
03 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Standardizing Smart Contracts / Capocasale, Vittorio; Perboli, Guido. - In: IEEE ACCESS. - ISSN 2169-3536. -
ELETTRONICO. - 10:(2022), pp. 91203-91212. [10.1109/ACCESS.2022.3202550]

Original

Standardizing Smart Contracts

Publisher:

Published
DOI:10.1109/ACCESS.2022.3202550

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2971027 since: 2022-09-17T10:15:05Z

IEEE

Received 3 August 2022, accepted 19 August 2022, date of publication 29 August 2022, date of current version 2 September 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3202550

Standardizing Smart Contracts
VITTORIO CAPOCASALE 1, (Member, IEEE), AND GUIDO PERBOLI 2, (Member, IEEE)
1Department of Control and Computer Engineering, Polytechnic University of Turin, 10129 Turin, Italy
2Department of Management and Production Engineering, Polytechnic University of Turin, 10129 Turin, Italy

Corresponding author: Vittorio Capocasale (vittorio.capocasale@polito.it)

This work was supported by the Project Cyber security cOmpeteNCe fOr Research anD InnovAtion (CONCORDIA)
of the European Union (EU) Commission, under Grant 830927.

ABSTRACT In the evolving context of distributed ledger technologies, the standardization of smart contracts
is necessary. Smart contracts are tamper-proof computer programs. Due to their security and flexibility,
it is possible to exploit smart contracts in a wide variety of use cases. In particular, it could be possible
to automate legally recognized contracts by leveraging smart contracts. To this extent, some standards
regarding the proper management of smart contracts are surging. However, there are still many technological
misconceptions regarding smart contracts. This study describes smart contracts from multiple perspectives
and identifies and clarifies some of the most common misconceptions regarding smart contracts. This study
also provides some guidelines and insights on the proper management of smart contracts. This study can be
a valuable resource for future standards on smart contracts.

INDEX TERMS Blockchain, chaincode, smart contracts, standardization.

I. INTRODUCTION
Blockchain technology is revolutionizing the world. Decen-
tralized versions of well-established centralized services are
surging in multiple areas, like finance [1], insurance [2],
logistics [3], [4], energy [5], [6], and more, pushing the
digitalization of the physical world to new frontiers. Dig-
ital tokens are gaining adoption: NFTs and exchangeable
coins are increasing their market share [7], [8] as they
allow tokenizing and trading even historically illiquid assets
(e.g., mining power [9]).

All these transformations are mainly possible because
of the flexibility of smart contracts [10]. Smart contracts
are tamper-proof computer programs, as the security of the
blockchain technology guarantees the correctness of their
execution. Thus, smart contracts could automate and enhance
the fairness of critical processes, guarantee the quality of
data sources, and protect valuable resources, which are
topics of relevant interest [11], [12], [13]. In particular,
the idea of automating legally recognized contracts is very
appealing [14].

The associate editor coordinating the review of this manuscript and

approving it for publication was Mehdi Sookhak .

However, creating tamper-proof, secure, decentralized,
economically advantageous, and legally recognized smart
contracts is not straightforward: it is necessary to con-
sider various aspects, which are both technical and law-
related [15]. In particular, smart contracts are rarely used as
a standalone technology. In logistics, for example, drones
automate on-field operations [16], [17], and IoT devices col-
lect on-field data to be elaborated through artificial intel-
ligence, stochastic programming, and granular computing
approaches [4], [18], [19], [20]. Thus, to guarantee smart
contracts use sufficiently decentralized data feeds, a single
product should be tracked by multiple IoT devices. Nonethe-
less, this approach is often inconvenient due to economic or
physical constraints. Moreover, processing data from redun-
dant sources increases the complexity of the data elabora-
tion algorithms without improving their accuracy. Overall,
establishing a comprehensive smart contract framework is
challenging as multiple concerns must be addressed simul-
taneously. Thus, standards appeared in the literature only
recently [21].

Unsurprisingly, there are still manymisconceptions regard-
ing smart contracts. Smart contracts are hard to frame, even
from a purely technical standpoint: many blockchain plat-
forms provide functionalities related to smart contracts but

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 91203

https://orcid.org/0000-0002-0907-3252
https://orcid.org/0000-0001-6900-9917
https://orcid.org/0000-0001-5822-3432

V. Capocasale, G. Perboli: Standardizing Smart Contracts

with different deployment and execution strategies which is
hard to comprise under an unified definition. The coupling of
this variety with the increasing interest in the topic, in partic-
ular from people with different backgrounds and priorities,
has created the perfect environment for the growth of sev-
eral misunderstandings and partial truths. The smart contract
name itself is misleading, as it hints at legally recognized dig-
ital agreements, not at general-purpose computer programs.
Moreover, many properties of smart contracts depend on the
configuration and degree of decentralization of the under-
lying blockchain system, which often makes generalization
attempts inaccurate. In such a context, the creation of proper
definitions, standards, guidelines, and best practices for smart
contracts is becoming an impelling necessity. Additionally,
given the broad audience interested in the topic, smart con-
tracts must be discussed in a precise, correct, and widely
understandable manner, which makes the task even more
challenging.

The study aims to create a common ground for future
standards on smart contracts. This study can be helpful to
researchers, decision-makers, lawyers, and computer scien-
tists in understanding the potential and caveats related to
smart contracts. In particular, this study provides the follow-
ing contributions:
• it describes smart contracts from multiple perspec-
tives to provide a clear overview even to non-technical
readers;

• it identifies and corrects some common misconceptions
related to smart contracts;

• it provides some guidelines on the proper implementa-
tion and execution of smart contracts to underline the
potential, the trade-offs, and the limits of the technology.
The objective of the proposed guidelines is to set the
goals that future standards should aim for, not to describe
some strict rules. Thus, we expect future standards to
adhere to the proposed guidelines as much as possible,
as long as it is reasonable.

The remaining part of this study is structured as fol-
lows: Section II briefly describes the smart contract concept,
the blockchain technology, and presents a literature review;
Section III analyzes smart contracts; Section IV concludes
the study.

II. BACKGROUND
This section summarizes the main concepts related to
blockchain and smart contracts. Moreover, this section
includes a short literature review.

A. BLOCKCHAIN
Blockchain is a technology that enables the sharing of data
among non-trusting parties [22], as it allows for solving
trust issues among non-trusting parties without leveraging
any trusted third one [23]. Blockchain is composed of a
network of nodes that share a common database [24]. The
shared database has the structure of a ledger: data can only
be added to it. Each node has its copy of the ledger, and

each node manages its copy independently of the other nodes.
Consequently, while each node can arbitrarily modify its
copy, the global state of the ledger is established based on
what the majority of the copies store [25]. Thus, the state
of a blockchain system is updated based on majority voting.
In this work, we assume a uniform distribution of voting
power among the nodes to simplify the discussion. However,
when we refer to the majority of the peers, we actually mean
the majority of the voting power.

B. SMART CONTRACTS
Smart contracts are not bonded to blockchain technology, and
their original definition dealt with the automation of legal
contracts [26]. However, in the context of blockchain (and
other distributed ledger technologies), smart contracts have
assumed a different meaning: they are tamper-proof computer
programs that update the state of the ledger [27]. In fact,
by running the code of a smart contract on multiple nodes, the
probability of successfully altering its execution is negligible.
Moreover, smart contracts can execute arbitrary logic, which
makes them usable for automating tasks of different nature
by expressing execution conditions and reacting to events
(generated by users or other smart contracts). This study
will limit its analysis to smart contracts that are used in
blockchain systems. Section III analyzes smart contracts in
depth.

C. PROBLEM STATEMENT
Currently, research on smart contracts is moving fast in mul-
tiple fields. Researchers struggle to understand each other
due to their different backgrounds and perspectives, includ-
ing computer science, economy, and law. Often, important
details are neglected to provide understandable descriptions
of the smart contract topic, which has created the perfect
environment for the growth of several misunderstandings and
partial truths. Even emerging standards on smart contracts are
affected by such limitations.

This study identifies some of the most common miscon-
ceptions and provides a high-level description of smart con-
tracts. We discuss the topic without neglecting the necessary
technical details, which allows us to provide some guidelines
that could be helpful to both technical and non-technical
readers to demystify the technology and understand its limits
and where it could find adoption.

D. LITERATURE REVIEW
Many authors dealt with smart contracts in the literature, par-
ticularly in the last decade. However, this study analyzes the
topic from a unique perspective, as it provides both practical
guidelines and philosophical interpretations.

Smart contracts were introduced to digitalize and auto-
mate legal contracts [26]. The term has then been adopted
in the blockchain context to identify code scripts executed
by the nodes of a blockchain network [27]. Thus, smart
contracts identify two different concepts [15], [28]. In par-
ticular, a study distinguished between smart contract code

91204 VOLUME 10, 2022

V. Capocasale, G. Perboli: Standardizing Smart Contracts

(which is executed in blockchain systems) and smart legal
contracts, which are legal contracts in digital form [15]. The
study analyzed smart contracts mainly from a legal perspec-
tive and underlined how smart contract code is just a portion
of smart legal contracts [15]. Another study argues that there
are only small advantages to using blockchain-based smart
contracts from a practical standpoint [29], as many terms
indicating the properties of blockchain-based smart contracts
are oftenmisleading and not applicable in a legal context [29].

Such ambiguities and misconceptions have significantly
slowed down the creation of standards for smart con-
tracts [30]. Some authors identified the main issues and
limitations in the automation of contracts from a legal per-
spective (e.g., the definition of the scope of smart contracts,
their internationalization, their applicability, and their valid-
ity) [31]. Others provided the essential requirements that
smart legal agreements must meet, focusing on bridging
the gap between smart legal contracts and smart contract
code and streamlining such a process by redefining existing
standards [32]. Other studies outlined the key parameters
to consider in ensuring the legal recognition of smart con-
tracts [33]. In particular, the definition of universal APIs,
coding standards, and conflict resolution mechanisms are
essential [34]. Instead, this work aims to demystify and stan-
dardize blockchain-based smart contracts from a computer
science perspective, with a focus on the application-level
implications of the provided guidelines.

Some authors identified some of the main characteris-
tics of smart contracts (e.g., transparency, availability, and
immutability) [35], others proposed new designs to address
some of the current shortcomings (e.g., transaction order
dependency, determinism, and exception management) [36]
and full standards can be found in the gray literature [21].
However, such works are biased towards the vision of smart
contracts introduced by the Ethereum protocol [27]. More-
over, some of the guidelines proposed in [21] should be
revised. For example, the use of timers to terminate contracts
may cause inconsistencies at execution or verification time,
as discussed in Sec. III-C.

Some studies proposed standards for some specific use
cases. For example, guidelines for financial smart con-
tracts [37] and for altering and undoing smart contracts [38]
are available in the literature.

Other works focused on the paradigms and tools related
to smart contracts [28], [39], including strategies to reduce
gas fees [40]. Some authors provided a formal descrip-
tion of smart contracts and their characteristics [41], and
others described the issues of programming smart con-
tracts and proposed some possible solutions [42], [43]. Such
studies, however, have a strong focus on purely technical
perspectives.

III. SMART CONTRACTS: MISCONCEPTIONS AND
GUIDELINES
This section identifies some common misconceptions related
to blockchain-based smart contracts and provides guidelines

for their standardization. Table 1 summarizes the contents of
this section.

A. SMART CONTRACTS ARE STATE-TRANSITION
FUNCTIONS
It is possible to describe a blockchain system as a finite state
machine [27]. Under this perspective, smart contracts are the
state-transition functions that move the system from one state
to the other: it is possible to describe a smart contract as a
function δ : S×I → S, where S is the finite and non-empty
set of the states of the blockchain ledger, and I is the set of
the possible input transactions.

From a broader perspective, this guideline states that smart
contracts operate on two types of data: the (internal) ledger
data, which is reliable, and the (external) transaction data,
whose correctness must be verified. Depending on the use
case, ledger data may not be enough to verify transac-
tion data. Thus, there is an intrinsic limit on the usability
of smart contracts. Overcoming such a limit by accepting
partially-verified transaction data is possible, but such an
approach introduces the garbage in, garbage out problem (i.e.,
ledger data is no longer reliable).

B. SMART CONTRACTS MUST ALTER THE STATE OF THE
SYSTEM
Different from generic state-transition functions, a smart con-
tract must alter the state of the system: if a smart contract
only reads some data, or if it only does some data elaboration
without altering the system’s state, it becomes impossible to
check the correctness of the execution of the smart contract.
For example, the Ethereum protocol allows for the definition
of pure or view functions [44], as shown in the following code
snippet:

contract Logger {
uint64 rowID;
function persist(uint64 id) external {
rowID=id;

}
function lastID() view external

returns (uint64) {
return rowID;

}
}

When pure or view functions are invoked, the execution
takes place on a single node. Consequently, the node could
provide a wrong response. Nonetheless, this is the expected
behavior: pure or view functions are not smart contracts
but only commodity functions for fetching data from the
Ethereum blockchain or performing computations on transac-
tion data only. Considering pure or view functions like smart
contracts is a common misconception [45], [46], probably
caused by the fact that their declaration occurs inside a data
structure identified by the keyword contract. Other platforms
do not explicitly differentiate among functions based on
their interaction with the ledger, but the general concept still

VOLUME 10, 2022 91205

V. Capocasale, G. Perboli: Standardizing Smart Contracts

TABLE 1. An overview of smart contracts. The table presents some categories. The table summarizes the main claims presented in this work for each
category.

applies: the only verifiable output of a smart contract is the
one that is stored in the blockchain. The reason is that it is
possible to verify if peers reach consensus on a write but
not on a read operation: a malicious peer could answer a
query even if it should not by only leveraging its copy of the
ledger, but it cannot force a write operation without altering
the majority of the copies.

This guideline has relevant practical implications. For
example, when generating a certificate (or performing any
other read-only operation), the smart contract should also
store the generated certificate (or its fingerprint) in the
blockchain. When reading the certificate (or any data from
the blockchain), it is not possible to leverage smart contracts,
and a sufficient number of nodes should be queried. As this
is often impractical, users are likely to trust a few reputable
nodes. Thus, a certain amount of trust and centralization is
still present in blockchain systems.

C. SMART CONTRACTS MUST BE VERIFIABLE
It should be possible to verify the output of a smart contract at
any given point in the future: if this requirement is not met, the
systemmay fork, and consensusmay never be reached. In par-
ticular, the time of verification can be very different from
the time of execution of a smart contract, which introduces
a limitation on the use of time-related primitives [47]: even
if all the nodes in the system share the same atomic clock,
this would only allow them to synchronize the execution
of a given smart contract, but not its verification. Such a
limitation does not prevent smart contracts from leveraging

time-related primitives, but their introduction should be pon-
dered carefully. For example, checking if the timestamps of
two blocks are less than a month apart will return the same
value at any given point in the future. On the other hand,
performing the same check with the timestamp of the last
block is problematic, as its result will change with time. Thus,
time-based smart contracts such as those proposed in [21]
can cause inconsistencies at verification time. Consequently,
smart contracts should only rely on the data already stored
in the blockchain or provided within the input transaction.
Smart contracts should not rely on anything else (e.g., the
time measured by the node executing the smart contract).

This guideline has important implications from both a
managerial and a legal standpoint, as some use cases may be
problematic to model through smart contracts: it is possible to
determine if a given event happened in a certain time window
but not the exact moment. In Bitcoin [48], for example, block
validity checks include countermeasures to prevent miners
from manipulating the timestamp of blocks. Such counter-
measures, however, still allow for a two hours time wiggle.
Thus, deadlines can only be approximately checked.

D. SMART CONTRACTS MUST BE DETERMINISTIC
The previous section introduces a more general key point.
A smart contract must produce the same output on all the
nodes executing it, not only at any given point in the future.
In other words, a smart contract must be deterministic. This
requirement is often underestimated and is not limited to
time-based primitives. For example, maps are unordered sets

91206 VOLUME 10, 2022

V. Capocasale, G. Perboli: Standardizing Smart Contracts

of key-value pairs in the Go programming language. Thus,
the iteration order of a program looping through a map is
not guaranteed. This behavior can affect serialization libraries
as well. More generally, randomness in smart contracts must
be managed carefully. This problem is actively researched,
and some of the main techniques to address it are based on
multi-party computation [49].

From a broader perspective, smart contracts require the
standardization of the representation and processing of data,
as this allows different peers to reach the same state.

E. SMART CONTRACTS ARE EQUIVALENCE CLASSES
A common misconception is that a smart contract is
unique [50]. However, in blockchain systems, a node cannot
check which computations are performed by the others but
only if they reach the same state after the computation: differ-
ent transition functions that produce the same resulting state
are indistinguishable in a blockchain context. Thus, a smart
contract is a class of equivalent state transition functions that,
when given the same input state and input symbol, produce
the same output state. For example, the following code snip-
pet shows two equivalent implementations of the same smart
contract:

func sum(a uint8, b~uint8) {
a = a + b
store(a)

}
func sum(a uint8, b~uint8) {

var i uint8
for i = 0; i < b; i++ {

a = a + 1
}
store(a)
}

A blockchain system works without issues even if some
nodes use the first function while the others use the second
one. Empirical proof of such a statement is available on
Github [51]. This observation is particularly relevant when
smart contracts must have legal value, as it would be nec-
essary to define what smart contracts should do and not
how they should do it [52]. Thus, smart contracts should
be expressed in declarative languages. The creation of such
languages is an active research field, and it would make smart
contracts easier to implement and understand [52].

F. SMART CONTRACTS DO NOT NEED TO BE STORED
ON-CHAIN
Another common misconception, probably introduced by the
Ethereum protocol, is that smart contracts have to be stored
on-chain [53], [54]. As discussed in the previous section,
a node in a blockchain system cannot check which computa-
tion the other nodes perform. Consequently, storing the code
of a smart contract on-chain is not a way to force all the nodes
to use the same implementation. Storing the code of a smart
contract on-chain is only a simple way to distribute the smart

contract code to all the blockchain nodes. Public blockchains
(e.g., Ethereum) use this approach to automatically update the
set of smart contracts deployed on each node. Other platforms
(e.g., Sawtooth [55]) do not store the code on-chain, and each
peer is responsible for installing the required smart contracts
on its node. The key idea is that each node does not need
to know what code the others are running, but just which
state they reach in the end. Assuming that the majority is
honest, a common state will be reached. Empirical proof of
this guideline is available on Github [51].

Storing the code of a smart contract on-chain could be
valuable in other contexts. For example, it could be important
to track which version of a smart contract was running at a
given point in the past for verifiability purposes. Moreover,
the on-chain version could be the one that a tribunal should
use in case of litigation. However, if the on-chain implemen-
tation is the only one having legal value, the peer that codes it
couldmanipulate the behavior of the smart contract for selfish
purposes (e.g., by hiding a backdoor). Even if the honest
majority forks the system to restore its correct state, a tri-
bunal could be forced to overrule the majority-based decision
of the blockchain network and favor the legally recognized
branch generated by the malicious peer. Thus, if the on-chain
implementation is the only one having legal value, additional
strategies must be implemented to guarantee its correctness
(e.g., formal approval from the majority of peers).

G. SMART CONTRACTS ARE NOT IMMUTABLE
This misconception is related to the previous one. If a
blockchain is immutable, and a smart contract is stored on-
chain, then the smart contract is immutable [56], [57], [58].
However, the term immutable is misleading. More correctly,
a blockchain is append-only. Consequently, even if what is
stored in a blockchain cannot be altered, a newer version of
it can always be appended to the ledger. Thus, even when
smart contracts are stored on-chain, they can be updated. One
possible strategy for the Ethereum blockchain is described
in [59]: the smart contract stores the address of another smart
contract in one of its state variables. Whenever the original
smart contract is invoked, it propagates the invocation to the
smart contract at the stored address. The behavior of the
original smart contract is modifiable by updating the stored
address. Additionally, the peer majority can always decide to
soft/hard fork the system to replace a given smart contract.
Thus, Ethereum smart contracts are immutable only if they
do not implement an update mechanism and the majority
is unwilling to alter them. Thus, Ethereum smart contracts
are tamper-resistant, more than immutable. Other platforms
(e.g., EOSIO [60]) allow updating smart contracts by over-
writing the old code with the new one [61].

Unfortunately, updating smart contracts is not easy, as all
the nodes should start using the newer version simultane-
ously to avoid partitioning the system. As each node acts
independently from the others, smart contract updates cannot
be enforced like in centralized systems but must be proposed
and accepted by the peers. The acceptance strategy depends

VOLUME 10, 2022 91207

V. Capocasale, G. Perboli: Standardizing Smart Contracts

on the platform and, among others, may require verifying the
correctness of the update transaction (e.g., by checking that
the creator of the original smart contract is also the updater) or
collecting the explicit approval of the peers. Thus, managing
smart contracts is more challenging than managing central-
ized programs, as it requires the cooperation and coordination
of the majority of the nodes.

H. SMART CONTRACTS ARE NOT LEGAL CONTRACTS
As a consequence of their name, blockchain-based smart
contracts are often considered to be contracts [62], [63], [64],
which is untrue [10]: blockchain-based smart contracts are
computer programs. Consequently, they have an enormous
range of possible applications and can represent much more
than an agreement [10]. From this perspective, smart con-
tracts are more than just legal contracts. Nonetheless, smart
contracts do not usually declare who should use them, and
users do not digitally sign smart contracts but the transactions
to interact with them. Thus, smart contracts may not be
enough to be legal contracts, and their legal value must be
legitimized by existing legal tools. In some jurisdictions, the
definition of a legal contract may already apply to smart con-
tracts; in other jurisdictions, it may be necessary to legitimize
smart contracts with parallel legal contracts [65]. In any case,
smart contracts could automate legal contracts, at least in
part [29]. However, this is an open research field and requires
the careful design of a hybrid framework comprising both
computer science and law-related aspects [15], [66].

In the general case, a standalone blockchain cannot replace
existing contracts or be considered as the source of undeni-
able evidence in litigation. Smart contracts can standardize
and simplify data sharing across multiple companies, but
their legal legitimization is only potential and depends on
the jurisdiction. Managers should carefully consider the eco-
nomic implications of the adoption of blockchain technology
without assuming for granted a reduction of the legal costs.

I. SMART CONTRACTS DO NOT PROVIDE MEANING
Smart contracts are computer programs: they elaborate
sequences of bits and produce other sequences of bits. How-
ever, smart contracts do not detail the meaning and the correct
interpretation of the sequences of bits that they produce. For
example, a smart contract may store in blockchain the fol-
lowing sequence: e, s, t, a, t, e. While it is possible to assume
that the sequence represents the word estate, this cannot be
guaranteed. The letters could be the result of a random extrac-
tion. In such a case, they should be interpreted separately.
Moreover, the word estate assumes different meanings in Ital-
ian and English (it is a false friend). Consequently, different
interpretations may arise from the same data. Thus, smart
contracts (by themselves) are not enough: they need external
standards to establish how data should be encoded/decoded
and how data consumers should interpret it. The rules for data
interpretation cannot be naively stored in blockchain, as the
problem would become circular.

To some extent, all blockchain protocols (e.g., Ethereum)
implicitly define data encoding and decoding standards.
However, as they try to be agnostic and general purpose, they
do not provide enough details to guarantee a univocal and
meaningful interpretation of the stored data, which is required
for legitimizing smart contracts from a legal standpoint. From
a managerial perspective, the rules for data interpretation can
be implicit, and no external framework is needed if smart
contracts are only used to share data among multiple compa-
nies. However, to have legal value, such rules must be explicit
(or, somehow, commonly recognized and acknowledged),
and smart contracts should be integrated into a hybrid frame-
work comprising both computer science and law-related
aspects.

J. PREFERABLY, SMART CONTRACTS SHOULD BE
INDEPENDENTLY CODED AND DEPLOYED
In opposition to what many blockchain networks currently
do (e.g., Ethereum), smart contracts should not be coded once
and deployed on all the nodes of the system, as this is contrary
to the intrinsic idea of blockchain, which is a system where
nodes do not trust each other. Consequently, a node should
never accept to execute the implementation provided by other
untrusted nodes. Instead, each node should autonomously
implement all the smart contracts to be certain of their cor-
rectness. As long as all the honest nodes share a common
vision on how the smart contracts should alter the system’s
state, all the independent implementations should belong to
the same equivalence class. Thus, all the nodes can reach the
same state, even if they use different implementations of the
same smart contract.

Unfortunately, requiring that each node implements its
smart contract is often unfeasible. There are some use
cases where a few actors need a consortium blockchain
with a few smart contracts that all of them use (e.g., in
logistics [67], [68]). In such cases, each actor can afford to
code and deploy its implementation of the smart contract.
However, in public blockchains, nodes usually use only a
portion of the totality of the smart contracts available. More-
over, they often lack the proper competencies and resources
to create independent implementations. In such situations,
requiring that each node independently codes all the smart
contracts (even those that it does not use) is too demanding.
Nonetheless, maliciously exploiting a bug becomes almost
impossible with just a few independent and uniformly dis-
tributed implementations, as the bug would likely affect only
a portion of the network. Thus, incentivizing the creation
of multiple implementations and allowing peers to choose
which one to install on their node could reduce the risk of
bug exploits in smart contracts.

From a managerial standpoint, this guideline has a relevant
impact on the economy of blockchain-based projects, as the
development costs are not shared but replicated across the
various nodes. Moreover, additional efforts are required to
ensure that all the independent implementations belong to the
same equivalence class. In particular, the creators of widely

91208 VOLUME 10, 2022

V. Capocasale, G. Perboli: Standardizing Smart Contracts

used smart contracts could fund the creation of independent
implementations to offset the risk of bug exploits. Similar
initiatives already exist in the form of bug bounty programs.

K. PREFERABLY, SMART CONTRACTS SHOULD BE
INDEPENDENTLY AUDITED AND TESTED
Smart contracts should be independently audited and tested
by the nodes before they start using them. Thus, similar
considerations to the ones made for the previous guideline
still apply. However, this guideline is likely to find more
adoption, as testing a smart contract should be easier than
coding it. In order to streamline the testing process, the
publication of the source code of smart contracts is a best
practice, as it simplifies the auditing of the machine code.

From a practical standpoint, nodes are unlikely to test smart
contracts for the same lack of resources and competencies
discussed in the previous guideline, in particular in pub-
lic blockchain networks. Thus, particularly when economic
incentives for testing are lacking, smart contracts may not be
as secure and trustworthy as they are often considered.

L. SMART CONTRACTS MAY LEVERAGE EXECUTION
PROOFS
In some situations, requiring independent executions of
computationally-heavy smart contracts may be too demand-
ing, and leveraging a single execution and the proof of its
correctness may be preferable. For example, finding a solu-
tion to the Rubik’s cube may be difficult. Nonetheless, if the
moves are provided, it is simple to check whether or not they
compose a solution. The following code snippet shows the
two alternative approaches:

func rubik_heavy(problem Problem) {
solution := solve(problem)
if solution != nil {

store(solution)
}

}
func rubik_light(problem Problem,

moves []Move) {
solution := verify(problem, moves)
if solution != nil {

store(solution)
}

}

Interestingly, the lightweight approach still requires exe-
cuting a portion of the protocol as a smart contract
(i.e., the solution verification and storage). Thus, smart con-
tracts have an intrinsic complexity baseline, as the verifi-
cation and storage steps must always be performed in a
decentralized fashion. Nonetheless, many blockchain plat-
forms are successfully adopting execution proof to improve
scalability. To this extent, zero-knowledge proofs are partic-
ularly helpful [69] and are currently used in protocols like
zkSync [70].

M. SMART CONTRACTS DO NOT NEED TO BE CERTIFIED
Independently of the use case, smart contracts do not need
to be certified: certification bodies are trusted third parties,
and blockchain technology tries to eliminate all such parties.
Of course, it is in the best interests of the nodes to properly test
and audit their smart contract implementations [71], which
can also include relying on external software testing services.
However, a blockchain system should not recognize only a
few authorities to validate smart contracts. The correctness
of smart contracts should be guaranteed only by the fact
that the nodes can reach the same state. If feasible, each
node should code and test its implementation according to
the strategies that the node considers appropriate. In case a
blockchain system wants to rely on some external authorities
to certify smart contracts, the following strategies are better
alternatives:

• switch to a centralized system controlled by the certifi-
cation body. In fact, by leaving a backdoor in a smart
contract, the certification body would have total control
over the smart contract all the same;

• use oracles. Oracles are trusted third parties that pro-
vide data coming from the real world to the blockchain
system. Thus, oracles are often necessary, as real-world
data can not be (reasonably) obtained otherwise. If a
smart contract has to be certified, it would be simpler
and more efficient to let the certification bodies run the
code and store the result in the blockchain. By using a
decentralized oracle network [72], the influence of each
oracle can be limited. In this way, it is possible to check
the coherence of the results produced by the various
certification bodies. The problem with this solution is
that the decentralization degree is proportional to the
number of certification bodies and not to the number of
nodes.

From a broader perspective, any form of centraliza-
tion undermines the value of blockchain-based smart con-
tracts. Thus, before settling for blockchain-based solutions,
decision-makers should consider to which extent it is possible
to decentralize a system. In many situations, the impractical-
ity of decentralized solutions may drive decision-makers to
accept centralized compromises in their blockchain systems.
However, this approach may defeat the purpose of having a
blockchain in the first place.

N. PREFERABLY, SMART CONTRACTS SHOULD NOT RELY
ON ORACLES
The problem of relying on oracles is not exclusive to the code
certification process. It is never possible to fully trust data
provided by oracles: an oracle is always a trusted third party
that reduces the degree of decentralization of the system [29].
Unfortunately, eliminating oracles from a blockchain system
is rarely feasible. Thus, smart contracts should rely on data
provided by oracles as little as possible. Moreover, strategies
that discourage oracles’ misconduct should occur. To this
extent, oracle services (e.g., Chainlink [72]) use economic

VOLUME 10, 2022 91209

V. Capocasale, G. Perboli: Standardizing Smart Contracts

incentives and multiple data feeds to reduce manipulation
attempts.

More generally, smart contracts do not solve the garbage
in, garbage out problem when oracles are involved. Thus,
blockchain can be used to prevent retroactive (but not proac-
tive) data manipulations. Based on the specific use case,
decision-makers should evaluate whether such guarantees
justify the adoption of the technology or not.

O. SMART CONTRACTS ARE (LIKELY) BUG-FREE
Under the assumption that a smart contract is independently
coded by multiple nodes, it is unlikely that all the imple-
mentations share the same bug. Of course, all the imple-
mentations might rely on the same library. In such cases,
bugs affecting the library would also affect all the imple-
mentations. However, the general idea behind the scalability
trilemma [73] still applies: increasing the number of inde-
pendent implementations increases the effort required to code
them and the probability of obtaining a bug-free smart con-
tract, as already discussed in Sec. III-J.

We underline that it is likely possible to obtain simi-
lar bug-free programs in centralized settings by sustaining
similar implementation efforts. As this is not the standard
industrial behavior, the cost-effectiveness of such a strategy
is questionable. Nonetheless, we believe that smart contracts
that manage valuable assets (e.g., protocols for decentralized
finance) could consider this strategy as a way to offset the risk
of cyberattacks.

P. SMART CONTRACTS ARE (LIKELY) TAMPER-PROOF
As a smart contract is independently executed/verified by
multiple nodes, corrupting the execution of a smart contract
is reasonably unfeasible. Consequently, smart contracts are
tamper-proof, but only as long as the nodes do not have a
motivation to collude. Moreover, the tamper-proof property
does not imply that the smart contract behaves as expected:
the tamper-proof property is a consequence of the multiple
independent executions of a smart contract, while its cor-
rectness is a consequence of its multiple and independent
implementations. Consequently, even if all the nodes used
identical implementations, the smart contract would still be
tamper-proof (but unlikely bug-free).

We underline that the tamper-proof resiliency of smart
contracts is proportional to the decentralization degree of the
blockchain network. Smart contracts offer no guarantees if a
single node can influence the others or if some nodes have a
strong motivation to collude. Thus, decision-makers should
analyze the relationships among the nodes before joining
a blockchain network. More generally, blockchain does not
completely solve trust issues, as peers must still trust that the
majority is honest.

Q. SMART CONTRACTS BELONG TO THE SYSTEM
Ownership of smart contracts is a controversial topic. The
owner of a smart contract is often its creator. Alternatively, the
smart contract can grant special privileges to a specific entity.

In any case, however, the smart contract is managed and
executed by the nodes of the blockchain system. If a majority
of them decide to alter the smart contract, the owner would
have no power (or right) to stop them. Thus, the actual owner
of a smart contract is the blockchain system itself. While this
is a philosophical remark with probably not many practical
implications, it is important to underline that the concept
of ownership assumes a different meaning in a blockchain
system.

IV. CONCLUSION
Smart contracts could revolutionize the world as they are flex-
ible and secure. Nonetheless, smart contracts should not be
used as a standalone technology, as they need to be integrated
into broad-scope frameworks to express their full potential.
To this extent, the standardization of smart contracts is a
necessary step.

This study analyzed smart contracts from multiple
perspectives and in the context of blockchain technol-
ogy. In particular, this study: provided multiple definitions
for smart contracts; highlighted their main properties and
requirements; identified and corrected some common mis-
conceptions on the topic; provided some guidelines for the
correct implementation, deployment, and contextualization
of smart contracts in a generic standard. This study is the
first step toward creating a clear and unified vision of smart
contracts. In particular, this study may be insightful for man-
agers, lawyers, and non-technical readers that need to decide
on the possible adoption of smart contracts in their fields of
expertise.

The analysis developed in this study identified many mis-
conceptions regarding smart contracts, which could hinder
the creation of a universal standard. The smart contract name
itself is misleading and should be replaced by themore appro-
priate word chaincode [74]. Sharing a common definition of
smart contracts and related properties is a necessity. In par-
ticular, a clear understanding of computer science-related
topics is fundamental to see through the confusion created
by abstractions and misinterpretations.

This study did not analyze smart contracts as a standalone
technology, as there are strong connections with the under-
lying blockchain technology. Consequently, it is necessary to
create standards for the proper use of smart contracts and their
integration into external technologies and frameworks, which
is particularly true for the legitimization and legal recognition
of smart contracts. In particular, investigating the following
research questions is recommended.
• Which conditions make a blockchain system sufficiently
decentralized and secure? Who can trust, repudiate,
reject, or ignore the data it stores?

• Which nodes should code/test/execute a given smart
contract? Which factors and metrics should determine
the degree of reliability of the smart contract?

• Which standards related to the data encoding/decoding
should smart contracts follow?Where and how are those
standards specified?

91210 VOLUME 10, 2022

V. Capocasale, G. Perboli: Standardizing Smart Contracts

• How formalizing which output should a smart contract
generate for a given input? For example, how can a
formal language define a legal contract? Can declarative
languages be used?

• How can a smart contract be associated with its concep-
tual meaning? For example, if a smart contract compares
two numbers, is it comparing two temperatures?

• To which extent can smart contracts replace legal
contracts?

The main takeaway from the guidelines proposed in this
study is that full decentralization is difficult to achieve and
imposes many additional challenges. Given the difficulties
of creating truly decentralized smart contracts, we wonder to
which extent compromises can be accepted. What is the point
of pursuing decentralization if we are ready to sacrifice it for
practicality? In the end, are compromise-oriented decentral-
ized solutions more reliable than centralized ones?

REFERENCES
[1] I. Pavlova, ‘‘Blockchain ETFs: Dynamic correlations and hedging capabil-

ities,’’ Managerial Finance, vol. 47, no. 5, pp. 687–702, Apr. 2021.
[2] V. Gatteschi, F. Lamberti, C. Demartini, C. Pranteda, and V. Santamaría,

‘‘Blockchain and smart contracts for insurance: Is the technology mature
enough?’’ Future Internet, vol. 10, no. 2, p. 20, Feb. 2018.

[3] H. Hellani, L. Sliman, A. E. Samhat, and E. Exposito, ‘‘Overview on the
blockchain-based supply chain systematics and their scalability tools,’’
Emerg. Sci. J., vol. 4, pp. 45–69, Aug. 2021.

[4] S. Pan, W. Zhou, S. Piramuthu, V. Giannikas, and C. Chen, ‘‘Smart city
for sustainable urban freight logistics,’’ Int. J. Prod. Res., vol. 59, no. 7,
pp. 2079–2089, Apr. 2021.

[5] A. Ruffini, A. Salerno, and F. Simões, ‘‘Net-zero emissions: Main tech-
nological, geopolitical, and economic consequences of the new energy
scenario,’’ SSRN Electron. J., vol. 2022, pp. 1–14, Apr. 2022.

[6] A. A. Khan, A. A. Laghari, D.-S. Liu, A. A. Shaikh, D.-D.Ma, C.-Y. Wang,
and A. A.Wagan, ‘‘EPS-ledger: Blockchain hyperledger sawtooth-enabled
distributed power systems chain of operation and control node privacy and
security,’’ Electronics, vol. 10, no. 19, p. 2395, Sep. 2021.

[7] M. Nadini, L. Alessandretti, F. Di Giacinto, M. Martino, L. M. Aiello,
and A. Baronchelli, ‘‘Mapping the NFT revolution: Market trends, trade
networks, and visual features,’’ Sci. Rep., vol. 11, no. 1, pp. 1–11,
Dec. 2021.

[8] G. Attanasio, L. Cagliero, P. Garza, and E. Baralis, ‘‘Quantitative cryp-
tocurrency trading: Exploring the use of machine learning techniques,’’ in
Proc. 5th Workshop Data Sci. Macro-Modeling Financial Econ. Datasets
(DSMM), 2019, pp. 1–6.

[9] C. Kohler. (2022). What is the Blockstream Mining Note?. [Online].
Available: https://thebitcoinmanual.com/articles/what-blockstream-
mining-note/

[10] M. Dell’Erba, ‘‘Demystifying technology. Do smart contracts require
a new legal framework? Regulatory fragmentation, self-regulation,
public regulation,’’ SSRN Electron. J., 2018. [Online]. Available:
https://ssrn.com/abstract=3228445, doi: 10.2139/ssrn.3228445.

[11] R. Aringhieri, S. Bigharaz, D. Duma, and A. Guastalla, ‘‘Fairness in
ambulance routing for post disaster management,’’ Central Eur. J. Oper.
Res., vol. 30, no. 1, pp. 189–211, Mar. 2022.

[12] W. Serrano, ‘‘Verification and validation for data marketplaces via a
blockchain and smart contracts,’’ Blockchain, Res. Appl., vol. 2022,
Jul. 2022, Art. no. 100100.

[13] M. Sookhak, M. R. Jabbarpour, N. S. Safa, and F. R. Yu, ‘‘Blockchain
and smart contract for access control in healthcare: A survey, issues and
challenges, and open issues,’’ J. Netw. Comput. Appl., vol. 178, Mar. 2021,
Art. no. 102950.

[14] M. Giancaspro, ‘‘Is a ‘smart contract’ really a smart idea? Insights from a
legal perspective,’’ Comput. Law Secur. Rev., vol. 33, no. 6, pp. 825–835,
Dec. 2017.

[15] A. Janssen and F. Patti, ‘‘Demystifying smart contracts,’’ Osservatorio
Diritto Civile Commerciale, vol. 9, no. 1, pp. 31–50, 2020.

[16] M. Boccia, A. Mancuso, A. Masone, and C. Sterle, ‘‘A feature based
solution approach for the flying sidekick traveling salesman problem,’’ in
Proc. Int. Conf. Math. Optim. Theory Oper. Res., in Communications in
Computer and Information Science, vol. 1476, 2021, pp. 131–146.

[17] M. Boccia, A. Mancuso, A. Masone, A. Sforza, and C. Sterle, ‘‘A two-
echelon truck-and-drone distribution system: Formulation and heuris-
tic approach,’’ in Optimization and Decision Science, R. Cerulli,
M. Dell’Amico, F. Guerriero, D. Pacciarelli, and A. Sforza, Eds. Cham,
Switzerland: Springer, 2021, pp. 153–163, doi: 10.1007/978-3-030-86841-
3_13.

[18] A. Diglio, A. Mancuso, A. Masone, C. Piccolo, and C. Sterle, ‘‘A MILP
formulation for the reorganization of the blood supply chain in italian
regions,’’ in Optimization and Data Science: Trends and Applications,
A. Masone, V. D. Sasso, and V. Morandi, Eds. Cham, Switzerland:
Springer, 2021, pp. 51–66.

[19] M. Gajda, A. Trivella, R. Mansini, and D. Pisinger, ‘‘An optimization
approach for a complex real-life container loading problem,’’ Omega,
vol. 107, Feb. 2022, Art. no. 102559.

[20] G. Chiaselotti, T. Gentile, and F. Infusino, ‘‘Lattice representation with
algebraic granular computing methods,’’ Electron. J. Combinatorics,
vol. 27, no. 1, pp. 1–34, 2020.

[21] ETSI GS PDL 011 V1.1.1, Permissioned Distributed Ledger ETSI Industry
Specification Group, ETSI, Sophia Antipolis, France, 2021.

[22] G. Perboli, M. Stefano, and R. Mariangela, ‘‘Blockchain in logistics and
supply chain: A lean approach for designing real-world use cases,’’ IEEE
Access, vol. 6, pp. 62018–62028, 2018.

[23] Z. Zheng, S. Xie, H.-N. Dai, X. Chen, and H. Wang, ‘‘Blockchain chal-
lenges and opportunities: A survey,’’ Int. J. Web Grid Services, vol. 14,
no. 4, pp. 352–375, 2018.

[24] M. Hribernik, K. Zero, S. Kummer, and D. M. Herold, ‘‘City logistics:
Towards a blockchain decision framework for collaborative parcel deliver-
ies in micro-hubs,’’ Transp. Res. Interdiscipl. Perspect., vol. 8, Nov. 2020,
Art. no. 100274.

[25] S. Nakamoto, ‘‘Bitcoin: A peer-to-peer electronic cash system,’’ Decen-
tralized Bus. Rev., 2008. [Online]. Available: https://www.debr.io/article/
21260-bitcoin-a-peer-to-peer-electronic-cash-system

[26] N. Szabo, ‘‘Formalizing and securing relationships on public networks,’’
1st Monday, vol. 2, no. 9, pp. 1–21, Sep. 1997.

[27] V. Buterin, ‘‘A next-generation smart contract and decentralized
application platform,’’ 2014. [Online]. Available: https://blockchainlab.
com/pdf/Ethereum_white_paper-a_next_generation_smart_contract_and_
decentralized_application_platform-vitalik-buterin.pdf

[28] W. Zou, D. Lo, P. S. Kochhar, X.-B.-D. Le, X. Xia, Y. Feng, Z. Chen, and
B. Xu, ‘‘Smart contract development: Challenges and opportunities,’’ IEEE
Trans. Softw. Eng., vol. 47, no. 10, pp. 2084–2106, Oct. 2021.

[29] E. Mik, ‘‘Smart contracts: Terminology, technical limitations and real
world complexity,’’ Law, Innov. Technol., vol. 9, no. 2, pp. 269–300,
Jul. 2017.

[30] P. Tolmach, Y. Li, S.-W. Lin, Y. Liu, and Z. Li, ‘‘A survey of smart contract
formal specification and verification,’’ ACM Comput. Surv., vol. 54, no. 7,
pp. 1–38, Sep. 2022.

[31] P. S. Bayón, ‘‘Key legal issues surrounding smart contract applications,’’
KLRI J. Law Legislation, vol. 9, no. 1, pp. 63–91, 2019.

[32] C. D. Clack, V. A. Bakshi, and L. Braine, ‘‘Smart contract templates:
Essential requirements and design options,’’ 2016, arXiv:1612.04496.

[33] A. Dixit, V. Deval, V. Dwivedi, A. Norta, and D. Draheim, ‘‘Towards user-
centered and legally relevant smart-contract development: A systematic
literature review,’’ J. Ind. Inf. Integr., vol. 26, Mar. 2022, Art. no. 100314.

[34] S. A. McKinney, R. Landy, and R. Wilka, ‘‘Smart contracts, blockchain,
and the next frontier of transactional law,’’ Washington J. Law, Technol.
Arts, vol. 13, p. 313, Apr. 2017.

[35] N. Fotiou and G. C. Polyzos, ‘‘Smart contracts for the Internet of
Things: Opportunities and challenges,’’ in Proc. Eur. Conf. Netw. Commun.
(EuCNC), Jun. 2018, pp. 256–260.

[36] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, ‘‘Making smart
contracts smarter,’’ in Proc. ACM SIGSACConf. Comput. Commun. Secur.,
2016, pp. 254–269.

[37] W. Brammertz and A. I. Mendelowitz, ‘‘From digital currencies to digital
finance: The case for a smart financial contract standard,’’ J. Risk Finance,
vol. 19, no. 1, pp. 76–92, Jan. 2018.

[38] B. Marino and A. Juels, ‘‘Setting standards for altering and undoing smart
contracts,’’ in Proc. Int. Symp. Rules Rule Markup Lang. Semantic Web,
2016, pp. 151–166.

VOLUME 10, 2022 91211

http://dx.doi.org/10.2139/ssrn.3228445
http://dx.doi.org/10.1007/978-3-030-86841-3_13
http://dx.doi.org/10.1007/978-3-030-86841-3_13

V. Capocasale, G. Perboli: Standardizing Smart Contracts

[39] B. Hu, Z. Zhang, J. Liu, Y. Liu, J. Yin, R. Lu, andX. Lin, ‘‘A comprehensive
survey on smart contract construction and execution: Paradigms, tools, and
systems,’’ Patterns, vol. 2, no. 2, Feb. 2021, Art. no. 100179.

[40] Y.-W. Jeng, Y.-C. Hsieh, and J.-L. Wu, ‘‘Step-by-step guidelines for mak-
ing smart contract smarter,’’ in Proc. IEEE 12th Conf. Service-Oriented
Comput. Appl. (SOCA), Nov. 2019, pp. 25–32.

[41] K. Hu, J. Zhu, Y. Ding, X. Bai, and J. Huang, ‘‘Smart contract engineer-
ing,’’ Electronics, vol. 9, no. 12, p. 2042, Dec. 2020.

[42] D. Macrinici, C. Cartofeanu, and S. Gao, ‘‘Smart contract applications
within blockchain technology: A systematic mapping study,’’ Telematics
Inform., vol. 35, no. 8, pp. 2337–2354, 2018.

[43] T. M. Hewa, Y. Hu, M. Liyanage, S. S. Kanhare, and M. Ylianttila,
‘‘Survey on blockchain-based smart contracts: Technical aspects and future
research,’’ IEEE Access, vol. 9, pp. 87643–87662, 2021.

[44] P. Chapman, D. Xu, L. Deng, and Y. Xiong, ‘‘Deviant: A mutation test-
ing tool for solidity smart contracts,’’ in Proc. Blockchain, Jul. 2019,
pp. 319–324.

[45] M. Saetran, J. Seo, and S. Park, ‘‘Leverage sidechains to reduce the
workload of smart contracts through parallelization,’’ J. Comput. Sci. Eng.,
vol. 15, no. 3, pp. 125–133, Sep. 2021.

[46] N. Vashistha, M. M. Hossain, M. R. Shahriar, F. Farahmandi, F. Rahman,
and M. M. Tehranipoor, ‘‘EChain: A blockchain-enabled ecosystem for
electronic device authenticity verification,’’ IEEE Trans. Consum. Elec-
tron., vol. 68, no. 1, pp. 23–37, Feb. 2022.

[47] M.Abdelhamid andG. Hassan, ‘‘Blockchain and smart contracts,’’ inProc.
8th Int. Conf. Softw. Inf. Eng., 2019, pp. 91–95.

[48] J. Lánský, ‘‘Bitcoin system,’’ Acta Inf. Pragensia, vol. 6, no. 1, pp. 20–31,
Jun. 2017.

[49] M. Du, Q. Chen, L. Liu, and X. Ma, ‘‘A blockchain-based random number
generation algorithm and the application in blockchain games,’’ in Proc.
IEEE Int. Conf. Syst., Man Cybern. (SMC), Oct. 2019, pp. 3498–3503.

[50] A. Hassan, M. I. Ali, R. Ahammed, M. M. Khan, N. Alsufyani, and
A. Alsufyani, ‘‘Secured insurance framework using blockchain and smart
contract,’’ Sci. Program., vol. 2021, pp. 1–11, Nov. 2021.

[51] V. Capocasale. (2022). Smart Contract Equivalence. [Online]. Available:
https://github.com/vittoriocapocasale/SmartContractEquivalence

[52] G. Governatori, F. Idelberger, Z. Milosevic, R. Riveret, G. Sartor, and
X. Xu, ‘‘On legal contracts, imperative and declarative smart contracts,
and blockchain systems,’’ Artif. Intell. Law, vol. 26, no. 4, pp. 377–409,
Dec. 2018.

[53] S. Rouhani and R. Deters, ‘‘Security, performance, and applica-
tions of smart contracts: A systematic survey,’’ IEEE Access, vol. 7,
pp. 50759–50779, 2019.

[54] F. Schär, ‘‘Decentralized finance: On blockchain-and smart contract-based
financial markets,’’ FRB St. Louis Rev., vol. 2021, pp. 1–22, Apr. 2021.

[55] K. Olson, M. Bowman, J. Mitchell, S. Amundson, D. Middleton, and
C. Montgomery, ‘‘Sawtooth: An introduction,’’ 2018. [Online]. Available:
https://www.hyperledger.org/wp-content/uploads/2018/01/Hyperledger_
Sawtooth_WhitePaper.pdf

[56] I. Sergey, V. Nagaraj, J. Johannsen, A. Kumar, A. Trunov, and
K. C. G. Hao, ‘‘Safer smart contract programming with scilla,’’ Proc. ACM
Program. Lang., vol. 3, pp. 1–30, Oct. 2019.

[57] S. Sayeed, H. Marco-Gisbert, and T. Caira, ‘‘Smart contract: Attacks and
protections,’’ IEEE Access, vol. 8, pp. 24416–24427, 2020.

[58] J. Kongmanee, P. Kijsanayothin, and R. Hewett, ‘‘Securing smart contracts
in blockchain,’’ in Proc. 34th IEEE/ACM Int. Conf. Automated Softw. Eng.
Workshop (ASEW), Nov. 2019, pp. 69–76.

[59] Y. Hu, T. Lee, D. Chatzopoulos, and P. Hui, ‘‘Analyzing smart contract
interactions and contract level state consensus,’’ Concurrency Comput.,
Pract. Exper., vol. 32, no. 12, p. e5228, Jun. 2020.

[60] D. Larimer, J. Lavin, N. Hourt, Q. Ma, and W. Prioriello, ‘‘EOS.
IO technical white paper v2,’’ 2018. [Online]. Available: https://
github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md

[61] V. Y. Kemmoe, W. Stone, J. Kim, D. Kim, and J. Son, ‘‘Recent advances in
smart contracts: A technical overview and state of the art,’’ IEEE Access,
vol. 8, pp. 117782–117801, 2020.

[62] P. Sreehari,M. Nandakishore, G. Krishna, J. Jacob, andV. S. Shibu, ‘‘Smart
will converting the legal testament into a smart contract,’’ inProc. Int. Conf.
Netw. Adv. Comput. Technol. (NetACT), Jul. 2017, pp. 203–207.

[63] Y. Liu and J. Huang, ‘‘Legal creation of smart contracts and the legal
effects,’’ J. Phys., Conf. Ser., vol. 1345, no. 4, Nov. 2019, Art. no. 042033.

[64] A. Norta, ‘‘Designing a smart-contract application layer for transacting
decentralized autonomous organizations,’’ in Proc. Int. Conf. Adv. Comput.
Data Sci., 2016, pp. 595–604.

[65] A. Janssen and M. Djurovic, ‘‘The formation of blockchain-based smart
contracts in the light of contract law,’’ Eur. Rev. Private Law, vol. 26, no. 6,
pp. 753–771, Dec. 2018.

[66] K. Lauslahti, J. Mattila, and T. Seppala, ‘‘Smart contracts—How will
blockchain technology affect contractual practices?’’ ETLA, Helsinki,
Finland, Tech. Rep. 68, 2017.

[67] G. Perboli, V. Capocasale, and D. Gotta, ‘‘Blockchain-based transac-
tion management in smart logistics: A sawtooth framework,’’ in Proc.
COMPSAC, 2020, pp. 1713–1718.

[68] V. Capocasale, D. Gotta, S. Musso, and G. Perboli, ‘‘A blockchain,
5G and IoT-based transaction management system for smart logistics:
An hyperledger framework,’’ in Proc. IEEE 45th Annu. Comput., Softw.,
Appl. Conf. (COMPSAC), Jul. 2021, pp. 1285–1290.

[69] M. He, H. Wang, Y. Sun, R. Bie, T. Lan, Q. Song, X. Zeng, M. Pustisĕk,
and Z. Qiu, ‘‘T 2L: A traceable and trustable consortium blockchain for
logistics,’’ Digit. Commun. Netw., 2022, doi: 10.1016/j.dcan.2022.06.015.

[70] A. Gluchowski. (2019). Introducing Zksync: The Missing Link to
Mass Adoption of Ethereum. [Online]. Available: https://blog.matter-
labs.io/introducing-zk-sync-the-missing-link-to-mass-adoption-of-
ethereum-14c9cea83f58

[71] M. Almakhour, L. Sliman, A. E. Samhat, and A. Mellouk, ‘‘Verification of
smart contracts: A survey,’’ Pervas. Mobile Comput., vol. 67, Sep. 2020,
Art. no. 101227.

[72] L. Breidenbach et al., ‘‘Chainlink 2.0: Next steps in the evolu-
tion of decentralized oracle networks,’’ 2021. [Online]. Available:
https://research.chain.link/whitepaper-v2.pdf

[73] A. Altarawneh, T. Herschberg, S. Medury, F. Kandah, and A. Skjellum,
‘‘Buterin’s scalability trilemma viewed through a state-change-based clas-
sification for common consensus algorithms,’’ inProc. 10th Annu. Comput.
Commun. Workshop Conf. (CCWC), Jan. 2020, pp. 727–736.

[74] S. Kim, Y. Son, and Y. Lee, ‘‘A study on the security weakness analysis
of chaincode on hyperledger fabric and ethereum blockchain framework,’’
J. Green Eng., vol. 10, no. 9, pp. 6349–6367, 2020.

VITTORIO CAPOCASALE (Member, IEEE)
received theM.Sc. degree in computer engineering
from the Polytechnic University of Turin, in 2019,
where he is currently pursuing the Ph.D. degree.
His main research interests include related to
blockchain and its applications to the industrial
world.

GUIDO PERBOLI (Member, IEEE) is a Full Pro-
fessor of decision making and operations research
with Politecnico di Torino, an Associate Member
with CIRRELT, Québec, Canada, and a Mentor
of Startups with an experience of 15 years in
Business Development and Research and Devel-
opment. He is currently a Shareholder and the
Chief Scientific Officer of Arisk S.p.a.—a Fin-
tech Startup operating in the usage of AI for
the risk prediction and management and Spinoff

of Politecnico di Torino. He has authored more than 100 papers on
peer-reviewed international journals and conferences and a coordinator of
international and national research projects. He is a member of scientific
boards and awards, including the Scientific Board of SOS Log and the main
Italian Association of Sustainable Logistics.

91212 VOLUME 10, 2022

http://dx.doi.org/10.1016/j.dcan.2022.06.015

