
08 November 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Guidelines for GUI Testing Maintenance: A Linter for Test Smell Detection / Fulcini, Tommaso; Garaccione, Giacomo;
Coppola, Riccardo; Ardito, Luca; Torchiano, Marco. - ELETTRONICO. - (2022), pp. 17-24. (Intervento presentato al
convegno A-TEST 2022: 13th Workshop on Automating Test Case Design, Selection and Evaluation tenutosi a
Singapore nel November 17-18, 2022) [10.1145/3548659.3561306].

Original

Guidelines for GUI Testing Maintenance: A Linter for Test Smell Detection

ACM postprint/Author's Accepted Manuscript, con Copyr. autore

Publisher:

Published
DOI:10.1145/3548659.3561306

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2971256 since: 2022-09-13T08:52:39Z

ACM

Guidelines for GUI Testing Maintenance: A Linter for Test Smell
Detection

Tommaso Fulcini
tommaso.fulcini@polito.it

Department of Control and Computer
Engineering, Politecnico di Torino

Turin, Piedmont, Italy

Giacomo Garaccione
giacomo.garaccione@polito.it

Department of Control and Computer
Engineering, Politecnico di Torino

Turin, Piedmont, Italy

Riccardo Coppola
riccardo.coppola@polito.it

Department of Control and Computer
Engineering, Politecnico di Torino

Turin, Piedmont, Italy

Luca Ardito
luca.ardito@polito.it

Department of Control and Computer
Engineering, Politecnico di Torino

Turin, Piedmont, Italy

Marco Torchiano
marco.torchiano@polito.it

Department of Control and Computer
Engineering, Politecnico di Torino

Turin, Piedmont, Italy

ABSTRACT
Context: GUI Test suites suffer from high fragility, in fact modifi-
cations or redesigns of the user interface are commonly frequent
and often invalidate the tests. This leads, for both DOM- and visual-
based techniques, to frequent need for careful maintenance of test
suites, which can be expensive and time-consuming.

Objective: The goal of this work is to present a set of guidelines
to write cleaner and more robust test code, reducing the cost of
maintenance and producing more understandable code. Based on
the provided recommendations, a static test suite analyzer and code
linter has been developed.

Method: An ad-hoc grey literature research was conducted on the
state of the practice, by performing a semi-systematic literature re-
view. Authors’ experience was coded into a set of recommendations,
by applying the grounded theory methodology.

Based on these results, we developed a linter in the form of a plu-
gin for Visual Studio Code, implementing 17 of the provided guide-
lines. The plugin highlights test smells in the Java and Javascript
languages.

Finally, we conducted a preliminary validation of the tool against
test suites from real GitHub projects.

Conclusions: The preliminary evaluation, meant to be an attempt
of application of the plugin to real test suites, detected three main
smells, namely the usage of global variables, the lack of adoption
of the Page Object design pattern, and the usage of fragile locator
such as the XPath.

CCS CONCEPTS
• Software and its engineering→ Software verification and
validation;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
A-TEST ’22, November 17–18, 2022, Singapore, Singapore
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9452-9/22/11. . . $15.00
https://doi.org/10.1145/3548659.3561306

KEYWORDS
GUI Testing, Software Testing, Software Engineering, Test smells
ACM Reference Format:
Tommaso Fulcini, Giacomo Garaccione, Riccardo Coppola, Luca Ardito,
and Marco Torchiano. 2022. Guidelines for GUI Testing Maintenance: A
Linter for Test Smell Detection. In Proceedings of the 13th International
Workshop on Automating Test Case Design, Selection and Evaluation (A-TEST
’22), November 17–18, 2022, Singapore, Singapore. ACM, New York, NY, USA,
8 pages. https://doi.org/10.1145/3548659.3561306

1 INTRODUCTION
Software Testing is one of the key Software Engineering sub-di-
sciplines: it aims at detecting failures and misalignments with the
software requirements, allowing to discover faults and bugs during
software development, saving costs and effort. Different approaches
(manual, capture and replay, or automated and hybrid testing) can
be adopted to perform Graphical User Interface (GUI) testing activ-
ities, and at different levels (from small code units to the complete
system). GUI testing identifies all the testing techniques that send
input to the System Under Test (SUT) through its GUI. Interacting
with a system through its GUI is a useful way of testing if the ap-
plication meets the requirements since the test sequences mimic
the interactions of a end user of the SUT.

Although automated GUI testing brings many positive aspects
such as saving time, boosting customer satisfaction, and enhancing
collaboration among developers and testers [1], it is known to be
one of the most fragile ways of testing an application, since existing
test cases may break when some visual changes are performed on
the SUT.

In the context of automated GUI testing of web applications, we
can distinguish three main methods employed by test cases to find
a web element at execution time [13]:

(1) Coordinate-based locators: elements are identified by their
coordinates in the graphical interface;

(2) DOM-based locators: elements are accessed via the Docu-
ment Object Model (DOM) structure;

(3) Visual-based locators: test cases use algorithms for image
recognition to detect the elements starting from screenshots.

DOM (or layout-) based locators are still the most frequently
adopted in both practice and related literature. With a focus on

https://orcid.org/0000-0001-8765-6501
https://orcid.org/0000-0001-7254-9578
https://orcid.org/0000-0003-4601-7425
https://orcid.org/0000-0002-0501-7886
https://orcid.org/0000-0001-5328-368X
https://doi.org/10.1145/3548659.3561306
https://doi.org/10.1145/3548659.3561306

A-TEST ’22, November 17–18, 2022, Singapore, Singapore Tommaso Fulcini, Giacomo Garaccione, Riccardo Coppola, Luca Ardito, and Marco Torchiano

this family of GUI testing tools, we drove our research to practice
by conducting an effort-bounded ad-hoc research on open-source
Github projects. We specifically considered projects in which the
web GUI testing tool Selenium was used or cited for scripting test
cases. The present research aims to extract guidelines from the
shared knowledge and experience of practitioners to provide a
reference for developers that will approach scripted GUI testing
techniques in the future with suggestions to be followed of bad
habits and test smells to avoid.

The remainder of the paper is organized as follows: Section II
provides the needed background information to understand the
guidelines; Section III explains the method followed to extract the
guidelines deepening the reasons for the recommendations; Section
IV provides an overview of the work-in-progress tool; Section V
explains the preliminary evaluation carried out on the linter; Sec-
tion VI concludes the paper by providing suggestions for future
expansions of the guidelines and the linter.

2 BACKGROUND
GUI test suites are often considered complex to design and imple-
ment due to the execution overhead which characterizes them, but
once built, they are often reused adopting the regression testing
technique to test the SUT iteratively. Although reusing an existing
test suite is an effort-saving practice, the test code needs to be main-
tained to keep it consistent with the new version of the system:
this intrinsic fragility causes test failure not representing actual
bugs, but test fragility deriving from its design or implementation.
ISO/IEC-25010 standard classifies fragility to the ’Modifiability’
sub-category of ’Maintainability’ as the "degree to which a product
or system can be effectively modified without introducing defects or
degrading existing product quality". In this context, we can define a
test case as robust whether, following an evolution of the SUT, the
test case does not require any adjustment. A test which is passing in
a certain version is considered fragile if, as a result of the evolution
of the SUT, it fails requiring external intervention to fix it [5]. For
the rest of the manuscript, we will refer to the fragility of test cases
simply as fragility.

In GUI testing activities, to perform an action against the SUT’s
interface, it is necessary to utilize locators, i.e., mean to identify
an element on-screen to target. There are three existing categories
of locators: on-screen coordinates of the widget in the SUT (or
first generation locators); DOM-based (or second generation locators)
utilizing information from the document object (e.g., HTML tags,
ids, CSS properties); finally, visual (or third generation locators)
which consists of screen captures of the target element that is
searched within the running SUT’s GUI by using image recognition
techniques.

In the context of DOM-based locator tools for web applications,
tests are bound to the SUT recurring to the hierarchical structure
of the HTML page [9]. These kinds of test cases are subject to an
intrinsic fragility that derives from the way elements are identified:
using the DOM to select which elements should be tested makes
test cases tightly coupled to SUT’s pages. This tight coupling leads
to binding test cases to specific visual elements which are proxies of
functions, rather than binding to the specific feature under testing.
As a result, most of the evolution of the system, especially when

updating visual aspects, causes test cases to break and testers are
required additional effort at fixing the test case [2].

One of themost used practices to reduce the fragility of test suites
is the adoption of the Page Object (PO) pattern [8]. Page Object is
a design pattern that consists in modeling all the web pages that a
test case will involve as objects using the native programming lan-
guage of the test case. This representation exposes all the required
functionalities of a web page in the shape of a function (or method)
called in the implementation of a test case: this architectural pattern
allows the creation of a reusable infrastructure, as all the test cases
which require a specific function to be performed will simply call
the function implemented by the page object. A second advantage
in using the PO pattern is the encapsulation of the implementation
details inside the page object, this allows testers implementing test
cases to work on a high level of abstraction. Overall, PO allows
reducing the burden on testers when repairing a test suite after a
break, reducing the time and lines of code (LOC) needed to repair.

Besides all the positive aspects brought by the adoption of POs,
this pattern requires a non-negligible effort in its implementation,
due to the overhead of setting up objects and their methods. For
this reason, PO is well-suited in contexts where GUI testing suites
are reused a considerable number of times in different iterations
and discouraged for testing simple GUI operations.

In scripted GUI testing, during the implementation of test code,
as it happens when developing source code, it is not infrequent to
introduce test smells, i.e., poorly designed test code whose presence
may negatively affect some aspects of the test suite such as quality,
maintainability, understandability, etc.. Although test smells might
not influence the proper functioning of a test suite in some specific
releases, their presence can result in breaking test cases in a subse-
quent release, negatively influencing the fragility of the whole test
suite, as reported by Mathew et al. [11]. Another problem directly
related with test smells, which deteriorates the maintainability of
test cases when a breakage occurs, is the low visibility of the re-
lationship between the fixture point and the outcome of the test.
Therefore, following the guidelines from the existing literature is
one important step toward robust and well-designed test suites. In
addition to having a taxonomy of bad practices, it is very impor-
tant to keep it up to date, whenever new architecture, design, and
technology emerges.

Among all the automated element-based testing tools, Selenium
is one of the most flexible since it allows the creation of test suites
in two different ways: using the capture and replay technique via
Selenium IDE or programmatically via Selenium WebDriver [7].
The first is a browser extension that allows recording all the actions
performed by the tester, which are then translated into statements
and assembled in test cases. Although it is considered promising
thanks to the capture and replay capability, Selenium IDE has indeed
some limitations, such as the absence of conditional statements and
logging features. Selenium WebDriver, instead, drives a browser
natively through an object-oriented API for accessing the DOM of
a web page. It allows the interaction with the SUT (e.g., clicking,
typing elements, opening URLs) using also verification statements,
allowing the specification of expected values and behaviors directly
in the preferred object-oriented programming language.

Guidelines for GUI Testing Maintenance: A Linter for Test Smell Detection A-TEST ’22, November 17–18, 2022, Singapore, Singapore

3 GUIDELINES EXTRACTION
Investigating the state of the practice led us to develop guidelines
based on practitioners’ experience to avoid bad habits and limit
their diffusion in future projects. In this section, we will deepen
the research method followed to identify the pool of sources from
which guidelines were extracted, along with their discussion.

3.1 Research Method
To conduct an analysis based on the state of the practice we decided
to investigate which are the best habits stated by GitHub maintain-
ers. Hence, we decided to search among the grey literature sources
to find tangible examples of experience-based recommendations.

The search was driven using the Google search engine, with an
effort bound on the first one hundred results (i.e., the first ten pages
of results), to include only the most relevant contributions. The
employed search string was meant to include the GitHub platform,
the widely used tool for GUI test scripts Selenium and a term as-
sociated with the recommendation aspect, in this case, we chose
both the ’recommendation’ term and ’best practice’. The result-
ing search string was ’github selenium (best practices OR
recommendations)’.

Results from the direct search were filtered by firstly applying
Inclusion and Exclusion Criteria (from now on, respectively IC and
EC) and secondly evaluating the quality of the retrieved informa-
tion.

We defined a set of IC and EC, each result item had to fully
meet all the IC and none of the EC to be included in the study. The
inclusion criteria were defined as follows:

• IC1: The source is an item of grey literature dealing with
problems directly related to fragility of scripted GUI testing
based on the authors’ experience or authoritative recommen-
dation from GUI testing tools developers.

• IC2: If the grey literature item is a GitHub project, the source
code is publicly available for anyone (i.e., open-source).

• IC3: The item is written in a language that is directly com-
prehensible by the authors: English or Italian.

Whilst the applied exclusion criteria are the following:
• EC1: The source is not directly related to the topic of fragility
of scripted GUI test cases for web applications.

• EC2: The source is a GitHub project whose code is partly or
fully private.

• EC3: The source neither provides any evidence of the stated
recommendation nor do the authors consider the recommen-
dation a valid guideline.

To evaluate the quality of the sources in our pool, we could
only rely on AACODS (Authority, Accuracy, Coverage, Objectivity,
Date, and Significance) evaluation methodology, which is most
suitable for quality assessment of grey literature items [15]. All the
authors evaluated all sources independently, and discussions were
conducted where no consensus was obtained in the first round of
evaluation. The developed questionnaire’s score was normalized
for each source on a 0-5 interval: only the sources which had a
score above 2.5 were kept in the final pool.

After the quality assessment, a process of backward level one
snowballing was performed from the initial pool of sources: all the

Figure 1: Screenshot of the tool: the underlined test code line
has reported the corresponding guidelines violated

reference links contained in the original set of contributions were
included in the preliminary pool, and their quality was evaluated,
using the same approach above.

A total of 23 grey literature items composed the final set of
sources, from which the guidelines were extracted and formalized.
To extract the guidelines we followed the principles of Straussian
Grounded Theory for evidence-based research [10]. The Open Cod-
ing [16] phase was performed over the analysis of all the collected
sources, with the following steps: (i) a new guideline was added
to the final set when no semantically equivalent guidelines have
already been elicited; (ii) a guideline is synthesized along with
semantically equivalent existing ones; in this case, the most gener-
alizable text is kept in the final set of guidelines. All the authors of
the manuscript participated to the coding phase. During the guide-
lines extraction, an internal consistency check was performed for
each new coded guideline. In case of contradictions, the contrasting
rules were compared and assessed based on of the relevance of the
grey literature source and the interpretation of the authors of the
present manuscript.

3.2 Guidelines discussion
The result of the synthesis process is a set of guidelines that ex-
tend the existing classification developed by Garousi et al. in their
secondary study [6] with the addition of hints for the specific GUI
testing context. Some reported guidelines are compatible with test
smells already classified and discussed in the literature: we decided
to keep them in our list to stress their importance and to high-
light the fact that in the four-year time period which separates the
present study fromGarousi’s literature mapping, some of the recom-
mendations to avoid test smells remain still valid. We also motivate
the inclusion of repeated guidelines because they are specifically
applicable to the GUI testing discipline.

The extracted guidelines were examined and grouped into four
different categories following the axial coding method, as defined
by Strauss and Corbin [16]: the full list is displayed in Table 1. The
categories are:

(1) General Purpose: those rules that do not depend on any par-
ticular test suite implementation aspect;

(2) Locator-related: those rules that harden the produced test
cases that rely on DOM locators;

(3) Name-related: conventions referred to common testing habits
improving readability, management, and repairing effort;

(4) Implementation-related: recommendations that suggest a
cleaner, safer, and more robust way to implement test cases;

A-TEST ’22, November 17–18, 2022, Singapore, Singapore Tommaso Fulcini, Giacomo Garaccione, Riccardo Coppola, Luca Ardito, and Marco Torchiano

Table 1: Summary of the extracted guidelines

Id Guideline description Mentions

R0 Keep the number of unit tests greater than the number
of end-to-end tests

[S01], [S21]

R1 End-to-end tests and integration tests should be de-
veloped before unit tests

[S07], [S21]

R2 Keep test cases as simple and short as possible [S06], [S08],
[S16], [S17],
[S22]

R3 Prefer to use locator by Id, CSS locators and Xpath
when not available, in that order

[S22], [S02],
[S03], [S04],
[S17], [S18],
[S19]

R4 Use relative XPath in place of absolute XPath [S02]
R5 Do not use link locators [S04]
R6 Use tag locators only for multiple elements [S04]
R7 Use relative URLs locator instead of absolute ones [S19]
R8 For elements and variables use name that mirrors func-

tionalities, use Ids when there is no specific functional
purpose

[S05]

R9 Keep names of variables clear to everyone [S06], [S18]
R10 Test cases name should contain three sections: what is

being tested, the circumstances and expected results
[S07], [S18]

R11 Separate words in Ids and class names by a hyphen [S05]
R12 Do not use global variables in test cases [S09]
R13 Create a separate web driver for each test case [S10], [S11],

[S24]
R14 Devote separate database data to each test case [S07], [S10],

[S21], [S19]
R15 Minimize the number of external libraries [S13]
R16 Tag test cases to run just a subset of them when nec-

essary
[S07]

R17 Do not perform visual actions to setup the test case
scenario. Use APIs of the AUT and direct DB queries
instead

[S08], [S12]

R18 A test case must not continue the workflow of other
test cases

[S16], [S22],
[S14]

R19 Run linters to detect anti-pattern [S07]
R20 Adopt Page Object Pattern [S08], [S15],

[S16], [S18],
[S19], [S20],
[S22], [S23]

R21 Avoid Thread.sleep statements by turning fixed-time
waits into condition-based ones

[S19]

R22 Run test cases with multiple browser’s driver [S21], [S19]

General purposes guidelines are three rules that come from the
Testing Pyramid concept [4], which pinpoint unit testing as the
fundamental building block of maintainable testware. The three
resulting recommendations are a natural consequence of this pat-
tern, requiring to produce of a higher number of unit tests than
end-to-end tests to verify thoroughly with simpler code snippets
functional requirements, additionally, unit tests should cover those
requirements that may not be covered by higher level tests, for
this reason, they should be developed subsequently. Keeping test
cases short is essential since each test case should verify only one
particular aspect.

Locator-related guidelines are applicable only to DOM-based lo-
cators and they are suggestions on how to identify an element to
be tested in the test code. These guidelines provide a ranking of
preference based on the experience coming from the practice, such
as the preference of using mainly Ids to identify elements, CSS
locators in second place, and finally XPath. Ids appear to be faster
and safer since Selenium and other tools provide direct access by
calling the ’getElementById’ method at browser level. CSS locators
are preferred to the XPath counterpart since their independence
from DOMs, which is considered a highly mutable structure, still, it
is not the recommended choice, since CSS identifiers’ main purpose
is to encode a particular style.

Considering XPath locators, relative ones are considered more
robust than the absolute one, since the path between two elements
appears to be less mutable than the complete path, which relies on
the whole DOM. Link locators are discouraged, as they work only
on link elements and under the hood they are translated to XPath
selectors, inheriting all the aforementioned drawbacks.

Tag locators are also discouragedwhen used to target one specific
element while multiple elements are admissible to be picked; this
kind of locator should be instead used in case of need to select
multiple elements of the same kind.

Speaking of locators, also URLs belongs to this category as they
allow to specify which is the web page the automated script is
targeting: the usage of an absolute URL is discouraged in favor of a
relative one. For this purpose, an abstract method that processes a
relative URL into an absolute one should be implemented to convert
from one to another. This guideline should however be reconsid-
ered when carrying out security testing: in fact, the absolute URL
contains the specifications of the protocol used, the correct imple-
mentation of which should be ensured and evaluated by security
tests by explicitly specifying the complete URL each time.

Name-related guidelines define useful conventions that improve
firstly readability of the code produced and secondly the maintain-
ability, since they allow to reduce the burden of getting familiar
with the code and the workflow during the maintenance phase,
by making clear the purpose of variables and methods. Naming
variables with clear names that state their purpose helps in un-
derstanding the code flow before even running it; additionally, a
well-defined naming convention keeps consistency in the variable
names limiting redundancy and unused variable smells.

In particular, assigning a good name to a test case that refers
to the testing conditions allows the tester to infer the starting
scenario avoiding reading the function’s body. Additionally, clearly
stating the expected output in advance helps in overcoming any
psychological biases that may lead the tester to define mistaken
assertions.

Implementation-related guidelines provide practical suggestions
that may improve the resiliency of the test suite or reduce mainte-
nance effort and execution time. Isolation of test cases makes them
more robust, for this reason, the usage of global variables, and in
particular shared web drivers, is discouraged since it can contain
spurious values when different test cases are ran. For the same prin-
ciple we can derive the recommendation of keeping independent
test cases, avoiding continuing the workflow of other test cases.
Shared data are considered fragile also in a test database, which
should contain separate data for each test case. One more cause of

Guidelines for GUI Testing Maintenance: A Linter for Test Smell Detection A-TEST ’22, November 17–18, 2022, Singapore, Singapore

fragility is the use of third-party libraries, since they may increase
the wall-clock time of a test case to deliver, causing synchronization
problems.

Test cases should also avoid performing any visual action to
set up the test scenario, this duty should be left to SUT’s API or
Database queries as encouraged by Selenium’s official website [14].
Albeit visual interaction should be avoided at all when scripting
GUI interaction, some interactions may depend on previous ones:
this requires a sort of synchronization to be sure that SUT’s state
is the one foreseen. The coordination of these operations should
avoid the suspension of the running thread for a fixed amount
of time, turning these statements into condition-based wait such
as preferring waitForPageToLoad or wait.until to Thread.sleep. The
aforementioned code is inherently fragile as the timing of web
driver operations is by definitions aleatory.

Indeed, one of the most useful and effective good practice the
guidelines encourages is the adoption of PO pattern, as the high
number of mentions suggest: it allows to create far more robust
test cases concerning the counterpart not implementing PO, as
documented by Leotta et al. [8]. Another guideline specifically ap-
plicable only to the GUI testing technique is the usage of multiple
browsers for running tests. The rationale is that, although many
browsers implement similarly the appearance of web pages, each
one may have a specific scripting implementation making the web
application dependent on the browser type and version: this al-
lows to reach a higher coverage over the browser fragmentation
phenomenon. Furthermore, the implementation of each web driver
highly influences how test case method calls are performed.

To conclude, guidelines R16 and R19 represent hints related to the
development and running environment: tagging test cases allows
to execute just the necessary subset, instead of the full suite, and
using a linter inside an IDE is the most common way of detecting
and removing test smells in the produced code.

4 THE PROPOSED TOOL
Based on the described guidelines, we started developing a linter
that supports testers by detecting test smells in a test suite. The tool
was conceived as a static code analyzer that probes bad practices
that could cause fragilities, shaped as a plugin for the Visual Studio
Code IDE (from now on, VS Code). The tool, called FragilityLinter,
has been written in Javascript, using Node.js framework.

The choice of VS Code was driven by its wide usage by the
developer community, which makes it one of the top three IDE [3].
Whilst the two target programming languages were chosen basing
both on the experience of the authors and on Stack Overflow’s
developer survey, whose 2021 iteration put Javascript and Java
respectively in the first and fifth place of programming languages
by usage [12].

Figure 2 shows the logical architecture of the project, divided
into four packages: a graphical tier, a logical tier, a data tier, and
the external dependencies.

The data tier contains a static array of recommendations, as-
sociating the hint’s message to an id representing the fragility.
The external dependencies are two free libraries (i.e., Acorn for
Javascript and Java-Parser for Java) that parse the code in their
specific programming language creating an Abstract Syntax Tree

Figure 2: UML class diagram representing the structure of
the linter

(AST) structure in the Javascript case and a Concrete Syntax Tree
(CST) structure for the Java language. The input structure obtained
using the proper parser is afterward analyzed by the core module,
which operates as a semantic analyzer, to detect anti-patterns. The
usage of two separate libraries makes the linter flexible, as it could
be extended to any other object-oriented programming language
by adding a suitable parser for the new programming language,
to extract an AST or CST-compatible structure to be provided to
the core module as an input. The logical tier includes the recog-
nition of fragilities on the code analyzed and a module with the
implementation for the specific IDE, VS Code in this case.

The tool, whose development is in progress, implements sixteen
out of the twenty-three proposed recommendations. For time and
effort reasons, the presented version has some limitations due to
the prototypal nature of the linter: in particular, R0 and R1 have not
yet been implemented since they respectively require an overview
on the whole project structure to compute and compare the number
of unit and end-to-end test cases, and the access to the full version
control history of all the files to determinate which tests were
written first.

Guideline R8 requires natural language processing to distinguish
if the names match functionalities: this requirement constitutes a
processing overhead that should be empirically assessed to establish
its compliance with the real-time nature of the linter which is
executed directly during the editing of the test case.

Guideline R14 is partially implemented since the linter can in-
directly recognize the rule, but a complete heuristic recognition is
possible only by analyzing databases.

R17 and R18 have not yet been implemented because of the
high degree of complexity that characterizes them: the former due
to the large variety of possible statements that may constitute a
setup phase, most of which are optional; the latter because of the
strong connection with the SUT which characterize the rule and

A-TEST ’22, November 17–18, 2022, Singapore, Singapore Tommaso Fulcini, Giacomo Garaccione, Riccardo Coppola, Luca Ardito, and Marco Torchiano

the level of complexity in grasping whether a certain test case is the
continuation of a previous one. The last guideline which has not
been implemented on account of the complexity is R20: detecting
the adoption of PO pattern is a highly complicated task, which
requires also some implementation assumptions. In particular, all
the definitions of Page classes, which should be defined in different
files than the one containing the actual tests, should be parsed to
collect all the pages under test with their functionalities, and the
test file should ensure that the correct method is called to perform
the action against the SUT. For the same reason mentioned for R0,
parsing all the files in a non-well-defined project structure has been
considered out of the scope of the prototypical version of the linter.

A report function was embedded in the linter to show the distri-
bution of the different guidelines violations in the different test files
or folders. The report can compute the total count either for each
rule, or for each file: this allows the assessment of the distribution
of fragilities per single test file, or per rule violated.

5 PRELIMINARY EVALUATION
A preliminary evaluation was performed to assess the actual op-
erational state of the linter, whilst at the same time characterizing
existing open-source projects based on their adoption of the elicited
guidelines.

To that extent, a small number of public repositories was selected
and statistics about the fragilities addressed by the guidelines were
computed.

5.1 Methodology
We selected open-source projects where all the test code was fully
accessible to verify if the prototype of the linter was successfully
recognizing test smells identified by our guidelines. We browsed
GitHub using an ad-hoc search string allowing us to narrow the
resulting pool to projects containing in the first case Java and in the
second case Javascript code with a file name containing the word
test and using Selenium, with the following search string:

extension:java filename:*test* language:Java selenium

We required the usage of the web GUI testing tool Selenium
mainly because of its large diffusion among open-source projects
with GUI testing suites. GitHub’s results were then grouped by
Code and a total of 15 projects per language were included to be
used as a target for the linter. Test files were grouped in folders
firstly by language and secondly by repository, the report features
were then operated on all the files. The detected rule violations
were organized and rendered in charts showing the diffusion of the
different violations grouped by guideline.

5.2 Results
Considering the case of java test suites, the most violated guide-
line among those implemented, as Figure 3 shows, was by far the
usage of global variables (i.e. R12) with more than a thousand occur-
rences detected. Considering the distribution of smells in Javascript,
reported in Figure 4, a similarity in the distribution of R12 can be no-
ticed within the two programming languages. The second guideline

Figure 3: Diffusion of the guidelines violations over the re-
trieved Java project

Figure 4: Diffusion of the guidelines violations over the re-
trieved Javascript project

by number of detected test smells in both programming languages
was the usage of discouraged locators such as XPath in place of the
more robust id locator (i.e. R3). A significant disparity of proportions
characterizes this rule since more than eight hundred occurrences
were verified in Java, while just about a hundred in the case of
Javascript.

The third most common violation is again the same in both
languages. Recommendation R16 denotes a lack of scheduling in
the projects, which could be improved by correctly tagging the
test cases to run just the needed subset, saving a considerable
amount of time in each run. Although the usage of absolute URLs
instead of relative ones is the fourth more frequent violation in
Javascript, it has a different diffusion in Java, as it has been counted
more than a hundred times in the first case, while just thirty-eight
occurrences were counted in the second case. Another common
guideline occupying the fourth place for Java and the sixth for
Javascript is the naming convention which proposes to name test
cases by stating the subject, circumstances, and expected result of

Guidelines for GUI Testing Maintenance: A Linter for Test Smell Detection A-TEST ’22, November 17–18, 2022, Singapore, Singapore

the test case, with the goal of making its usage clear to everyone.
The remaining noticeable violations concern the usage of the same
web driver for different test cases (i.e. R13) in Javascript, which could
also be considered as a special case of guideline R12, and the usage
of unclear variable names which undermine the understandability
of the test code (R9) in the case of Java.

Looking at the distribution of violations we observed almost no
difference between the two considered programming languages,
except for R3 which seems to be significantly more widespread in
Java. A further noticeable statistic is the number of violations con-
tained in the different testing files: in Java, the first and the second
files per violations included respectively 374 and 202 smells, while
in Javascript they were 118 and 106. In this respect we acknowledge
that the resulting statistics may be biased by the quality of the
retrieved Github repositories and the incomplete state of the tool.
A systematic and more in-depth project selection will be required
to provide robust and reliable evidence on the state of diffusion of
test smells that we plan to perform once the linter’s coverage of
guidelines is complete.

6 THREATS TO VALIDITY
The main caveat about this work is that represents an initial work
aimed to reduce test smells for scripted GUI testing and to improve
test robustness. A few threats may affect the validity of the results.

6.1 Construct Validity
Construct validity refers to the concept that a novelty actually
mimics what it intends to mimic, by direct or indirect objective
standards. For this study, the main biases can be derived from the
process of selection of the primary source items and the synthe-
sis process. The guidelines were meant to reflect the state of the
practice, for this reason, grey literature items were deemed suitable
for the analysis. The selection of relevant sources in the grey lit-
erature context is highly dependent on two factors: the employed
search string and the time in which the search has been carried out
since the Google search engine has algorithms that mutate very
frequently. We also argue that the quality of the retrieved grey
literature items degraded rapidly with the page progression: in fact,
the backward snowballing process was more useful than expanding
the effort bound to include more direct results.

6.2 Internal Validity
Internal validity is the degree to which a study establishes the cause-
and-effect relationship between the treatment and the observed
outcome. In this study we presented a linter which, as already
mentioned, is still in a prototypal form: this fact undeniably has
influenced the obtained results. We are aware that the subset of
implemented suggestions may not be representative of the total
since their different nature, but we argue that the more operative
hints about the way the testing code is written have been success-
fully implemented. The guidelines which remain unimplemented
are those which we can consider more abstract and design-related,
hence less likely to identify and localize at the code level by auto-
mated linting. One more internal validity threat affecting the results
could be the fact that testing utilities, unless they contain the "final"

keyword, are counted as smells whether declared as global vari-
ables. We acknowledge that the provided preliminary distinction
between smelly global variables and side-effect-free utilities might
have slightly offset the gathered data.

6.3 External Validity
External validity refers to the extent to which inferences drawn
from a study’s sample apply to a broader or other target populations,
therefore external validity threats are related to how the presented
results can be generalized. This study focused on scripted GUI
testing of web apps, in particular, those cases using the Selenium
tool. All the provided guidelines remain valid for any other scripted
GUI testing disciplines, regardless of the tool used; some of the
recommendations can also be applied to the general testing activity.

Concerning the actual implementation of the linter, we already
suggested the possibility to extend the core of the plugin with li-
braries providing the extraction of AST or CST from the starting
code, which would make the linter compatible with any other pro-
gramming languagewith the aid of the provided library. The current
implementation is specific for VS Code IDE, we can estimate a low
effort to adapt the plugin as it stands to other IDEs which support
Javascript built on top of Node.js framework. The development of
the plugin for different IDEs which are not compatible with Node.js
will certainly require significant effort, which is currently out of
the scope of the research.

Other validity threats are represented by the method used for the
selection of repositories to test the linter against. A more rigorous
and thorough study should take into consideration a statistically
significant sample of repositories to provide a complete overview of
the state of the practice. The employed search string should also be
assessed and enhanced iteratively, to ensure that the most relevant
and representative open-source projects are included and more
reliable statistics are collected.

7 CONCLUSION AND FUTUREWORK
With the present work, we provided an investigation into the state
of the practice of web applications locator-based GUI testing, from
the point of view of GUI test fragility.

We analyzed and classified the most common test smells affect-
ing scripted GUI testing techniques, as reported by practitioners.
The provided classification enriches the taxonomy of test smells
already existing in the literature – as of the systematic mapping
from Garousi et al. [6] – with some novel GUI-related issues. We
provided a discussion for each test smell, along with suggestions
and guidelines about the potential drawbacks of smelly code and
guidance on how to avoid anti-patterns. On the basis of the pre-
sented guidelines, we built a prototypal static code analyzer in the
form of a plugin for VS Code. The tool is able to detect test smells
in Java and Javascript languages and notify them to the tester.

We evaluated the linter on 30 different open-source Github
projects, the results showed that the most violated guideline both
in Java and Javascript projects was by far the usage of global vari-
ables in test cases, followed by the usage of the discouraged Xpath
locator, instead of the recommended locators based on ids or CSS
selectors.

A-TEST ’22, November 17–18, 2022, Singapore, Singapore Tommaso Fulcini, Giacomo Garaccione, Riccardo Coppola, Luca Ardito, and Marco Torchiano

Short term improvements to the tool include the completion of
the linter: we will work toward the recognition of the unimple-
mented test smells and the inclusion of Python, which is the second
most used general purpose programming language [12]. Once the
tool will be completed in these respects, we plan to carry on a
systematic execution against a larger number of open-source repos-
itories – not limited to the GitHub platform – to further validate
the tool’s capabilities and investigate the actual diffusion of GUI
test smells.

REFERENCES
[1] Emil Alégroth, Arvid Karlsson, and Alexander Radway. 2018. Continuous Inte-

gration and Visual GUI Testing: Benefits and Drawbacks in Industrial Practice.
In 2018 IEEE 11th International Conference on Software Testing, Verification and
Validation (ICST). 172–181. https://doi.org/10.1109/ICST.2018.00026

[2] Luca Ardito, Morisio Maurizio, and Huang Shijie. 2019. Test Fragility: An
exploratory assessment study on an Open-Source Web Application. (2019).
https://webthesis.biblio.polito.it/14471/1/tesi.pdf

[3] Pierre Carbonnelle. 2022. Top IDE index. https://pypl.github.io/IDE.html
Accessed: 2021-11-14.

[4] Mike Cohn. 2010. Succeeding with agile: software development using Scrum.
Pearson Education.

[5] Riccardo Coppola, Maurizio Morisio, Marco Torchiano, and Luca Ardito. 2019.
Scripted GUI testing of Android open-source apps: evolution of test code and
fragility causes. Empirical Software Engineering 24, 5 (2019), 3205–3248.

[6] Vahid Garousi and Barıs Kucuk. 2018. Smells in software test code: A survey of
knowledge in industry and academia. Journal of Systems and Software 138 (2018),
52–81. https://doi.org/10.1016/j.jss.2017.12.013

[7] A. Holmes and M. Kellogg. 2006. Automating functional tests using Selenium. In
AGILE 2006 (AGILE’06). 6 pp.–275. https://doi.org/10.1109/AGILE.2006.19

[8] Maurizio Leotta, Diego Clerissi, Filippo Ricca, and Cristiano Spadaro. 2013. Im-
proving Test Suites Maintainability with the Page Object Pattern: An Industrial
Case Study. In 2013 IEEE Sixth International Conference on Software Testing, Verifi-
cation and ValidationWorkshops. 108–113. https://doi.org/10.1109/ICSTW.2013.19

[9] Maurizio Leotta, Diego Clerissi, Filippo Ricca, and Paolo Tonella. 2014. Visual
vs. DOM-Based Web Locators: An Empirical Study. In Web Engineering, Sven
Casteleyn, Gustavo Rossi, and Marco Winckler (Eds.). Springer International
Publishing, Cham, 322–340.

[10] Fahad M. Alammar, Ali Intezari, Andrew Cardow, and David J. Pauleen. 2019.
Grounded theory in practice: Novice researchers’ choice between Straussian and
Glaserian. Journal of Management Inquiry 28, 2 (2019), 228–245.

[11] Delin Mathew and Konrad Foegen. 2016. An analysis of information needs
to detect test smells. Full-scale Software Engineering/Current Trends in Release
Engineering (2016), 19.

[12] Stack OVerflow. 2021. Stack Overflow’s 2021 survey. https://insights.
stackoverflow.com/survey/2021#technology-most-popular-technologies Ac-
cessed: 2022-04-9.

[13] Andrea Stocco, Maurizio Leotta, Filippo Ricca, and Paolo Tonella. 2014. PESTO:
A Tool for Migrating DOM-Based to Visual Web Tests. In 2014 IEEE 14th Inter-
national Working Conference on Source Code Analysis and Manipulation. 65–70.
https://doi.org/10.1109/SCAM.2014.36

[14] Selenium Development Team. 2021. Generating application state | Sele-
nium. https://www.selenium.dev/documentation/test_practices/encouraged/
generating_application_state/ Accessed: 2022-04-13.

[15] Jess Tyndall. 2010. The AACODS Checklist. https://dspace.flinders.edu.au/xmlui/
bitstream/handle/2328/3326/AACODS_Checklist.pdf.

[16] Maike Vollstedt and Sebastian Rezat. 2019. An Introduction to Grounded The-
ory with a Special Focus on Axial Coding and the Coding Paradigm. Springer
International Publishing, 81–100. https://doi.org/10.1007/978-3-030-15636-7_4

OTHER SOURCES
[S01] B. Williams. Improving code quality, 2021. URL https://github.com/uselagoon/

lagoon/discussions/2613. Accessed: 2022-02-23.
[S02] M. F. P. S. Cyreno. Why would you use id attributes, 2017. URL https://github.

com/manoelcyreno/test-samples/wiki/Why-would-you-use-ID-attributes. Ac-
cessed: 2022-02-23.

[S03] ejunker. Is adding ids to everything standard practice when using selenium?,
2013. URL https://sqa.stackexchange.com/questions/6326/is-adding-ids-to-
everything-standard-practice-when-using-selenium. Accessed: 2022-02-23.

[S04] S. Developer. Finding web elements, 2022. URL https://www.selenium.dev/
documentation/webdriver/elements/finders/. Accessed: 2022-02-23.

[S05] G. Team. Google html/css style guide, 2021. URL https://google.github.io/
styleguide/htmlcssguide.html. Accessed: 2022-02-23.

[S06] H. Schneider. pycon-ca-2018, 2018. URL https://github.com/howard8888/pycon-
ca-2018/wiki. Accessed: 2022-02-23.

[S07] S. K. Kyle Martin, Kevyn Bruyere. Node.js best practices, 2022. URL https:
//github.com/goldbergyoni/nodebestpractices. Accessed: 2022-02-23.

[S08] S. Developer. Overview of test automation. https://www.selenium.dev/
documentation/test_practices/overview/, 2021. Accessed: 2022-02-23.

[S09] C. Naranjo. Javascript namespace declaration, 2013. URL https://github.com/
freudgroup/freudcs/wiki/Javascript-Namespace-Declaration. Accessed: 2022-
02-23.

[S10] S. Developer. Avoid sharing state. https://www.selenium.dev/documentation/
test_practices/encouraged/avoid_sharing_state/, 2021. Accessed: 2022-02-23.

[S11] S. Developer. Fresh browser per test. https://www.selenium.dev/documentation/
test_practices/encouraged/fresh_browser_per_test/, 2021. Accessed: 2022-02-23.

[S12] S. Developer. Generating application state. https://www.selenium.dev/
documentation/test_practices/encouraged/generating_application_state/, 2021.
Accessed: 2022-02-23.

[S13] S. Developer. Mock external services. https://www.selenium.dev/
documentation/test_practices/encouraged/mock_external_services/, 2021. Ac-
cessed: 2022-02-23.

[S14] S. Developer. Test independency. https://www.selenium.dev/documentation/
test_practices/encouraged/test_independency/, 2021. Accessed: 2022-02-23.

[S15] D. Zivanovic. Automation in selenium: Page object model and page factory,
2016. URL https://www.toptal.com/selenium/test-automation-in-selenium-
using-page-object-model-and-page-factory. Accessed: 2022-02-23.

[S16] N. Advolodkin. Automation best practices w/ java workshop, 2021.
URL https://github.com/nadvolod/automation-best-practices-java/blob/main/
README.md#local-environment-setup. Accessed: 2022-02-23.

[S17] M. W. Docs. Setting up your own test automation environment. https:
//github.com/mdn/content/blob/main/files/en-us/learn/tools_and_testing/
cross_browser_testing/your_own_automation_environment/index.md, 2021.
Accessed: 2022-02-23.

[S18] G. Karadas. Selenium best practices, 2017. URL https://github.com/
previousdeveloper/Selenium-best-practices. Accessed: 2022-02-23.

[S19] A. BM. Selenium best practices, 2015. URL https://gist.github.com/arjunbm13/
42f8a1fcf9b2f8ca8599. Accessed: 2022-02-23.

[S20] D. Garg. Selenium code practice, 2021. URL https://github.com/DipanGarg/
Selenium-Code-Practice. Accessed: 2022-02-23.

[S21] devonfw. Selenium best practices, 2020. URL https://github.com/
devonfw/mrchecker/blob/develop/documentation/Who-Is-MrChecker/Test-
Framework-Modules/Selenium-Test-Module-Selenium-Best-Practices.
asciidoc. Accessed: 2022-02-23.

[S22] J. Unadkat. Best practices for selenium test automation, 2021. URL https://www.
browserstack.com/guide/best-practices-in-selenium-automation. Accessed:
2022-02-23.

[S23] E. Nogueira. Lean test automation architecture using java and selenium web-
driver, 2021. URL https://github.com/eliasnogueira/selenium-java-lean-test-
architecture. Accessed: 2022-02-23.

[S24] M. Gibbs. Aspect oriented programming: Definition & concepts,
2022. URL https://study.com/academy/lesson/aspect-oriented-programming-
definition-concepts.html.

https://doi.org/10.1109/ICST.2018.00026
https://webthesis.biblio.polito.it/14471/1/tesi.pdf
https://pypl.github.io/IDE.html
https://doi.org/10.1016/j.jss.2017.12.013
https://doi.org/10.1109/AGILE.2006.19
https://doi.org/10.1109/ICSTW.2013.19
https://insights.stackoverflow.com/survey/2021#technology-most-popular-technologies
https://insights.stackoverflow.com/survey/2021#technology-most-popular-technologies
https://doi.org/10.1109/SCAM.2014.36
https://www.selenium.dev/documentation/test_practices/encouraged/generating_application_state/
https://www.selenium.dev/documentation/test_practices/encouraged/generating_application_state/
https://dspace.flinders.edu.au/xmlui/bitstream/handle/2328/3326/AACODS_Checklist.pdf
https://dspace.flinders.edu.au/xmlui/bitstream/handle/2328/3326/AACODS_Checklist.pdf
https://doi.org/10.1007/978-3-030-15636-7_4
https://github.com/uselagoon/lagoon/discussions/2613
https://github.com/uselagoon/lagoon/discussions/2613
https://github.com/manoelcyreno/test-samples/wiki/Why-would-you-use-ID-attributes
https://github.com/manoelcyreno/test-samples/wiki/Why-would-you-use-ID-attributes
https://sqa.stackexchange.com/questions/6326/is-adding-ids-to-everything-standard-practice-when-using-selenium
https://sqa.stackexchange.com/questions/6326/is-adding-ids-to-everything-standard-practice-when-using-selenium
https://www.selenium.dev/documentation/webdriver/elements/finders/
https://www.selenium.dev/documentation/webdriver/elements/finders/
https://google.github.io/styleguide/htmlcssguide.html
https://google.github.io/styleguide/htmlcssguide.html
https://github.com/howard8888/pycon-ca-2018/wiki
https://github.com/howard8888/pycon-ca-2018/wiki
https://github.com/goldbergyoni/nodebestpractices
https://github.com/goldbergyoni/nodebestpractices
https://www.selenium.dev/documentation/test_practices/overview/
https://www.selenium.dev/documentation/test_practices/overview/
https://github.com/freudgroup/freudcs/wiki/Javascript-Namespace-Declaration
https://github.com/freudgroup/freudcs/wiki/Javascript-Namespace-Declaration
https://www.selenium.dev/documentation/test_practices/encouraged/avoid_sharing_state/
https://www.selenium.dev/documentation/test_practices/encouraged/avoid_sharing_state/
https://www.selenium.dev/documentation/test_practices/encouraged/fresh_browser_per_test/
https://www.selenium.dev/documentation/test_practices/encouraged/fresh_browser_per_test/
https://www.selenium.dev/documentation/test_practices/encouraged/generating_application_state/
https://www.selenium.dev/documentation/test_practices/encouraged/generating_application_state/
https://www.selenium.dev/documentation/test_practices/encouraged/mock_external_services/
https://www.selenium.dev/documentation/test_practices/encouraged/mock_external_services/
https://www.selenium.dev/documentation/test_practices/encouraged/test_independency/
https://www.selenium.dev/documentation/test_practices/encouraged/test_independency/
https://www.toptal.com/selenium/test-automation-in-selenium-using-page-object-model-and-page-factory
https://www.toptal.com/selenium/test-automation-in-selenium-using-page-object-model-and-page-factory
https://github.com/nadvolod/automation-best-practices-java/blob/main/README.md#local-environment-setup
https://github.com/nadvolod/automation-best-practices-java/blob/main/README.md#local-environment-setup
https://github.com/mdn/content/blob/main/files/en-us/learn/tools_and_testing/cross_browser_testing/your_own_automation_environment/index.md
https://github.com/mdn/content/blob/main/files/en-us/learn/tools_and_testing/cross_browser_testing/your_own_automation_environment/index.md
https://github.com/mdn/content/blob/main/files/en-us/learn/tools_and_testing/cross_browser_testing/your_own_automation_environment/index.md
https://github.com/previousdeveloper/Selenium-best-practices
https://github.com/previousdeveloper/Selenium-best-practices
https://gist.github.com/arjunbm13/42f8a1fcf9b2f8ca8599
https://gist.github.com/arjunbm13/42f8a1fcf9b2f8ca8599
https://github.com/DipanGarg/Selenium-Code-Practice
https://github.com/DipanGarg/Selenium-Code-Practice
https://github.com/devonfw/mrchecker/blob/develop/documentation/Who-Is-MrChecker/Test-Framework-Modules/Selenium-Test-Module-Selenium-Best-Practices.asciidoc
https://github.com/devonfw/mrchecker/blob/develop/documentation/Who-Is-MrChecker/Test-Framework-Modules/Selenium-Test-Module-Selenium-Best-Practices.asciidoc
https://github.com/devonfw/mrchecker/blob/develop/documentation/Who-Is-MrChecker/Test-Framework-Modules/Selenium-Test-Module-Selenium-Best-Practices.asciidoc
https://github.com/devonfw/mrchecker/blob/develop/documentation/Who-Is-MrChecker/Test-Framework-Modules/Selenium-Test-Module-Selenium-Best-Practices.asciidoc
https://www.browserstack.com/guide/best-practices-in-selenium-automation
https://www.browserstack.com/guide/best-practices-in-selenium-automation
https://github.com/eliasnogueira/selenium-java-lean-test-architecture
https://github.com/eliasnogueira/selenium-java-lean-test-architecture
https://study.com/academy/lesson/aspect-oriented-programming-definition-concepts.html
https://study.com/academy/lesson/aspect-oriented-programming-definition-concepts.html

	Abstract
	1 Introduction
	2 Background
	3 Guidelines extraction
	3.1 Research Method
	3.2 Guidelines discussion

	4 The proposed tool
	5 Preliminary evaluation
	5.1 Methodology
	5.2 Results

	6 Threats to Validity
	6.1 Construct Validity
	6.2 Internal Validity
	6.3 External Validity

	7 Conclusion and Future work
	References
	Other Sources

