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Abstract: This paper presents an efficient approach for subsequence search in data streams.
The problem consists of identifying coherent repetitions of a given reference time-series, also in
the multivariate case, within a longer data stream.The most widely adopted metric to address this
problem is Dynamic Time Warping (DTW), but its computational complexity is a well-known issue.
In this paper, we present an approach aimed at learning a kernel approximating DTW for efficiently
analyzing streaming data collected from wearable sensors, while reducing the burden of DTW
computation. Contrary to kernel, DTW allows for comparing two time-series with different length.
To enable the use of kernel for comparing two time-series with different length, a feature embedding
is required in order to obtain a fixed length vector representation. Each vector component is the DTW
between the given time-series and a set of “basis” series, randomly chosen. The approach has been
validated on two benchmark datasets and on a real-life application for supporting self-rehabilitation
in elderly subjects has been addressed. A comparison with traditional DTW implementations and
other state-of-the-art algorithms is provided: results show a slight decrease in accuracy, which is
counterbalanced by a significant reduction in computational costs.

Keywords: data stream analysis; pattern query; kernel learning; dynamic time warping;
subsequence search

1. Introduction

Dynamic Time Warping [1] is a technique to find the optimal alignment between two time-series,
by considering the possibility to nonlinearly “warp” one time-series by stretching or shrinking it
along its time axis. The amount of warping needed for the alignment is then used as a measure of the
difference between the two time-series. A typical application of DTW is speech recognition [2], where
it is used to determine if two waveforms represent the same spoken phrase. In a speech waveform,
the duration of each spoken sound and the interval between sounds can vary, but the overall speech
waveforms must have a similar “shape”. In addition to speech recognition, DTW has also been found
useful in many other disciplines, including, gesture recognition [3], robotics [4], manufacturing [5],
and health monitoring [6–8].

Moreover, measuring the similarity between two time-series is a core task for time-series
clustering [9], where both data representation and preprocessing are critical choices, as well as the
definition of a suitable similarity measure. Recently, in [10], a fuzzy-clustering approach for time-series
data has been proposed, where DTW distance is used for comparing pairs of time-series. Other relevant
approaches, which could benefit of a more efficient DTW computation, are [11,12].

Sensors 2019, 19, 5192; doi:10.3390/s19235192 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-1431-576X
https://orcid.org/0000-0002-8896-5047
https://orcid.org/0000-0002-4062-0824
http://www.mdpi.com/1424-8220/19/23/5192?type=check_update&version=1
http://dx.doi.org/10.3390/s19235192
http://www.mdpi.com/journal/sensors


Sensors 2019, 19, 5192 2 of 16

Indeed, despite its widely adoption in many application domains, a well-known issue of DTW is
its computational complexity. Computing DTW between two time-series requires O(NM), where N
and M are the lengths of the two time-series. Therefore, the comparison of a reference time-series with
a large data stream (i.e., M� N), as well as the identification of all the reference repetitions within the
data stream, might be computationally very expensive.

The importance of the topic is widely recognized in the scientific community, as highlighted by
relevant previous works quoted in Section 2.

The specific contributions of this paper are as follows.

• Designing a kernel learning task aimed at approximating DTW to reduce computational burden
of the subsequence search.

• Comparing the proposed kernel-based DTW approximation with traditional DTW-based
implementations and other state-of-the-art algorithms.

• Validating the proposed approach on a simple benchmark toy example
(https://www.cs.unm.edu/mueen/FastestSimilaritySearch.html) and on a more complex one,
namely, the “User Identification From Walking Activity” dataset, freely downloadable from the
UCI Repository.

• Validating the results through pattern query experiments on a dataset self-rehabilitation dataset,
specifically collected in a real-life project. Self-rehabilitation dataset is available from the
corresponding author on reasonable request.

The rest of the paper is organized as follows. Section 2 provides the methodological background
about DTW, its recent innovations and applications, as well as computational drawbacks in the specific
case of subsequence search. Section 3 describes how to learn a kernel to approximate DTW and,
consequently, increase the computational efficiency subsequence search within long data streams.
Section 4 presents the experimental setting and the datasets used to validate the approach. Section 5
summarizes the experimental results. Finally, the discussion and relevant conclusions are reported in
Section 6.

2. Backgound

2.1. Dynamic Time Warping

The core component of DTW is a data structure named “accumulated cost matrix”, denoted
by D ∈ RN×M, where N and M are the lengths of the two time-series, X = (x1, . . . , xN), and Y =

(y1, . . . , yM) to be compared. Every entry Di,j of this matrix is computed as follows,

Di,j = min{Di−1,j−1, Di−1,j, Di,j−1}+ c(xi, yj) ∀i = 1, . . . , N and j = 1, . . . , M, (1)

where xi and yj are the i-th and j-th values of X and Y, respectively, and c : X × Y → R+
0 is a cost

function. The most widely adopted cost function is the Euclidean distance. The initialization can be
simplified by extending the accumulated cost matrix D with an additional row and column, specifically
Di,0 = ∞, D0,j = ∞, and D0,0 = 0. Then, the recursion in Equation (1) holds for i = 1, . . . , N and
j = 1, . . . , M.

In the general case, the two time-series could be multivariate, and consequently xi and yj could be
vectors. Furthermore, the accumulated cost matrix satisfies, by construction, the following identities,

Di,1 =
i

∑
k=1

c(xk, y1) ∀i = 1, . . . , N (2)

and

D1,j =
j

∑
k=1

c(x1, yk) ∀j = 1, . . . , M (3)

https://www.cs.unm.edu/~mueen/FastestSimilaritySearch.html
https://archive.ics.uci.edu/ml/datasets/User+Identification+From+Walking+Activity
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A warping path is defined as a sequence p = p1, . . . , pL of positions in D, where pl = (il , jl).
The warping path represents an alignment between X and Y, which assigns the element xil of the first
series to the element yjl of the second series. A warping path must satisfy the following conditions.

• Boundary conditions p1 = (1, 1) and pL = (N, M). These conditions enforce the alignment to
start and finish at the extremes of the two series, meaning that the first elements of X and Y, as
well as the last ones, must be aligned to each other.

• Monotonicity condition: i1 ≤ i2 ≤ . . . ≤ iL and j1 ≤ j2 ≤ . . . ≤ jL. This condition simply ensures
that if an element in X precedes a second one this should also hold for the corresponding elements
in Y, and vice versa.

• Step size condition: pl+1 − pl ∈ (1, 0), (0, 1), (1, 1) for l = 1, . . . , L− 1. This condition ensures
that no element in X and Y can be omitted and that there are no replications in the alignment,
meaning that all the index pairs contained in a warping path are pairwise distinct. Note that the
step size condition implies the monotonicity condition.

The total cost, cp(X, Y), associated to a warping path p between X and Y is computed as

cp(X, Y) =
L

∑
l=1

c(xil , xil )

An optimal warping path between X and Y is a warping path, p∗, having minimal total cost over
all the possible warping paths, as the one one shown in Figure 1. Therefore, the DTW distance between
X and Y is obtained as

DTW(X, Y) = cp∗(X, Y) = min
p

cp(X, Y) (4)

Note that DTW is symmetric if the cost function c(·, ·) is symmetric. However, DTW is generally
not positive definite and does not always satisfy the triangle inequality. The following figure provides
an example of accumulated cost matrix and the associated optimal warping path. The closer the
optimal warping path to the diagonal, the lower the misalignment between the two series.

Figure 1. An illustration of accumulated cost matrix and associated optimal warping path when using
DTW to align the two time-series in the picture.

The optimization problem (4) is solved using dynamic programming, with complexity O(NM).
The optimal warping path algorithm is summarized in the following Algorithm 1.
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Algorithm 1 Optimal warping path algorithm

Input Accumulated cost matrix D
Output optimal warping path p∗

1: i← N, j← M, p1 ← (i, j), l ← 1
2: while i 6= 1 OR j 6= 1 do
3: l ← l + 1
4: if i = 1 then
5: pl ← (i, j− 1)
6: j← j− 1
7: else
8: if j = 1 then
9: pl ← (i− 1, j)

10: i← i− 1
11: else
12: d∗ ← min{Di−1,j−1, Di−1,j, Di,j−1}
13: if d∗ = Di−1,j OR d∗ = Di−1,j−1 then
14: i← i− 1
15: end if
16: if d∗ = Di,j−1 OR d∗ = Di−1,j−1 then
17: j← j− 1
18: end if
19: pl ← (i, j)
20: end if
21: end if
22: end while
23: p∗ = reverse(p)

The reverse operation at the end of the algorithm is necessary because the length L of the optimal
warping path p∗ is unknown a priori. Indeed, the optimal warping path is computed, according to the
dynamic programming paradigm, in a reverse order starting from the position (N, M) to the position
(1, 1). Therefore, the reverse operation allows to give, as output, the optimal warping path, represented
as a sequence of positions coherent with the initial definition.

A commonly adopted DTW variant is to impose global constraint conditions on the admissible
warping paths with the aim to prevent undesired alignments by controlling the route of a warping
path. Two widely adopted global constraints are the Sakoe–Chiba band [13] and the Itakura
parallelogram [14]. Besides the prevention of undesired alignments, global constraints can also
speed up DTW computation, because they in effect limit the length, L, of p∗.

A review of the research efforts in optimizing both the efficiency and effectiveness of DTW-based
algorithms for similarity search, clustering, and classification is presented in [15]. Here, different
variants of DTW are discussed, such as constrained DTW, multidimensional DTW, asynchronous
DTW, along with optimization techniques for improving DTW efficiency, such as lower bounding,
early abandoning, run-length encoding, bounded approximation, and hardware optimization. Some
relevant aspects of DTW optimization are presented in [16], where an example of approximation of the
accumulated cost matrix D is given, and in [17], where the distance calculations for univariate DTW
are accelerated. In [18], a exotic approach to increase robustness of similarity measure by constructing
a matrix over the derivative approximation of neighborhood samples can be found, namely, Derivative
DTW. Finally, with respect to the topic of DTW approximation via kernel, the authors of [19] propose
a kernel aimed at learning the principal global alignments for the given data by using the hidden
structure of the alignments from the training data. This approach is presented as more computationally
efficient when compared to previous kernels on DTW distance, such as GA kernel [20,21] and Gaussian
DTW kernel [22].
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2.2. Dynamic Time Warping for Subsequence Search

The problem of subsequence search, based on DTW, is described in [1], and is also known as
subsequence DTW or DTW-based subsequence search. In this task, the time-series to be compared are
characterized by significant difference in their lengths, i.e., M� N, where the shortest one is called
reference pattern, that is, a specific sequence to be searched for within the second longer time-series.
Indeed, instead of searching for a global alignment between the two series, the goal is to find at least
one subsequence of the reference pattern within the longer data stream, with optimal fitting (i.e.,
minimal DTW). Let us denote by a∗ and b∗ the indices representing the beginning and end of the
subsequence within Y, with 1 ≤ a∗ ≤ b∗ ≤ M. These indices are identified by solving the following
optimization problem,

(a∗, b∗) = arg min
(a,b):1≤a∗≤b∗≤M

DTW(X, Ya:b), (5)

where Ya:b is the subsequence (ya, . . . , yb) in Y.
Optimization problem (5) can be solved by applying a modification in the initialization of the

previous DTW algorithm, consisting of replacing (3) with

D1,j = c(x1, yj)

In other words, contrary to the identities in Equation (3), the starting position of the subsequence
a∗ does not provide any value, except its own cost, and therefore the cost of positioning b∗ depends
only on the DTW between the reference pattern and the chosen subsequence. The remaining values of
the accumulated cost matrix D are defined as in the basic DTW algorithm.

The index b∗ is determined as b∗ = arg minb=1,...,M DN,b. In case b∗ is not unique, the lexicographic
order can be used to select among the multiple choices. Given the value b∗, then a∗ is obtained by
applying the optimal warping path algorithm, starting from position (N, b∗). Finally, the resulting
optimal warping path p∗ = (p1, . . . , pL) must be reduced to (pl , . . . , pL), where pl is the maximum
index such that pl = (a∗, 1), with l ∈ {1, . . . , L}. Therefore, the optimal warping path between X
and Ya∗ :b∗ is given by (pl , . . . , pL), and, roughly speaking, all the elements preceding ya∗ and those
following yb∗ are not considered in the alignment and, consequently, do not account for additional
costs to DTW.

In the following, we summarize how the subsequence search algorithm can be extended to find
multiple repetitions of the reference pattern X within the longer data stream Y. First, we introduce,
as reported in [1], the distance function ∆ : [1 : M] → R, with ∆(b) = DN,b b = 1, . . . , M, which
assigns the minimal DTW that can be computed between the reference pattern X and a subsequence in
Y ending in yb. Given b, the starting index ya of the searched subsequence is identified through the
optimal warping path algorithm revised for subsequence search. The procedure is summarized in
Algorithm 2.

Step 8 of the Algorithm 2 is particularly important. As the elements of the accumulated cost
matrix are computed accordingly to Equation (1), we set ∆(b) = ∞ in the neighborhood of the optimal
value b∗ to avoid subsequences already found (optimization process in step 4) as well as pathological
cases of a very short time-series in its neighborhood.

To guarantee no false dismissals in similarity query processing and efficiently prune a significant
number of the search candidates, leading to a reduction in the search cost, the authors of [23] propose
a fast similarity search method (FTW).
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Algorithm 2 DTW-based subsequence search algorithm

Input reference pattern X = (x1, . . . , xN), a longer data stream Y = (y1, . . . , yM), with M� N, and a
threshold τ

Output a list L of repetitions of X within Y having, individually, a DTW lower than τ. The list is
ranked depending on the individual DTW

1: L = ∅
2: compute the accumulated cost matrix D between X and Y
3: compute the distance function ∆
4: find b∗ = arg minb∈{1,...,M} ∆(b)
5: If ∆(b) > τ then STOP
6: find a∗ by using Optimal warping path algorithm but initialized in j = b instead of j = M
7: updating L as: L = L ∪Ya∗ :b∗
8: Set ∆(b) = ∞ for every b in a suitable neighborhood of b∗
9: GO TO STEP 3

3. Learning a Kernel to Approximate DTW

3.1. Time-Series Kernels via Alignments

A number of global alignment kernels have been proposed in literature with the aim to extend
DTW to a kernel-based estimation method. The underlying idea is to avoid the problem of searching
exactly the optimal warping path while learning a kernel approximating the DTW value between two
time-series. Kernel methods have shown to be promising for learning complex models by implicitly
transforming a simple representation, like mapping typical Euclidean distance into a high-dimension
feature space [24]. The main obstacles for applying usual kernel methods to time-series are due to
two distinctive characteristics of time-series: (a) variable length and (b) dynamic time scaling and
shifts. Furthermore, direct use of DTW leads to a not positive definite kernel that does not provide a
convex optimization problem [20]. To overcome these obstacles, a family of global alignment kernels
have been proposed by taking soft-max over all possible alignments in DTW to give a positive definite
kernel [20,21,25]. However, the effectiveness of the global alignment kernels is impaired by the
diagonal dominance of the resulting kernel matrix proportional to the difference in the size between
the two time series [21], which is the case of subsequence search. In [26], a random features mapping
method for time-series embedding is proposed: the idea is to use an explicit mapping to represent
any time-series through its alignments to a set of randomly chosen “basis times-series”, having a
small length. This significantly reduces computational cost. Starting from similar considerations, our
approach aims at learning a kernel, based on random features mapping, to use for efficiently solving
the subsequence search problem.

3.2. Learning a Kernel for Subsequence Search

Consider two multimodal time-series X = (x1, . . . , xN) and Y = (y1, . . . , yM) with M� N, where
X represents the reference pattern to be searched in Y. Let us now randomly generate a sequence
S = {s1, s2, . . . , sR} of R basis time-series, where si ∈ Rd×Li ∀i = 1, . . . , R, d-dimension of data
and Li ∈ [Lmin, Lmax] is the length of the i-th basis time-series si (usually Li � M and Li < N),
and where Lmin and Lmax are the minimum and maximum length allowed. R, Lmin, and Lmax are
technical parameters of the algorithm and must be tuned experimentally. The considerations on
computational complexity given in the following provide useful relations for setting up the values of
these parameters suitably.

According to the authors of [26], if the set S of basis time-series is sampled from a normal
distribution, it shows good performance in further construction of kernel.
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Let us define the feature map ΦS(X) = (φs1(X), . . . , φsR(X))T , where the i-th component of
ΦS(X) is the alignment between X and the random series si. We consider DTW as measure of this
alignment, thus we must compute the accumulated cost matrix D for every entry of the feature vector:

ΦS(X) = (DTW(X, s1), . . . , DTW(X, sR))
T (6)

The mapping (6) provides an R dimensional vector without correspondence to dimensionality
of original time series, therefore it is used in the further construction of a kernel able to work with
time-series having, originally, different length. Although DTW must be computed R times, by keeping
RLmax < N the computational cost is low due to the reduced length of each si, more specifically.
Indeed, the cost for computing Φsi (X), in the worst case, is O(NRLmax). Moreover, parallel computing
can be used to further improve efficiency, since the computation of each component of the vector φS(X)

is embarrassingly parallel, as depicted in the following figure, where we assume, for sake of simplicity,
to have R different processors available.

Given the two time-series X and Y, ΦS(X) and ΦS(Y) are their associated representation in the
space spanned by their DTW with respect to the set of basis series S. Note that whichever is the length
of X and Y, their mappings, ΦS(X) and ΦS(Y), have the same length, that is, R. Contrary to the
authors of [26], we decide to preserve the same set of basis series, S, that lead us to equality of spanned
spaces and let us fairly compare time-series regardless of the diagonal dominance problem given by
skewed data. To introduce the positive definite distance, we decided to use a nonlinear kernel, i.e.,
Radial Basis Function (RBF) kernel, comparing ΦS(X) and ΦS(Y):

K(ΦS(X), ΦS(Y)) = exp(− 1
2γ2 ‖ΦS(X)−ΦS(Y)‖2)

where ‖·‖ denotes Euclidean norm and γ is the length-scale parameter. Although a simple linear
kernel could be adopted, such as in [26], this reduces the approximating capability of the approach.
On the other hand, the adoption of the RBF kernel leads to the need for optimizing the length-scale
hyperparameter.

As kernel measures the similarity between the two time-series, we used the following formula to
define our DTW kernel-based distance,

dK(X, Y) = 1− K(ΦS(X), ΦS(Y))

The computational complexity of dK(X, Y) is given by the computational complexity of ΦS(X)

and ΦS(Y), leading to O(RLmax N + RLmax M). Let us denote Lmax = αN, with α ∈ (0, 1); then, to be
more efficient than traditional DTW, the following relation must be satisfied,

O(RLmax N + RLmax M) = ρO(NM), (7)

with ρ ∈ (0, 1). From Equation (7) it is possible to derive the relation linking the technical parameters
of the proposed approach. More precisely,

RLmax N + RLmax M = ρNM

and consequently

R =
ρM

α(N + M)
(8)

where bRc represents the maximum cardinality of S, given the value of ρ and α.
Now, two different cases are to be considered: if N ' M, i.e., using the kernel-based DTW

approximation to compare two series with similar length, then R = ρ/2α; whereas if N � M, i.e.,
searching for subsequence in a longer data stream, then R ' ρ/α. It is interesting to note that, in both
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two cases, the value of R does not depend on the lengths N and M. Let us consider a simple example
where α = 0.1 and ρ = 0.5, meaning that we want a reduction of computational cost of 50% with
respect to DTW and to use a basis series no longer than 10% of the reference time-series X (Lmax = αN).
Then, according to Equation (8), we obtain R = 5. This value might be too small to obtain a good
DTW approximation. However, thanks to the proposed parallel computation schema, it is possible to
increase the number of basis series up to R̄ = nppbRc, with npp being the number of parallel processes.
For instance, with npp = 6, parallel processors can use the R̄ = 30 basis time-series, which can be
considered statistically significant.

With respect to the subsequence search problem, it is now possible to replace DTW in Equation (5)
with its kernel-based approximation:

(a∗, b∗) = arg min
(a,b):1≤a<b≤M

dK(X, Ya:b)

subject to:

b− a ≤ β+N

b− a ≥ β−N

(9)

where β+ and β− are two coefficients to set up, representing, respectively, the largest and the smallest
length of the possible subsequence with respect to N, that is, the length of the reference time-series
X. Values of these coefficients depend on the specific application: suitable ranges are β+ ∈ [1, 2) and
β− ∈ (0, 1].

Due to the nature of dK(X, Y), which requires the computation of Φ(Ya:b) for each pair (a, b),
Equation (9) is a Black-Box Optimization (BBO) problem. We solve it via Bayesian Optimization
(BO) [27]. BO is a technique successfully applied for automating the configuration of Machine Learning
algorithms, such as autoML [28,29], as well as complex Machine Learning pipelines [8]. The aim
is to obtain a good solution of (9) by trying a limited number of possible pairs (a, b), i.e., function
evaluations.

Solving Equation (9) via BO requires O(αRN2 + αRNβ+Nη) +OBO, where β+N is the maximum
length of the subsequence Ya:b, η is the maximum number of function evaluations, and the term OBO
summarizes the computational cost of BO. This cost is usually dominated by O(t3) in the case of
Gaussian processes-based BO, where t is the number of function evaluations performed (t = 1, . . . η),
so it increases with the number of pairs (a, b) evaluated. In any case, η can be chosen to be η � N.

To be more efficient than DTW-based subsequence search, the following relation must be satisfied,

O(αRN2 + αRNβ+Nη) + OBO < O(MN) + Oowp (10)

where Oowp summarizes the complexity of the optimal warping path algorithm (Algorithm 1). For this
analysis, we can consider negligible both OBO and Oowp. Therefore,

αRN2 + αRNβ+Nη < MN (11)

One can now set
αRN2 + αRNβ+Nη = ρ̄MN (12)

with ρ̄ ∈ (0, 1), and consequently

η =

⌊
ρ̄M− αRN

αRNβ+

⌋
(13)

For example, consider two time-series X and Y having length N = 100 and M = 10000,
respectively. If α = 0.1 and ρ = 0.5, it follows from Equation (8) that R = 5. By further setting
ρ̄ = 0.5 and β+ = 1.5, it follows from (13) that η = 66, providing an upper bound on the number of
function evaluations to perform during BO.
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3.3. Extension to Multiple Reference Patterns

This section summarizes how we can extend our approach to implement a subsequence search
when multiple reference patterns, Xi, with i = 1, . . . , n, have to be searched for within multiple data
streams Yj, with j = 1, . . . , m. The first step involves generating a specific kernel for each reference
pattern by learning the best value of the length-scale γi directly from the data:

γ∗ = arg min
γ∈Rn

2
n(n− 1)

n−1

∑
i=1

n

∑
j=i+1

|(1− Kγi (φS(Xi), φS(Xj))− DTW(Xi, Xj))| (14)

where γ = (γ1, . . . , γn)T is the vector of the length-scale values of the kernels associated to the
corresponding reference patterns Xi, i = 1, . . . , n. The idea is to minimize, for each possible pairs of
time series Xi and Xj, the difference between the DTW and its kernel approximation computed on
the mapping of the two time series, that is, φS(Xi) and φS(Xj). Given that the matrix is symmetric
by construction, problem (14) can be reduced to minimize the upper triangular matrix of the errors
between each pair of reference patterns.

As the range of RBF kernel is [0, 1], DTW is preliminary rescaled in the same interval, as reported
in step 8 of the following algorithm. Algorithm 3’s parameters have to be tuned manually, according
to the procedure previously described.

Algorithm 3 Learning a kernel for approximating DTW in the case of multiple references and multiple
data streams
Input n reference patterns {Xi}i=1...n, m data streams {Yl}l=1...m and parameters

R, Lmin, Lmax, β−, β+, σ2.
Output a matrix K ∈ Rn×m containing the kernel values.

1: generate a set of R “basis” time series S = {s1, s2, . . . , sR}, where each si ∼ N (0, σ2)
2: for i = 1 : n do
3: compute ΦS(Xi) = (DTW(Xi, s1), . . . , DTW(Xi, sR))

T

4: for j = 1 : n do
5: Mi,j = DTW(Xi, Xj)
6: end for
7: end for
8: normalize entries of the matrix M
9: choose γ∗ = arg minγ∈Rn

2
n(n−1) ∑n−1

i=1 ∑n
j=i+1 |(1− Kγi (φS(Xi), φS(Xj))−Mi,j)|

10: compute every entry of K as Ki,l = dK,γ∗(Xi, Yl,a∗ :b∗), where al , b∗ are obtained solving (9).

4. Experimental Setting

4.1. Organization of the Experiments

To validate the proposed kernel-based DTW approximation, we have considered three different
experimental settings with different levels of complexity. More in detail, the first experiment considers
the simplest case, that is, a univariate setting, where a given reference pattern is searched for within a
longer data stream. The second experiment extends the analysis to a multivariate setting with multiple
reference patterns. Finally, the third experiment refers to a real-life application (i.e., self-rahabilitation
at home).

4.2. Experiment 1: A Univariate Case

The first experiment considers a univariate benchmark dataset consisting of accelerometer data
collected on a Sony AIBO robot dog. The reference pattern to be searched (consisting of 100 data
points) is related to acceleration collected when the dog was walking on a carpet, whereas the longer
data stream refers to a sequence of data collected in three different conditions while robot was
walking on cement (for 5000 data points), on carpet (for 3000 data points), and again on cement (for
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5000 data points). Both the reference patterns and the data stream can be downloaded for free from
https://www.cs.unm.edu/mueen/FastestSimilaritySearch.html. The goal is to search for the first 10
and 25 best-matching repetitions of the reference pattern into the data stream. Our algorithm was
compared with three other approaches:

• MASS [30]: a fast similarity search algorithm for subsequences under Euclidean distance and
correlation coefficient (experiments refer to MASS under Euclidean distance, only). A strong
assumption of MASS is that the identified subsequences have the same length of the reference.

• DTW with fixed window: based on the same assumption of MASS but using DTW instead of
Euclidean distance.

• DTW-based subsequence search algorithm described in Algorithm 2.
• DTW-based Kernel constructed to approximate the exact DTW.

4.3. Experiment 2: A Multivariate Case

The dataset we considered for this experiment is a benchmark dataset for user identification
from walking activity [31], which can be freely downloaded from the UCI Repository website:
(https://archive.ics.uci.edu/ml/datasets/User+Identification+From+Walking+Activity). The dataset
refers to accelerometer data (i.e., acceleration on the x, y, and z axes) acquired through an Android
smartphone positioned in the chest pocket and from 22 participants walking in the wild over a
predefined path. Data information:

• Sampling frequency of the accelerometer: DELAY_FASTEST with network connections disabled.
• A separate file for each participant.
• Every row in each file consists of time-step, x acceleration, y acceleration, and z acceleration.

From the 22 data streams—one for each participant—a small portion of data (200 data points, that
is, ~6 s) is extracted and considered as reference pattern for the corresponding user. The size of the
reference pattern has been selected after some preliminary exploratory analysis on the entire set of
recordings. Given a data stream, the goal is to associate it to the corresponding user. To do this, the
data stream is associated to the user whose reference pattern results in the highest number of best
matching repetitions. This the experiment is specifically devoted to test the Algorithm 3.

4.4. Experiment 3: A Real-Life Application

This dataset was specifically collected for designing and developing a digital service for
supporting self-rehabilitation at home. We used three Inertial Measurement Units (IMUs) worn
over the chest, the wrist (of the dominant arm), and the ankle (of the dominant leg), respectively.
The sensors permit to acquire several measures over the three axes (i.e., orientation, acceleration, and
velocity) with a frequency of 10 Hertz. For the purpose of this study, we considered the acceleration
measures only, as they are the most relevant information about the movement performed by the subject.
Data refers to an over 60-year-old woman performing the following schedule of five exercises.

• Flexo-extension of the knee (sit-down position)
• Raise and lower the arms (sit-down position)
• Rotate the torso (sit-down position)
• Back extension of the legs (stand-up position)
• Light squat (stand-up position)

These rehabilitation exercises were initially performed by the subject in the clinical setting under
the supervision of a qualified trainer: the resulting reference patterns, certified by the trainer, are
assumed as gold standards. Then, the subject performed a self-rehabilitation session at home and
acceleration data were collected from the wearable sensors. Within the collected data stream, we
searched for each one of the five reference patterns.

The correct identification of reference patterns was validated via visual inspection. Note that the
exercises schedule (i.e., order and number of repetitions) was planned before the self-rehabilitation

https://www.cs.unm.edu/~mueen/FastestSimilaritySearch.html
https://archive.ics.uci.edu/ml/datasets/User+Identification+From+Walking+Activity
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session, making it easy for the clinician to identify which part of the data stream corresponds to a
specific exercise. The repetitions identified by the algorithms—traditional DTW and the kernel-based
approximation—which are in the correct portion of data were considered as hit; otherwise, miss.

4.5. Computational Setting

All the experiments have been performed on an Intel Core i7-7700HQ CPU at 2.80 GHz, 16 GB
RAM, Windows 10 OS (64 bit). Software used: R (3.6.0) and Matlab (R2019a).

As we are interested in comparing our approach with traditional DTW, which is not parallel,
we do not exploit the parallelization schema reported in Section 3.2, Figure 2. Thus, time reduction
reported in the results could be even more relevant if parallelization is used.

Figure 2. Illustration of the parallel computation of the components of the vector ΦS(X). Time-series
in the figure are assumed multivariate.

5. Results

5.1. Results of Experiment 1

Although all the algorithms correctly identified the first 10 best-matching repetitions (Figure 3)
within the portion of data collected while the robot dog was walking on the carpet, there remain
some slight differences between the DTW-based Subsequence Search and MASS algorithm. Both the
DTW-based subsequence search (i.e., Algorithm 2) and the proposed kernel-based approach allow
temporal deformation or subsequences with a different length (i.e., the subsequence can be faster or
slower, still maintaining the same shape of the reference pattern). Finally, the proposed kernel-based
DTW approximation reduces the computational time more than 2 times (3.4 s compared to 8.1 s of
Algorithm 2).

Of greater interest, when the number of repetitions to be found is increased from 10 to 25, the
results provided by the four approaches are significantly different, as depicted in Figure 4. MASS
and the DTW with fixed window size have identified, respectively, 9 and 6 subsequences outside the
portion of data collected while the AIBO robot was walking on carpet. On the contrary, only four
out of 25 subsequences identified by the DTW-based Subsequence Search (Algorithm 2) are outside
the correct portion of data, and thus more effectively manage the temporal deformation between
the subsequence and reference pattern by this algorithm, generate a more accurate identification.
The proposed kernel-based DTW approximation results in a higher number of errors than DTW-based
subsequence search (i.e., 8 subsequences outside the correct portion of data), that is, lower than MASS
and comparable to DTW with fixed windows. Errors are due to the approximating nature of the
approach but are counterbalanced by the significant reduction in computational time.
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Figure 3. The first 10 best-matching subsequences were identified by four different algorithms on the
Experiment 1. The reference pattern consists of 100 acceleration data points collected when a Sony
AIBO robot was walking on a carpet. The data stream consists of 5000 data points when the same dog
was walking on cement, then followed by 3000 walking on a carpet and then again on cement.

Figure 4. First 25 best matching subsequences identified by four different algorithms on the Experiment
1. Reference pattern consists of 100 acceleration data points collected when a Sony AIBO robot was
walking on a carpet. The data stream consists of 5000 data points when the same dog was walking on
cement, followed by 3000 walking on a carpet and then again on cement.

5.2. Results on Experiment 2

According to Experiment 1, the DTW-based subsequence search and kernel-based DTW
approximations were more effective in identifying those subsequences, which are similar in shape
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to the reference. Therefore, we have decided to focus Experiment 2 on these approaches. The main
differences with Experiment 1 are that, in this case, data streams are multivariate and 22 different
references and data streams are considered. Thus, this experiment is devoted to validate the extension
of the proposed approach to the multi-references case, summarized in Algorithm 3. The task consists
in identifying, for each pair “reference–data stream”, the number of matching subsequences whose
distance from the specific reference is lower than a given threshold. We named these repetitions
“coherent repetitions”. Algorithm 2 was applied in two different ways: (a) directly on the multivariate
data and (b) on each dimension of the data streams, separately (univariate approach). The sum of the
coherent repetitions over the dimensions provides a measure on the quality of the matching between
the given reference and data stream. The kernel-based DTW approximation algorithm was applied
on the multivariate data streams, only. Figure 5 summarizes the confidence levels between each
pair of reference pattern and data stream, respectively for DTW-based sequence search (on the left)
and kernel-based DTW approximation (on the right), where each row of the matrix is associated
to a reference and each column is associated to the data stream where the reference belongs to.
The confidence level is computed as the number of repetitions of the reference within the data stream,
in the case of DTW-based subsequence search, and values of the kernel-based distance in the case of
the proposed approach. As both represent the same measure of confidence level, we simply rescaled
it into [0, 1]; more precisely, in the case of the DTW-based subsequence search, from every entry of
the matrix, the minimum value on the corresponding row was subtracted, and then the result were
divided by the difference between maximum and minimum values on that row. As the kernel-based
DTW approximation is by definition in [0, 1], it does not require any further rescaling.

Figure 5. Distance between each pair of reference and data stream, respectively, for DTW-based
sequence search (on the left) and kernel-based DTW approximation (on the right). The brighter the
colour the lower the distance.

The DTW-based sequence search was able to correctly associated 19 out of 22 users to their
corresponding data streams, whereas our kernel-based DTW approximation algorithm correctly
associated 17 out of 22. The proposed kernel-based DTW approximation resulted in a higher error due
to its approximating nature; however, this higher error was counterbalanced by a significant reduction
in computational time,which is in percentage similar to the previous experiment: 927 s compared to
2056 s required by Algorithm 2. The reduction of the computational cost is slightly lower than the
previous case due to the further effort required to optimize the value of the kernel’s hyperparameter
via Bayesian Optimization.
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5.3. Results of Experiment 3

Recall that the correct identification of the five reference patterns was validated by the clinician
via visual inspection of the data stream collected during a self-rehabilitation session performed by the
subject. Table 1 reports the results for this experiment. In particular, the subsequences identified in the
correct portion of the data stream (i.e., “hit”) are labeled by “Yes”, whereas the “miss” ones are labeled
by “No”. A label “-” denotes no subsequences identified.

Table 1. DTW-based subsequence search vs. kernel-based DTW approximation for subsequence search.

Coherent Visually

Exercise DTW-Based Subsequence Search Kernel-Based DTW Approximation

Flexo-extension of the
knee, sit-down position.
Five repetitions planned.

Yes Yes
Yes Yes
Yes Yes
No Yes
No Yes

Light squat,
stand-up position.
Five repetitions planned.

Yes No
Yes No
Yes Yes
Yes -
Yes -

Back extension of the
legs, stand-up position.
Five repetitions planned.

Yes Yes
Yes Yes
Yes Yes
No Yes
No Yes

Rotate the torso,
sit-down position.
Five repetitions planned.

Yes Yes
Yes Yes
Yes -
Yes -
No -

Raise and lower the arms,
sit-down position.
Ten repetitions planned.

Yes Yes
Yes Yes
Yes Yes
Yes Yes
Yes Yes
No Yes
Yes Yes
No Yes
Yes -
Yes -

From Table 1, it is possible to notice that, except for the second rehabilitation exercise, the
traditional DTW-based subsequence search and the proposed kernel-based DTW approximation are
quite aligned. This could be due to the basis time-series randomly chosen, which might be not able to
provide a good approximation of this specific reference pattern. Even in this case, the reduction in
terms of computational costs is similar to previous experiments: ~21 s compared to 37 s required by
Algorithm 2.

6. Conclusions

We present an efficient approach of the subsequence search problem in data stream where DTW
computation is approximated through kernel learning in the space induced by a feature embedding
derived on a set of randomly generated basis time-series.
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The validation on three different “small-scale” case studies have been highlighted the potential
advantages offered by the proposed approach; basically, a good approximation and a significant lower
computational time with respect to a traditional DTW-based implementation. The parallelization
schema proposed in Figure 2 makes this approach also applicable to large-scale data streams.

A relevant limitation of the approach is its strong dependence on the initial set of randomly
generated basis time-series. Future work should be devoted to define a suitable set of these time-series
leading to a robust and effective embedding, starting from the findings provided in [32]. Finally, the
relation between the embedding and the (control of) approximation error should be more deeply
investigated.
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