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Abstract: While cross-sectional imaging has seen continuous progress and plays an undiscussed
pivotal role in the diagnostic management and treatment planning of patients with rectal cancer, a
largely unmet need remains for improved staging accuracy, assessment of treatment response and
prediction of individual patient outcome. Moreover, the increasing availability of target therapies has
called for developing reliable diagnostic tools for identifying potential responders and optimizing
overall treatment strategy on a personalized basis. Radiomics has emerged as a promising, still fully
evolving research topic, which could harness the power of modern computer technology to generate
quantitative information from imaging datasets based on advanced data-driven biomathematical
models, potentially providing an added value to conventional imaging for improved patient manage-
ment. The present study aimed to illustrate the contribution that current radiomics methods applied
to magnetic resonance imaging can offer to managing patients with rectal cancer.

Keywords: rectal cancer; surgery; neoadjuvant chemoradiation therapy; magnetic resonance imaging;
radiomics; deep learning; personalized medicine

1. Introduction

With over 1.8 million new cases reported each year, rectal cancer (RC) is the third
most common cancer in men and the second in women, as well as the fourth leading cause
of death globally. Its overall incidence is higher in the industrialized world, but it is also
rapidly increasing in developing countries [1–3]. Locally advanced rectal cancer (LARC)
is defined as a tumor penetrating the entire bowel wall (stages 2, T3/T4N0) and/or with
involvement of regional lymph nodes (stage 3, any T N1/N2); the standard of care for
patients with LARC currently includes neoadjuvant chemoradiotherapy (nCRT) followed
by total mesorectal excision [4–6].

Magnetic resonance imaging (MRI) is the most accurate imaging modality for both RC
primary staging and restaging after treatment. In particular, it plays an essential role in the
local staging of the disease both before and after nCRT, in that it can provide comprehensive
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information regarding tumor (T) and node (N) staging, extramural venous invasion (EMVI)
and circumferential resection margin (CRM), which can dictate the most appropriate clinical
and therapeutic approach [7–11]. A meta-analysis of 35 studies revealed that preoperative
MRI had high diagnostic accuracy in the assessment of preoperative T staging and of
CRM, boasting a sensitivity and specificity as high as 0.97 for the assessment of muscularis
propria and adjacent organ invasion. Therefore, MRI is reliable in this clinical context,
although significant heterogeneity exists in the literature [12].

The main challenges and pitfalls of MRI in preoperative RC staging are related to
issues, such as the differentiation of early RC (cT1-T2) from LARC (cT3) and the detection
of nodal metastases, which can have relevant clinical implications related to the possibility
of avoiding nCRT and treating cT1 tumors with local excision. Magnetic resonance imaging
has low sensitivity in distinguishing LARC extramural tumor invasion from the desmo-
plastic reaction, which typically appears as spiculations with a low-intensity signal on
T2w imaging and no diffusion restriction on diffusion-weighted imaging (DWI) [4,13,14].
As to N-staging, MRI has been shown to have limited performance, yielding a sensitivity
and specificity of approximately 70 to 80% with pathology as the gold standard [15,16].
Detering et al. [17] have recently investigated the performance of MRI in the T and N
staging of early RC, showing poor accuracy in T staging (54%), with 31% and 15% of pa-
tients being clinically overstaged and understaged, respectively. Overstaging was slightly
reduced (from 54.7 to 31%) with combined MRI and endorectal ultrasonography, high-
lighting the overall limited performance of MRI and endorectal ultrasonography in cT1
staging. The same study also confirmed the limited performance of MRI in N staging,
yielding diagnostic accuracy, sensitivity and specificity of 69%, 83% and 34%, respectively,
in properly identifying pN0 patients. Furthermore, a recent study by Lord et al. showed
that current MRI staging for assessing T and N status in RC patients did not adequately
predict prognosis, whereas specific MRI factors, such as the presence of non-nodal tumor
deposits/positive EMVI status, had greater prognostic accuracy and would be superior in
determining treatment and follow-up protocols [18].

The aforementioned issues stress the need to improve the diagnostic accuracy of
currently available diagnostic tests by extracting as much information as possible from
imaging data to minimize errors in staging and restaging and possibly gain insights
regarding optimal treatment planning and prognosis [19].

The first occurrence of the term “radiomics” in the scientific literature dates back to
2012 [20,21], and, since then, radiomics has attracted increasing attention within the scien-
tific and medical community. Radiomics aims to translate medical images into quantitative
data, defined as biomarkers, which may reveal a deeper level of detail than that, which is
accessible to the unaided human eye, so as to quantify tumor phenotypes, which could aid
in clinical decision-making. This has promoted the idea that medical images are like “dark
matter in space” since only a small percentage of imaging data are traditionally used by
radiologists for the interpretation of medical images. The bulk of the information is locked
up within the images themselves unless advanced algorithms are used to unveil it and find
potential correlations with biologically and/or clinically relevant factors, including early
response to specific treatments, eligibility to target therapies and individualized patient
outcomes [9,22–24]. This also holds true for RC patients, for whom radiomics can be a
promising approach to improving patient care and optimizing healthcare resources. Of
note, radiomics has the potential of bringing a significant contribution to tailoring treat-
ment to the specific tumor biology of individual RC patients, possibly finding quantitative
associations between radiological imaging and specific biomarkers (e.g., KRAS mutation
status, microsatellite instability) from the entire tumor or any part of it, which can be
exploited for target therapies [25–27].

Some recent studies have supported the role of radiomics in RC staging with the
goal of overcoming the limitations of conventional imaging and providing an additional
imaging biomarker, allowing for the correct management of RC patients [28,29].
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The aim of this paper was to give an overview of the biophysical background, techni-
cal issues and potential applications of radiomics in the management of patients with RC.
To this purpose, we searched PubMed (https://pubmed.ncbi.nlm.nih.gov/, accessed on 8
April 2021) for English language papers (including original research and review articles)
with keywords, including “radiomics”, “rectal cancer”, “rectal MRI”, “staging”, “neoad-
juvant (chemoradiation therapy)”, “surgery”, “prognosis”, “outcome”, “downstaging”,
“response” and “lymph node/nodal”. For technical aspects, we also searched PubMed
and IEEE Xplore (https://ieeexplore.ieee.org/Xplore/home.jsp, accessed on 8 April 2021)
for English language papers with keywords, including “features standardization”, “deep
learning architecture”, “machine-learning algorithms”, “feature selection”, “classifiers”,
“validation techniques” and “deep learning/machine learning studies design”.

2. Radiomics Workflow

The radiomics workflow is composed of various steps, which are summarized in
Figure 1 and are discussed below.
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2.1. Image Acquisition, Segmentation and Feature Extraction

Sharing common imaging protocols across centers is of paramount importance to
minimize any potential bias, affecting measurements (e.g., magnet strength, MR coil, the
field of view, spatial resolution, various MR sequence parameters, etc.) [30]. However, in a
clinical setting, it might be difficult to use standardized protocols on a multicenter basis,
especially in the case of retrospective studies [31]. Different solutions have been proposed
to reduce the influence of acquisition protocols on radiomics studies. One approach is
based on leveraging radiomics variability as a feature selection tool by using test–retest
analysis and eliminating radiomics features with a high variability [23,32]. However, this
approach has the drawback of not evaluating the diagnostic performance of each feature.
In fact, it has been demonstrated that features robust to parameter variations commonly
resulted in a robust, but not necessarily high, diagnostic performance [33], whereas highly
variable radiomics features could maintain a high diagnostic performance [34].

A different strategy is to apply post-reconstruction batch harmonization techniques
to minimize feature variabilities across centers, such as global scaling (min–max scaling),
z-standardization, the ratio with the signal intensity of healthy tissue, which is not affected
by the disease, histogram-matching (where intensity histograms are transformed to match
a reference intensity histogram) or the ComBat harmonization method [35]. Each of these
techniques has its own strengths and weaknesses, which could affect both the values of
the radiomics features and the prognostic value of radiomics-based classification methods
differently [35]. Therefore, a thorough assessment of the most appropriate technique to be
used is advised when developing radiomics models for multicenter studies.

https://pubmed.ncbi.nlm.nih.gov/
https://ieeexplore.ieee.org/Xplore/home.jsp
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Once all image datasets have been acquired, the tissues of interest must be outlined by
tracing regions of interest (ROIs) inside or around them to differentiate them from neigh-
boring structures (e.g., tumor vs. normal tissue) (Figure 2). This task is called segmentation
and can be manual, semiautomatic or fully automatic. Manual and semiautomatic methods
are time-consuming tasks, hence difficult to implement in daily radiological and clinical
practice; they also suffer from high intra- and interobserver variability [20]. Several studies
have demonstrated that differences among segmentations can strongly affect the values
of radiomics features and, consequently, the robustness of the radiomics model [36–38].
Therefore, when developing classifiers based on segmentation of ROIs, it is essential to
determine the variability of radiomics features concerning the tumor delineation process
and to implement the appropriate strategies to deal with this issue, e.g., by eliminating
those features whose variability is higher than their prognostic value.
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Figure 2. Manual tumor segmentation from T2-weighted (a,b) and DW (c,d) rectal MR images.
Tumor borders are highlighted as dashed lines.

2.2. Automatic Segmentation via Deep Learning Algorithms

Fully automated segmentation methods have the potential of overcoming the afore-
mentioned limitations; however, the intrinsic complexity of rectal MR images, together
with differences in signal intensity among different patients and different image acquisition
protocols and MR scanners, can form substantial hurdles, which have long prevented
developing radiomics as a tool for supporting the diagnosis. Newer deep learning (DL)
systems can outperform conventional pattern recognition algorithms in segmenting RC
lesions from clinical MR images [39–43].

While DL (also known as “deep structured learning”) represents a subgroup of ma-
chine learning techniques, it differs from the latter in that learning is fulfilled directly from
data and not from ad-hoc parameters chosen beforehand.

More specifically, when ML algorithms are developed, it is mandatory to decide
which quantitative features need to be extracted and used to train the network based
on a priori knowledge of the problem. Conversely, DL methods are directly fed with
images and automatically determine which characteristics of the images are the most
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important for solving the problem. In DL methods, the training phase can be either
supervised (i.e., when the data provided and used from the network to learn [training]
contain information regarding the class they belong to which had previously been defined
by an expert) or unsupervised (i.e., when data do not contain information regarding the
class they belong to).

The core of DL is in artificial neural networks, the main components of which are
illustrated in Figure 3.
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Figure 3. Architecture of a DL algorithm. The upper flowchart shows a human workflow, whereas the
lower flowchart shows the steps needed for artificial intelligence (AI) to accomplish the same task.

Briefly, an input image is divided into feature maps (i.e., convolutional layers) rep-
resenting different characteristics of the same image. Each convolutional layer detects
different levels of features from simple patterns, such as edges and gradients, to more
abstract features. These feature maps are then fed into a net, which processes each of these
features and activates those neurons, which are related to the recognition of a specific
pattern. Multiple architectures of neural networks have been proposed, which differ in the
following characteristics:

• Activation function of neurons, i.e., how different inputs can either activate or not a
specific neuron, defined by variables, such as “weights” and “bias”;

• Architecture, defining the number of neurons and their interconnections;
• Learning algorithm, i.e., the implemented mathematical function, which allows neu-

rons to learn.

Learning consists of varying the weights and bias values of each neuron within the
network so that the system output matches the true output. The first artificial neural
network was the Perceptron, which was introduced by Rosenblatt in 1958 [44]. Its structure
is quite simple in that it is made up of a single neuron and can categorize the input into two
classes. The Perceptron was followed by developing several additional neural networks, of
which the best-known are convolutional neural networks (CNNs). Convolutional neural
networks can learn directly from two- or three-dimensional images based on applying
specific filters (i.e., convolutional layers in Figure 3), which extrapolate a series of specific
characteristics useful for data classification. Starting from this type of network, the neural
network U-net (which was specifically created for medical imaging and is characterized by
a U-shaped structure) was implemented for the first time [45]. The biggest improvement
brought by the U-net consists of being able to segment areas of clinical interest within the
image (e.g., tumor tissue, blood vessels, etc.) instead of classifying an input image into two
different classes (e.g., similar to a CNN).

To date, there has been an ever-increasing number of studies showing systems based
on neural networks for the segmentation of RC, given the greater interest in such technolo-
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gies and their potential medical applications. The best results related to the application of
CNNs have been illustrated by Trebeschi et al., who implemented a CNN-based system
using multiparametric rectal MRI [46]. This system accepts T2-weighted and DW images
(b-values equal to 0 and 1000 s/mm2) as input and is capable of classifying each voxel (3D
region of the image) as neoplastic or healthy tissue (Figure 4a). The main disadvantage of
this system is that its performance decreases considerably when input MR images have
been acquired with a wider field of view than that of the learning dataset since portions
of healthy tissue (such as testicles or subcutaneous adipose tissue) are classified as tumor
tissue (Figure 4b). Huang et al. implemented a U-net, which allowed successful tumor
localization on T2-weighted images [47]; however, it required a long computational time,
which negated any substantial practical advantage than manual segmentation. The same
authors showed the possibility of training a neural network, even using an unbalanced
dataset, such as a hospital dataset in which the percentage of patients with a given disease
is lower than that of healthy individuals [48]. This was possible by “weighting” the effects
of pathological cases more and nonpathological cases less on the network.
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Figure 4. (a) Pretreatment multiparametric rectal MRI examination in a male patient with RC.
Upper row (from left to right): axial MR images from T2-weighted images, DWI b1000, DWI
b0, and fusion imaging between T2-weighted and DWI b1000 images. Lower row (from left to
right): tumor segmentation performed by an experienced reader used for training, an independent
reader, the algorithm output, and the corresponding probability map generated by the algorithm.
(b) Performance of CNN-based segmentation. The algorithm correctly identified and segmented the
tumor in cases I to IV (small field of view), but it failed with a larger field of view images (V and
VI), where parts of the cavernous bodies of the penis were mistakenly included in the segmentation.
Adapted from [46].
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Panic et al. [49] implemented an innovative system based on CNNs for automatic seg-
mentation, which allowed overcoming the aforementioned limitations. The segmentation
mask was obtained by classifying all pixel groups (ROI 3 × 3) forming the input image.
The classification was carried out using three CNNs, each of them classifying the same
acquired ROI from three different MRI sequences. Considering the different information
provided by each individual sequence, it was possible to obtain a final classification of
the region.

Current research is yielding encouraging results; however, some efforts are required
to bridge the gap between research and clinical needs. First, most research algorithms
are validated on internal datasets, which means that protocols and images are quite sim-
ilar. Validation on larger and, especially, multicentric databases are of key importance.
Furthermore, these algorithms are most often not integrated into a single graphical user
interface, which can be used by an inexperienced user. Therefore, it would be a challenging
but extremely important task to devise a tool, which could be run by anyone via his/her
favorite reporting platform.

2.3. Feature Selection, Model Construction and Statistical Analysis

Once tumor segmentation has been carried out, quantitative features must be extracted,
which characterize the selected tissue(s). The main features extracted are divided into first-
order statistics features, which are derived from gray-level histograms, and second-order
statistics features, which are computed from matrices relating each pixel of the image to
those in its surroundings, e.g., using gray-level co-occurrence matrices (GLCM) or gray-
level run-length matrices (GLRLM). It is essential that those steps be standardized as much
as possible to avoid any bias, which may occur due to the inhomogeneity of the source data,
especially in the perspective of performing multicentric studies and of future validation for
clinical use [50].

A large number of variables is often extracted, resulting in the generation of features,
which are highly correlated among themselves and could hence lead to overfitting (i.e., error
due to over-adaptation of the prediction model to the input data), thereby requiring a prior
selection of extracted features. Filter feature selection algorithms rank features according
to the relationship between each feature and the output (e.g., using correlation, area under
the receiver operating characteristic (ROC) curve, chi-squared test, etc.); ranking scores are
then used to choose those input variables, which will be entered into the model. Conversely,
wrapper feature selection methods are based on a specific machine-learning algorithm to
evaluate the performance of different feature subsets. A greedy search approach is followed
by evaluating all the possible combinations of features against a performance metric. For
regression, this metric can be p, R-squared or adjusted R-squared values, whereas, for
classification, it can be accuracy, precision, recall, f1-score, etc. Finally, the algorithm selects
the combination of features yielding optimal results for the specified machine-learning
algorithm. Intrinsic methods feature selection during the model building process (e.g., least
absolute shrinkage and selection operator (LASSO), Elastic Net, etc.) [51].

Once the best performing features have been selected, patient clinical, biological and
genetic data should ideally be incorporated into the model-building to create a complete
clinical decision support system. Several classification methods can be used depending on
the number of patients available and the clinical purpose (e.g., revelation and segmentation,
characterization). Different classification methods have been proposed, which differ in
learning approach (i.e., supervised or unsupervised) and type of correlation with the
output (e.g., linear, polynomial, Gaussian, etc.). The most common classifiers are logistic
regression, k-nearest neighbor, naïve Bayes classifier, support vector machines, decision
tree, neural network and deep learning [52]. A recent study has concluded that there
was no single best classifier across all datasets [53]; hence, the performance of different
classifiers should be assessed to obtain more reliable, consistent and generalizable models.

After training the model on the data available (training set) and optimizing it on
the second group of patients (testing set), its performance must be validated on a dataset
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possibly deriving from an external source (validation set) to evaluate whether the model
created can generalize results on different settings.

Having an external validation dataset can be very difficult since the images require an-
notation, implying that an experienced radiologist would review each image and define the
ground truth together with the oncologist and/or the pathologist. Moreover, transferring
images between different centers can be problematic due to technical and privacy-related is-
sues. A successful image exchange program can be transformational for both care providers
and patients as it would allow training and validating machine learning models involving
a massive scale population, thus driving better health outcomes. However, in pilot or
preliminary studies, it is always mandatory to carry out validation if having an external
dataset is not feasible. The latter can be accomplished using different strategies, such
as k-fold, bootstrap, random subsampling or a nested approach. The biggest issue with
internal validation is the potential leakage of the feature selection algorithm into the whole
data, which might lead to overly optimistic results. For creating such unseen data sets,
although the hold-out technique seems to be the most appropriate internal validation
method, there is also a nested cross-validation technique, which is primarily used for this
purpose and might give similar estimates to an independent validation [54].

3. Radiomics for the Personalized Management of RC Patients: Current Evidence and
Perspectives

The classification models illustrated above lend themselves to providing insights
into tissue structure, which can be useful to characterize tumor heterogeneity, predict
patient response to therapy and overall survival, and assess the relationship between
radiomic and genomic characteristics, under the assumption that imaging reflects not only
the macroscopic features of tissues but also their cellular and molecular properties [55].
For the purpose of RC management, radiomics data can be obtained, which complement
and/or refine the diagnostic information achieved by conventional MR protocols and
image analysis.

In the future, radiomics can be expected to be an additional tool for RC patient
management with the ability to support clinicians and overcoming the main challenges of
conventional imaging, such as the overstaging of early RC and lack of accuracy in detecting
nodal metastases. Those applications could drastically change patient management and
therapeutic options, and more patients may take advantage of local excision if properly
staged as T1 [28,29]. Moreover, the possibility of providing data, which go beyond the
visual assessment and conventional qualitative and quantitative analysis of MR images
makes radiomics a promising tool for predicting outcome before surgery and evaluating the
response to nCRT (potentially allowing the selection of respondents from nonrespondents
before the beginning of the completion of potentially toxic treatments), guiding towards the
optimal therapeutic approach on an individualized basis [25,36,56,57]. Of note, in contrast
to conventional biopsy (which samples only a selected portion of the tumor), radiomics
analysis allows gathering information from the entire tumor, thus taking into account
tissue heterogeneity, which may have an impact on lesion characterization and treatment
planning (e.g., due to the presence of multiple tumor clones and differences in the tumor
microenvironment, which may affect tumor sensitivity and resistance to nCRT or molecular
target agents) [58].

3.1. Staging

In a retrospective study involving a total of 152 patients with RC, who underwent
surgery alone (i.e., without any neoadjuvant therapy), Ma et al. found that radiomics
analysis carried out on high-resolution T2-weighted 3-Tesla MR images using a support
vector machine and a random forest algorithm yielded an area under the receiver operat-
ing characteristic curve (AUC) as high as 0.862 (sensitivity 83.3%, specificity 85.0%) and
0.746 (sensitivity 79.3%, specificity 72.2%) in predicting the degree of differentiation, and
the T- and N-stages of the lesions, respectively [59]. Lu et al. reported that the texture
features obtained from sagittal fat-suppression combined with transverse T2-weighted
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images in patients undergoing preoperative MRI may be valuable in selecting an opti-
mal treatment strategy, allowing differentiation of T1/2 from T3/4 tumors with an AUC
of 0.740 [60] (Figure 5). Similarly, Sun et al. [28] evaluated the performance of an MRI-
based radiomic model for differentiating early (cT1-T2) from locally advanced (cT3-T4)
RC in 119 patients, with histological diagnosis as the reference standard. The radiomic
model had a superior performance as compared with MRI alone, showing a higher AUC
(0.852 vs. 0.706), sensitivity (79% vs. 64.2%) and specificity (82% vs. 75.6%).
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Lymph node assessment before and after treatment using conventional MRI can be
challenging, spurring interest in developing advanced techniques, which could bridge
this gap. Liu et al. reported that DWI-based texture analysis could predict local inva-
sion depth (stage pT1-2 versus pT3-4) and nodal status (pN0 versus pN1-2) of RC with
significant differences occurring between pN0 and pN1-2 tumors concerning the mean
apparent diffusion coefficient (ADCmean), whereas ADCmax and entropy were independent
predictors of positive nodal status [61]. Li et al. [29] recently built and validated a combined
radiomic-clinical nomogram for predicting nodal metastases in the preoperative clinical
setting of patients with colorectal cancer, achieving good accuracy, AUC, sensitivity and
specificity (73.7%, 0.750, 60.2% and 84.3%, respectively).

Other studies have shown the potential of MRI texture features for providing valuable
information in identifying the status of RC lymph node invasion [62,63]. A combined
model derived from radiomic signatures and restaging results in patients with LARC
undergoing preoperative and posttreatment MRI could predict positive lymph node status
with a negative predictive value of 87.8% and 100% in posttreatment MRI T3-T4 and T1-T2
tumors, respectively [64].

3.2. Assessment of Treatment Response

In a study by Yi et al., MRI-based radiomics was able to predict response to nCRT
in patients with LARC from conventional T2-weighted MR images, allowing prediction
of complete pathological response, good response (as defined by the Dowrak/Rödel
system [65]) and downstaging with AUCs of 0.91, 0.90 and 0.93, respectively [66] (Figure 6).
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T2-weighted images are often used because they tend to offer better diagnostic perfor-
mance in RC staging [67]; however, other studies have incorporated additional sequences
conveying functional information, e.g., DW images. Liu et al. built a radiomics model from
T2-weighted and DW images obtained in 222 patients with LARC before and after nCRT,
enabling individualized prediction of complete pathological response (AUC as high as
0.9756 in the validation cohort) and, thus, potentially aiding the identification of LARC
patients, who could avoid surgery after nCRT [68]. More recently, by performing segmen-
tation of T2-weighted and diffusion-weighted MR images (b-800 images and ADC maps),
Bulens et al. created models using LASSO regression analysis, which enabled a noninvasive
prediction of response to neoadjuvant treatment in patients with LARC undergoing nCRT
followed by surgery, with a higher AUC between 0.83 and 0.86 for predicting complete or
near-complete pathological response (ypT0–1N0), respectively [57].

An MRI-based radiomic nomogram has been developed by Wang et al., which can
accurately differentiate good and poor responders in patients with LARC undergoing nCRT
and achieve significant risk stratification concerning progression-free survival [69]. Zhou
et al. found that pre-therapeutic, multiparametric MRI radiomic features could predict
nonresponse to neoadjuvant therapy in patients with LARC, yielding an AUC of 0.822 [70].
Delta-radiomics signatures obtained in patients with LARC before and after nCRT and
surgery have also been shown to be able to successfully predict treatment outcomes and
serve as independent prognostic factors [71].

3.3. Prediction of Individual Patient Prognosis and Potential Eligibility on Target Therapies

Radiomics analysis may provide information, which could impact overall patient
prognosis and potential eligibility for target therapies [72]. A combined model, including
the radiomics and clinical features obtained from pretreatment T2-weighted MR images,
was able to predict the likelihood of developing distant metastases, thus potentially aid-
ing in tailoring treatment strategies in high-risk patients [73]. Cui et al. developed and
validated a T2-weighted image-based radiomics signature for the specific prediction of
KRAS mutation status in 304 patients with RC using a support vector machine algorithm
providing an AUC of 0.722 in the training dataset. Importantly, a KRAS mutation was not
associated with baseline clinical and histopathological features, suggesting that the pro-
posed radiomics signature may be useful for supplementing genomic analysis to determine
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KRAS expression in RC patients [74]. Using T2-weighted MRI-based texture analysis, Oh
et al. identified three imaging features, which could preoperatively differentiate mutant
from wild-type KRAS, yielding a sensitivity, specificity and accuracy of 84%, 80%, and
81.7%, respectively [75]. In a study involving 158 patients with pathologically proven RC,
who had undergone preoperative MRI, the mean values of six texture parameters (mean,
variance, skewness, entropy, gray-level nonuniformity, run-length nonuniformity) were
significantly higher in KRAS-mutant patients than KRAS wild-type patients having AUC
values of texture features ranging from 0.703 to 0.81, and higher T stage and lower ADC
values occurring in KRAS-mutant cancers [76] (Figure 7). Meng et al. developed a radiomic
model from MRI datasets of 345 patients with RC taking into account multiple factors, such
as lymph node metastasis, tumor differentiation grade, a fraction of Ki-67-positive tumor
cells, human epidermal growth factor receptor 2 (HER-2) expression and KRAS-2 gene mu-
tation status, yielding an AUC of 0.699 for signatures evaluating Ki-67 and of 0.697 for an
integrated evaluation model incorporating radiomics signature and MRI-reported lymph
node status [27].
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Radiomics analysis of T2-weighted images also has the potential of identifying mi-
crosatellite instability in the preoperative setting of patients with RC [77,78]. Similar
findings have also been obtained by applying radiomics methods to computed tomography
(CT) [79] and dual-energy CT datasets [80].

4. Conclusions

Rectal cancer is a complex disease for which radiomics has the potential of providing
an added value to conventional MR imaging, especially in terms of improved staging,
evaluation of treatment response and prediction of patient outcome. While radiomics
is an area of active research in full development, radiologists should be aware of its
potential capabilities, and efforts should be made to maximize standardization of imaging
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protocols and data collection on a multicenter basis to validate findings on a broad scale
for prospective use in clinical practice.
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