16×16.

The CTU is further partitioned in what are called Coding Units (CU) using a
quad-tree structure (see Fig. 2.2). The smallest CU that it is possible to generate has
size 8×8.

During the prediction stage of the algorithm, the CU is further partitioned in
Prediction Units (PU). The rules for the partition in PUs change depending on
whether inter- or intra- prediction is used. For inter-prediction the quad-tree structure
is not followed anymore, and the PU can also assume rectangular shapes of different
sizes.
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Fig. 2.2 Quad-tree structure used to partition a CTU into multiple CU and to partition a CU
into multiple TU.

Similarly during the transform coding stage the CU is partitioned again to form
the Transform Units (TU), again following the quad-tree structure down to a size of
4×4.

Intrapicture Prediction

Intra-prediction is used to predict the content of a PU by using neighboring PUs in
the same frame. There are three forms of prediction:

• Directional prediction: the predicted PU is generated by taking pixels from
already decoded PUs which touch its boundaries, and their value is extrapolated
following one between 33 possible directions of prediction (Fig. 2.3).

• DC prediction: the full PU is filled with a constant value which is the average
of the boundary samples.

• Planar prediction: the PU generated is a linear color gradient through the sur-
face, whose characteristics are determined by the samples on the boundaries.

Interpicture Prediction

Inter-prediction generates the content of the PUs using information contained in
previously encoded frames. In H.265/HEVC, motion between frames is modelled as
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Current PU

Boundary samples 
from decoded PUs

Fig. 2.3 Diagram for directional intra-prediction: the boundary pixels are extended to generate
the predicted PU. One of 33 directions can be chosen for the extension.
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Reference Frames Motion-Compensated Frames

Fig. 2.4 Motion-Compensation mechanism for inter-prediction: the predicted frame is
obtained by assembling blocks from pictures in the decoded picture buffer. These blocks are
moved to the right position in the predicted frame by using the motion vectors

a translation of blocks through time (Fig. 2.4). Motion is assumed homogeneous for
the blocks, so it can be described succinctly as an offset which is applied to all the
pixels of the block. These offsets are the motion vectors.

The motion vectors are generated through a process called motion-estimation.
Given a PU inside the frame, the motion-estimation algorithm iteratively looks for
blocks inside other temporally-neighboring frames which correlate with the region
corresponding to the PU in the original image. The algorithm used for the motion-
estimation is not defined in the standard, and the choice is left to the discretion of
who implements the encoder. The temporally neighboring frames are found in the
decoded pictures buffer and are called reference frames.

Whenever a match is found, the offset between the PU that is being predicted and
the matching block is the estimated motion vector. In order to obtain more accurate
predicted frames, the motion vectors are estimated with an accuracy equal to one
quarter of a pixel. This is achieved by up-scaling both the reference frames and
the original by a factor of four (both vertically and horizontally) during the motion
estimation process.

There are two kinds of inter-prediction: uni-prediction, and bi-prediction. In
uni-prediction all the reference frames used to generate the PU precede the current
frame in display order. Instead, in bi-prediction both future and past frames are
used. Furthermore, in bi-prediction two reference picture lists are used to generate
two predictions. These two predicted blocks are then merged together, either by
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averaging or by using a weighted sum. The frames coded using uni-prediction
are referred to as P-frames, while the ones obtained through bi-prediction are the
B-frames.

In order to make possible the generation of the prediction blocks at the decoder
side, the motion vectors need to be transmitted as side information. Since the motion
of a prediction block is correlated with the motion estimated for other neighboring
blocks it is possible to compress motion information. The compression of the motion
information is done using an algorithm called advanced motion vector prediction
(AMVP), which is an improved version of similar mechanisms present in previous
versions of the standard. In this mechanism, a prediction of a motion vector is
generated (called motion vector predictor or MVP) and what is transmitted is the
difference between the real motion vector and the MVP. This residual between the
two is the motion vector difference (MVD).

In cases where the same motion information is shared by (spatially or temporally)
contiguous prediction blocks, H.265/HEVC does not send the motion vector to the
decoder; what is sent instead is an index which points to the contiguous block which
has the same motion-vector information. This is called merged mode as it creates
regions composed of different blocks which share the same motion information.

Transform, and Quantization

The generated residual then undergoes a process called transform coding. The CU is
partitioned in multiple TU using a quad-tree structure. The biggest size allowed for
the TU is 32×32 while the smallest is 4×4 pixels. The transformed coefficients
of the block are computed by using two 1-D transforms, one vertical and the other
horizontal. The transform coefficients are integer approximations of the coefficients
of a discrete cosine transform (DCT), except when the TU has dimensions 4×4, in
this case an approximated version of the discrete sine transform is used.

The transformed coefficients are then quantized. This is done by dividing the
samples by a value called quantization step, and by rounding it up to the nearest
integer. The quantization step size ∆Q(QP), is proportional to the quantization
parameter (QP). The QP can be chosen with values between 0 and 51, and the
relationship between the quantization step and the QP is the following:
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∆Q(QP) = (21/6)QP−4 (2.1)

Using this equation, when the QP is equal to 4 the quantization step is equal to 1,
and there is a doubling in size of the quantization step for an increase of the QP by a
value of 6.

Both transform coding and quantization are skipped in the so-called lossless
mode.

Entropy Coding

H.265/HEVC uses a entropy coding algorithm called CABAC (context-based adap-
tive binary arithmetic encoder) [15] an algorithm originally developed for H.264/MPEG-
4 AVC. In broad terms, this algorithm is a arithmetic coder connected to a probability
estimator to adapt to changes in the distribution of the data to compress through time.

In-Loop Filters

The reconstructed frames are affected by various kinds of artifacts, like noticeable
square borders due to the partition of the frame in blocks during compression. To
mitigate these problems some enhancing algorithms are applied to the reconstructed
frames, which are called in-loop filters. There are two enhancing processes which
are applied to the reconstructed frames: the deblocking filter (DBF) and the sample
adaptive offset (SAO).

DBF is devoted to the reduction of the discontinuities generated by the compres-
sion algorithm (block artifacts), which are generated by the partition of the frame in
CUs, PUs and TUs. It consists of a blurring filter which is applied selectively across
the reconstructed frame. The block artifacts are especially noticeable in smooth areas
of the original frame, so it is in these areas that the deblocking filter is applied. In
sections where the original frame is not smooth the artifacts are less noticeable, and
the application of the de-blocking filter is avoided. Furthermore, the use of the DBF
in such areas would filter away legitimate information from the original samples and
make the final frame blurry.
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SAO is a general enhancing filter which reduces the presence of other imperfec-
tions, mainly ringing artifacts deriving from the use of larger sizes for the transform.
There are two types of SAO:

• Edge Offset (EO): Which tries to limit the effect of the Gibbs phenomenon
(ringing artifacts). This is achieved by adding offsets to the interested samples,
which compensate for the peak and valleys attributed to the detected artifact. To
detect the rings and decide which offset to apply to the sample, a classification
algorithm, which uses the neighboring pixels and the original frame as input,
is applied. The results of these classifications have to be sent to the decoder as
side information to allow for the correct reconstruction of the frame.

• Band Offset (BO): In this algorithm the offset is provided to the sample is
based on if it falls inside a determined range of values (band). The offset
is thus determined only by the value of the pixel itself, without examining
its neighbors. The offset to be applied for each band are determined by the
encoder to further minimize the distortion on the reconstructed image without
adding much side information.

2.2 Low-complexity image compression for remote
sensing applications

2.2.1 Introduction

Hyper-spectral and multi-spectral images are optical images characterized by a
greater number of bands, compared to the usual three (red, green and blue). This
makes it possible to capture the electromagnetic spectrum for each pixel over a large
span of wavelengths and with an high resolution. In certain applications the captured
wavelengths can reach thousands [16].

This detailed representation of the electromagnetic spectrum is useful for several
scientific applications and thus hyper-spectral and multi-spectral sensors are often
present in satellites used for Earth Observation. Hyper-spectral images can be useful
for purposes such as agriculture, monitoring and alerting for calamities of various
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nature, mining and many others [17, 18, 7]. For this reason new architectures,
enhancing algorithms and applications continue to be developed for this field [19].

The great number of channels makes this kind of images very large in terms of
memory occupation. This is a big problem since the available capacity of the channel
between the satellite and the ground segment is limited, which makes necessary
to compress the data. However, the hardware available on-board of satellites is
limited in terms of performance so it is necessary to design compression techniques
of limited complexity. Another caveat is that in scientific applications it is necessary
to capture data with no distortion, or where distortion is guaranteed to be lower than
a specified upper bound, so only lossless and near-lossless techniques can be used.

The Consultative Committee for Space Data Systems (CCSDS) is a committee
devoted to the design and diffusion of standards useful for applications in space-
flight communications, and also deals with the design of standards for compression
of hyper-spectral and multi-spectral images. The latest iteration regarding this
topic is called "Low-Complexity Lossless and Near-Lossless Multispectral and
Hyperspectral Image Compression [20]" (CCSDS 123.0-B-2). An in-depth overview
of this standard, which was used as basis for this chapter, can be found in [9].

2.2.2 The CCSDS 123.0-B-2 Standard

Overview

CCSDS 123.0-B-2 is a compression standard based on the principle of DPCM
(Differential Pulse-Code Modulation), which means that it compresses the images
by first generating estimates of its samples (using the correlation between samples
inside the signal), and then by quantizing and entropy coding the residual. It is a
backward compatible extension of CCSDS 123.0-B-1 (where the last digit indicates
the number of Issue of the standard). This new issue introduces, among other things,
the possibility of performing near-lossless compression (lossy compression with an
upper bound on distortion for every pixel). This is achieved by adding a quantization
step to be applied in the prediction loop, since the quantization of the input image
before prediction would be sub-optimal [21]. It also introduces a new mode of
entropy coding denominated hybrid coding, which is capable of reducing the bit-rate
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Fig. 2.5 Structure of the CCSDS 123.0-B-2 predictor

to values smaller than 1 bit-per-pixel by encoding multiple input pixels at the same
time.

An overview of its architecture is displayed in figure 2.5: an image is fed to a
prediction loop which generates a prediction error (which is quantized in the near-
lossless configuration). This prediction error is then sent to an entropy coder. Three
entropy coder algorithms can be selected: Block-Adaptive Coder, Sample-Adaptive
Coder, and the Hybrid-Coder.

Predictor Stage

The role of this component is to predict the value of a pixel conditioned on previously
encoded input pixels. The assumption is that in optical images the values in the same
area of the image are correlated with each other, so the values of previously encoded
pixels can be used to predict the future ones.

This prediction is then subtracted from the input value to generate a prediction
error (also called residual):

∆z(t) = sz(t)− ŝz(t) (2.2)
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where sz(t) is input sample (z is the index of the band that is being encoded and t
is the index which designates a pixel inside the image navigated in raster scan order),
ŝz(t) is the predicted value and ∆z(t) is the residual.

This residual is then quantized to reduce the number of bits on which it is
represented. A uniform quantization is employed, which means that the bins used for
the quantization are all equal dimensions. The quantization is parametrized in two
ways: either by setting the absolute error limit mz(t) or by setting the relative error
limit rz. mz(t) is used to bin the residual into 2mz(t)+1 values and the quantized
output is obtained with the formula:

qz(t) = sgn(∆z(t)) ·
⌊
|∆z(t))|+mz(t)

2mz(t)+1

⌋
(2.3)

The relative limit is instead used to estimate the absolute error limit using this
formula:

mz(t) =
⌊

rz(t)|ŝz(t)|
2D

⌋
(2.4)

where D is the dynamic range for the input. These error limits can be set for each
spectral band of the image.

The quantized values qz(t) are then mapped to non-negative values δz(t) which
are called mapped quantized indeces.

In order to obtain the same predicted value both at the encoder and the decoder,
the estimation must be generated starting from the so-called sample representatives
s′′z (t). These are reconstructed values obtained by combining the residual with
the predicted samples (using a more advanced method than simply summing the
two). The predicted values are generated via simple interpolation schemes between
previously encoded samples in the same band and samples in the same pixel position
in the image but in previous bands.

Which samples are chosen is determined by the mode of prediction selected.
There are four possible modes, which are the combination of the two choices between
narrow/wide mode and neighbor/column - oriented mode. The choice between
narrow and wide mode determines whether the sample to the left of the one that is
being encoded (s′′z,y,x−1) is used for the purpose of prediction. In narrow mode this



18 Background

Wide Neighbor-oriented Narrow 
Neighbor-oriented

Column-oriented
(Wide/Narrow)

x

y

x

y y

x

Fig. 2.6 Local sum modes available in CCSDS 123.0-B-2

is skipped to make the processing of the sample of a row of the image completely
independent on previous samples of the same row, which is a useful property for
purposes of parallelization on hardware. The impact of skipping this sample is
limited [22]. Regarding column-oriented vs. neighbor-oriented mode, the first uses
for prediction only the sample exactly above the current one while the latter also
uses the sample on upper-right corner and the sample in the upper-left corner. This
is displayed in Fig. 2.6.

The modes described above are used to compute a value denominated local sum
ρz,y,x. This value is in turn used to generate the so-called local differences:

dz,y,x = 4s′′z,y,x −ρz,y,x

dN
z,y,x = 4s′′z,y−1,x −ρz,y,x

dW
z,y,x = 4s′′z,y,x−1 −ρz,y,x

dNW
z,y,x = 4s′′z,y−1,x−1 −ρz,y,x

(2.5)

where dz,y,x is denominated the central local difference, while dN
z,y,x, dW

z,y,x and
dNW

z,y,x are the directional ones (respectively north, west and north-west). The predicted
central local difference d̂z,y,x is computed as a weighted sum of local differences.

There are two possible modes to generate dN
z,y,x: full mode and reduced mode. In

full mode dN
z,y,x is a weighted sum between the three directional differences for the

sample (dN
z,y,x, dW

z,y,x, dNW
z,y,x) and the central differences from neighbors located in the

same position (x,y) but belonging to the previous P spectral bands dz−1,y,z, ...,dz−P,y,z,
where P is a parameter set by the user. The weights for the sum evolve through time
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based on the evolution of the prediction error in the previously encoded samples. In
reduced mode the directional local differences are not used.

Finally, the predicted central local difference d̂z,y,x and the local sum ρz,y,z are
used to generate the predicted values ŝz,y,x.

Encoder Stage

The generated quantized indexes are then passed to an entropic coder. CCSDS 123.0-
B-2 allows to choose between three possible algorithms: Block-Adaptive Coder,
Sample-Adaptive Coder and the Hybrid Coder.

The Block-Adaptive Coder is a Rice coding based algorithm first described in
the standard CCSDS 121.0-B-2 [23]. The input samples are partitioned in blocks of
fixed dimensions between 8 and 64 samples. Each of these blocks is coded using
one of five different coding methods. Each method is tested on the samples and the
one that gives the best results is chosen.

The Sample-Adaptive Coder, first maps each input sample to different code-words
which belong to a GPO2 family (Golomb power of 2). These code-words (which
denote as Rk(δz(t))) are generated based on an index k which is itself generated
based on the statistics of previously encoded samples.

Given the user-specified GPO2 length limit Umax, if ⌊δz(t)/2k⌋<Umax then the
selected Rk(δz(t)) is composed by a series of ⌊δz(t)/2k⌋ zeroes followed by a 1 and
then the last k bits of δz(t). If ⌊δz(t)/2k⌋ ≥Umax then Rk(δz(t)) is made up of Umax

zeroes, followed by δz(t) written in binary over D bits, where D is the dynamic range
of the input image.

Finally, the Hybrid Coder, is an evolution of the Sample-Adaptive Coder which
gives the possibility of encoding parts the signal with bit-rates which are less than 1
bit-per-pixel. The samples where this is done, which are denominated low-entropy
samples, are mapped using variable-to-variable length codes (which means that
groups of variable length of the input samples are mapped to variable length codes).
The codes used and a more thorough description of the Hybrid Coder can be found
in [24].
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2.3 Deep Learning

In this chapter we provide an overview of the fundaments of deep learning. For a
more extensive explanation of the basics of this field we suggest the book [25]. This
book was used as basis for this chapter.

Deep learning is a family of algorithms in the field of machine-learning. As such,
deep learning algorithms are not completely designed by the programmer, but are
instead optimized to solve a certain task by taking large datasets of examples and
extracting patterns from it (the algorithm "learns" from data, hence the name machine
learning). Classical machine learning is dependent on having the data be represented
in forms which makes the learning easier, a process called feature engineering.

Deep learning does away with this process by using large multi-layer (e.g. deep)
architectures which are capable of learning both how to extract the useful features
from the data and how to use them to solve the task. The simplest example of a deep
learning algorithm is the feed-forward neural network (also known as multilayer
perceptron or MLP).

2.3.1 Multilayer Perceptron

The objective of a feed forward neural network is to approximate an unknown
function y = f ∗(x), which represents the task we need to learn. The structure of the
network defines a function y = f (θ ;x), where θ are tunable parameters which define
the function.

The basic building block of the MLP is the neuron, which is a simple affine
operator that combines several inputs using a series of weights and a bias parameter.
The obtained output is then fed to a non linear function called activation.

y = fnl(Wx+b) (2.6)

where x ∈ Rm is the input vector, W ∈ Rm×n is a weight matrix, b ∈ Rn is the
bias vector and fnl is the activation. In the architecture of the feed-forward neural
network multiple neurons are assembled together in a multi-layer structure, displayed
in chapter 2.7.
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Fig. 2.7 Structure of the fully connected multilayer perceptron

Each layer outputs a new representation of the data in output from the previous
layer. The multi-layer structure is used because it allows to create very complex
functions with simple building blocks, by stacking them one on top of the other. The
internal layers of the network which create these representations are called hidden
layers, and the number of the layer is called the depth of the model, while the number
of neurons in the layer is the width of the layer. In general, the greater the depth,
the more the network is complex, and thus capable of approximating more complex
functions.

The structure described in this chapter, where every neuron in a layer is connected
with the all the neurons in the following layer is also called a fully connected network.

Activation functions

The activation function is applied to the outputs of the neurons in order to make to
overall function described by the neural network non-linear. This makes the network
more expressive in the sense that in this way it can be used to approximate also
non-linear functions. Through the years many possible activation functions were
proposed but the most used are:

• The sigmoid: f (x) = 1
1+e−x
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• The ReLU (Rectified Linear Unit) function: f (x) = max(0,x) [26]

• The Leaky ReLU: f (x) = max(αx,x) with α being a small value ∈ (0,1) [27]

which are chosen depending on several criteria, including the computational effi-
ciency of computing the function and its derivative.

2.3.2 Training and optimization

This structure is thus capable of creating arbitrary functions y = f (θ ;x) by changing
the values of its parameters θ . In order to approximate y = f ∗(x) the parameters
need to be learned from data. This is done through a process of optimization called
gradient-descent, which minimizes the value generated by a cost function.

Cost function

In the beginning, the weights of a neural networks are initialized to random values.
Then the proximity of the neural network to the target y = f ∗(x) is evaluated by
using a so-called cost function. A large dataset of examples of inputs is fed to the
network, then the cost function is applied on the generated outputs. In most settings
the dataset also includes for every input a corresponding desired output for that
input, which is called a label. When the label is used in the cost function to train the
network, the process is denominated supervised learning.

One approach to derive a cost function is to define the distribution p(y|x;θ) in
the supervised setting, where y is modelled as a output of the true function affected
by noise, and to maximize the likelihood. In this case the cost function becomes the
negative log-likelihood and the objective of the training becomes its minimization.

C(θ) =−Ex,y∼p̂data [logpmodel(y|x)] (2.7)

where pdata is the probability distribution of the data and pmodel is the probability
distribution assumed from the model. By choosing pmodel(y|x) to be a gaussian with
the output value of the network as the mean

pmodel(y|x) = N (y; f (x,θ), I) (2.8)
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and estimating the log-likelihood we obtain the mean square error (MSE) cost
function:

C(θ) =
1
2
Ex,y∼p̂data

[
||y− f (x;θ)||2

]
+ const. (2.9)

Other cost functions can be derived for different objectives and assumption on
the data.

Back-Propagation

The process of feeding inputs to the network and the evaluation of the cost on
the output is called forward propagation. Once the scalar cost is evaluated, this
information is used to move the weights closer to a configuration of values which
minimizes the cost function, thus getting the network closer to realizing the task is
getting trained for. This is done through a process called back-propagation [28].

Back-propagation consist in evaluating the gradient of the cost function with
respect to every parameter of the network. Thanks to the chain rule of derivation this
can be evaluated in steps going backward from the output up to the beginning of the
network, with simple operations (hence the name back-propagation). Once the value
of the gradient in respect to the parameter, these can be updated, by moving in the
opposite direction of the gradient. The dimension of the update is determined by a
parameter called learning rate.

Optimization

In order to work correctly, deep learning needs very large datasets, which makes the
estimation of the gradient of the cost function over all of it not practical in terms of
time and memory. Usually, what is done instead, is to sample mini-batches from
the dataset and optimize the cost function only over them. After every iteration of
training, one mini-batch is discarded and another one, made up of different samples,
is extracted. Once a round of training over every sample of the dataset is done, a
length of time which is referred to as an epoch, the cycle starts over. The training
continues up to convergence, which is the moment in which the cost function stops
decreasing. This optimization over random mini-batches is denominated stochastic
gradient descent (SGD).
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What has been described up to now are the basics of training and optimization,
but through the years more advanced techniques to minimize the cost function have
been designed and are commonly used during training. One example is ADAM [29],
which uses the same principle of SGD, but instead of keeping the learning rate fixed,
it changes its value based on an evaluation of moving averages of the gradient and
the squared gradient. In this way, the magnitude of the update for each iteration
adapts to the conformation of the cost function in a particular region, and limits the
risk of, for example, jumping over minima present in the region due to a learning rate
which is too high. For this reason, the use of Adam usually speeds up the training
process. Another example is AdaDelta [30], which is another algorithm to obtain an
adaptive learning rate.

Dataset

The training is achieved by minimizing the cost function over mini-batches extracted
from the what is called the training set. To avoid the risk of the network not
generalizing to data outside of the input dataset (a phenomenon known as over-
fitting), its performance are assessed over a portion of a separate dataset not used
for training called the validation set, while the training progresses. The validation is
used to iterate and modify the architecture and the hyper-parameters of the neural
network, so indirectly the information it contains spills out in the final design of the
network. For this reason, another dataset is also used, called the test set, to determine
the final performance of the network.

Regularization

As anticipated in the previous section, there is always a risk for a trained network to
perform worse when used on data outside of the training set. One way to ensure that
this does not happen is to introduce regularizations.

Regularizations are a group of methodologies which use prior knowledge on
the data and the function that has to be approximated, to help the neural network
to achieve better results. This is usually realized by adding penalties on the cost
function or constraints on the parameters. Among the most used techniques there is
weight decay, which is a penalty on the cost function to reduce the magnitude of the
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Fig. 2.8 Diagram of a convolution between a 2D grid-structured signal and a kernel

weights, and the L1 regularization, which imposes the minimization of the L1 norm
of the parameters and is used to have more sparsity.

Another very important form of regularization is data augmentation. This con-
sists in the generation of more data from the input dataset, usually by introducing
simple transformations, like cropping and translations in the case of images. This is
particularly used in tasks such as classification since it is useful to make the trained
network more stable and invariant to transformation on the input. Another form of
augmentation is the introduction of noise on the input data to provide robustness.

2.3.3 Convolutional Neural Networks

General Structure

Convolutional neural networks (CNN) [2] are a type of neural network specialized
for data set up in grid structures, like images. As the name implies the main building
block of this kind of network is the convolution operation (Fig. 2.8). This chapter
will describe networks using 2D-convolutions, but this structure can be extended on
any number of dimensions.
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In this kind of neural network, what is learned are the coefficients of a convolu-
tional filter. This is advantageous in multiple ways: it greatly reduces the number
of parameters to be shared, as the dimensions of a kernel are much smaller than
the input signal. Furthermore, this makes the network usable on inputs of arbitrary
dimensions. For example, for problems involving images, the same convolutional
network can be used on images of different shapes and resolutions.

For the CNN to work correctly, some assumption needs to be met: first, the data
needs to be stationary, in this way the same filter can be relied upon to capture the
useful features in any part of the input signal. Also, the useful features needed to
accomplish the final objective should depend on localized regions of neighboring
samples in the signal, so that they can be captured by convolutional filters. These
properties are usually satisfied by natural signals.

The convolutional filters are also denominated kernels, while the output of each
layer is called a feature map, since it provides a map in which the highest values
indicate positions in the input where the kernel is matched. The span of input data
captured by the kernel at every shift, determined by the size of the kernel, is called
the receptive field.

Pooling Layers

When multiple layers of convolutions are stacked one upon the other, there is usually
an operation which is executed between layers called pooling. These pooling layers
reduce the size of the feature map and feed this down-scaled version of the input to the
following layer. This is done for multiple reasons: first, it is useful in cases where the
final output of the network is of smaller dimension then the input. Secondly, it allows
to increase the receptive fields for the deeper layers and to capture characteristics
which span larger and larger regions of the input. This is especially used in tasks
such as regression and classification, where the output is a scalar or a vector, which
need to be generated by taking information from the entire input. This also allows
the network to be more robust to slight variations in the positions of the features.

The most used pooling layers are the average-pooling, which generates the down-
sampled feature maps by locally averaging, and max-pooling, which extracts the
maximum patch-by-patch.



Chapter 3

Deep Frame Extrapolation for Video
Compression

3.1 Introduction

In a media landscape flooded by content due to the introduction of streaming services,
sharing through social networks, and the increase in resolution in modern video
files, the need for better video compression algorithms is ever-increasing. This
poses a great challenge since, after decades of iteration on the design of new video
coding tools, it becomes more and more difficult to develop methodologies that
further exploit the redundancies present in video signals. Deep learning represents
an attractive approach to design advanced architectures for a video compression
algorithm.

As illustrated in the previous chapter, deep learning is a very powerful tool, and
through the utilization of such techniques, the scientific community has been capable
of achieving feats that would have appeared impossible just a few years ago. Even
though there are still limitations compared to the currently employed techniques
(especially in terms of complexity), deep learning shows great promise for video
compression, and standardization committees are starting to investigate this field as
an avenue for the development of the algorithms of the future.

In this context, our objective was to design a novel deep learning algorithm with
the purpose of increasing the efficacy of already existing video coding standards,
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like the H.265/HEVC (High Efficiency Video Coding) [1]. In particular, our aim
was to improve the temporal prediction aspect of existing codecs, carried out by the
so-called inter-prediction algorithm. As illustrated in the background chapter, inter-
prediction is primarily achieved through a step called motion-compensation, which is
the construction of an approximated version of the frame that is being compressed by
assembling square-shaped portions of past frames in order of encoding (the scheme
is illustrated in Fig. 3.1).

Motion-compensation is a very simple mechanism that creates only rough esti-
mates of the predicted frame. The question we investigated is the following: would
it be possible, using the power of deep learning, to predict future frames based on
previously transmitted ones, without transmitting motion parameters to the decoder?
In this way inter-prediction could be executed without needing to transmit side
information. Furthermore, such a network could learn to model more advanced
forms of motion compared to motion-compensation (which can only compensate
for translations of blocks of pixels) and thus, generate estimates which are more
accurate.

3.2 Related work

Several papers have been created which use of machine learning and in particular
deep learning for the purpose of compressing video. Broadly, the adopted algorithms
in this field can be divided into two families: end-to-end compression, in which
the neural network strives to perform the whole compression task on its own, and
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compression tools, in which the aim is to improve the performance of an existing
codec. In this section, some relevant techniques from both categories are described,
but a more in-depth survey can be found in [31].

3.2.1 End-to-End Compression

Though in the beginning these promising works seemed limited in scope and unable
to reach competitive performance, several end-to-end approaches have recently been
proposed, which are closing the performance gap compared to conventional video
coding standards such as H.265/HEVC.

Chen et al. [32] proposed PixelMotionCNN, an architecture that tries to re-create
in a neural network framework the predictive coding workflow employed by coding
standards such as H.265/HEVC. The network generates a prediction of a block of
the frame that is being encoded by fusing information taken from previous frames
together with the already encoded parts of the current frame. The residual between
the predicted block and the original one is then compressed by using an iterative
scheme based on an auto-encoder network, reaching results that are comparable to
H.264/AVC.

Along the same lines, Lin et al. [33] tried to recreate the structure of modern
codecs using a neural network. The proposed network is called M-LCV and extends
the scope of previous approaches by including, among other things, multiple refer-
ence frames and motion vectors (instead of having the deep learning algorithm try to
completely predict the frames). The architecture uses several different networks to
recreate the various steps of hybrid video compression, such as motion estimation
and residual and motion vector compression. These different segments are jointly
optimized using a loss function based on rate-distortion minimization. This work
manages to outperform H.265/HEVC for the low-latency mode.

Han et al. [34] proposed a generative approach based on the variational autoen-
coder architecture. It extends the variational autoencoder to work for sequential
information to create a model where it is possible to condition the prior distribution
of a frame based on the preceding frames. The obtained latent variable correspond-
ing to the frame is then quantized and arithmetically encoded following the prior
model. This very ambitious work is only limited to very low-resolution signals with
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specialized content such as video game character sprites due to the complexity of
the task of creating good models for video.

3.2.2 Compression Tools

Most of the works in the field fall in the second category, i.e. deep learning com-
pression tools. These tools are used to improve the performance of existing codecs,
usually by tackling some specific parts of its architecture and trying to improve
upon them. This makes the goal of achieving state-of-the-art performance in the
field of video-compression way easier compared to building a complete compression
algorithm from scratch. Different techniques try to tackle different steps of the
video-compression algorithm.

A popular topic is the use of neural networks as an in-loop filter, which allows
the use of video enhancement techniques for compression. For example, Li et al.
[35] propose a multiframe enhancement of the reconstructed frame. First, it selects a
portion of previous frames from the reference picture list, choosing the one that more
closely resembles the frame being encoded. Then these suitable reference frames are
motion-compensated by a network and then fed together with the current frame to a
neural network based on DenseNet [36]. Also, a map of how the frame is partitioned
in coding and transform units is given to the network to help with artifact removal.
Similarly, Zhang et al.[37] focus on reducing artifacts on intra-predicted frames by
using a recursive residual network.

Several proposed schemes exploited the success of neural networks in the field
of image compression and concerned themselves with intra-prediction. Li et al.
[38] propose the use of a fully connected network. The model takes as input
multiple reference lines of already encoded pixels, that surround the block and
whose content is highly correlated with it. In contrast, H.265/HEVC uses only one
line of reconstructed samples. In [39] all intra-coding modes are substituted with
neural networks. Fully connected networks are used for small blocks, while for
sizes 16× 16 and 32× 32 convolutional networks are used. More recently, [40]
proposed the use of generative adversarial networks, based on the reasoning that
intra-prediction can be seen as an inpainting task since it consists of the completion
of a partial image which is a task usually accomplished with such networks.
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Some works try to tackle inter-prediction. Among them, we remember Zhao et
al. [41], which use the structure for interpolation between frames proposed in paper
Deep Voxel Flow [42] to construct better reference frames denominated "virtual
reference frames". The idea of enhancing the reference frames is also used in Lee
et al. [43], with the difference that this structure is studied for the uni-prediction
setting.

3.3 Proposed method

3.3.1 Problem setting

As anticipated in the introduction there are limitations in the capabilities of inter-
prediction based on motion-compensation. First, motion-compensation is very
limited: it works on square sections of pixels at a time and can only correctly
model translations. Thus, it is impossible for motion-compensation to represent
more complex forms of movement through time such as rotations and deformations
of objects. Furthermore, motion-compensation makes it necessary to send side
information together with the encoded stream in the form of the spatial offsets
needed to retrieve the predictor from the reference frames (the so-called motion-
vectors).

To solve all these problems we conceived of a network that predicts a frame
taking previous ones as input. Such a network could both eliminate the need to send
side information and could possibly compensate for more advanced modes of motion
present inside video signals.

3.3.2 Network Structure

Base Model

The starting point for the approach we propose was the model described in the
paper [3]. This method, presented at CVPR 2018, is a convolutional network for
the purpose of video super-resolution. The proposed method utilizes the temporal
context of a frame (e.g. the frames that immediately precede and follow the examined
one) to create an up-sampled version of it.
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Fig. 3.2 Proposed approach

In most other approaches for video super-resolution, the input is fed together
with the temporal context frames, and the job of the network is to merge internally
the information to come up with the super-resolved output. In addition, usually the
temporal context frames are first motion-compensated with respect to the frame that
has to be super-resolved ([44, 45]). This alignment makes the work of the network
simpler because in this way it can find the objects represented in the video in the same
positions across the various frames. This has the downside that the alignment of the
previous frames can distort them and possibly destroy part of the information they
contain. Also, there is a great dependence on the quality of the motion-compensation
to have good results in terms of super-resolution.

[3] introduces the Dynamic filter generation network, a different paradigm in
which the network uses the context frames and the input to create convolutional
filters that are applied to the output frame in order to obtain the super-resolved one.
As the word "Dynamic" in the name of the network suggests, a different up-sampling
filter is generated for each pixel of the input so that based on the location inside the
frame the surrounding pixels are adaptively interpolated based on which part of the
image is being examined.

In our case, we applied the idea of a filter generating network to the problem
of inter-frame prediction: three consecutive frames are fed to a filter-generating
network and the obtained filters are applied to the last of the frames to obtain the
predicted one.

The filter generating network is a CNN using 3D-convolutional filters to capture
both spatial and temporal information from the stack of frames. We used the simplest
model described in the paper [3]: each layer uses batch normalization [46] followed



3.3 Proposed method 33

B
N

R
eL

U
3x

3x
3 

C
on

v

B
N

R
eL

U
1x

1x
1 

C
on

v

B
N

R
eL

U
3x

3x
3 

C
on

v

R
eL

U
3x

3x
3 

C
on

v

R
eL

U
3x

3x
3 

C
on

v

Output 
Filters

Input 
Features

Fig. 3.3 Internal structure of the filter generating network.

by ReLU activations, a convolutional layer with a filter with size 1×1×1, then batch
normalization again, ReLU, and another convolutional layer with size 3×3×3.

Each following layer employs as input the features extracted by all the previous
layers. This is done by concatenating the outputs of the previous layers over the
channel axis. This follows the structure proposed in the paper [36].

We started based on the smallest of the models proposed in [3], a 6-layer structure
in which each layer adds 32 feature channels to the following ones. The output of
the sixth layer is a feature map with 256 channels. This is fed to another Batch
Norm, ReLU, and a 2D convolution 3x3. After this, the network separates into two
branches, one branch for generating filters, and the other for generating a residual that
is added to the filtered output. This residual is used to make the generated prediction
sharper since the output of the filtering operation tends to generate estimates which
are smoothed. Both branches comprise two blocks of ReLU followed by a Conv
1x1, but the branch which generates the filter further employs a SoftMax block. This
makes the values of the filter sum to one and makes the output of the filter depend
mostly on one pixel in the receptive field. In this way the filtering acts more as a
motion vector applied to one or few neighboring pixels and not interpolation across
the elements of the receptive field of the filter. The structure is illustrated in figures
3.2 and 3.3.
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3.4 Dataset and Training

3.4.1 Dataset Creation

A dataset to train the network was created starting from raw video sequences pro-
vided by RAI - radiotelevisione Italiana. This collection of videos consisted of 24
sequences in total: 12 sequences at resolution 1080p and other 12 at resolution 2160p.
All of them were captured at 50 fps, with variable lengths. 5 of these sequences
are widely available (CrowdRun.yuv, ParkJoy.yuv, DucksTakeOff.yuv, InToTree.yuv,
OldTownCross.yuv can be found on the Xiph.org website [47]), while the others
were captured by RAI (some examples can be seen in image 3.4). It was important
to use raw sequences to avoid having compression artifacts in the training datasets.
The downside is that the resulting data is very large in terms of memory, since even
sequences under a minute of length at 1080p can occupy more than 1 GB of memory.
The 24 sequences cited occupy 144 GB of memory in total. The training dataset
was obtained starting from this collection of videos by extracting short 4-frames
sequences, in order to use the first 3 frames as input and the last one as the label.
Since it was not feasible to work with full-frames as it would require too much
memory (and would make it impossible to train on batches of inputs), random crops
of size 144×144, were extracted. In total, 6.6×104 sequences were collected.

At first, it was contemplated to extract the crops based on the amount of motion
contained in them (selecting thus only sequences with noticeable motion), in order
to promote the learning of a motion model. This was discarded as we did not want to
create biases in the training, leaving the use of a dataset selected using this criterion
for possible future tests.

3.4.2 Training Setup

The network was implemented in python 2.7 using the platform for machine learning
TensorFlow v1 [48]. It was trained using one GPU Nvidia TITAN RTX 6000, which
uses 24 GB. The batch size used was 16 images and the network was optimized
using ADAM [29]. Learning rates were tested in the ranges between 1×10−4 and
1×10−5 and using a scheduler with exponential decay every 4×103 iterations.
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Fig. 3.4 Frames from the sequences provided by RAI. On top is a frame from the sequence
FountainLady, in the middle there is a frame from LupoBoa and in the last row there is a
frame from RainFruits.
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Several loss functions were tested: we started from L2 loss, then, since this loss
tends to generate blurry estimates we tested L1 and the Hueber loss [49], which are
more robust. Also, a variation of the loss function described in the paper [50] was
tested (this loss was adapted to work in this case where prediction is computed on a
single frame). This loss, called Gradient Difference Loss (GDL) is designed to favor
the generation of sharper estimates:

Lgdl(It−1, It , Ît) = ||It−1 − It |− |It−1 − Ît ||α (3.1)

where It is the label, Ît is the estimated predicted frames and It−1 is the video
frame corresponding to the time t −1. This loss was tested for the values of α = 1,2,
which we denominate "Gradient L1" and "Gradient L2".

3.4.3 Experiments

During our work on this topic, two different architectures were examined.

Frame Prediction and Super-Resolution

The method described in [3] is designed for up-sampling so it has to generate multiple
filters for every pixel on the low-resolution input. For example, when an image is
up-sampled by a factor of 2 (which means that both height and width are doubled), 4
pixels need to be generated for every pixel of the input.

At the beginning of our work, we kept a similar structure to the one described
in [3] and designed a network enacting both frame prediction and super-resolution.
This meant that the input frames needed to be down-scaled to a lower resolution
while the predicted frames generated by the network were kept at full size (see Fig.
3.5). In our experiments we used a factor for down-scaling the image of 4 (as it was
done in [3]).

This approach of working on down-sampled versions of the input was tried
because it allowed us to easily capture large motions across the frame. But, after
a few experiments, we determined that this method was ineffective as the network
after training learned only to act as super-resolution for the previous frame while
failing to capture and estimate motion. As can be observed in figure 3.5, given the
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Fig. 3.5 Example of output from the first version of the network. The output is low-quality
and the network seems to struggle in predicting a future frame at a higher resolution.

down-sampled input, the priority is the generation of a somewhat faithful estimate
of the frames at the original resolution, while predicting the temporal evolution
becomes secondary. For this reason, we decided to change the architecture of the
network.

Frame prediction without up-sampling

The previous approach was abandoned in favor of creating a network that just
operated as frame prediction without being burdened by also having to learn an
effective way to accomplish the task of super-resolution. In this version, the inputs
were kept at full resolution, and thus only one filter per pixel had to be generated.
This approach focused the structure and we started to see the network generating
estimates of a future frame.

After a while, though, we determined that there was a limitation to the capabilities
of the network to compensate for motion. This was due to the dimensions of the
generated convolutional filter, which determines the greatest vertical and horizontal
pixel offsets that the network is capable of compensating. If a filter is too small, it
means that it cannot compensate for motions that are bigger than its receptive field,
and since we were now working with inputs at full resolution, this was a common
occurrence.

Simply generating bigger filters was not feasible, though, because it resulted in a
great increase in the memory required by the network. To remedy this problem, we
decided to modify the network to make it generate linearly separable filters.
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Linearly separable filters are filters that can be obtained as a scalar product
of 1-dimensional vectors. In this way the network does not need to generate n×
n coefficients for every pixel anymore, and instead only outputs two vectors of
dimension 1×n per pixel, greatly reducing the memory requirements. Of these two
vectors, one can be thought as dictating the horizontal offset, while the other dictates
the vertical one. The two filters are multiplied with each other using a scalar product
to generate the final 2-D filter.

This method has the downside of limiting the amount of expressiveness of the
generated filters, because it cannot generate any possible 2-D filter anymore, and is
now restricted to just the ones that can be decomposed in two 1× n vectors. It is
nevertheless necessary because it makes possible to create much larger filters. Using
this architecture, we were able to generate filters with dimensions of 17×17, greatly
increasing the compensation capabilities compared to the previous architecture where
the filters were of dimensions 5×5.

Since the new network uses inputs at the same resolutions as the outputs, for
memory reasons a new dataset was extracted, where each element has dimensions
64×64 instead of 144×144.

The network was tested with several configurations, and the best results for the
training were achieved using L1 loss, learning rate 1×10−4 with exponential decay
every 4×103 iterations. Training reached convergence after 1.4×105 iterations.

With this streamlined architecture we started seeing promising results. The
network managed to generate predictions of new frames based on previous ones with
accuracy in terms of MSE closer to the one achieved using motion-compensation.

Figure 3.6 shows a comparison between the outputs generated by the trained
network and a baseline motion-compensation algorithm. This baseline estimate
was created using motion vectors extracted using a Matlab [51] function called
vision.BlockMatcher with blocks of dimensions 4×4, an exhaustive search for the
blocks, and no sub-pixel precision for the motion vectors. As it can be observed,
the developed method generated predicted frames which started to approximate
the performance of this simple version of motion-compensation, with the biggest
problem being a general blurriness of the estimates. This can be explained by, among
other things, the problem that given a set of previous frames there is not necessarily a
singular possible future frame completely determined by those previous frames. For
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Fig. 3.6 Example of the output from the network with 1-D separable filters. The first
row shows the input frames, the label and the output generated by the network, while the
second row shows the same input and label but the output is generated using a basic motion
compensation algorithm.

this reason, the network generates a blurry estimate to create a sort of "averaging"
between the different temporal evolutions.

3.5 Performance analysis

To evaluate the quality of the prediction of the network we compared its performance
to the ones of the motion-compensated estimates generated H.265/HEVC on some
of the Joint Video Experts Team (JVET) test sequences selected for this codec
[52]. H.265/HEVC was tested in lossless mode with a setting that only uses uni-
directional prediction (Low-Delay P) and uses a value for the quantization parameter
QP equal to 22. The motion-compensated frame was extracted by modifying the
code of H.265/HEVC official implementation HM [53]. The comparison was done
by evaluating the PSNR in the Y-Channel in the YUV color space.

As it can be seen in Table 3.1, the method is working correctly but there is
still a significant gap in the prediction quality, as the network was not capable of
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Sequence Name
HEVC Lossless Network
Y-Channel [dB] Y-Channel [dB]

BQSquare 33.19 28.35
BasketballPass 32.75 27.12

ParkScene 33.89 29.13
RaceHorses 33.4 28.11

Table 3.1 Comparison on the average the quality of prediction in terms of PSNR between
the inter-prediction algorithm used by H.265/HEVC and the prediction generated by the
network.
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Fig. 3.7 Comparison in the quality of prediction in terms of PSNR between H.265/HEVC
and the the network for every frame of the sequence BasketballPass using QP equal to 10.
The yellow line represents the motion-compensated frames generated by H.265/HEVC while
the blue one represents the predictions from the network.

satisfyingly compensating for larger and more complex forms of motion without
generating blurry or artifacted predictions.

There is great variability in the quality of the prediction from frame to frame
(Fig. 3.7). As it can be observed in Fig. 3.8, the performance drops especially
in frames where there is more fast movement (like frame 250 from the sequence
"BasketballPass", portrayed in the left column of the figure).

This can be connected to the fact that compensation capabilities of the network
are still limited since even after the use of the separable filters, the maximum span of
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Fig. 3.8 Comparison between the predictions generated from H.265/HEVC and the prediction
generated by the network for selected frames of the sequence BasketballPass. The left column
shows frame 250 while the right one shows frame 270.
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movement that was possible to compensate was only 8 pixels vertically and 8 pixels
horizontally.

We also tried to create rate-distortion curves for some tests using sequences from
the Xiph.org website [47]. In particular the sequences chosen were mobcal and
shields. Since this method was not implemented inside HEVC the rate was evaluated
using an indirect methodology: a residual signal was obtained by subtracting the
predicted frame from the original one. This residual was then treated as an image
and compressed using the image compression standard JPEG [54].

This was seen as a fair method to simulate the effects of the compression algo-
rithm for the prediction residual followed by H.265/HEVC since in both cases the
principle employed is basically the same: the compressed file is the block-based
quantization of the coefficients obtained after applying a DCT transform. Further-
more, we were interested in the relative change in terms of the rate before and after
the employment of the prediction network, and not the absolute values, which makes
the differences between the algorithms less impactful.

In order to use JPEG for this purpose, we needed to format the prediction residual
between H.265/HEVC as an image, with pixel values represented on 8 bits. Since
the residual is the difference between the MC-frame and the original one, we first
made the values positive by adding a constant offset equal to half of the range (e.g.
128), and then we clipped the values to fit the range [0,255].

The test was done by compressing the sequences over a range of values for the
QP: the values chosen were {10,15,20,25,30}. To simulate more realistically the
relationship between rate and distortion that would be obtained using H.265/HEVC,
the residuals were compressed using parameters for JPEG which matched the amount
of distortion obtained for a certain value of QP. Specifically, we searched for matching
values for a parameter of JPEG called quality factor q. The conversion table shown
in table 3.2 was derived.

Table 3.2 Compression parameters for the experiments.

Conversion Table
QP 10 15 20 25 30

Quality factor q 95 90 85 80 75
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Fig. 3.9 Rate-distortion curves comparing the performance of the frame prediction network
(blue line) and H.265/HEVC (red line) for the mobcal sequence (upper graph)

Using this indirect method, we were able to build rate-distortion curves for
some tested sequences. The rate was evaluated by averaging the dimensions of
the compressed residuals files, while the distortion was evaluated by measuring the
PSNR between the residual after compression and the original ones. The obtained
rate-distortion curves can be seen in Fig. 3.9 and 3.10.

As can be observed in the rate-distortion graphs, there was still a significant
performance gap compared to the predictions of H.265/HEVC, due to the limitations
described above.

3.6 Conclusion

At the same time we were working on this concept, a similar method has been
published in [55]. This work describes a CNN based on U-Net [56] which takes as
input two frames from the reference frame buffer of HEVC, and tries to create an
inter-predicted frame. Similarly to our work, it employs a filter generating network,
but their algorithm supports both uni- and bi-directional inter-prediction and was
fully implemented inside the H.265/HEVC codec. For this reason, we decided to
slightly change the aim of our work. How the work evolved will be described in
chapter 4.
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Fig. 3.10 Rate-distortion curves comparing the performance of the frame prediction network
(blue line) and H.265/HEVC (red line) for the shields sequence (upper graph)



Chapter 4

Deep Motion-Compensation
Enhancement in Video Compression

4.1 Introduction

At this point, we changed the objective of our work. Again we dealt with inter-
prediction, but in this case, instead of completely replacing motion-compensation we
envisioned a different approach. In this new design, the network takes as input the
motion-compensated frame from the codec and it is tasked with creating an enhanced
version of it.

A more accurate predicted frame reduces the entropy of the residual, and thus
improves the compression performance, without any additional side information
needed. Furthermore, using this architecture, we would be able to compensate for
more advanced forms of motion, compared to the block-wise translations modeled
by the algorithm used by H.265/HEVC. The enhancement is aided by the use of
previously reconstructed frames. In order to maximize the usefulness of past frames,
they are first registered to the motion-compensated frame using an optical-flow
network and a warping module. We called this method the M (MMCE-Net). The
work described in this chapter has been previously published in [57, 58].

The remainder of this chapter is organized as follows: first, we describe the
architecture of the MMCE-Net technique, then an explanation on how it was inte-
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grated within H.265/HEVC reference implementation and the performances obtained;
finally, ablation tests are provided to verify the selected design.

4.2 Proposed method

4.2.1 Problem setting

MMCE-Net aims at improving compression performance by focusing on the en-
hancement of the motion-compensation step. In codecs such as the H.265/HEVC
standard, the motion estimation step is achieved by iteratively shifting the block
being encoded across a collection of previously reconstructed frames (the reference
frames), searching for the best matching location which minimizes a given cost
function.

Such motion-compensated frames can exhibit a lot of artifacts [59], especially in
areas characterized by a large amount of activity. In particular, motion-compensation
introduces blocking artifacts, which are sharp rectangular-shaped discontinuities,
derived from the fact that motion-compensation stitches together pieces of different
images. These discontinuities create high frequencies in the residual, which leads to
reduced coding efficiency. Furthermore, if the artifact is not completely removed
after adding the quantized residuals and applying the in-loop deblocking filter, it
can propagate to future frames as false edges if the interested region is used as a
predictor.

4.2.2 Network Architecture

The proposed method employs a neural network that acts on a set of frames, com-
posed of the motion-compensated version of the frame to be encoded along with a
few reference frames, and attempts to produce the best possible estimation of the
frame to be encoded by removing such artifacts.

Recent advances in video processing with multiframe deep neural networks
[60–62] showed an impressive ability at capturing the temporal dynamics of the
sequence. Hence, the rationale of the proposed method is that the network should be
able to uncover more complex motion patterns within the input set of frames and
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Fig. 4.1 Structure of MMCE-Net: An MC-Frame is concatenated with two previous frames
and fed to an enhancing Network. To make the enhancing job easier the frames are first
warped using an optical flow network, so they spatially match the MC-Frame.

correct the motion-compensated prediction so that it is more similar to the original
frame. A better estimate produces a residual with a smaller amount of entropy and,
therefore, improves the compression performance.

General Structure

The architecture of the our model is illustrated in Fig. 4.1. A convolutional neural
network (CNN), which we denominate the enhancement network, is fed with three
inputs. The first is the target of the enhancement: the motion-compensated frame
(from here on out called Pt or MC-frame). Stacked upon it are two further images:
It-2 and It-3. These are two previously encoded frames that are added to provide
information useful to reconstruct the artifacted parts of the MC-frame; the intuition
is that, by using 3 different captures of the same scene at different moments in time,
the network can find a way to merge the information present in all of them and use it
to reduce the strength of the artifacts present in the MC-frame.

To this end, It-2, It-3 are first pre-processed: for both an optical flow relative to
the MC-frame is extracted and used to warp them. This is obtained by re-sampling
the images, using the offsets provided by the optical flow as grid and applying
cubic interpolation in the sampling points. This is done in order to obtain a rough
registration between the contents of It-2, It-3, and the MC-Frame, and makes the work
of the network easier.
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Fig. 4.2 Structure for PWC-Net: a Pyramid of features is extracted from the two input frames.
Each of these layers is fed to a pyramid plus an up-sampled version of the optical flow
extracted from the previous layer is fed to a system of CNNs enacting different roles.

Optical Flow Network

The optical-flow was estimated using a neural network called PWC-Net [4]. This
network was chosen because it was the state of the art in the field of optical flow
networks at the time. Its name stands for Pyramid, Warping and Cost volume
network, which are the basic building blocks of this technique.

A diagram of the structure of the network can be seen in Fig. 4.2. First, a CNN
extracts a feature-pyramid from both inputs. This feature-pyramid is like an image
pyramid but where each layer is not created by simply down-sampling the input
image at different scales. Instead, the feature maps for each layer are extracted using
convolutional layers.

Then, the same steps are repeated on each layer of the feature pyramid. One
of the two frames is warped using optical flow generated by a lower-level layer
(opportunely up-sampled to work at a larger scale). The warped output and the other
input are then fed to a network that extracts a cost volume [63] between them, which
is an estimation of the correlation between the two feature maps. The cost volume,
the input frames, and the optical flow are then fed to a CNN that extracts the optical
flow for this layer of the pyramid. This optical flow is further enhanced using another
CNN-denominated context network.
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In our scheme, we employed a pre-trained 6-layer version of PWC-Net, which
constrained us to use inputs with sizes bigger than 64×64 since each layer of the
pyramid reduces the spatial resolution by half.

It has to be noticed that we do not use the decoded frame It-1 in this network.
This was done because Pt is too similar to It. In fact, in the first approximation,
Pt is already obtained as a motion-compensation of It-1, which makes the use of It

redundant.

Fig. 4.3 shows an example of a warped frame using the optical flow extracted
using PWC-Net. The obtained warped frame is aligned to the target, except in parts
where the input is left as is, or areas that are completely black. This happens in the
parts of the input image where is not possible to match the target image.

Enhancement Network

As mentioned before, the network needs to employ the information present in the
three input frames in order to find a way to enhance the MC-Frame. To achieve
this, the three frames were stacked one upon the other across the dimension of the
color channels. It is then the work of internal structure of the CNN to merge the
information in a suitable way to achieve the final goal.

This tensor is then fed to a Dn-CNN architecture [5] which gives the enhanced
frame as output. This network employs residual learning and skip-connections, and
its composed of several layers of convolution, batch-norm and ReLU activations.
Since it uses residual learning, it does not estimate directly the output frame, but
instead it generates a residual to be added to the MC-frame to generate the desired
output. As it will be explained later, the whole processing was carried only on the
luminance component of all the inputs, ignoring the chrominance component.

4.2.3 Dataset

The dataset used to train the network was obtained starting from VIMEO 90K
[62]. This dataset is composed of 90,000 videos taken from the streaming website
VIMEO, where each of the sequences is made up of seven frames with a resolution
of 448×256. This collection of sequences contains scenes depicting a great variety
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Target Image

Starting Image

Warped Image

Fig. 4.3 Example of the effects of warping an image using an optical flow extracted with
PWC-Net.
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of subjects and types of movement, while requiring a reduced amount of memory to
store it.

For every frame, the color space was changed from RGB to YCbCr following
the color primaries described in ITU-R BT.709. The raw video files were created by
concatenating together the frames belonging to the same sequence. These raw files
were then compressed using x265, a very popular (and optimized) implementation of
the H.265/HEVC [64]. All sequences were encoded setting a constant quantization
level. This means that the same quantization parameter (QP) is used on every block
of every frame, and the adaptation mechanism to keep the rate constant is disabled.
Furthermore, the sequences were compressed disabling bi-directional prediction, so
all frames were predicted using temporally preceding frames (this is a setting similar
to the one described by the Low-Delay P configuration in HM).

At first, one dataset was created using QP = 22. Further trainings were executed
using a second dataset obtained by using QP = {27;32;37}, choosing one of these
values randomly with equal probability for each. The MC-frames were then obtained
from the compressed video files using a software for video analysis called StreamEye
[65], while the reconstructed files were obtained using the shell tool ffmpeg. Using
this procedure, we were able to obtain all the images needed for the training: one
MC-frame Pt and two reconstructed frames (Ît-2 and Ît-3), and one original frame
used as label It.

4.3 Training and implementation details

As explained previously, MMCE-Net is composed of two parts, i.e. the optical flow
pre-processing and the actual multiframe enhancement part.

The optical flow is extracted using a pre-trained TensorFlow implementation [66]
of PWC-Net. The LG-6-2 MULTISTEPS CHAIRSTHINGSMIX model was employed
because it is the trained model which achieves the best performance, although it is
also the one which requires more memory.

The enhancement network architecture chosen is a 20-layer Dn-CNN with 2D
convolutions initialized using Glorot technique [67]. The network was trained using
an Adam optimizer [29] and minimizing the loss between the label and the output of
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the network. The chosen loss function is L2, and the learning rate was set to 10−4.
The code was implemented using the TensorFlow platform.

The network was trained for 106 iterations using an NVIDIA Tesla V100 SXM2
GPU with CUDA 11.0 installed. The batch size was set to 16 and the training was
executed on square crops of the dataset of size 256×256.

The network was first trained on the dataset created fixing the value QP = 22,
then it was fine-tuned on the multi-QP dataset. This was done to make the final
trained network function well independently from the QP level.

4.4 Experiments

4.4.1 Full-Frame Enhancement

Before fully committing to this method and implementing it inside H.265/HEVC, we
tested its performance with a set of experiments aimed at determining the reduction
of the entropy of the residual before and after the introduction of the enhancement.

A testing set was built from the standard test sequences provided by JVET
[52]. The sequences were compressed using H.265/HEVC using the x265 li-
brary, configured for uni-directional prediction and constant quantization with
QP = {22,27,32,37}. Then the motion-compensated, reconstructed, and origi-
nal frames were extracted (in the same way as it was done for the dataset that was
extracted from VIMEO 90K), and we applied MMCE-Net on this testing set of
images.

Since we could not directly estimate the change in rate that we would have
obtained by using this technique inside H.265/HEVC, we tried to assess the entropy
of the prediction residual by treating it as an image and compressing it using the
image compression standard JPEG [54], similarly to what we did in chapter 3.
The level of quantization was set using the ffmpeg parameter qscale with values
{4,7,10,20}. These parameters were chosen to roughly approximate the levels of
distortion obtained by using the QP values of {22,27,32,37}.

The general gain in terms of rate-distortion was evaluated by employing the
BD-rate metric [6]. Table 4.3 displays the obtained results, while Fig. 4.4 show some
of the corresponding rate-distortion curves.
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Table 4.1 Performance of MMCE-Net full-frame enhancement on JVET test sequences,
estimated using JPEG compression:

Sequence Name BD Rate [%]
BasketballDrive -5.83

ParkScene -4.14
Kimono1 -4.12

Cactus -4.89
BQTerrace -6.19

Fig. 4.4 Rate-Distortion curves for full-frame enhancement for the four JVET test sequences,
estimated using JPEG compression. The first row contains the curves for sequences Kimono
and BasketBallDrive, while the lower row contains the curves for sequences ParkScene and
BQTerrace.
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We observed that MMCE-Net provided a gain in terms of BD-Rate up to 6.19%.
The enhanced MC-Frames brought both a reduction in rate-distortion on all the
sequences examined at every level of quantization tested. It seems that most of
the improvement is seen at lower levels of quantization, while it shrinks for QP =

{32,37}. This is further displayed in figure 4.5: there is a reduction of the rate on
every frame, but the amount of gain is smaller at higher levels of quantization.

Fig. 4.5 Graph representing the rate frame-by-frame for the sequence ParkScene. The solid
lines represent the rates obtained using MMCE-Net while the dotted lines correspond to the
curves obtained using the H.265/HEVC. The two upper lines were obtained using a QP=22,
while the lower ones use QP=27.

In this configuration we also executed an ablation test: we examined the per-
formance obtained by applying the Dn-Cnn on the MC-frame alone, without using
the previous frames. The results, shown in table 4.2, confirm the impact of the
multi-frame approach.

Figure 4.6 shows some examples of the kind of enhancement the network pro-
vides and how the residual changes before and after the enhancement process. Thanks
to MMCE-Net the impact of the artifacts generated by the motion-compensation
algorithm used by H.265/HEVC MC-frames is reduced.
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Table 4.2 This table displays the results of the ablation test in which the warped frames are
not used and the enhancement is done using only the MC-frame

Sequence Name BD Rate [%]
BasketballDrive -2.96

ParkScene -0.54
Kimono1 -2.15

Cactus -1.39
BQTerrace -1.44

Fig. 4.6 Examples of outputs from the network. Starting from the left: the target frame,
the output of H.265/HEVC motion-compensation, the output of MMCE-Net, the residual
generated from H.265/HEVC motion-compensation and the residual generated by the use of
MMCE-Net.



56 Deep Motion-Compensation Enhancement in Video Compression

Frame to be 
encoded

Decoded 
Frames Buffer

Motion Vector 
Estimation

MC Frame

MMCE-Net

Motion 
Vectors 

Enhanced
MC Frame

Entropy 
Encoder

Lossy 
Encoder

Compressed 
Frame

Fig. 4.7 This scheme illustrates how the proposed architecture is integrated into the flow of a
video coding algorithm.

4.4.2 Integration inside the H.265/HEVC reference model

As mentioned in the introduction the network was implemented as an optional
enhancement for the motion-compensated frame generated by H.265/HEVC (see Fig
4.7).

The network was integrated inside HM (version 16.22) [53]. After examining the
inner working of H.265/HEVC we had to abandon the idea of applying MMCE-Net
to the full motion-compensated frame. This is because in H.265/HEVC the residual
is computed and encoded for each coding unit, and the processing of the following
coding units is dependent on the previous ones. For this reason, it is not possible
to obtain the full motion-compensated frame without also having already encoded
the residual. To allow the integration of MMCE-Net inside H.265/HEVC, we had
to apply it on the coding units separately, rather than on full frames, as we did
on the previous set of tests. This was not a problem in terms of implementation,
but it reduced the gains achieved by the network in the previous tests. This is
because the network cannot correct artifacts occurring at the borders between frames
coding units and it can only correct the distortions which are due to the effect of
motion-compensation inside each coding unit.
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After a few experiments, we observed that most of the improvement was expe-
rienced by using CU with dimensions 64× 64, which is the largest possible size
allowed by the codec. Using it on CUs of other sizes produced minor gains on most
sequences.

For efficiency reasons, the scheme was only applied on the Y channel during pro-
cessing, because when we tried to use it on the Cb and Cr channels (the chrominance
values) it gave only minor performance improvements.

MMCE-Net was integrated into HM as an additional option for the compression
algorithm. In this way, it is used only when it brings an improvement in terms of
rate-distortion. In particular, the criteria chosen to determine whether the network is
selected or not was the evaluation of how the residual changes before the after the
enhancement of the MC-Frame; a smaller variance of the residual leads to a bit-rate
reduction, for the same quality of the decoded frame. For simplicity, the variance
has been approximated using the SAD metric. If the distortion does not decrease, the
enhancement scheme is not chosen, and the original motion-compensation is kept.

Since MMCE-Net was implemented as an additional mode, it is necessary to
send information to the decoder to communicate whether it was used or not on a
certain block. A binary flag was inserted for the purpose of signaling the employment
of MMCE-Net. The flags are encoded using CABAC [15], with a single context to
estimate the probability distribution.

The context is initialized by setting uniform probability for the two states of the
flag. The maximum level of depth of the quad-tree where the enhancement is applied
is also signaled with two bits in fixed-length coding in the Sequence Parameter Set
(SPS, [1]) of the encoded video. In this way it is possible to extend the use of the
technique also on smaller coding units, although in our case it was applied only on
CUs of size 64×64.

MMCE-Net was implemented as a python code employing the TensorFlow
library [48], while the reference implementation for H.265/HEVC was written in
c++, so there was not a direct way to integrate the codes in a single piece of software.
For this reason, the two pieces of software were kept separate, and they were made
to communicate using the UDP protocol [68].

The communication procedure that was designed is the following: MMCE-Net
is launched first and waits for incoming signals on a predetermined port. Then HM
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is launched, and it processes the first three frames as usual. When it comes to the
fourth frame onwards the processing stops whenever a CU of dimensions 64x64
is encountered, as the processed CU in question has to be sent to MMCE-Net to
undergo the enhancement procedure. The Y-channel of this CU is converted to a
string of characters that are transmitted on the designed port where MMCE-Net
is listening. The same is done with the co-located sections extracted from frames
It−2 and It−3. The 3 frames are received, reformatted into images, and processed
by MMCE-Net which gives as output the enhanced CU. The enhanced CU is then
transmitted back to HM, where execution resumes. At this point HM compares the
quality of the enhanced CU against the original one and decides which one to choose,
setting the associated flag accordingly.

4.5 Performance analysis

4.5.1 Comparison against H.265/HEVC baseline

The performance of the network was tested on the test sequences provided by JVET
[52]. As explained before, our network was designed to enhance only in the uni-
prediction scenario, so our tests were done on the HM Low-Delay P configuration
(for details see [52]), which uses only uni-prediction for all the frames.

Table 4.3 compares MMCE-Net integrated in the standard with the baseline HM
(version 16.22) using the Bjøntegaard metric [6].

Depending on the sequence, the amount of gain in performance given by the
employment of the MMCE-Net architecture changes significantly. The classes
B and E seems the one in which more advantages are seen. The greatest peaks
are seen for sequences BQTerrace with a BD-Rate of -7.49% and Johnny, where
we see a drop of -6.08%. In the other classes of sequences the gains are less
significant, but we nevertheless see that MMCE-Net manages to beat the performance
of vanilla H.265/HEVC, even for problematic sequences like PeopleOnStreet and
BasketballPass.

Most of the reduction in the bit-rate is observed with values for the QP which
are lower: (QP Levels = 22,27), while the effects are less strong with higher values.
On the B-class, the network reaches an average reduction of 4 % when the QP = 22.
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Table 4.3 BD-rate between MMCE-Net and HM-16.2 in the Low-Delay P configuration.

Class Sequence fps BD-Rate (%)

A - 2560×1600
PeopleOnStreet

30
-0.37

Traffic -1.75

B - 1920×1080

BQTerrace 60 -7.49
BasketballDrive

50
-1.47

Cactus -1.22
Kimono

24
-2.75

ParkScene -0.67

C - 832×480

BQMall 60 -1.28
BasketballDrill

50
-0.44

PartyScene -0.71
RaceHorsesC 30 -0.60

D - 416×240

BQSquare 60 -1.08
BasketballPass

50
-0.12

BlowingBubbles -0.38
RaceHorses 30 -0.12

E - 1280×720
FourPeople

60
-1.04

Johnny -6.08
KristenAndSara -2.77

Total Average -1.69

For QP = 37 goes to an average value of -2%. For class E the phenomenon is more
extreme: at QP=22 the BD-rate reaches negative 7%, which shrinks to less than 1%
for QP = 37.

Fig. 4.8 shows some examples of the kind of outputs generated by MMCE-Net.
It seems that most of the gain corresponds to regions affected by block artifacts
connected to the proces of motion-compensation. The network focuses on such areas
and tries to mitigate the effects of the artifacts on the entropy of the residual by either
blurring or by estimating more plausible values for the pixels given the context of
the frame.

Most of the gain is seen in high-resolution sequences, while the improvements
are thinner in the smaller resolutions, especially when the sequence contains large
amounts of movement. We conjecture that this is motivated by the fact that at
low-resolutions CUs of size 64× 64 are rare, especially in the regions with a lot
of movement, which require partition in smaller blocks. In high-resolution videos
CU with the required dimensions are much more common. Also one must consider
that when a sequence of frame has fast movement in it, the frames tend to be less
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Fig. 4.8 Examples of the enhanced blocks generated by MMCE-Net. Using this architecture
there is a reduction of artifacts such as the block-shaped borders resulting from the use of the
motion-compensation algorithm.

correlated between each other (due to a larger amount of change between frames),
and are thus less helpful for the enhancement procedure.

4.5.2 Ablation Tests

To assess the contributions of the various components of MMCE-Net, several ablation
tests were performed. For these tests, variations in the architecture were obtained by
removing the various constituent parts.

Four alternatives were constructed: a version in which the whole multiframe
structure is discarded and the Dn-CNN is applied directly to the MC-frame using
the original frame as a label, denominated “Single Frame”. A version in which
the other two past frames are employed but the registration is not carried out (so
the de-artifacting network is applied to the stacking of the MC-frame plus Ît-2 and
Ît-3 without any warping applied); this network was denominated “Multiframe No
Warping”. Another version in which the whole network (optical flow and warping
included) is used, but with one previous frame instead of two. It was called “Single
Warped Frame”. A final version is denoted as “Enhancement Always On”, which
applies the enhancement to all blocks without using any rate-distortion optimization.

All the networks were trained until convergence using the same procedure fol-
lowed for the original network.
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Table 4.4 BD-Rates (%) for the various ablation tests.

Class Sequence MMCE-Net Single Single Warped Multiframe Enhancement
Frame Frame No Warping Always On

B - 1920×1080
ParkScene −0.67 0.00 −0.04 −0.07 −0.36
Kimono −2.75 −2.00 −1.41 −1.65 −2.19

C - 832×480
BQMall −1.28 −0.16 −1.13 −0.27 −1.22

PartyScene −0.71 −0.43 −0.74 −0.77 −0.61

D - 416×240
BQSquare −1.08 −0.28 −1.30 −1.40 −1.04

BlowingBubbles −0.38 −0.10 −0.37 −0.69 −0.34
E - 1280×720 Johnny −6.08 −1.57 −2.73 −3.02 −5.60

Table 4.4 displays the performance of the ablations.

Single frame enhancement

First, we wanted to test the advantages of using a multiframe structure for enhance-
ment. This is done by using only the Dn-CNN part of the architecture and applying
it directly to the motion-compensated frame, in a mode we denominated “Single
Frame”.

As expected, the performance of this version of the network is severely lacking
compared to the MMCE-Net since the previous frames provide additional informa-
tion which is quite useful for the reconstruction of parts of MC-frames affected by
artifacts. As it can be observed in Table 4.4, the “Single Frame” category has results
which are significantly surpassed by every other version of the network.

Removal of one previous frame

The second aspect we wanted to test was the impact of the number of previous
frames inside the structure of MMCE-Net. In this ablation, we trained the network
to work with only the Ît-2 warped reference frame. This version of the network was
denominated “Single Warped Frame”. In this case, the results more closely resemble
the ones of the proposed network as can be seen in Table 4.4, but the addition of the
further previous frame gives a small edge in terms of performance.
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Removal of frame registration

We then tested the impact of the registration mechanism using optical flow and the
warping module. This was achieved by building a version of the network (denoted as
“Multiframe No Warping”) in which the previous frames were fed to the enhancement
network as they are, stacking them to the MC-frame without applying any warping.

On the tested sequences, it can be observed that for classes B and E (which
correspond to the resolutions of 1080 × 1920 and 720 × 1280 respectively) the
absence of the registration creates a large drop in the compression performance.
Instead, in classes C and D, where the enhancement network tends to be less effective
anyway, the removal of the warping pre-processing seems to reduce the BD-rate
by a smaller amount. This can be explained by the fact that at small resolutions
(since class C and class D contain 832×480 and 416×240 sequences respectively)
the size of the CUs have dimensions which are similar to the size of objects in
movement. This is problematic because it means that the MC-frame can be radically
different compared to the previous frames used for the enhancement. The registration
step, when employed in cases such as this, generates warped frames which are very
unnatural and distorted, which are not helpful for the enhancement. These issues
could possibly be made less impactful by training different networks for the different
resolutions.

MC-frame enhancement used on every coding unit

A further configuration examines how the enhanced predicted frame is used inside
the H.265/HEVC standard. In this ablation, denoted as “Enhancement Always On”,
we tested the possibility of applying the enhancement to all blocks, doing away
with the mechanism for determining the amount of distortion before and after it.
This means that the signaling procedure can be skipped, because it is not necessary
to send the side information connected to the flags. The down-side is that in this
configuration MMCE-Net is used also on-blocks where MMCE-Net does not provide
an improvement.

As can be observed in Table 4.4, after this modification the performance did not
massively drop, especially for the C and D classes of videos. The greatest difference
is for the sequence Kimono (where there is an increase of 0.55% in BD-Rate). This
can be explained by the fact that the enhancement network is selected almost always
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Fig. 4.9 Frame-by-frame comparison of the dimensions of the encoded stream before and
after the enhancement for the sequences Kimono and BQMall using the ablation network
“Enhancement Always On”. The encoding was done using quantization level QP=22.

and thus the implementation of the network as an optional mode gives only a small
benefit.

Class Sequence
MMCE-Net

Success Rate (%)

B - 1920×1080
ParkScene 83.26
Kimono 77.39

C - 832×480
BQMall 85.74

PartyScene 84.18

D - 416×240
BQSquare 66.62

BlowingBubbles 89.53
E - 1280×720 Johnny 73.33

Total Average 80.01
Table 4.5 Percentage of 64× 64 CU enhanced by MMCE-Net using the “Enhancement
Always On” configuration. The count was carried out on the first 50 frames of each sequence
using quantization level QP=22.

Figure 4.9 shows a few examples where we can observe that the proposed
technique usually introduces an overall improvement on the frames of the sequence
where it is applied and very rarely yields a worse estimate compared to the original
motion-compensated frame. This is confirmed at the coding unit level in Table 4.5
where it can be observed that MMCE-Net produces a gain in terms of accuracy of the
CUs 80% of the times. Furthermore, Fig. 4.10 shows a scatter plot of the quality of
the original MC-frame (horizontal) versus the enhanced predicted frame (vertical) in
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Fig. 4.10 This scatter plot illustrates how the MMCE-Net changes the quality in prediction
on a block-by-block basis. The axes report the PSNR between the original frame and the
MC-frame (horizontal) and between the original frame and the enhanced frame (vertical).
These results were produces using QP=22.

terms of the PSNR between the predicted and the original frame. The results suggest
that even in cases where MMCE-Net reduces the accuracy of a motion-compensated
CU (represented in the figure by the points below the diagonal), the losses are very
small.

Conclusions and Future Work

In this paper, we introduced a deep neural network methodology to improve the
compression performance of the H.265/HEVC video coding standard, by improving
the accuracy of the motion-compensation step of the algorithm. While it was tested
for H.265/HEVC, the proposed technique does not depend on this particular standard,
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and conceptually could integrated in other codecs (for example H.264/AVC and
H.266/VVC)

MMCE-Net improves the performances of the standard in a significant manner
on all the test sequences provided by JVET, with peaks of peformance for the
B and E classes. Future work will concern the extension of this technique for
bi-directional prediction and enabling testing on other configurations besides Low-
Delay P, especially at high quality levels. Other avenues for extending the technique
are the investigation of different methods for the fusion of the frames (such as in
[60]) or introducing memory elements like in [69] and [70].



Chapter 5

Synthetic Aperture Radar Raw Data
Compression

5.1 Introduction

In the following two chapters we examine the works we have done in the field
of compression for remote sensing applications. In particular, in this chapter we
describe our work on Synthetic Aperture Radar (SAR) raw data compression, in
connection with the H2020 project EO-ALERT [7]. The work was previously
published in [71].

5.1.1 EO-ALERT

The EO-ALERT project has introduced a next-generation data processing chain
designed for the purpose of Earth Observation (EO) using satellites. An overview on
the project can be found in [72].

In the usual scenario, the orbiting satellite collects the data from its sensors
on-board and transmits them to the ground segment with limited processing, which
is mainly taken care of on ground. There is great latency on EO applications between
the moment in which the data is captured and when the final product on ground
is obtained. Even in the most modern applications, this can reach values in the
15-30 minutes range. The reason for this large delay is the limited throughput in the
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channel between the satellites and ground segments, in conjunction with the large
amount of raw data that needs to be transmitted before it can be used to form the final
products on-ground. The latency is especially problematic for tasks which require
real time observations.

The goal of EO-ALERT is to develop a new architecture for data processing to
reduce the latency below the 5 minutes threshold, with most communications having
around 1 minute of latency. This is achieved by moving the generation of processed
products on-board the satellite by taking advantage of the increased capabilities of
currently available hardware. The generated products contain much less redundancy
and thus reduce the latency needed to transmit them to Earth. In particular one
objective is to generate alerts for time-sensitive tasks such as ship detection and
extreme weather monitoring (hence the name EO-ALERT).

5.1.2 SAR raw data compression

EO-ALERT was designed to capture and process both optical and SAR data. Even
though the stated purpose of the architecture is to process data on-board the satellite,
it is nevertheless necessary to send the raw data acquired by the sensors to the ground
segment, so that they can be stored and analyzed with greater precision on Earth at a
later moment. Due to hardware constraints on-board, low-complexity compression
algorithms are required for this task. Concerning the design of the optical data
compression algorithm the CCSDS 123.0-B-2 standard in [9] is a natural choice.
The standard has been designed for lossless and near-lossless compression of multi-
spectral images in the remote sensing setting and already satisfies the constraints of
the on-board architecture.

Compared to optical data, compression of SAR raw data is much more chal-
lenging. SAR is a form of active data collection, which means that the data is
captured by emitting high-frequency signals and by analyzing the echoes generated
by the environment in response to the stimulus. The echoes are detected, and the
quadrature and in-phase components of the signal are sampled and stored as complex
numbers. As it can be observed in Fig. 5.1, these samples are very uncorrelated, and
compressing them using a low-complexity algorithm is challenging. Please note that
the underlying scene is not directly visible from SAR raw data. To visualize the data
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Fig. 5.1 Example of the real part of a raw SAR data capture. The samples have low correlation
and are usually modeled as a Gaussian random process with slowly varying variance

in a way that the eye can interpret, SAR raw data have to undergo a process called
"focusing" [73].

Historically, the most commonly used method to tackle the task of SAR raw data
compression is Block Adaptive Quantization (BAQ) [10]. BAQ models the captured
data as a random process s ∈ CH×W where the complex samples have independent
real and imaginary parts that are distributed according to a zero-mean Gaussian
distribution with a slowly-varying variance.

ℜ{si, j},ℑ{si, j} ∼ N (0,σi, j),∀i, j ∈ (H ×W ) (5.1)

Using this model, compression is simply achieved by partitioning the data in
blocks where the process can be modeled as stationary i.e. σ = const.. Then the
local variance of the block is estimated and used to set the threshold levels for a
Max-Lloyd non-uniform quantizer (designed to minimize the MSE for signals with
gaussian distribution). The resulting quantization indeces plus the variances for the
blocks compose the final compressed file.

Through the years several evolutions of this technique were proposed, like
Block Adaptive Vector Quantization [74] which introduces vector quantization, and
Entropy Constrained Block Adaptive Quantization [75] which introduces a low
complexity entropy coder in the architecture. Other methods employ transforms to
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take advantage of the correlations between values and map the signal to a domain
where compression is easier. For example, [76] employs the wavelet transform, while
[77] compares the effects of using the Fourier, discrete cosine and the Hadamard
transforms. All these evolutions bring improvements in terms of rate-distortion but
have the downside of increasing the complexity.

In this chapter, we investigate the viability of using the CCSDS 123.0-B-2
standard for the purpose of SAR raw data compression.

5.1.3 Motivations for the use of CCSDS on SAR raw data

Even though CCSDS 123.0-B-2 was designed for the compression of optical images,
its utilization on SAR raw data is justified. In essence, CCSDS 123.0-B-2 can
be characterized as a Differential Pulse Code Modulation scheme (DPCM) with a
quantizer in the loop. The algorithm generates a prediction of the value of a pixel for
a certain spectral channel based on spatially neighboring pixels in the same spectral
channel and in adjacent spectral channels. The compressed sample is then generated
by applying quantization and entropy coding on a residual δi, j between the input and
the prediction.

δi, j = si, j − ŝi, j (5.2)

The effectiveness of using a DPCM-based algorithm was shown in the paper
[8], in which a technique of this kind is shown to improve the performance in terms
of rate-distortion by taking advantage of the correlation between samples without
massively increasing complexity. For this reason, we deemed CCSDS 123.0-B-2 a
reasonable candidate for this task.

Since this algorithm is already employed for the purpose of optical image com-
pression, re-using it also for SAR raw data would avoid adding further complexity
on the processing chain on-board the satellite.
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5.2 Proposed method and experimental results

CCSDS 123.0-B-2 was applied to the SAR raw data by separating the real and
imaginary parts and processing them as two separate images. CCSDS 123.0-B-2
works with positive values so an offset equal to half of the dynamic range of the
input data is added to the input to make the samples positive. Two settings were
examined: compression of the SAR raw data after normalization, and compression
without pre-processing.

5.2.1 Dataset

The experiments were conducted using 3 raw data acquired by the SIR-C/X-SAR
mission [78], denoted as Innsbruck (2001×2136 complex samples), Jesolo (2001×
2469) and Matera (2001× 4000). Since these images were received from a real
satellite, they were already compressed, using 6 bits for the quantization of the image
Innsbruck and 4 bits for the images Jesolo and Matera.

5.2.2 Experimental setup

In all tests CCSDS 123.0-B-2 was set up using the parameters listed in table 5.1:
The fields of the table refer to parameters that were not described in the background
chapter. The explanation of these parameters can be found in [20]. All the results
were compared to the BAQ algorithm using a partition in blocks of size 32×32 on
which the random process is assumed stationary. The comparison was made in terms
of distortion, by fixing the compression rate to the same value for both systems.
Since the dataset is constituted by images already compressed with bit-rates up to 4
bpp, we tested only lower bit rates, i.e., 2 bpp and 3 bpp.

For the BAQ algorithm fixing the bit rate is simply a matter of changing the
number of bits used for the quantization. On the other hand, to match these bit-rates
for the files compressed using CCSDS 123.0-B-2 we had to make multiple attempts
by tuning the value called maximum absolute error (MAE). This parameter sets an
upper bound on the distortion on the reconstructed files for each sample.

The distortion was evaluated by measuring the SNR between the original SAR
data, and the one after decompression. The formula used to estimate the SNR is:
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SNR[dB] = 10log10

(
∑

H
i=0 ∑

W
j=0 s2

i, j

∑
H
i=0 ∑

W
j=0 r2

i, j

)
(5.3)

where r is the difference between the original SAR samples and the reconstructed
ones.

5.2.3 Normalized SAR raw data

In a first experiment, SAR raw data were normalized in the same way as in the BAQ
baseline, using a block size of 32×32.

The standard deviation was estimated on the different blocks and the blocks were
normalized to have a standard deviation equal to 1. The data was then uniformly
quantized at either 16 bpp or 8 bpp, using as maximum and minimum values the
range {−4σ ,4σ}. This was done to have the normalized SAR raw data in the same
integer format as optical data, so that the same compression algorithm can be used
without modifications on both kinds of data. The value 16 bpp was chosen because

Table 5.1 Compression parameters for the experiments.

Parameter Value

Number of bands for prediction P = 3
Register size (in bits)* R = 64

Weight resolution* ω = 19
Weight update scaling exponent change interval* tinc = 64

Initial weight update scaling exponent parameters* vmin =−1
Final weight update scaling exponent parameters* vmax = 3

Prediction mode Full Wide/Neighbor Oriented
Sample representative parameters All set to 0

Error limit Absolute and Non-band dependent
Encoder Sample adaptive

Unary length limit Umax = 18
Initial count exponent* γ0 = 1

Accumulator initialization constant* K = 3
Rescaling counter size* γ∗= 6



72 Synthetic Aperture Radar Raw Data Compression

it is the maximum dynamic range used for optical images. The value 8 bpp was used
as a reasonable trade-off between resolution and complexity.

The results of these tests (listed in Tables 5.2, 5.3), show that both at 2 and 3
bpp the files compressed using CCSDS 123.0-B-2 are reconstructed with levels of
distortion in terms of SNR which are slightly higher than the ones achieved using
BAQ. These performance seem to not be affected by the number of bits used to
represent the input as there is only slight variation when we change between 16 and
8 bits.

Image Input Dyn. Range
SNR BAQ SNR CCSDS

MAE[dB] [dB]
Real Imag. Real Imag.

Innsbruck
16 [bpp]

9.85 9.80
8.99 9.13 5.1×103

8 [bpp] 8.74 8.89 2.0×101

Jesolo
16 [bpp]

8.88 8.50
8.56 8.41 5.9×103

8 [bpp] 8.77 8.61 2.2×101

Matera
16 [bpp]

9.88 9.85
8.01 9.70 5.8×103

8 [bpp] 8.07 9.77 2.2×101

Table 5.2 Comparison in terms of SNR between BAQ and CCSDS 123.0-B-2 with normalized
input at bitrate 2 bpp

Image Input Dyn. Range
SNR BAQ SNR CCSDS

MAE[dB] [dB]
Real Imag. Real Imag.

Innsbruck
16 [bpp]

15.40 15.30
15.53 15.68 2.4×103

8 [bpp] 15.42 15.56 9.0×101

Jesolo
16 [bpp]

13.03 12.75
15.03 14.88 2.8×103

8 [bpp] 15.39 15.23 1.0×101

Matera
16 [bpp]

14.52 14.48
14.88 16.22 2.8×103

8 [bpp] 14.70 16.60 1.0×101

Table 5.3 Comparison in terms of SNR between BAQ and CCSDS 123.0-B-2 with normalized
input at bitrate 3 bpp

5.2.4 SAR raw data with no pre-processing

In a second experiment, SAR raw data were fed to the CCSDS 123.0-B-2 algorithm
with no pre-processing. The rationale of this second experiment is that the block-wise
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normalization is actually not needed, since CCSDS 123.0-B-2 can adapt to changes
in the distribution of the inputs thanks to its prediction mechanism, which estimates
the sample based on local observations. Skipping the pre-processing step is also
advantageous as it further reduces the complexity of the architecture.

For this set of experiments, it was not possible to match the exact bit-rates of BAQ
as in the previous experiments. This is because the input data is already represented
on a small number of bits for every sample (6 bits for Innsbruck, 4 bits for Jesolo
and Matera), and small changes of MAE produce large changes in the bit rate, with
the bit rate rapidly dropping to 1 bpp for every small values of MAE.

As it can be observed in tables 5.4 and 5.5, this approach outperforms BAQ with
gains up to 2 dB in SNR when we compress at a bit-rate of 2 bpp and achieving
lossless compression at 3 bpp for the sequences Jesolo and Matera. For the sequence
Jesolo there is a drop of 1 dB at bit-rate 2 bpp, which can be justified by the fact that
the bit-rate was approximated very coarsely in this case.

Image
SNR BAQ SNR CCSDS

MAE
Bit-rate CCSDS

[dB] [dB] [bpp]
Real Imag. Real Imag. Real Imag.

Innsbruck 9.85 9.80 11.49 11.31 4 2.06 2.08
Jesolo 8.88 8.50 7.55 7.36 1 1.73 1.72
Matera 9.88 9.85 10.45 10.50 1 1.8 1.8

Table 5.4 Comparison in terms of SNR between BAQ and CCSDS 123.0-B-2 without input
normalization at bitrate 2 bpp

Image
SNR BAQ SNR CCSDS

MAE
Bit-rate CCSDS

[dB] [dB] [bpp]
Real Imag. Real Imag. Real Imag.

Innsbruck 15.40 15.30 16.47 16.29 2 2.76 2.74
Jesolo 13.03 12.75 Inf. Inf. 0 3.15 3.14
Matera 14.52 14.48 Inf. Inf. 0 2.90 2.91

Table 5.5 Comparison in terms of SNR between BAQ and CCSDS 123.0-B-2 without input
normalization at bitrate 3 bpp
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5.3 Conclusion

This chapter illustrated the advantages of using the CCSDS 123.0-B-2 standard for
the purpose of SAR raw data compression on-board the satellite. The main advantage
of this design choice is the possibility to streamline the computing architecture by
utilizing the same algorithm to compress both optical and SAR data. Furthermore,
when employed without input normalization the CCSDS 123.0-B-2 compression
algorithm achieves better performance than BAQ, which is the de-facto standard for
SAR raw data compression.

Due to these properties, the proposed technique was implemented in the architec-
ture of the H2020 project EO-ALERT as the reference SAR raw data compression
algorithm.



Chapter 6

On-board data reduction for
multi-spectral and hyper-spectral
images via cloud screening

6.1 Introduction

This chapter describes the work done on the topic of cloud screening for multi-
spectral and hyper-spectral applications in a remote sensing setting, for the purpose
of data reduction.

As already highlighted in chapter 5, communication in the remote sensing setting
is a challenging problem. The low throughput between satellites and ground stations
makes the use of compression of the transmitted data necessary, but with the caveat
that the compression algorithm cannot be excessively complex, due to the low
capabilities of the currently available hardware on-board satellites.

Through the years several low-complexity compression algorithms were devel-
oped precisely to tackle this problem [79], but it nevertheless remains necessary to
reduce the amount of data generated on-board the satellite by limiting the frequency
of acquisition to whatever level the transmission channel and the data processing
architecture of the satellite allows.

This situation is further complicated by the fact that a portion of the transmitted
data is not usable for analysis on the ground because of clouds, which may cover
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large portions of an examined region. To avoid wasting time and processing resources
by transmitting useless data it can be advantageous to devise a methodology to detect
clouds on-board the satellite and skip the transmission of regions obscured by them.

An approach of this kind was already proposed in [80]. In this work, the pixels
obscured by clouds are detected by analyzing their multi-spectral content, and
whenever the number of pixels affected inside a line of the image exceeds a threshold
the whole line is not transmitted. The blocks of consecutive lines skipped are then
signaled to the receiver. This approach is computationally cheap and makes the
communication of which parts of the image are not transmitted very simple. The
downside is that a portion of valid pixels (e.g. pixels not covered by clouds) are
discarded together with the non-valid ones.

For this reason, it can be useful to design a more advanced approach that is
capable to preserve all the valid pixels without increasing complexity. This chapter
describes our efforts to accomplish this purpose. This work was published in [81].

6.2 Proposed methods

This work takes as starting point the already cited CCSDS 123.0-B-2 standard for
lossless and near-lossless compression for multi-spectral and hyper-spectral images
[9]. All of the proposed techniques were implemented using this algorithm as the
backbone.

The main idea was to develop techniques that allowed to skip only the pixels
actually obscured by clouds, following exactly a cloud map obtained using a cloud
screening technique. We also wanted to remain compliant with the CCSDS 123.0-B-2
standard, so any receiver which employs it can still correctly decode the data.

The proposed solution was to set the non-valid (e.g cloudy) pixels to a dummy
value while also sending the complete cloud mask to the receiver. The dummy values
have to be chosen carefully in order to make the bit-rate necessary to encode the
cloudy regions negligible. Also, the cloud masks have to be sent to the receiver to
allow for the correct identification of the real values compared to the dummy ones.
To accomplish this end several methods to generate the dummy values and transmit
the cloud mask were examined.
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6.2.1 Transmission of the Cloud Mask

Two methods for the transmission of the cloud mask were devised.

Table Insertion

This first solution takes advantage of the fact that CCSDS-123.0-B-2 gives the
possibility to send, in the header of the transmitted file, up to 15 user-defined tables
for side-information. The content of the cloud mask is encoded using a 1 bpp
representation (valid pixels are signaled by a 1 while non-valid pixels are signaled
with a 0) in a supplementary table.

This solution is simple to implement and is compliant with the standard. It has
the downside of sending the cloud mask not compressed, without taking advantage
of the correlation between samples present inside of it.

Band Insertion

The second approach tested was to concatenate the cloud mask as an additional color
channel for the image. In this way, the compression algorithm treats the values like
other regular pixels and can compress them. The color map needs to be encoded
losslessly and its values are not helpful for the prediction of the rest of the pixels of
the image. For this reason, it needs to be encoded separately from the rest of the
image. This approach will be referred to as Band Insertion.

6.2.2 Pixel replacement

The pixels covered by clouds needed to be replaced by dummy values. The criteria
for the choice of the values was the minimization of the dimension of the final
compressed file. To reach this objective two methods were devised.

Pixel replenishment

The first approach attempted was to minimize the residual between the prediction
and the dummy by choosing values that are easily predictable by the algorithm. For
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this reason, the pixels in cloudy regions were replaced by averages of local pixels.
In particular, approximating the prediction methodology of CCSDS 123.0-B-2, to
generate a dummy value for a pixel in position (x,y,z) of the multi-spectral image
we employ the neighboring pixels on the upper-left corner plus a pixel from the
preceding color channel but at same location (x,y).

I(x,y,z) =
1
4
× [I(x−1,y−1,z)+ I(x−1,y,z)+ I(x,y−1,z)+ I(x,y,z−1)] (6.1)

These dummy pixels are generated sequentially across the image using the same
scanning order as the one which CCSDS 123.0-B-2 follows. For this reason, inside
the cloudy region the generated values become averages of previously generated
dummy pixels.

Zero Residual

In this second method, denominated zero residual, the generation of real dummy
values in the cloudy region of the image is avoided. What is to act inside the
compression algorithm and force the residual to zero whenever a cloudy pixel is
being compressed. This is equivalent to using the prediction generated by CCSDS
123.0-B-2 as a dummy value, but this version does not require to pre-process the
input image.

6.3 Experimental results

6.3.1 Dataset

The various designs were tested on the Landsat 8 ETM+ dataset [82], which provides
a corresponding cloud mask for every multi-spectral image in input. This mask also
contains other information, such as the position of bodies of water and rivers and the
shadows generated by the clouds, but for our purposes only the cloud information
was kept and was mapped on binary images. An example can be seen in Fig. 6.1.

The images are separated in three different categories based on the percentage of
cloudy pixels present: Clear images, with less than 35 % of cloud pixels, MidCloud
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Image Cloud Mask
Fig. 6.1 Example of an image with the corresponding cloud mask from the Landsat 8 dataset.
The mask data from the original dataset contains superfluous information, like the shadow
generated by the clouds in this example. All this further information was discarded, and the
cloud masks were transformed into binary value images.

for the range between 35 and 65 % and Cloudy for images with more than 65 %
of covered images. The test set was built by selecting 13 images from the dataset
selecting at random from the different categories.

This dataset has the problem of containing already processed images instead of
raw captures, but since we are examining the effects of skipping a region on the
dimension of the final file, it can be argued that the reduction in bit-rate would be by
a comparable amount if we were working on raw images. Moreover, as illustrated in
projects like the already cited EO-ALERT [7], in modern architectures some forms
of processing of the acquired images are done on-board of satellites so the tested
situation can be considered realistic.

Nevertheless, tests were also done using AVIRIS raw captures. These images do
not have clouds and associated cloud masks, so for our experiments, we generated
artificial cloud masks by taking a profile of a cloud and copying and pasting it
multiple times until the desired amount of cloud coverage is reached. Since the
algorithm follows the cloud mask to skip the data, we did not have to modify the
optical images. An example of one of the artificial cloud masks is in Fig. 6.2.
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Cloud Mask

Fig. 6.2 Example of one of the artificial cloud mask that was used in the tests on the AVIRIS
images.

6.3.2 Experimental setup

The four possible combinations of the two Cloud mask transmission techniques and
the two pixel replacement techniques, were tested.

In the following sections these settings will be denominated:

1. PT: Pixel replenishment with Table insertion

2. PB: Pixel replenishment with Band insertion

3. ZT: Zero residual with Table insertion

4. ZB: Zero residual with Band insertion

The CCSDS 123.0-B-2 algorithm was configured with the same parameters as
it was done in the chapter on SAR compression: prediction mode was set to Full
Wide/Neighbor Oriented, with 3 bands used for prediction, the sample representative
parameters were all set to zero and the sample adaptive entropy coder was adopted.
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The algorithm was tested across multiple values for the Maximum Absolute Error
= {0 (Lossless),2,8,32}

6.3.3 Results

The methods were compared to the performance of CCSDS 123.0-B-2 compression
without using the various data reduction techniques. The results for this baseline
will be labeled "CCSDS" in the result tables of this chapter. The results were also be
compared with the ones obtained using the technique proposed in [80].

Tests on Landsat dataset

The first tests were done on three examples extracted from the LANDSAT dataset,
each with a different percentage of cloud coverage, respectively 15%, 51% and 65%.
For the problem of data reduction, the gain in performance is basically related to the
percentage of clouds so even if the testing set is small these results are representative
of all images which have a similar percentage of cloud coverage. The results of
these tests are shown in Tab. 6.1. The results are computed in bit per pixel per band
(bpppb).

Table 6.1 Comparison in terms of bitrate between the different algorithms proposed (bpppb)
using three examples from the LANDSAT dataset.

% Cloud MAE CCSDS PT PB ZT ZB [80]

15 %

0 8.83 9.05 8.77 8.99 8.72 8.88
2 6.52 6.74 6.46 6.68 6.41 6.57
8 4.80 5.03 4.75 4.97 4.70 4.85

32 3.15 3.38 3.11 3.34 3.06 3.19

51 %

0 8.20 5.98 5.68 5.74 5.45 4.30
2 5.88 4.35 4.06 4.23 3.93 3.10
8 4.15 3.25 2.95 3.17 2.87 2.21

32 2.48 2.26 1.96 2.23 1.93 1.34

65 %

0 8.33 5.67 5.39 5.38 5.10 2.13
2 6.02 4.17 3.88 4.02 3.74 1.57
8 4.35 3.18 2.90 3.10 2.81 1.16

32 2.80 2.32 2.04 2.28 2.00 1.68
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As it can be observed on the image with 15 % cloud coverage, on low cloud
percentages table insertion (used in columns PT and ZT) is not advantageous. This is
because in this situation there is a small amount of possible data reduction which is
not enough to compensate for the overhead needed to transmit the cloud mask in the
header. In general, on all images and at every level of quantization, band insertion
seem to reach superior performance over table insertion, while the choice between
zero residual and pixel replenishment does not seem to affect the result significantly.

Obviously, the gain is proportional to the percentage of cloud coverage, as more
data is skipped. It is interesting to observe that the gains tend to reduce with higher
levels of quantization, which can be attributed to the fact that at higher compression
rates the cloudy region is represented by fewer bits of the compressed file, so with
their removal the gain is smaller.

Generally, the performance of [80] are higher than the ones reached by our
techniques, but the fact that [80] discards non-cloudy pixels has to be taken into
account.

Once we determined that whether to use zero residual or pixel replenishment
does not affect the performance of the compression, we tested the performance over
the full Landsat dataset. The performance were averaged across the following ranges
of cloud coverage percentages = {0−25%,26−50%,51−75%}.

In this comparison, ZB seems to be the superior method, since it always provides
greater gains compared to ZT. The patterns observed in table 6.1 are confirmed in
this more extensive set of experiments, with an increase in performance with the
increase in the percentage of clouds, and a decrease for higher levels of quantization.

Tests on AVIRIS images

At this point we wanted to test the performance of these techniques on hyper-spectral
images, to more accurately model the possible data reduction on-board of remote
sensing satellites. The LANDSAT 8 dataset does not contain hyper-spectral images,
and there are no available datasets that contain cloudy images with the associated
cloud masks which are also hyper-spectral. For this reason, we decided to use a
dataset of hyper-spectral images (captured by the AVIRIS sensor [83]) and decided
to manually add clouds to create the desired setting.
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Table 6.2 Comparison in terms of bitrate on the full Landsat dataset for algorithms Zero
residual with Table insertion and Zero residual with Band insertion

% Cloud CCSDS ZT ZB

0−25%

0 0.17 0.46
2 0.11 0.39
8 0.03 0.32

32 -0.15 0.20

26−50%

0 1.53 1.82
2 1.15 1.44
8 0.79 1.08

32 0.34 0.62

51−76%

0 2.72 3.02
2 1.86 2.15
8 1.16 1.45

32 0.41 0.70

This was done by selecting clouds already present in the images and by copying
and pasting them multiple times across the image until the desired percentage of
cloud coverage is reached. Three images were generated using this methodology,
with cloud coverage percentages of 5%,24%,40%. The tests were then conducted
on these generated images, with the results shown in table 6.3.

Due to the higher number of channels of these images (the AVIRIS capture has
220 color channels), table insertion is a viable approach in this setting, even at low
percentages of cloud coverage. This is because the overhead due to the transmission
of the cloud mask is negligible compared to the total size of the file, and even the
removal of a small region can compensate for it. This means that in the hyperspectral
setting all the proposed methods are basically equivalent for the purpose of data
reduction.

6.4 Conclusions

In this chapter we illustrated our work on the topic of data reduction through cloud
screening for hyper-spectral images. The techniques proposed are capable of re-
ducing the data transmitted by only discarding the pixels which do not provide
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Table 6.3 Comparison in terms of bitrate between the different algorithms proposed (bpppb)
using three examples from the AVIRIS dataset.

% Cloud MAE CCSDS PT PB ZT ZB [80]

5%
0 5.83 5.77 5.75 5.77 5.75 5.86
2 3.55 3.49 3.47 3.49 3.47 3.58
8 2.00 1.95 1.94 1.95 1.94 2.03

24%
0 6.43 5.64 5.63 5.65 5.63 6.44
2 4.14 3.37 3.36 3.36 3.35 4.15
8 2.54 1.94 1.92 1.92 1.91 2.55

40%
0 6.68 5.42 5.41 5.44 5.43 4.7
2 4.39 3.17 3.16 3.16 3.15 3.05
8 2.76 1.86 1.84 1.84 1.83 1.90

information to the cloud segment and are compliant with the low-complexity com-
pression standard CCSDS 123.0-B-2.



Chapter 7

Conclusions

7.1 Overview of the work

This thesis describes several works with the shared objective of advancing the field
of data compression. Three forms of data were examined: video, multi-spectral
images, and SAR raw data.

Chapter 3 and chapter 4 explored the possibilities of deep learning for the purpose
of video compression. First, we explored the use of CNNs for frame prediction as
an alternative for the inter-prediction algorithms used in the current generation of
video compression standards. Then, after meeting some limitations in this approach,
we designed MMCE-Net: a network for the enhancement of the predicted frames
generated by motion-compensation. This structure was successfully trained and
implemented inside the video compression standard H.265/HEVC, and we were
capable to obtain an average reduction of the BD-rate on the standard ITU-T test
sequences of -1.69%.

The following two chapters describe our work with the standard CCSDS 123.0
B-2. In chapter 5 we tested the effects of using this standard for the compression
of SAR raw data, and demonstrated that this approach achieves better performance
than the de-facto standard for the task BAQ. The viability of this algorithm for this
task allows to streamline the processing architecture of satellites for remote sensing,
and this approach was adopted for the Horizon 2020 project EO-Alert.
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Chapter 6 proposes multiple techniques to efficiently remove data related to
clouds in earth observations. The proposed techniques allow to reduce the data
transmitted without the loss of any useful information from the receiver side and
produce compressed files which are compliant with the standard CCSDS 123.0 B-2.

7.2 Open Problems

There are a lot of avenues for future work regarding the topic of data compression,
especially when speaking about the possibilities for deep learning in the field of video
compression. For example, the work proposed in chapter 4 could be expanded by
adapting to more configurations (for example bi-prediction), or by inserting memory
elements to take advantage of long-term correlations inside video-sequences. Finally,
it would be interesting to investigate the efficacy of a structure where the enhancing
network is more tightly integrated in the motion-compensation algorithm. In such a
scheme, a complex algorithm could decide to switch between different configurations
of the motion-compensation algorithm and reduce the amount of side information
needed at the receiver side, while keeping the entropy of the residual constant using
the enhancing network.
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