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Abstract

The need for high levels of user privacy, low latency, and low cost has recently
required moving the Deep Convolutional Neural Network (CNN) inference
process from the cloud to “the edge”, that is, on lightweight resource-constrained
embedded systems. Such a paradigm shift creates a huge technical challenge:
filling the gap between the computational and memory requirements of modern
CNNs and the limited hardware and energy resources of embedded systems.

This dissertation tackles this challenge through vertical and automated
optimizations across the entire software stack, focusing on how to build small,
fast, and energy-efficient CNNs. After reviewing the most adopted memory
allocation algorithms in CNN compilers, the first part of this thesis introduces
the dataflow restructuring, a novel functionality-preserving method for mini-
mizing the activation memory footprint of CNNs. Then, a new compression
pipeline is presented, which combines weight pruning with dataflow restruc-
turing to deploy more accurate CNNs on tiny MCU devices. The second
part of this dissertation presents an optimization framework based on neural
architectural design, quantization, and optimized integer kernels to accelerate
CNNs on mobile-friendly CPUs and MCUs. The framework is evaluated in the
context of a key use case for embedded computer vision, namely, monocular
depth estimation, demonstrating the importance of a vertical approach to meet
stringent application and hardware constraints. Finally, the last part of the
dissertation deals with the deployment of energy-quality scalable CNNs. To this
end, first, an energy-quality scalable system for monocular depth estimation
named EQPyD-Net is described and characterized. Then, Nested Sparse CNNs,
a class of low footprint, dynamic CNNs, are proposed to tackle inference tasks
at the edge of the Internet-of-Things.

Overall, the contribution of this dissertation is threefold. Novel automated
optimization techniques are presented to improve the efficiency of state-of-the-
art CNNs with minimal to no accuracy loss. New dynamic knobs are introduced
to extend the achievable accuracy-complexity trade-off at run time. Finally,
the proposed optimizations show that working across multiple levels of the
optimization stack pushes further the boundary of accurate CNNs that can be
deployed on tiny embedded devices.
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Chapter 1

Introduction

1.1 Context and Motivation

The field of Deep Learning (DL), and more specifically a class of DL algo-
rithms, the Deep Neural Networks (DNNs), has achieved astonishing results
in the last decade. In 2015, a Deep Convolutional Neural Network (CNN)
architecture, ResNet, achieved super human-level accuracy in the ImageNet
classification task [1]. Only one year later, in 2016, a DL-based agent named
AlphaGo won against the world champion Lee Sedol in the game of Go [2],
and in 2018, the challenging task of translating a Chinese text to English was
performed automatically by a DNN with human-level performance [3]. Thus,
DNNs have become the standard backbones of data reasoning tasks in many
different domains, like image and video processing [4], speech recognition and
translation [5], and sensor data analysis [6].

Traditionally, DL-based applications have been deployed in cloud infras-
tructures running on large-scale datacenters, where both DNN training and
inference are performed on powerful devices [7]. However, the proliferation of
mobile and Internet-of-Things (IoT) applications has recently demanded mov-
ing the inference process from the cloud to “the edge”, that is, on lightweight
resource-constrained embedded systems. The need for high levels of user pri-
vacy, low latency, and low-cost requirements represent the main driving factors
of such a paradigm shift. For example, the users of a healthcare application
dealing with biometric information may have privacy concerns in sending their



2 Introduction

Fig. 1.1 Top-1 accuracy on ImageNet [8] vs. number of floating point operations
(FLOPs) vs. model size. Image taken from [9].

data to the cloud. Applications relying on real-time sensing of the environment
to perform fast decision-making, such as autonomous driving and augmented
reality, cannot sustain the round-trip latency of the data transfer to the cloud.
Finally, in the case of IoT applications based on a large-scale sensor network,
the cost of transmitting data to a centralized server is simply unaffordable.
Processing the DNN inference on-device guarantees higher levels of user pri-
vacy, as data stay local, and higher quality of service, as latency is much
more deterministic. Moreover, the network congestion and the volume of data
exchanged are highly reduced, lowering energy consumption and cutting down
the infrastructure cost for distributed applications.

However, modern DNNs require massive computing power and considerable
memory resources, making their deployment on resource-constrained embedded
systems very challenging. Fig. 1.1 shows the relationship between the Top-1
classification accuracy on the ImageNet dataset and the computational and
memory intensity for different DNN architectures. Most models require tens
of GFLOPs and hundreds of MBs to achieve high accuracy. Unfortunately,
mobile and IoT systems are usually battery-powered, with severe thermal, area,
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and power constraints that limit the number of computational units and the
on-chip memory resources. Therefore, bringing intelligence to such systems
relies on the availability of small, fast, and energy-efficient DNNs.

This dissertation stems from the idea that the key to small, fast, and
energy-efficient DNNs is vertical and automated optimizations across the entire
software stack. Optimizations must act vertically across the different layers to
holistically combine the benefits of specialization, from the algorithmic and neu-
ral architecture design process to compiler passes and computational strategies.
Such a cross-layer approach not only can bring more remarkable gains but also
allows the non-functional figures of merit to be co-optimized with the model
accuracy. Optimizations must be automated to free embedded designers from
the burden of manually dealing with the wide variety of DNN architectures used
in different tasks and with the diversity of embedded platforms employed at
the edge. Toward this goal, this dissertation presents a set of novel automated
optimization techniques working across different levels of the software stack
to improve the efficiency of DNNs on embedded systems. Specifically, this
dissertation focuses mainly on CNNs as they were the dominant DNN archi-
tecture when the works presented here were developed. As the main outcome,
the works presented in this thesis contribute to the state-of-the-art by pushing
further the boundary of accurate CNNs that can be deployed on tiny embedded
devices.

This chapter first discusses the optimization challenges involved in deploying
DNNs on embedded systems, also introducing the minimal background needed
to understand the rest of the dissertation (Section 1.2). Then, it introduces
the main contributions of our research, together with the overall organization
of the dissertation (Section 1.3).

1.2 Neural Network Optimization Stack

As shown in Fig. 1.2, the DL design, optimization, and deployment stack
is usually structured in four main layers. At the highest level stands the
neural architecture design process. This step aims at designing efficient DNN
architectures, and it is usually carried out in a DL framework, like PyTorch [10],
Tensorflow [11], or Paddle Paddle [12], together with other learning-related
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Algorithmic-Level

Operator-Level

Graph-Level

Neural 
Architecture

Design

It’s ten 
o’clock

Fig. 1.2 DNN optimization stack.

steps, such as data preparation, data preprocessing, and training. Then, further
optimizations can be performed at algorithmic-level by exploiting the intrinsic
redundancy of DNNs and the statistical nature of DL. At this point, the
trained and optimized model is fed as input to a DL compiler, like TVM [13]
or GLOW [14]. Such compilers first translate the DL model into a high-
level computational graph representation, then apply graph-level rewritings to
generate an optimized graph, and finally perform operator-level optimizations
to generate efficient code for each operator of the graph. This section briefly
describes each layer of the stack, introducing the main optimization passes.

1.2.1 Neural Architecture Design

In its general embodiment, a DNN is a graph of tensor operators called layers.
Fig. 1.3a reports an example of a generic DNN. A layer operates on one or
multiple activation tensors, which are either fed as inputs to the network, e.g.,
the input image to classify, or are produced by previous layers — the orange
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Fig. 1.3 a) A pictorial representation of a DNN; b) main parameters of a convolutional
layer; c) three common neural modules.

boxes in Fig. 1.3a. The most commonly-used DNN layers are the convolutional,
the fully connected, and the neural activation layers, like ReLU, Leaky ReLU,
and Sigmoid. Apart from the activation tensors, the convolutional and fully-
connected layers also accept one other tensor as input, usually called the weight
tensor — the green boxes in Fig. 1.3a. The weight tensors are learned during
the training phase but are constant during the inference stage.

In general, a DNN architecture is defined by the types and number of layers,
the graph topology, and the dimensions of each layer. From Fig. 1.1, it is evident
that different DNN architectures set a different trade-off in terms of accuracy,
computational complexity, and model size. For this reason, several manual [15,
16] or automatic [17, 18] design methodologies have been recently proposed to
find the DNN architecture that maximizes the accuracy while meeting latency,
storage, or energy efficiency constraints. The following paragraphs introduce
the main architectural parameters, highlighting their effect on performance.
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Kernel size

A convolutional layer is defined by the number of input channels (Cin), the num-
ber of output channels (Cout), also called filters, and the kernel size (kh×kw),
also called the receptive field. All these parameters contribute to the compu-
tational complexity (FLOPs ∝ 2 ·Hout ·Wout · kw · kh · Cin · Cout, where Hout

and Wout are height and width of the output activation tensor) and to the
parameter count (|W | ∝ kw · kh · Cin · Cout). A pictorial representation of a
convolutional layer and its parameters is shown in Fig. 1.3b. Early CNN archi-
tectures, like AlexNet [19] or InceptionNet [20], used various kernel sizes, from
3×3 and 5×5 up to 11×11. However, the authors of VGG [21] demonstrated
that convolutional layers with smaller receptive fields but more activation layers
outperform architectures with bigger receptive fields. Thus, VGG [21] replaces
the large convolutional kernels used in AlexNet with multiple 3×3 convolutional
layers stacked together. Moreover, VGG also features 1×1 convolutions to
increase the number of layers, hence the nonlinearity of the model, with a small
computational cost. For this reason, virtually all modern CNN architectures
adopt small filter sizes, namely, 1×1 and 3×3, to reduce both the computational
complexity and the parameter count.

Depth

The depth of a network refers to the maximum number of layers traversed
from the primary inputs to the primary outputs. Increasing the depth of the
network enlarges the learning capacity of the model and hence allows the model
to achieve higher accuracy [21]. However, it is intuitive that having more layers
increases the computational cost and the number of parameters. Moreover, the
training of very deep networks is rather challenging, as it suffers from stability
issues due to the gradient vanishing during backpropagation [1]. The authors of
InceptionNet [20] addressed such issues by having multiple auxiliary classifiers
present in different parts of the model at training time and by adopting a
more complex topology with parallel layers (see Fig. 1.3c). The authors of
ResNet [1], instead, tackled the gradient vanishing problem by introducing
the shortcut connection, which is a by-pass connection summing two tensors
at different depths of the network (see Fig. 1.3c). The shortcut connection
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allows very deep networks with hundreds of layers to be trained. Other recent
works have proposed to modulate at run time the number of layers traversed
using attention modules or gating blocks [22], possibly with the addition of
intermediate classifiers called early-exit branches [23]. In this case, the latency
of the DNN can be tuned at run time based on the difficulty of the inputs or
on some external user-defined constraints, but at the cost of storing additional
weights for the auxiliary modules.

Width

The width of the model refers to the number of filters of the convolutional layers
(Cout in Fig. 1.3b). Reducing the number of convolutional filters lowers the size
of the activation tensors, the number of parameters, and the computational
complexity. Playing with the width of the convolutional layers is a simple but
powerful architectural design trick, and it can be combined with other knobs
to be even more effective. For example, the bottleneck module, proposed in
InceptionNet [20] and ResNet [1], has become a standard module in modern
CNNs. The bottleneck module comprises three stacked 1×1, 3×3, and 1×1
convolutional layers (see Fig. 1.3a). The first 1×1 convolutional operation
lowers the number of channels to alleviate the computational load of the
intermediate 3×3 layer. Then, the last 1×1 layer recovers the original number
of channels. Similar architectural tricks have been used in other efficient
CNN architectures targeting embedded systems such as MobileNet [15] and
SqueezeNet [16]. The pioneering work by Howard et al. [15] proposed to scale
the number of filters across all the layers according to a predefined ratio α,
called the width multiplier [15]. In this way, different CNNs can be built
starting from the same architectural template, which can be resized depending
on memory and performance requirements. Follow-up works, e.g., Slimmable
Networks [24], have elaborated on the concept of width scaling, enabling its
use at run time to dynamically tune the latency of the model.

Resolution

The resolution of the intermediate feature maps is another important archi-
tectural knob (Hout and Wout in Fig. 1.3b). High-resolution feature maps
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may contain fine-grain details, which help achieve high accuracy. However,
processing high spatial resolution tensors significantly affects the computational
complexity and the run-time working memory needed to process the network.
For this reason, CNN architectures use pooling layers or the stride parameter
of the convolutional layers to reduce the spatial resolution of the network. For
instance, in CNN architectures for classification tasks, to balance the overall
computational workload, the first layers operate on high-resolution feature
maps with a small number of channels, whereas the last layers operate on
low-resolution feature maps with a large number of channels. Scaling the
resolution of the input tensors fed to the network [15] represents another way
of controlling the resolution of the network. For this reason, similarly to the
width multiplier, Howard et al. [15] proposed to scale the resolution of the
input using a predefined ratio ρ, called the resolution multiplier, to build a
family of CNNs from the same architectural template.

Graph Connectivity

While early CNN architectures, like AlexNet [19] and VGG [21], relied on a linear
sequential topology, where all layers are stacked on top of each other, more recent
CNN architectures have adopted more complex topologies to achieve higher
accuracy with fewer parameters and fewer computations. For example, Fig. 1.3c
shows the inception block with 4 parallel branches used in InceptionNet [20], the
skip connection used in ResNet [1], and the skip connection added between all
convolutional layers used in DenseNet [25]. Playing with the graph connectivity
to improve the overall performance of the model has been largely used in
automatic neural architectural design algorithms, e.g., [26]. Such algorithms
are, in fact, usually formulated as search optimization algorithms aimed at
finding the best connectivity among a pool of basic modules, like the one
previously described, that maximizes the accuracy of the model under latency
or memory constraints.

1.2.2 Algorithmic-level Optimizations

Once the neural architecture has been fixed, additional optimizations can be
performed at the algorithmic level. There are two main techniques in this
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space: pruning, aimed at removing the redundant parameters of the network,
and quantization, aimed at reducing the complexity of the network through
the use of low-precision arithmetic.

Pruning

Based on the assumption that DNNs are over-parametrized, pruning strategies
aim to seek and remove the weights with a negligible contribution to the accuracy
of the model. The existing methods differ in the policy used to identify the less
important weights and the level of granularity at which they are applied [27].
In terms of policy, even if complex methods have been recently proposed,
e.g., gradient or Hebbian-based methods [28], the magnitude-based [29] are
the preferred option in many modern training pipelines due to the ease of
their implementation. For what concerns the granularity, there exist three
main classes. Unstructured pruning plays at the lowest level, namely, on the
individual weights of the model [30], providing a high degree of flexibility to
the learning process of the sparse model. Such flexibility comes at the cost
of more complex processing for the remaining non-zero elements. Specifically,
since non-zero elements are scattered across the tensor, they induce irregular
data reading, processing, and writing patterns, which could be challenging
to efficiently manage in systems with a cache-based memory hierarchy or
wide SIMD compute units. Therefore, fully exploiting such unstructured
sparsity necessitates additional hardware mechanisms to extract, communicate,
and compute only with the non-zero elements [31]. At a coarser granularity,
Block pruning techniques [32] group neighboring weights in specific patterns
to decrease the indexing overhead and to ease the adoption of sparse compute
kernels on general-purpose cores [33, 34]. At the coarsest level, Filter pruning
drops entire convolutional filters [35], achieving aggressive storage savings
and speed-up at the cost of substantial accuracy loss due to fast information
removal.

Quantization

Pioneering works have shown that a 32-bit floating-point representation of
weights and activations is redundant at inference time [30]. In fact, for many
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tasks, existing DNNs can be quantized to a fixed-point representation with
16-bit or 8-bit integers [36] with no or minimal loss on the accuracy. More recent
works have also proposed more extreme quantization, i.e., using 2 bits in ternary
DNNs [37], or even 1 bit in binary DNNs [38]. However, ternary and binary
DNN still suffer from a substantial accuracy drop, depending on the application
and the network topology. In general, floating-point numbers can be discretized
using either linear or non-linear schemes, as investigated over the years in the
field of classic Digital Signal Processing (DSP). According to the linear scheme,
the distance between two adjacent fixed-point values, called the quantization
step, is constant across the entire input value range. Then, the mapping
between real and integer values can be symmetric, if the integer distribution is
centered around zero, or asymmetric, if it is shifted by a given offset. The first
choice is simpler to implement, whereas the second can fit better the original
floating-point value distribution but at the cost of additional processing stages
to manage the offset at run time. Finally, the scaling factor used in the mapping
can be a power-of-two, an arbitrary floating-point factor, or a fixed-point one.
The former requires simple shift operations to be implemented [39], whereas
the latter might be more accurate but at the cost of additional and more
complex operations [40]. In the case of non-linear quantization, a non-linear
function is used to map the real value range in the discrete set of integer values.
Common approaches use logarithmic functions [41] or more complex clustering
procedures [30]. Non-linear quantization schemes shine when the original data
distribution is highly non-uniform. Obviously, their implementation introduces
additional overhead, requiring more complex procedures to perform arithmetic
operations between quantized numbers. Another key aspect for quantizing
DNNs is the granularity of the quantization. Coarse-grain approaches [42]
use the same fixed-point format for all the layers of the DNN, whereas more
fine-grain approaches tune the format per-layer or per-channel [43]. Hybrid
strategies may use a static bit-width for the whole model and a per-layer or
per-channel fixed-point scaling factor [44]. Unfortunately, a one-size-fits-all
solution does not exist, and so the quantization scheme to adopt depends on the
task, the specific DNN architecture, the underlying hardware characteristics,
and the latency and memory constraints.
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1.2.3 Graph-level Optimizations

Early machine learning frameworks, like Caffe [45], simply iterated over the lay-
ers of the DNN to perform the inference stage. Unfortunately, this node-visitor
processing method is inefficient, as it misses several optimization opportunities.
As a result, modern machine learning frameworks, like PyTorch [10] and Tensor-
flow [11], hand over the DNN graph to domain-specific DL compilers [46, 14, 13],
which perform a series of optimization passes to make the inference process on
the target hardware more efficient.

When a DNN model is loaded into a DL compiler, it is first translated
into a high-level Intermediate Representation (IR), which usually corresponds
to a Dataflow Graph Representation (DFG). Several optimization passes are
applied at this level to orchestrate the flow of macro operations, rather than the
implementation of the single layer, i.e., the internal code organization. Such
passes remove, modify, or add nodes to the graph while preserving the overall
functionality. The following paragraphs briefly review the main graph-level
optimization passes proposed in the literature, while the reader can refer to [47]
for a more detailed overview.

Node simplification

These optimizations simplify one or more nodes to reduce the computational
workload [48] or the memory requirements [49]. Such simplifications exploit the
algebraic rules, namely, commutativity, associativity, and distributivity, in the
case of linear algebra operators, or hand-written rewriting rules in the case of DL-
specific operators, e.g., reshape, transpose, and pooling operations. Additional
simplifications can be performed extending classic compiler optimizations, such
as common sub-expression elimination (CSE) and dead code elimination (DCE),
to work on the graph IR.

Layout assignment and transformation

The data layout assignment pass aims at finding the best data layouts for
storing the intermediate activation tensors, adding layout transformation nodes
if necessary. As data layouts of the input and output tensors have a considerable
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influence on the final performance of an operator and the transformation
operations may add significant overhead, the layout assignment is a challenging
problem, which has been tackled either through heuristic [46, 14] or search-based
algorithms [50].

Static memory allocation

As virtually all DNNs have static shapes, the memory allocation step can
be entirely carried out at compile time. Specifically, one contiguous memory
region, called the memory pool, is allocated and partitioned through a simple
offset assignment to obtain the memory buffers for all the concurrently active
tensors. The static memory allocation is usually formulated as an optimization
problem aimed at finding the placement of the memory buffers in the pool that
minimizes the overall memory requirement. Additional memory optimizations
could be performed by reusing the same memory for both the input and the
output tensors of an operation, usually known as the in-place optimization,
and by scheduling the nodes such that the peak activation memory footprint is
minimized [49].

1.2.4 Operator-level Optimizations

Once the graph-level optimizations have been performed, DL compilers usually
lower the graph-level IR into a low-level IR to perform additional hardware-
specific optimizations. Specifically, a series of passes are used to optimize the
implementation of each operator, i.e., each node of the graph. The commonly
applied passes include hardware-intrinsic mappings, memory latency hiding,
parallelization, and loop-oriented optimizations, like loop tiling, loop reorder-
ing, and vectorization. Operator-level passes are usually highly specialized for
the target platform, as different hardware architectures may require different
implementation choices. Code optimizations can be performed automatically
by the compiler using code generation techniques based on auto-scheduling,
e.g., using the polyhedral model [51], or on auto-tuning [52]. Alternatively,
the compiler can map the operators of the graph on the most suitable imple-
mentation extracted from highly-optimized libraries provided by the hardware
vendors, e.g., cuDNN [53], ARM Compute Library [54], CMSIS-NN [39].
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Note that there also exist some optimizations spanning multiple levels of the
stack. For example, operator fusion bridges the graph-level and the operator-
level of the stack by combining multiple operators into one. Operator fusion
eliminates intermediate allocations and reduces memory bandwidth require-
ments, launch, and synchronization overhead. TVM [13] and BrainSlug [55]
perform operator fusion based on pre-defined fusion rules, whereas Tensor
comprehensions [51] exploits the polyhedral representation. However, how
to identify and fuse more complicated sub-graphs is still an open challenge,
especially considering its interaction with other optimization passes, such as
layout assignment and tensor rematerialization [50].

1.3 Objectives and Contributions

This dissertation proposes to tackle the design and deployment of small, fast, and
energy-efficient CNNs on embedded systems from a holistic system perspective.
The objectives of this dissertation can be summarized as follows:

• Develop novel automated optimization techniques to reduce the memory
footprint, lower the inference processing time, and increase the energy
efficiency of state-of-the-art CNNs with minimal to no accuracy loss.

• Devise dynamic knobs to extend the achievable accuracy-complexity
trade-off of a CNN at run time while still fulfilling the strict compute
and memory constraints of embedded platforms.

• Demonstrate that the combination of different optimizations working
across multiple levels of the optimization stack opens up new regions of
the solution space, pushing further the boundary of accurate CNNs that
can be deployed on embedded devices.

Fig. 1.4 shows the organization of the thesis, which is divided into three
main chapters, each one focusing on a specific optimization objective.

Chapter 2 focuses on how to build small CNNs, i.e., on memory-driven
optimizations. First, it reviews the problem of memory allocation in DL
compilers, surveying the most adopted problem formulations and presenting a
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Fig. 1.4 Pictorial representation of the the dissertation outline.

quantitative assessment of the underlying optimization methods. The results
collected over 851 benchmarks reveal that the most recent heuristics integrated
into state-of-the-art compilers often fail to achieve the global optimum, with
a substantial memory penalty (up to 33.6%). On the other hand, a mixed-
integer linear programming method finds the optimal solution with a negligible
run time (1.69 s on average). Such findings suggest the need to revisit the
dominant trends in memory allocation for CNNs, shifting the focus of memory
optimization on higher levels of the optimization stack (see Fig. 1.2). To this
end, the second part of the chapter introduces a novel, automated method for
minimizing the memory footprint of the intermediate activations of a CNN.
Specifically, the proposed technique relies on graph-rewriting rules, which exploit
algorithmic-level characteristics of CNNs, namely, the spatial locality of tensor
operators and the change of the spatial resolution across the layers, to lower
the activation memory footprint without affecting the functionality. Results
collected on a representative class of different CNN architectures show that the
proposed method is widely applicable and highly effective, achieving remarkable
memory savings (62.9% on average) with low computational overhead (8.6%
on average). The last part of the chapter presents a new compression pipeline,
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which plays at the algorithmic level by pruning the unimportant weights of
the network and at the graph level with the dataflow restructuring technique
to reduce both weights and activations footprint with minimum accuracy loss.
The collected results reveal that the proposed pipeline opens up a new feasible
region of the memory-accuracy solution space, showing fast configurations of
MobileNets deployed at full scale on tiny MCU devices, like an ARM M7 core
equipped with 512KB of RAM and 2MB of FLASH memory.

Chapter 3 focuses on how to build fast CNNs suitable for tackling challeng-
ing inference tasks on low-power devices like ARM Cortex-A CPUs and ARM
Cortex-M MCUs. In this chapter, we present an end-to-end optimization frame-
work based on neural architectural design, quantization, and optimized integer
kernels. The framework is evaluated in the context of a key use case for em-
bedded computer vision, namely, monocular depth estimation, to demonstrate
the importance of a vertical approach when targeting stringent application and
hardware constraints. Specifically, we first introduce a comprehensive design
and optimization framework aimed at accelerating the inference of PyD-Net, a
lightweight CNN capable of achieving close to state-of-the-art accuracy with
ultra-low resource usage. The accuracy driven optimization framework com-
bines a hardware-friendly fixed-point quantization method with integer neural
kernels custom-tailored to the specific target platform. The experimental
evaluation performed on a multi-core ARM Cortex A53 CPU shows marginal
accuracy loss on the KITTI dataset [56] with 16-bit (8-bit) integers, latency
reduction up to 1.16× (1.64×), and memory footprint reduction up to 2× (4×)
compared to single-precision floating-point. The second part of the chapter
deals with the scaling of monocular depth estimation “at the very edge”, i.e.,
on tiny MCU-powered platforms. In particular, it introduces µPyD-Net, a
lightweight CNN vertically designed to be deployed on microcontrollers. The
neural architecture design process of µPyD-Net is driven by the need to meet
hard memory and latency constraints. At the algorithmic level, the network is
trained in a peculiar self-supervised manner, leveraging proxy labels obtained
through a traditional stereo algorithm, and is quantized to 8-bit data. At the
operator level, the network is mapped to low-level layers custom-tailored to the
target microcontroller architecture. Experimental results on standard datasets
and an in-depth evaluation with an ARM Cortex-M7 MCU prove the feasibility
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of obtaining sufficiently accurate monocular depth cues even on ultra low-power
microcontrollers.

Chapter 4 focuses on the deployment of energy-quality scalable CNNs on
embedded systems. Specifically, this chapter builds upon the idea that by
leveraging the error resilience of many real-life applications, the quality-of-
result can be gracefully degraded at run time to achieve higher energy efficiency,
depending on the specific task, the external context, or the battery level. The
first part of the chapter describes and characterizes an energy-quality scalable
system for monocular depth estimation, named EQPyD-Net. It describes
the architecture of the CNN and the optimization flow, covering the knobs
that enable the dynamic scaling, namely, the scalable neural topology and
the variable arithmetic precision of the custom operators. Tested on an off-
the-shelf ARM Cortex A53, EQPyD-Net can be shifted across five operating
points, ranging from a maximum accuracy of 82.2% on the KITTI dataset
with 0.4 Frame/J up to 92.6% of energy savings with 6.1% of accuracy loss.
Nevertheless, EQPyD-Net still has a minimal memory footprint of 5.2 MB for
the weights and 38.3 MB (in the worst-case) for the run-time processing. The
second part of the chapter introduces jointly-designed training and compression
techniques to build Nested Sparse CNNs, a class of dynamic CNNs suited
for inference tasks deployed at the edge of the IoT. A Nested Sparse CNN
consists of a single CNN containing N sparse sub-networks with nested weights
subsets, like a Matryoshka doll, and can trade accuracy for latency at run
time, using the model sparsity as a dynamic knob. When tested on image
classification and object detection tasks on an off-the-shelf ARM-M7 Micro
Controller Unit (MCU), Nested Sparse CNNs outperform dynamic solutions
naively built assembling single sparse models and state-of-the-art dynamic
strategies, like dynamic pruning and layer width scaling.

Finally, Chapter 5 concludes the dissertation, summarizing the main findings
of our research.



Chapter 2

Memory Optimizations for
Convolutional Neural Networks

2.1 Introduction and Motivation

As discussed in chapter 1, the quest for CNNs that can be deployed on a
wide variety of embedded architectures has accelerated the development of
multi-stage pipelines where not just accuracy but also non-functional metrics,
such as energy consumption, latency, and memory footprint, play as concurrent
variables to optimize. Among all performance factors, the memory footprint of
a CNN represents one of the biggest concerns as memory is the most expensive
hardware resource. Specifically, the memory cost of a CNN is split among two
components: weights and activations. The weight footprint depends on the
number of parameters of the network, whereas the activation footprint depends
on the memory needed to store the intermediate results, i.e., the feature maps
produced during the inference process.

While reducing the number and the bitwidth of the learned weights has been
treated initially as the crucial (and in many cases the only) aspect of the memory
optimization problem, lowering the activation footprint has lately become even
more critical. There are three main factors behind this new trend. First, CNNs
have been successfully applied to novel applications, like image demosaicing [57]
or depth estimation [58], where the feature maps resolution is much higher than
that required by image classification tasks. Second, hardware-aware auto-ML
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tools have become more commonly used to design efficient but irregular neural
architectures [59] where the weight-to-activation ratio has reduced substantially.
For instance, SwiftNet [60], one of the winning submissions of the Visual Wake
Words competition [61], occupies 250 KB for the weights and 200 KB for the
activations1. Third, off-the-shelf MCUs used in many IoT systems (such as the
ARM Cortex-M cores [62]) are characterized by minimal memory resources:
1−2MB of FLASH for storing the weights of the model and tens to hundreds of
KBs of on-chip SRAM to store the feature maps. The availability of such few
memory resources results in strict constraints that must be satisfied to make
the deployment of a CNN feasible on an MCU-powered device. Moreover, the
available memory to reserve for the CNN inference can be further reduced due
to other routines running concurrently on the same device.

In order to reduce the memory footprint of a CNN, several techniques have
been proposed in the last few years, and they can be divided into two main
categories: data-driven and data-independent. The data-driven techniques
attack the problem by leveraging the statistical nature of DL, and hence they
usually work at the neural architectural design and algorithmic level of the stack
(see Section 1.2). Lightweight neural architectural design [16], resolution and
topology scaling [15], quantization to low-precision integers [40, 63], and weight
pruning [33, 64], represent the most adopted and effective optimization strategies
belonging to this category. Such techniques require access to the training data
as they must be embedded in the training procedure, they are model- and task-
dependent, and, in some cases, they may cause an unrecoverable accuracy loss.
On the other hand, data-independent methods tackle the memory reduction
problem from a computational perspective, namely, applying data-independent
transformations during the compilation pipeline, and hence they work at the
graph- and operator-level of the stack (see Section 1.2). For instance, they play
with the scheduling of the tensor graph [49], or with the layout of the tensor
operators [65]. Data-independent techniques are training-free, hence model- and
task-agnostic, and can be superimposed to data-driven optimizations without
any accuracy loss.

This chapter first surveys the optimization algorithms adopted in several
state-of-the-art DL compilers to solve the memory allocation problem (Sec-

1https://github.com/newwhitecheng/vwwc19-submission

https://github.com/newwhitecheng/vwwc19-submission
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tion 2.2). Then, it introduces a novel data-independent technique, named the
dataflow restructuring, that performs a functionality-preserving, automated
graph restructuring procedure to reduce the activation memory requirements of
a CNN (Section 2.3). Finally, it presents a novel memory optimization pipeline
that combines data-driven DL techniques with a data-independent technique,
the dataflow restructuring, to enable the deployment of accurate CNNs on tiny
devices powered by MCUs (Section 2.4).

The content of this chapter is an extended, improved version of our previous
publications found in [66, 67].

2.2 Memory Allocation Algorithms for CNNs

2.2.1 Motivation

Memory allocation is a crucial pass in any compiler infrastructure, but it is even
more critical when memory-intensive workloads, such as CNNs, are deployed
on resource-constrained embedded devices. Achieving the optimal memory
allocation is, in fact, paramount as even a small overhead may prevent the
deployment of a given CNN. In the case of CNNs with static shapes, one
contiguous region of the memory, referred to as the memory pool, is reserved at
initialization time and statically partitioned to make space for the input and
output tensors of each layer. Specifically, partitioning the memory pool involves
assigning to each tensor an offset address, which defines the portion of the
pool reserved for the tensor during its lifetime. Since tensors are accessed by a
limited number of layers scheduled sequentially, the memory space assigned to a
tensor can be reused over time to store other non-conflicting tensors. Therefore,
in ML compilers, the memory allocation step usually takes the form of an
optimization problem aimed at finding the placement of tensors in the memory
pool that minimizes its size.

Some recent works [68–72] have addressed the problem by proposing and
implementing different greedy heuristics, some of which had also been integrated
into commercial inference engines (e.g., TensorFlow Lite [73], PyTorch Mo-
bile [74], Arm NN [75], and ONNC [76]). Unfortunately, these heuristics were
validated on simple hand-crafted CNNs with a regular linear graph topology.
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However, more recent studies in DL theory have promoted an emerging class
of CNNs generated via Automated Machine Learning (AutoML), e.g., Neural
Architecture Search [77]. AutoML CNNs achieve higher accuracy with fewer
weights and fewer operations than hand-crafted models, guaranteeing better
performance with fewer hardware resources, particularly memory. However,
they also present an irregular graph topology characterized by complex connec-
tivity, making the memory allocation problem much more challenging to solve
efficiently in practice. Therefore, it is natural to ask whether prior heuristics
can still achieve optimality as reported in the recent literature, and if not, how
far they are from the global optimum. To this end, in this section:

• We review different formulations of the memory allocation problem intro-
ducing two widely adopted options. The first one relies on a constrained
version of the two-dimensional strip packing problem; the second treats
the memory allocation as a graph coloring problem.

• We survey existing algorithms proposed to solve the presented formu-
lations. Our analysis includes both heuristic algorithms and an exact
method relying on a MILP solver.

• Finally, we evaluate the discussed methods quantifying their efficiency
in terms of memory minimization and processing time. The numerical
results were collected from a large set of CNNs, including both hand-
crafted and automatically generated architectures. About the latter, we
picked 845 CNNs from the NAS-Bench-101 database [26] with different
connectivity and depth (from 77 to 204 layers).

As the primary outcome, the experimental evaluation results demonstrate
the sub-optimality of existing heuristic methods, currently the most common
choice in standard tensor graph compilers, revealing substantial overhead (up to
33.6%) when tested on AutoML CNNs. Moreover, they empirically demonstrate
that a MILP method can consistently achieve optimal solutions in a reasonable
run time (1.69 s on average, 28.31 s in the worst case2).

2On a standard CPU-based server machine.
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2.2.2 Problem Formulation

For memory allocation purposes, a CNN can be modeled as a DFG G(T, E),
where T = {ti|i = 0, . . . , N − 1} is the set of nodes representing the N tensors
read and written at run time, and E = {ei,j|ti, tj ∈ T, i ≠ j} is the set of edges
describing the dependencies among tensors. Fig. 2.1 shows the DFG for a
simple CNN with six tensors. Each tensor ti has a memory size hi equal to the
product of its cardinality with the adopted data type (e.g., 32-bit floating-point
or 8-bit integer).
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Fig. 2.1 On the left, the DFG representation of a CNN. In the middle, the topological
order σ as a linearization of the DFG. On the right, the lifetime analysis and the
active memory for the ordered DFG.

Inference engines for embedded systems, e.g., TensorFlow Lite [73] or
PyTorch Mobile [74], process a CNN layer by layer sequentially, following a
valid order obtained by a topological sort of the DFG. We denote the topological
sort with the ordered set of tensors σ = (ti|ti ∈ T ), such that for any edge
ei,j ∈ E, ti precedes tj in σ; in Fig. 2.1, σ = (t0, t1, t2, t3, t4, t5). For a given σ,
the resulting lifetime wi of each tensor ti is the difference between its end- and
start-time. The start-time xi is defined as the position of ti in the topological
order σ, while the end-time is the start-time of its latest successor tj (ei,j ∈ E).
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Fig. 2.2 Example of a memory allocation for the sorted DFG reported in Fig. 2.1.

The end-time of the last tensor in σ defines the overall processing time W of
the DFG (W = 6 for the example in Fig. 2.1).

As stated previously, each tensor ti is placed in a contiguous memory
region called the memory pool. Allocating a tensor ti within the memory
pool corresponds to defining its address offset yi. The total size of the tensors
concurrently alive within a given logical time sets the active memory, whereas
the total memory footprint H is equal to the maximum active memory. Fig. 2.2
shows a possible memory allocation for the sorted DFG of Fig. 2.1, highlighting
the main variables and parameters of the problem (also summarized for the
sake of clarity in Tab. 2.1).

The memory allocated for a tensor can be freed once the tensor is not
accessed anymore, and it can be used for hosting other tensors. For instance,
t4 (starting at time 4) can reuse a fraction of the memory previously allocated
for t0 (ending at logical time 3); the same is not valid for t1 or t3 which are
alive together. Thus, the memory allocation involves the following optimization
problem: search the optimal set µ = {yi|ti ∈ T} that minimizes the memory
footprint H while guaranteeing that the intersection between the memory regions
of concurrently active tensors is empty.

The trivial solution is to place tensors into dedicated disjoint regions of
the memory pool. The resulting memory pool size H is the sum of all the
tensors size: this is the upper bound Hmax in the solution space of the memory
allocation problem (Hmax = 88 for the example of Fig. 2.1). The lower bound
Hmin is defined by the group of concurrent tensors with the highest memory
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Table 2.1 Notation adopted for the main variables and parameters of the memory
allocation problem.

Notation Definition

N ∈ Z+ Number of tensors.
T = {t0, . . . , tN−1} Set of tensors.

wi ∈ Z+ Lifetime of tensor ti.
hi ∈ Z+ Size of tensor ti (in bytes).
xi ∈ N Start-time of tensor ti.
yi ∈ N Memory offset of tensor ti.

W ∈ Z+ Total logical time.
H ∈ Z+ Memory pool size.

Hmin ∈ Z+ Theoretical lower bound of the pool size.
Hmax ∈ Z+ Upper bound of the pool size.

σ Topological order of the tensors.
µ = {y0, . . . , yN−1} Memory allocation.

demand (Hmin = 48 in Fig. 2.1). Hmin can be easily computed from the result of
the liveness analysis. In general, Hmin depends on the topological order σ, and
many topological orders may exist for a given DFG. For instance, in Fig. 2.1
an alternative topological order is σ = (t0, t2, t4, t1, t3, t5) with Hmin = 56. In
our study, we consider the topological order as an input, and all the algorithms
under analysis are compared using the same topological order (more details in
Section 2.2.4).

Since most CNNs are static and the size of each tensor is fixed, the memory
allocation problem can be solved at compile time before deploying the model
on the target device. Then, the obtained memory offsets can be off-loaded into
the target device in the form of a table, which is used at run time during the
processing of the CNN.

2.2.3 Memory Allocation Algorithms

In this subsection, we first describe the formulation based on the two-dimensional
strip packing problem and the related optimization strategies. Then, we present
the graph coloring formulation, showing its intrinsic limitations.
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2D Strip Packing Formulation and Methods

One way to solve the memory allocation problem is to cast it as a particular
instance of the two-dimensional strip packing problem (2D-SPP). The objective
of such a problem is to determine an overlapping-free packing of fixed-size
rectangles into a strip of bounded width such that its height is minimized [78].
Recalling the description introduced in the previous section (see Fig. 2.2), each
rectangle of size wi×hi represents a tensor, where the width is equal to its
lifetime and the height its size in bytes. The coordinates of the bottom-left
corner of each rectangle (xi, yi) define its placement in the strip. Specifically, xi

is the start-time of the tensor set by the topological order σ; yi is the memory
offset to be optimized. The width W of the strip is fixed and defined through
the total logical time of the DFG, whereas its height H is the cost function
to minimize. This formulation differs slightly from the general 2D-SPP, where
both rectangle coordinates are optimization variables. The following equations
formalize the problem:

minimize H

subject to:
yi + hi ≤ H, ti ∈ T (2.1)

yi + hi ≤ yj or yj + hj ≤ yi, (ti, tj) ∈ L (2.2)

where L ⊆ T is the set of tensor pairs with overlapping lifetimes, i.e., L =
{(ti, tj)| ti, tj ∈ T , [xi, xi + wi) ∩ [xj, xj + wj) ̸= ∅, i ̸= j}. The constraint (2.1)
guarantees that all tensors are placed inside the pool, while (2.2) that concurrent
tensors occupy non-intersecting regions of the memory pool.

In the remainder of this section, we introduce the existing optimization
methods [69–72, 76], specifically, the greedy algorithms and a MILP-based
formulation that any standard mathematical optimization toolbox can solve,
e.g., SCIP [79].

Greedy algorithms are the preferred option in current CNN compilers due
to their low worst-case computational complexity (quadratic in the number of
tensors). Tab. 2.2 summarizes the most representative ones. Specifically, we
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Table 2.2 Taxonomy of the existing heuristic algorithms proposed as memory allo-
cators for CNNs. ↓ indicates decreasing sorting order, whereas ↑ ascending sorting
order.

Placement
Policy

Tensor
Indexing

Offset
Indexing

Notation References

Tensor-first

Size ↓
Best-fit gs-best [71, 72, 76]
First-fit gs-first [70–72, 76]

Start-time ↑
Best-fit fifo-best [76]
First-fit fifo-first [70, 76]

Start-time ↓
Best-fit lifo-best —
First-fit lifo-first [70]

Breadth ↓
Best-fit gb-best [72]
First-fit gb-first [72]

Offset-first Lifetime ↓ Lowest-first b2sp [69]

propose a new taxonomy of the heuristic algorithms based on the observation
that they all share the same basic strategy, i.e., an iterative procedure where
tensors are allocated one by one, but they differ for the placement policy. The
placement policy encompasses the definition of two indexing criteria: (i) how
to rank the tensors, and so how to select the tensor to allocate; (ii) how to
select the free offset to assign to a tensor. These are the Tensor and Offset
indexing columns reported in Tab. 2.2. Depending on which criteria gets served
first, the placement can be classified as tensor-first, i.e., tensor selection before
offset selection, or offset-first, i.e., offset selection before tensor selection.

The pseudocode for the tensor-first class of heuristics is reported in Al-
gorithm 1. First, the pool size is set to zero (line 1) as no tensor is placed
(line 2). Then, the tensors are sorted (line 3) and placed sequentially through an
iterative procedure (lines 4–7). Different sorting criteria can be adopted, which
differ for the key (Size, Start-time, or Breadth) or for the order (descending ↓
or ascending ↑): in the by-size indexing, tensors are sorted in descending order
by their memory size; in the by-start-time indexing, the ordering can be either
ascending (fifo) or descending (lifo); in the by-breadth indexing, tensors are
sorted in descending order using the total active memory at their start-time as
ordering key (in Fig. 2.1, the breadth of tensor t1 is 24, the breadth of t2 is 32).
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Algorithm 1: Tensor-First Memory Allocation
Input: A set of tensors T and their topological order σ.
Output: The memory pool size H and tensor placement µ obtained

according to the adopted Tensor and Offset indexing policies.
1 H ← 0
2 µ← ∅
3 T ∗ ← Sort(T, TensorIndexing)
4 for ti ∈ T ∗ do
5 yi ← GetOffset(ti, µ, OffsetIndexing)
6 µ← µ ∪ {yi}
7 H ← max(H, yi + hi)
8 return (H, µ)

Ordered Tensors

00

2 40

Logical Time
6 8 10

M
e

m
o

ry
 O

ff
s

e
t

2 40

Logical Time
6 8 10

11

M
e

m
o

ry
 O

ff
s

e
t

2a2a 2b2b

first-fit best-fit

(xi , wi)

(6, 4) (4, 6)

Candidate
gaps

2 40

Logical Time
6 8 10

M
e

m
o

ry
 O

ff
s

e
t

2 40

Logical Time
6 8 10

M
e

m
o

ry
 O

ff
s

e
t

Fig. 2.3 Schematic view of the tensor-first heuristic algorithm. The picture refers
to a by-size tensor policy. The bottom row shows the first-fit (step 2a) and best-fit
(step 2b) offset indexing policies.

The for-loop (line 4) iterates over the ordered list T ∗ pulling one tensor at
a time and selecting the best offset available yi (line 5); the placement and the
memory pool size are updated accordingly (line 6–7). The loop ends when T ∗

is empty, returning the pool size and the memory placement (line 8).

As graphically depicted in Fig. 2.3, once a tensor is picked from the list T ∗

(step 0), there are several possible offset candidates (step 1). According to the
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first-fit indexing option (step 2a), the lowest available offset that does not cause
overlapping with already placed tensors is assigned to the tensor. According to
the best-fit indexing instead (step 2b), the tensor is placed into the smallest
gap available, still avoiding overlaps. If there is a lack of memory space, the
memory pool is extended upward by assigning the first available offset on top
of the currently placed tensors.

Overall, the tensor and offset indexing criteria can be combined, originating
eight different versions of the tensor-first allocation method (see Tab. 2.2).

The pseudocode of the offset-first class of heuristics is reported in Algo-
rithm 2. As for the tensor-first algorithm, the initialization stage (lines 1–2) is
followed by the optimization loop (lines 3–13). In the optimization loop, the
first decision involves the offset selection (lines 4–9), and it works as follows.
First, based on the current placement µ, the lowest and leftmost offset y∗

among those still available is extracted (line 6). Second, the non-placed tensor
list is indexed to search the tensors that fit into y∗ (line 7). These tensors are
stored in a temporary set of candidates T ∗. If none of the non-placed tensors
fit the current offset y∗ (line 8), then the current offset is merged with the
lowest adjacent one to create a larger gap at the cost of leaving a portion of
the memory space unused (line 9). As soon as a non-empty subset of tensor
candidates is found (line 5), the one with the longest lifetime is picked (line 10)
and placed by assigning to it the offset candidate y∗ (line 11). Then, the
optimal placement and the memory pool size (line 12-13) are updated, and the
outer loop repeats until all the tensors are placed. Finally, the pool size and
the memory allocation are returned (line 14).

Fig. 2.4 gives a representation of the optimization loop and its implementa-
tion details. Among the four offsets available at the current iteration, those
highlighted in green (step 0), the lowest and leftmost offset is selected: the one
highlighted in red (step 1). Since none of the non-placed tensors can fit the
available room without overlapping already placed tensors, the offset is merged
with the lowest adjacent one (step 2). As multiple tensors can now be placed
at the current offset, those highlighted in blue (step 2), the priority is given to
the one with the longest lifetime. The selected tensor is placed, and then the
available offsets are updated for the next loop iteration, as highlighted in green
(step 3).
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Algorithm 2: Offset-First Memory Allocation.
Input: A set of tensors T and their topological order σ.
Output: The memory pool size H and tensor placement µ.

1 H ← 0
2 µ← ∅
3 while |µ| < |T | do
4 T ∗ ← ∅
5 while T ∗ = ∅ do
6 y∗ ← GetOffset(µ)
7 T ∗ ← GetFittingTensors(T, y∗, µ)
8 if T ∗ = ∅ then
9 UpdateCandidateOffsets(µ)

10 ti ← argmaxtj∈T ∗ wj

11 yi ← y∗

12 µ← µ ∪ {yi}
13 H ← max(H, yi + hi)
14 return (H, µ)
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Fig. 2.4 Schematic view of the offset-first heuristic algorithm.

Given that the proposed heuristics are characterized by low computational
complexity, a simple yet effective ensemble strategy can run them all to de-
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termine the solution that performs best [72]. This strategy, which we refer
to as bag-of-heuristics, works under the assumption that different heuristics
may fail to achieve optimality on different networks. Therefore, their combi-
nation may find the global optimum or reduce the memory overhead on average.

Alternatively to the greedy algorithms, a MILP solver can be used for the
memory allocation problem after performing a linear relaxation of the logical
constraints in (2), for example, through the big-M method. The analytical
formulation is as follows:

minimize H

subject to:
yi + hi ≤ H, ti ∈ T (2.3)

yi + hi ≤ yj + pij ·M, (ti, tj) ∈ L3 (2.4)
yj + hj ≤ yi + (1− pij) ·M, (ti, tj) ∈ L (2.5)

The M refers to the “Big” value associated with the artificial binary variables
pij:

pij =

1, if xi + wi ≤ xj

0, if xj + wj ≤ xi

(ti, tj) ∈ L

As we observed during our experiments, the optimization time is substan-
tially affected by the value of M , especially for large networks, and an overesti-
mation of M might prevent the branch-and-cut method [80] from converging
to a feasible solution [69]. It is indeed paramount to estimate a reasonable
lower bound for M , which should be large enough to guarantee the existence
of a feasible solution but small enough to ensure a run time of the MILP solver
acceptable in a compilation flow. We empirically observed that M = 1.5 ·Hmin

is a good value for our suite of benchmarks (851 CNNs as described later in
Section 2.2.4). Should this choice fail, we suggest setting M following the
methodology proposed in [81].

3L is the set of tensor pairs with overlapping lifetimes.
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c) Post-processing [68].

Fig. 2.5 Schematic view of memory allocation with graph coloring.

Graph Coloring Formulation and Methods

The memory allocation of CNNs can also be formulated as a graph coloring
problem. This formulation relies on building a conflict graph, where the nodes
are the tensors, and the edges represent the conflict among tensors; here, conflict
refers to tensors with overlapping lifetimes. The graph coloring problem consists
of assigning a color to each node of the conflict graph such that connected
nodes have different colors and the number of colors is minimum. Fig. 2.5a
shows the conflict graph for the example reported in Fig. 2.1 and a minimum
color assignement.

Graph coloring algorithms are commonly adopted to solve the register
allocation problem [82] in compilers for general-purpose CPUs, which consists
of mapping each local variable of a piece of code into the lowest number of
internal registers. In the register allocation problem, however, all variables
share the same size, whereas tensors generally differ in size in the case of
CNNs. As illustrated in the example of Fig. 2.5b, this is the primary source of
sub-optimality. In fact, the memory pool is split into disjoint regions, one for
each color in the optimal color set, and each region has a size equal to the size



2.2 Memory Allocation Algorithms for CNNs 31

of the largest tensor assigned to that color. Such a placement can under-utilize
the available space when tensors of different sizes share the same color. The
authors of [68] tried to address this issue by introducing a post-processing stage
after the standard graph coloring stage. The post-processing stage involves an
iterative procedure that lowers the offset of tensors with available free space
at the bottom (Fig. 2.5c). However, the proposed solution does not have any
optimality guarantee.

2.2.4 Experimental Results

Benchmarks

We evaluated the allocation methods on two sets of CNNs. The first consists of
six hand-crafted architectures commonly adopted in computer vision applica-
tions for image classification and feature extraction in segmentation and object
detection tasks. GoogLeNet [83] is one of the pioneering works that introduced
irregular connectivity in CNNs, demonstrating that an irregular topology im-
proves the prediction accuracy. It is built upon a stack of multiple Inception
modules composed of four parallel branches converging in a concatenation layer.
Different instances of the Inception module were proposed by more recent
network designs, such as Inception-v3 [20], where the Inception module varies
in the number of branches or in the number of layers in each branch. ResNets [1]
introduced the residual connection, which is a by-pass connection summing two
tensors at different depths of the network. Several ResNets exist, each with
the same underlying topology but with a different layer count; we adopted the
ResNet-18 version. MobileNetV1 [15] proposed the use of depthwise separable
convolutional layers to reduce the number of parameters and operations for
mobile applications. MobileNetV2 [84] is an extension of MobileNetV1; it is
made up of a stack of inverted residual blocks, where residual connections are
used along with depthwise separable convolutions. DenseNets [25] are networks
with a higher connection density: each layer takes as inputs the output tensors
produced by all the previous layers and feeds all the subsequent layers. As
for the other CNNs, different-sized networks are available and, with no lack of
generality, we picked the DenseNet-121 instance. The adopted hand-crafted



32 Memory Optimizations for Convolutional Neural Networks

Table 2.3 Overview of the six hand-crafted CNNs adopted as benchmarks.

CNN n # Constr. Hmax [MB] Hmin [MB]

GoogLeNet [83] 85 542 6.38 1.15
Inception-v3 [20] 122 867 13.50 1.98
ResNet-18 [1] 33 136 3.28 0.96
MobileNetV1 [15] 29 86 4.81 1.15
MobileNetV2 [84] 64 251 6.58 1.44
DenseNet-121 [25] 248 1091 26.71 1.72

models serve as test-benches to validate our implementation of the methods
presented in Section 2.2.3.

Tab. 2.3 summarizes the main features of the selected benchmarks. It
reports on the total number of tensors (column n) and the number of MILP
constraints (column # Constr.), which can be used as indirect proxies to
infer the complexity of each instance, together with the upper-bound of the
memory footprint (Hmax), obtained through a naive allocation strategy, and
the theoretical lower-bound (Hmin). The memory requirements refer to an 8-bit
data-type implementation, which is a common implementation choice for CNNs
on embedded systems. The gap between Hmax and Hmin quantifies the maximum
savings achievable by an optimal memory allocation. The optimization margin
is large, from 3.4× to 15.5×, motivating the need to investigate efficient memory
allocation methods.

The second set includes a collection of CNNs picked from the NAS-Bench-
101 [26], an open-source dataset that was designed to provide support for the
research of AutoML search algorithms. These CNNs are built by stacking
three instances of the same cell; different architectures make us of cells with a
different topology as the backbone. Specifically, each cell has a maximum of
seven layers and nine interconnections; each layer can be chosen among one of
three different operators. Overall, the dataset contains 423k CNN architectures
varying in size and structure. Among them, we considered 845 architectures
with a unique connectivity pattern across the cell layers; the remaining ones
do not bring any additional value to our analysis, as they differ for the kind
of arithmetic operation applied, and so they can share the same memory
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Table 2.4 Overview of the 845 NAS-Bench-101 CNNs adopted as benchmarks.

Min. Average Max.

n 79 154 205
# Constr. 236 856 1346
Hmax [MB] 2.93 5.57 14.74
Hmin [MB] 0.25 0.30 0.63

Table 2.5 Memory pool size (H) in MB and execution time (Time) in s for differ-
ent allocation algorithms. Solutions achieving optimal memory (H = Hmin) are
highlighted in bold.

Benchmark
gs-best gs-first gb-best gb-first b2sp milp

Hmin H Time H Time H Time H Time H Time H Time

GoogLeNet [83] 1.15 1.15 0.01 1.15 0.01 1.15 0.01 1.15 0.01 1.15 0.02 1.15 0.16
Inception-v3 [20] 1.98 1.98 0.01 1.98 0.01 2.05 0.02 2.05 0.02 1.98 0.03 1.98 0.13
ResNet-18 [1] 0.96 0.96 0.01 0.96 0.01 0.96 0.01 0.96 0.01 0.96 0.02 0.96 0.03
MobileNetV1 [15] 1.15 1.15 0.01 1.15 0.01 1.15 0.01 1.15 0.01 1.15 0.01 1.15 0.06
MobileNetV2 [84] 1.44 1.44 0.01 1.44 0.01 1.63 0.01 1.63 0.01 1.44 0.02 1.44 0.04
DenseNet-121 [25] 1.72 1.91 0.03 1.91 0.03 2.11 0.04 2.11 0.04 1.72 0.08 1.72 0.52

allocation. Tab. 2.4 collects the statistics, emphasizing the diversity of the
selected benchmarks, both in terms of problem complexity (n and # Const.)
and memory requirements (Hmin and Hmax), which is an important aspect to
consider for testing the efficiency of the memory optimization.

Software Tools and Hardware Specifications

We resorted to a custom implementation of the methods described in Sec-
tion 2.2.3 and summarized in Tab. 2.2. Our assessment includes six different
algorithms: gs-best, gs-first, gb-best, gb-first, their combination in a bag-of-
heuristics, and the MILP formulation. We omitted (i) the heuristic algorithms
based on start-time tensor policies (fifo-best, fifo-first, lifo-best, and lifo-first),
and (ii) the formulation based on graph coloring, since prior works have shown
their inferior performance even on the most simple handcrafted CNNs [70, 76].
The heuristic methods were implemented in Python, whereas we adopted the
SCIP framework [79] as MILP solver. Even though Python is known to be not
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performance-oriented, we observed that the heuristic methods require negligible
CPU time (more details later in the text), making custom code optimization
unnecessary and expensive. As an additional note, the CPU time refers to
single-thread execution on a workstation powered with an Intel Xeon Silver
4114 CPU running at 2.2 GHz.

Results on Hand-crafted CNNs

Tab. 2.5 shows the results for the set of hand-crafted CNNs, reporting for
each method the returned memory pool size and the execution time of the
optimization. The collected numbers confirm the trend already observed by
previous research [72], validating our implementation of the different methods.
Overall, the heuristics achieve a pool size close or equal to the theoretical
lower-bound Hmin, within negligible time (0.08 s in the worst-case). As one can
observe, b2sp gets the best result with a marginal time overhead. Compared to
the numbers reported in [72], there are slight differences due to the topological
order of the tensors (Section 2.2.2), which is an input of the memory allocation
process. Interestingly, the table reveals that the MILP solver reaches the
global optimum in negligible time as well (less than 1 s for all test cases).
This result does contrast with the existing literature claiming MILP-based
approaches are unfeasible. It is, however, true that the value of the big-M may
affect performance and hence must be properly tuned, as already mentioned in
Section 2.2.3.

Results on NAS-Bench-101

Tab. 2.6 summarizes the statistics of the results collected on the NAS-Bench-101
CNNs. The row Optimal shows the percentage of cases reaching the lower-
bound Hmin, Avg. Ovhd. and Max. Ovhd. the average and maximum relative
distance from the optimal solutions, WCET the Worst-Case Execution Time,
and ACET the Average-Case Execution Time.

Unlike hand-crafted networks, no heuristic achieves Hmin in all cases. In the
best case (column gs-first), only 35.5% instances are solved with an optimal
allocation; the remaining 64.5% show substantial memory overhead: 10.4%
on average, 33.6% at worst. Such penalty represents a potential barrier for
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Table 2.6 Percentage of optimal solutions, average and maximum overhead (Avg.
Ovhd. and Max. Ovhd.), Worst-Case Execution Time (WCET) and Average-Case
Execution Time (ACET) for each algorithm over the NAS-Bench-101 CNNs.

gs-best gs-first gb-best gb-first b2sp bag-of milp

Optimal [%] 32.4 35.5 31.1 33.3 34.3 59.4 100
Avg. Ovhd. [%] 10.6 10.4 12.9 13.2 14.1 5.9 0
Max. Ovhd. [%] 33.6 33.6 33.6 33.6 33.6 25.0 0
WCET [s] 0.03 0.03 0.04 0.03 0.11 0.24 28.31
ACET [s] 0.02 0.01 0.02 0.02 0.03 0.10 1.69

deploying CNNs, considering that the memory footprint for intermediate acti-
vations increases linearly with the batch size and quadratically with the input
resolution. Notice that the worst-case overhead is the same for all the five
heuristics (33.6%).

The quality of results can be improved by leveraging the bag-of-heuristics
approach (column bag-of ). In this case, the number of optimal solutions almost
doubles (from 35.5% to 59.4%), and the overhead reduces substantially (5.9%
on average, 25% at worst). This result confirms that different heuristics fail on
different instances of the problem.

An important outcome concerns the MILP solver (column milp): it always
converges to an optimal solution. Even though the execution time gets sub-
stantially larger than the bag-of-heuristics (up to 118×), the optimal allocation
can be found in negligible time (1.69 s on average, 28.31 s in the worst case).
As stated in the introduction of the paper, these findings raise the urgent need
to revise the dominant approach in standard tensor graph compilers, which
instead rely on heuristic schemes that are too weak to deal with the complexity
of modern CNNs.

2.2.5 Discussion

This first part of the chapter presented a thorough review of existing methods
for the pool-based memory allocation of static tensor graphs, like CNNs. Our
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analysis considered two different problem formulations and the related proposed
optimization algorithms. Finally, we conducted a quantitative assessment on
six hand-crafted models and 845 AutoML networks extracted from the NAS-
Bench-101 database. The experimental results reveal that heuristic methods
can achieve optimality only on hand-crafted networks, which presents a limited
number of branches and regular connectivity patterns. When tested on networks
generated by AutoML, the heuristics fail to identify an optimal solution in most
cases (≥ 65.5%), generating substantial memory overhead (up to 33.6%). Their
combination in a bag-of-heuristics can only limit the number of sub-optimal
cases (down to 40.6%). Instead, an exact method based on a MILP formulation
guarantees convergence to the optimal allocation for all benchmarks in negligible
run time, 28.31 s as the worst-case.

The conclusions achieved through the proposed quantitative assessment
hold for a pool-based memory allocation, a type of memory allocation that
can be applied under the following assumptions and constraints. First, the
network can be described with a static graph, where the shapes of the tensors
are static and known and compile time. This hypothesis applies to CNNs
but not to other DL algorithms, e.g., Recurrent Neural Networks, where the
size of intermediate tensors is input dependent. In such cases, a compiler
can either rely on dynamic memory allocation [85] or on allocating memory
based on the worst-case scenario. Second, a pool-based memory allocation
implies the possibility to place multiple concurrent tensors within the pool
through an explicit assignment of their offsets. This feature is not possible for
some software libraries, e.g., when dealing with memory allocation in mobile
GPUs through OpenGL textures. The OpenGL runtime, in fact, does not
allow offset assignment and therefore prevents storing concurrent tensors in
the same texture. This constraint forces the creation of multiple pools and
therefore calls for other kinds of methods to solve the allocation problem [72].
Third, a pool-based memory allocation is suitable for hardware platforms with
a single-level memory hierarchy, or, in the case of multi-level hierarchy, when
the software does not have direct control over memory management. Most
commercial MCUs and mobile CPUs available in the embedded market [86] fall
in these categories of hardware platforms. However, there exists an emerging
class of hardware accelerators [87, 88] that requires explicit management of the



2.3 Dataflow Restructuring for Activation Memory Reduction in CNNs 37

0 10 20 30 40 50

# Processed Layers

0

200

400

600

800

1000

M
em

or
y[
K
B
]

ResNet18 - Peak Mem. 980KB.

0 10 20 30

# Processed Layers

0

2000

4000

6000

M
em

or
y[
K
B
]

VGG16. Peak Mem. 6272KB.

0 20 40 60 80 100

# Processed Layers

0

500

1000

1500

M
em

or
y[
K
B
]

MobileNetV2 - Peak Mem. 1470KB.

Fig. 2.6 Memory profile of three different CNNs during the forward pass. Input
tensor resolution is 3x224x224 (i.e., ImageNet [8] standard resolution).

different levels of the memory hierarchy. The memory allocation problem raises
additional challenges in this context, calling for more complex formulations.

2.3 Dataflow Restructuring for Activation Mem-
ory Reduction in CNNs

This section presents our novel data-independent optimization technique aimed
at reducing the activation memory footprint of CNNs. The idea behind this
work originated from the observation that, for many CNNs, the total active
memory reaches its peak value for a limited amount of time, i.e., only when
processing a few layers4, whereas it is remarkably lower before and after. The
plots reported in Fig. 2.6 confirm the trend for three popular CNNs. While
the specific memory profile of a model depends on its hyper-parameters and
topology, at least two elements in the neural architecture design methodology

4In this chapter, the terms layer and operator are used interchangeably.
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make this trend quite general. Regions processing higher resolution tensors
require more memory than those processing lower resolution feature maps;
regions with more dependencies between layers are more memory demanding
than those with a chain-like structure. Thus, in the case of a pool-based
memory allocation, the most common choice in DL compilers, a considerable
part of the allocated space remains underutilized for most of the inference
time. It is therefore natural to ask the following question: is possible to
redistribute the memory peaks over less critical layers to reduce the overall
activation memory footprint, getting a more balanced memory profile? That
is precisely the purpose of the dataflow restructuring technique presented in
this section. The dataflow restructuring technique first identifies the most
memory demanding sub-graphs of the model, the critical subgraphs, and then
uses graph-rewriting procedures to transform them into smaller independent
branches, reducing the peak memory value without affecting the functionality.

As key features, the proposed technique can work on any CNN, it does
not require specialized code routines or hardware modules, and it can be eas-
ily combined with other optimizations. In fact, unlike similar related works,
e.g., [89], the restructurer operates at a higher level of abstraction, managing
tensors as abstract data objects, regardless of how they are specifically packed,
stored, and processed on the device. In other words, it does not add dependen-
cies to specific operator-level implementations or hardware modules, ensuring
flexibility and portability. An extensive evaluation of the proposed technique
on five state-of-the-art CNN architectures, VGG-16, ResNet18, InceptionV3,
MobileNetV2, and SqueezeNetV1.1, assesses the memory gain achieved (-62.9%
on average) and the computational overhead introduced (8.6% on average).

2.3.1 Background

As discussed more in-depth in the previous section, CNNs can be represented
as DFGs where the nodes model the tensor operators and the edges the data
dependencies. Each node processes at least one input tensor and produces one
output tensor. Fig. 2.7 shows an example DFG, namely, a residual block of
ResNet [1]. Note that this work deals with static graphs where all tensors have
a static shape defined at compile time, leaving the extension to dynamic graphs
for future works.
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Fig. 2.7 On the left, the DFG of a residual block [1]; on the right, the conflict graph
of its intermediate tensors Ti. Each node is labeled with an ID, the tensor operation
performed, and the size of the output tensor.

Before performing the memory allocation step, the compiler first schedules
the DFG through a topological sort operation; then, it runs a liveness analysis
for the intermediate tensors to estimate the size of the memory pool to allocate.
The lifetime of a tensor is defined as the difference between the end-time
of its latest consumer and the start-time of its producer. Tensors with non-
overlapping lifetimes can share the same portion of memory. As shown in
Fig. 2.7, the overall size of tensors concurrently alive in a given cycle sets the
active working memory, while the cycle with peak memory utilization defines
the minimum size of the memory pool (see Sec. 2.2.2). Therefore, reducing the
activation footprint requires lowering the peak memory value, which generally
depends on the DFG topology and the tensor sizes.

2.3.2 Related Works

While a detailed overview of the optimization strategies for CNNs is reported
in sec. 1.2, here we briefly discuss the main differences of the proposed dataflow
restructuring algorithm compared to other existing data-independent optimiza-
tion techniques.

Tab. 2.7 reports a taxonomy of the main related SOTA techniques, highliting
the abstraction level, graph- or operator-level, the main optimization objective,
Memory or Latency, and the target hardware platform, CPU, GPU, or Custom
ASIC/FPGA. The taxonomy reflects the hierarchical organization of modern
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Table 2.7 Taxonomy of related works.

Works Graph-Level Operator-Level Main Objective Platform

[49] x Memory Any
[90] x Latency Any

[53, 39, 52] x Latency CPU/GPU
[55] x x Latency CPU/GPU

[89, 91] x x Memory Custom
Ours x Memory Any

ML frameworks and compilers [13, 14], which adopt a multi-level structure to
lower the high-level dataflow description of a neural model to binary code (see
Sec. 1.2).

Graph-level transformations are usually implemented as functionality-preserving
rewriting rules, which manipulate the graph by removing, modifying, or adding
nodes. They have been used to search for the best parallelization strategy [90]
or to reduce the peak activation memory [49] by leveraging the algebraic prop-
erties of the operators. For instance, a sequence of a concatenation operator
and a convolution can be rewritten as a sum of convolutions [49]. Instead
of exploiting the algebraic properties of some tensor operators, the proposed
dataflow restructuring algorithm uses the spatial locality of the operators to
lower the activation memory footprint, ensuring applicability to a broader range
of CNN architectures.

Operator-level transformations deal with the implementation of a single
operator, optimizing the scheduling of the low-level code based on the character-
istics of the specific target platform. For example, CPUs with multi-level caches
and SIMD units require different optimizations than those applied to massively
parallel GPUs with scratchpad memories or to custom accelerators with simple
PE and an explicitly managed distributed memory hierarchy. These trans-
formations can be operated automatically by the compiler [52], or manually,
through a hardware-aware code rewriting process [53, 39].

Operator- and graph-level transformations complement each other and can
be combined in cross-level optimizations. One of the most effective techniques
in this space is operator fusion, which rearranges the processing of subsequent
chained operators in a depth-first manner, mainly to reduce memory bandwidth
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requirements. For instance, a subset of elements of a feature map produced
by an intermediate operator can be consumed by a subsequent operator as
soon as they are ready instead of waiting for the computation of the entire
feature map. Such a schedule enhances the data-reuse of intermediate results,
reducing the number of accesses to higher levels of the memory hierarchy.
The result of operator fusion is an optimized graph with new nodes repre-
senting the custom intra-layer operators. In [55], the authors implemented a
framework that first searches the candidate operators to fuse, then generates
a fused code implementation targeting high-end CPUs and GPUs. Due to
the memory architecture of these platforms, the framework does fuse only a
convolutional operator with the following element-wise activation function or
pooling operator. The authors of [89] and [91] introduced more aggressive
strategies leveraging custom hardware modules with special local buffers to
fuse even multiple convolutional operators. Such aggressive fusion enhances
on-chip data reuse [89] and increases the achievable troughput [91]. In these
works, the graph restructuring is tightly coupled with a specific schedule of the
fused tensor operators. In contrast, our dataflow restructuring algorithm works
entirely at the graph level, avoiding any dependencies from other operator-layer
optimizations, which can be applied later, depending on the specific target
platform or on other application constraints.

2.3.3 Restructuring Algorithm

The proposed dataflow restructurer aims to identify and reduce the memory
peaks of a CNN starting from a valid schedule of its DFG. This goal is ac-
complished by isolating those sub-graphs contributing to the peak memory
value and applying a localized and memory-driven topology restructuring.
Specifically, the new topology preserves the same functionality of the original
model, hence the value of all weights of the operators, but it comprises smaller
independent sub-graphs that are less memory and computational dense, and
that can be processed in sequence, allowing for more memory reuse. Each
of these sub-graph computes a tile of the output tensor by processing a tile
of the original input tensor(s); the input tiles are obtained by adding proper
split operators to the original DFG, whereas the output tiles are concatenated
(thanks to newly inserted cat operators) to reconnect the new sub-graphs with
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Fig. 2.8 Example of the dataflow restructuring process on a linear DFG.

the other nodes of the model. The split and cat operators can be seen as special
nodes that create lightweight and independent processing paths between the
model regions with a lower memory pressure.

Before detailing the algorithmic implementation, Fig. 2.8 reports an example
of the optimization process, showing the DFG of a simple linear model before (a)
and after (b) the topology restructuring and their memory profiles (c). Operator
L2 dictates the original peak memory value (12 units in the example). Thus,
reducing the peak memory requires lowering the volume of tensors concurrently
processed by L2. Indeed, the memory-driven topology restructuring splits L2
into smaller nodes and propagates the transformation backward to L1 and
forward to L3. The resulting DFG has two lightweights (in terms of activation
memory) and independent branches: from L6 and L7, which are the inserted
split operators in charge of tiling the tensor produced by L0 such that the
functionality of the sub-graph is preserved, to L5, which concatenates the
output tiles produced by L3∗ and L3∗∗. The two branches are copies of the
original operators that work on tensors halved in size. As the computational
complexity depends on the size of the tensors, the two branches are almost
two times faster than the initial monolithic path (except for a small overhead
discussed later in this section), so the overall latency remains almost the same.
Even more important, they are independent: they consume and produce disjoint
tensors and can be therefore processed sequentially to reduce lifetime conflicts,
maximizing memory reuse. The plot reveals that the obtained memory profile
shows a lower peak value and, thus, a smaller memory footprint (33% savings).
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Fig. 2.9 The split of a stencil operator into two smaller independent operators.

In order to make the restructuring procedure generic and automated, the
placement of the fork-points, i.e., the split operators (L6 and L7), and of the join-
point(s), i.e., the concatenation operator (L5), is an essential aspect to consider.
Fork- and join-points define, in fact, the critical region to be restructured,
or, equivalently, the graph regions with a lower memory pressure (L0 and L4
in the example) to bridge with the new independent processing paths. The
wrong placement of such anchor points would make the restructuring process
ineffective. For instance, splitting L2 alone does not bring any savings, as the
total size of the overlapping tensors would be the same as the original DFG.
Moreover, fork- and join-points create further dependencies with neighboring
tensors, affecting the overall working memory. The input tiles produced by the
split operators and the output tiles processed by the concatenation operator
must be kept alive when processing each independent branch. Last but not least,
the tensor operators mainly used in CNNs, such as convolution and pooling, are
stencils with overlapping windows that lead to redundant computations (the
halo regions) and duplicated elements when creating the independent branches.
An example is shown in Fig. 2.9 for a stencil operation with a kernel window of
size 2×2. The output tensor is split vertically, generating two smaller operators;
each operates on two tiles of the original input tensor, which have duplicated
values (the grey-shaded elements in the picture) to preserve the functional
equivalence of the new sub-graphs. When the split operator is back-propagated
across a path of the graph, those duplicated elements are computed several
times by different operators, resulting in additional computations. Playing with
the fork- and join-points placement and the number of independent branches
affect the length and the data volume of the independent branches, hence the
number of redundant operations.
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Based on these considerations, we tackled this multi-objective optimization
problem (memory vs. computational overhead) by providing a simple heuristic,
the restructuring algorithm. The restructuring algorithm can serve as an engine
for different greedy optimization strategies (one of which will be discussed in
the experimental section), as formulating the problem in a closed-form might
be unfeasible, especially in the case of large networks.

Pseudocode

Algorithm 3 reports the pseudocode of the proposed restructuring algorithm,
named RESTRUCTURE, with two input parameters: α and n_slices. α is a
scalar value affecting the selection of the sub-graph to be restructured, while
n_slices is a pair {w, h} indicating the number of splits applied in the width
and height dimensions of the tensors.
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Fig. 2.10 Graph-rewriting that
propagates the split operators in
the DFG.

At first, the EXPLORE procedure finds
the set of nodes to include in the critical sub-
graph (line 2), i.e., those to be restructured.
This procedure determines the placement of
the fork- and join-points discussed in the pre-
vious sub-section. Then, the nodes are pro-
jected on the DFG, and the critical sub-graph
is identified (line 3). Finally, the sub-graph is
visited in reverse topological order to perform
the graph-rewriting (lines 4). Specifically, the
output tensors of the sub-graph are split ac-
cording to the values in n_slices; then, during
the backward traversal, the split operators are propagated from the output to
the input tensors of each node applying the graph-transformation shown in
Fig. 2.10.

To compute the parameters of the split operators automatically, we devel-
oped a symbolic evaluation engine on top of a domain-specific language (DSL)
that associates a functional specification to each tensor operator.

The EXPLORE procedure works as follows. First (lines 8-9), the DFG is
scheduled, and the lifetime of each tensor is extracted to compute the memory
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Algorithm 3: Daflow Restructuring Algorithm
1 Function restructure(DFG, α, n_slices):
2 critical_set = explore (DFG, α)
3 subDFG = extractSubgraph (DFG, critical_set)
4 reverseVisit (subDFG, n_slices)
5 Function explore(DFG, α):
6 schedule = topologicalSort (DFG)
7 lifetimes = getLifetimes (DFG, schedule)
8 memory_profile = getMemProfile (schedule)
9 peak_memory = max (memory_profile)

10 for node ∈ DFG.nodes do
11 criticality[node] = computeCriticality (
12 lifetimes, node, memory_profile)
13 end
14 critical_set = {node ∈ DFG.nodes,
15 s.t. criticality[node] == peak_memory}
16 while ∃ node ∈ fanin(frontier(DFG, critical_set))
17 s.t. criticality[node] ≥ α · peak_memory do
18 critical_set ← critical_set ∪ {node}
19 end
20 while ∃ node ∈ fanout(frontier(DFG, critical_set))
21 s.t. criticality[node] ≥ α · peak_memory do
22 critical_set = critical_set ∪ {node}
23 end
24 return critical_set

profile and the peak value (lines 10-11). Each node is then labeled with a
criticality index equal to the maximum amount of memory active during its
processing (lines 12-15). All the nodes with a criticality index equal to the peak
memory constitute the initial critical set (lines 16-17). The critical set is then
extended using α as the driving parameter. Specifically, nodes at the boundary
of the frontier — those critical nodes with in-/out-degree edges from/to nodes
outside the critical set — can join the critical set if their criticality is greater
or equal to α · peak_value (lines 18-25). The expansion ends if no other nodes
can join the critical set, that is, when the remaining nodes have a criticality
lower than α · peak_value. Therefore, α directly affects the placement of the
fork- and join-points, and hence the efficiency of the restructuring.
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Fig. 2.11 Normalized memory and number of operations for α ∈ [0.1, 0.9] and
n_slices={2h, 2w}.

2.3.4 Experimental Results

We tested the proposed optimization on five state-of-the-art CNN architectures.
The goal is to quantify the savings and prove the efficacy on models with different
topologies. The selected benchmarks comprise VGG-16 as representative of
large and computationally intensive networks with conventional single-layer
connectivity; ResNet18 and InceptionV3 as representative models with irregular
connectivity; MobileNetV2 and SqueezeNetV1.1 as representative models of
small networks targeting mobile platforms. We provide a parametric analysis
taking into consideration the two main parameters of the restructuring algorithm
(Algoritm 3): α in the range [0.1, 0.9] - step 0.1; n_slices in {[2, 4]× [2, 4]} -
step 1 - along the two spatial directions height (h) and width (w), for a total
of 9 permutations.

Fig. 2.11 reports the first set of collected results. The plots show the
normalized peak memory (in red) and the normalized number of operations
(in blue) as functions of α with n_slices set to a default value of {2h, 2w}.
As a general trend, the memory usage gets smaller with α until it reaches
a global minimum, indicated by αopt. Tab. 2.8 collects a summary of the
minimum points, reporting the memory savings achieved and the corresponding
computational overhead. Memory savings reach on average 54.3%, with an
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Table 2.8 Memory saving and computational overhead for α = αopt and n_slices =
{2h, 2w}.

Network αopt
Memory

Savings [%]
Computational
Overhead [%]

VGG-16 0.4 67.5 1.1
MobileNetV2 0.3 60.5 3.0

SqueezeNetV1.1 0.2 48.4 3.1
ResNet18 0.4 41.6 11.9

InceptionV3 0.6 53.5 1.4

Average 54.3 4.1

overhead of 4.1%. The technique performs best on VGG-16 (67.5% of savings,
1.1% overhead) thanks to a linear topology with no reconvergent paths. The
memory reduction and computational overhead get slightly worse on ResNet18
(41.6% of savings, 11.9% overhead) due to residual blocks that complicate the
topology, generating more overlap between the branches created during the
restructuring process. In all networks but SqueezeNetV1.1, the new topologies
obtained with α=0.9 already achieve a significant gain (60% on average). That is
due to a highly irregular memory profile with peaks that fall steeply. However,
larger memory savings require a proper selection of the critical sub-graph,
especially for networks with a complex topology. In fact, the min-max distance
of the memory savings is relatively high (> 30%) for all the CNNs under
analysis. This observation further motivates the importance of an optimal
search.

The point αopt is the break-even point under which the critical sub-graph
(i) has a light frontier that enables enough data reuse, and (ii) is wide enough
to catch several peaks of the model without resulting in a large number of
additional operations. For α greater than αopt, the critical sub-graph may get
too small, and this may affect the memory savings negatively for two reasons.
First, being the original global peak suppressed by the restructuring procedure,
other local peaks outside the critical region of interest may now emerge as
the new global ones. Second, the increase in the lifetime for large tensors at
the fork- and join-points could overcome the benefits of lighter branches. For
α lower than αopt, the critical sub-graph gets larger than required, covering
too many operators and thereby enlarging the chain of backward rewritings
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Table 2.9 Computational overhead and memory saving for the optimal setting of
n_slice when α = αopt.

Network αopt n_slices Memory
Savings [%]

Computational
Overhead [%]

VGG-16 0.4 2h, 4w 75.0 2.3
MobileNetV2 0.3 3h, 4w 77.3 7.8

SqueezeNetV1.1 0.2 2h, 2w 48.4 3.1
ResNet18 0.4 3h, 3w 48.8 25.7

InceptionV3 0.6 3h, 3w 64.9 3.9

Average 62.9 8.6

substantially. This long chain is a source of redundancy which translates into
higher memory demand and more arithmetic operations.

Tab. 2.9 completes the parametric analysis bringing the parameter n_slices

into play. Specifically, it shows the optimal setting for n_slices when α = αopt.
A comparison between Tab.s 2.9 and 2.8 demonstrates that freeing the values
in n_slices increases the memory savings (62.9% vs. 54.3% on average) at the
cost of some computational penalty (8.6% vs. 4.1% on average). As a general
trend, with more slices, the memory consumed by each branch gets smaller
at the cost of redundant computations. However, the memory-vs-compute
trade-off is more complex. If, after the graph restructuring, the new peak
memory falls outside the critical sub-graph, increasing the values in n_slices

does introduce more computational overhead without further savings. On the
contrary, if the critical-sub graph still contains the peak dictating the total
memory, then the effectiveness of varying n_slices over α is highly biased by
the topology. How to infer the optimal setting is an open issue. However,
this does not represent a major impediment since exploring various settings
is fast and efficient. The sweep of the restructuring algorithm over nine α

values completes in 82s for SqueezeNetV1.1 (fastest) and 375s for InceptionV3
(slowest), considering our single-core implementation on a machine powered by
an Intel i7-8700K.

As a final remark, we further emphasize the orthogonality of the proposed
graph-level restructuring to other optimizations. Rule-based approaches that
leverage hand-written optimizations based on specific CNN structures are still
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equally effective as on the initial graph and can be applied over the newly created
branches. At the same time, it is still possible to exploit either automatic code
synthesis methods [52] or vendor-specific libraries [53, 39], freeing the user from
the considerable burden of developing additional operator-level optimizations
for all possible target platforms.

2.3.5 Discussion

This second part of the chapter introduced a functionality-preserving opti-
mization technique to lower the memory footprint of the feature maps of a
Convolutional Neural Network. The technique operates a graph restructuring
process that identifies the regions of the model contributing to the peak memory
consumption and rewrites them as a series of more lightweight and independent
sub-graphs. An extensive experimental assessment shows broad applicability of
the proposed method on different CNN architectures, from linear topologies
to more complex ones with residual branches, reporting remarkable memory
savings (62.9% on average) with minimal computational overhead (8.6% on
average). As it will be shown in the next section, the proposed restructuring
process combined with other graph- and operator-level transformations can
lead to more efficient tensor graph processing on embedded devices.

2.4 Sparse-Tiled Tensor Graph Processing

When targeting an MCU device, modern ML compilers [92] store the inter-
mediate feature maps produced at run time in the on-chip SRAM, whereas
the weights in the non-volatile memory, usually a FLASH memory. Weights
can be, then, accessed at run time directly from the FLASH, as many MCUs
have a fast direct access path to the FLASH [62]. Thus, when considering
which memory optimization technique to apply, one important discriminant
factor is the specific target memory and its effect on the accuracy of the model.
For instance, on the memory side, weights pruning [33, 64] generally affects
the FLASH memory footprint only, input resolution scaling [15] the SRAM,
whereas quantization [40] and topology scaling [15] both the FLASH and the
SRAM. On the accuracy side, quantization and pruning are fine-grain knobs
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that allow the accuracy to be almost fully recovered with iterative re-training
stages. In contrast, resolution and topology scaling are coarser knobs for fast
and aggressive memory compression that usually induce non-recoverable loss.

This section presents a novel memory optimization pipeline that combines
two techniques belonging to two different classes of methods: data-driven and
data-independent. We adopt fine-grain weight pruning to reduce the weight
footprint, i.e., FLASH occupation, with minimal accuracy loss, while we use
the functionality-preserving dataflow restructuring procedure described in the
previous section to reduce the activation footprint, i.e., SRAM occupation.
The resulting graph obtained by such a pipeline is referred to as a sparse-tiled
tensor graph.

One key feature of the proposed pipeline is that it integrates a data-
independent technique, namely, the dataflow restructuring, early in the design
and optimization flow. Such a choice differs from common methodologies [92]
where data-independent strategies aimed at optimizing the resource allocations
are applied too late in the pipeline, only after quantization, pruning, and topol-
ogy scaling already set the trade-off between accuracy and memory consumption.
Intuitively, this approach causes some regions of the optimization space to
remain unexplored. Indeed, a thorough assessment of the overall pipeline on two
versions (v1 and v2) of MobileNets shows that sparse-tiled graphs are dominant
in the memory-accuracy space when targeting the NUCLEO-F767ZI board [62]
hosting an ARM Cortex-M7 with 512KB/2MB of SRAM/FLASH. Compared
to other compression pipelines that comprise either only data-driven tech-
niques, i.e., sparsity, resolution, and topology scaling, or only data-independent
techniques, i.e., dataflow restructuring, the proposed strategy enables the
deployment of new optimal CNN configurations on MCU-powered devices.

2.4.1 Optimization Pipeline

An overview of the optimization pipeline is shown in Fig. 2.12. In this work,
the pipeline targets MCUs of the ARM Cortex-M family; however, it can be
easily generalized to other hardware architectures. The pipeline’s input is a pre-
trained CNN, and the output is a binary file ready to be deployed on the target
device. The pipeline comprises two main stages. The front-end is where the
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Fig. 2.12 The proposed optimization pipeline. The blue boxes indicate data-driven
passes, while the red boxes data-independent passes.

memory optimization happens; the back-end is where the high-level description
of the tensor graph is lowered to a low-level description, which can then be
compiled to produce a binary executable file. The front-end includes two data-
driven passes, pruning and quantization, and the data-independent dataflow
restructuring procedure. The back-end lowers the high-level description of the
obtained tensor graph by mapping each node to a low-level routine extracted
from a library of operators optimized for the target device. The following
subsections provide details on the data-dependent passes of the front-end stage
as the dataflow restructuring algorithm was described in detail in the previous
section (Sec. 2.3).

Data-Driven Passes

The tensor graph is gradually sparsified following the state-of-the-art structured
pruning procedure proposed in [33, 34]. Convolutional layers are usually
processed using a matrix-matrix multiplication operator (GEMM) thanks to the
im2col transformation [39]. Thus, sparse convolutional layers are implemented
by substituting the GEMM operator with a sparse matrix multiplication routine
(spMM). As the Cortex-M datapath has a 2-lane SIMD unit, the weight matrix
is sparsified in groups of two to efficiently vectorize the operation and reduce the
indexing overhead. Specifically, the sparse weight matrices are encoded using a
block Compressed Sparse Row format (CSR) as proposed in [33]. In particular,
each sparse matrix is represented with a set of three 1D arrays: the nnz-values
storing the value of the non-zero weights, the j-idx storing the first column
index of each couple of non-zero elements, and the i-idx storing the number of
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non-zero elements in each row. The nnz-values and j-idx arrays are accessed
with a sequential streaming pattern, ensuring good cache locality. Moreover,
by properly unrolling the innermost loop of the spMM operator, vector load
instructions are used for accessing the nnz-values array, fully exploiting the
available bandwidth to the L1 data cache. Storing the non-zero values and the
metadata associated with the CSR format makes the memory footprint of the
model approximately one and a half times the size of the non-zero elements.
Note that this pruning strategy does not reduce the activation footprint, and
hence it only affects the FLASH occupation of the model. The amount of
sparsification enforced in the procedure may lead to accuracy loss; however,
an 80% of sparsity represents a safe value, ensuring enough room to almost
recover the accuracy of the dense model with a fine-tuning procedure [33, 34].

The quantizer reduces the arithmetic precision of weights and activations
to 8-bits, using a linear symmetric scheme with power-of-two scaling [40, 39].
Such a design choice enables an efficient SIMD implementation of the tensor
operators. While all the layers share the same bitwidth, the radix-points of
activations, weights, and biases are assigned layer-by-layer. For the intermediate
activations, the radix-points are set by minimizing the mean squared error
between the original floating-point value distribution and the quantized one
on a calibration set, namely, a subset of the training set (more on this in
Sec. 3.3.3). A fine-tuner based on knowledge distillation is used to recover a
possible accuracy loss [93]. The effect of the quantization step is a 4x reduction
in both activation and model footprint.

2.4.2 Experimental Results

Benchmarks and Deployment

We tested the proposed optimization pipeline on MobileNetV1 [15] and Mo-
bileNetV2 [84], two state-of-the-art CNNs explicitly designed for mobile plat-
forms. A set of pre-trained models is publicly available, including different
configurations obtained through the width multiplier α and the input resolu-
tion ρ, the two architectural knobs proposed to scale the model (see Sec. 1.2).
Tab. 2.10 provides a summary of the main features for α ∈ {0.50, 0.75, 1.00}
and ρ ∈ {160, 192}; all the models are quantized to 8-bit with a layer-wise
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Table 2.10 Baseline Characterization. Accuracy on ImageNet taken from tensorflow
repositories6.

Network α Parameter count [M] ρ Top-1 Accuracy [%]

MobileNetV1 1.0 4.24 192 69.2
160 67.2

0.75 2.59 192 66.1
160 62.3

0.50 1.34 192 60.0
160 57.7

MobileNetV2 1.0 3.47 192 70.7
160 68.8

0.75 2.61 192 68.7
160 66.4

0.50 1.95 192 63.9
160 61.0

binary scaling. Although other configurations are available, e.g., α ≤ 0.25 and
ρ={128, 224}, we decided not to report them because of their sub-optimality.
For instance, ρ=224 takes +50% SRAM improving the accuracy by a mere
1% (w.r.t. ρ=192), while with α = 0.35 (α = 0.25) accuracy gets below <60%
(50%). It is also worth emphasizing that our optimization pipeline does apply to
other CNNs and tasks achieving similar results, not reported in this manuscript
for the sake of space.

The tests were conducted on a NUCLEO-F767ZI board [62] hosting 512KB
of on-chip SRAM and 2MB of FLASH. The MCU is an ARM Cortex-M7,
operating frequency 216 MHz. We extended the CMSIS-NN library v.5.6.0 [39]
with a modified in-house version of the SIMD-aware sparse matrix multiplication
kernels presented in [33]5. The graph tiling procedure does not require further
modifications of the kernel library. It is a model- and hardware-agnostic graph-
level method that works for any existing neural library [53, 39] and it does not
prevent other low-level automatic code optimization, e.g. [52]. We adopted the
GNU Arm Embedded Toolchain (version 6.3.1) for cross-compilation.

5No official open-source implementation was available at the time of writing.
6github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet.md

github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet_v1.md
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Pipeline Set-up

The sparse networks are obtained following the method proposed in [33] with
80% of sparsity distributed across all convolutional layers, except those con-
taining depthwise convolutions that have been implemented with the dedicated
dense operator available within the CMSIS-NN library. The choice of the
sparsity level is driven by the empirical analysis provided in [33, 34], which
demonstrates that 80% is a safe sparsity value, preserving most of the accu-
racy. Concerning the graph restructuring procedure, the threshold is set to
0.4 · peak_value; namely, the restructuring region covers all the fan-in/out
layers with an active memory ≤ 0.4 · peak_value. Each tensor is split into
four equally sized parts (2 slices along the width and height dimensions of the
convolutional filters), originating four parallel branches for each tensor path.

Experimental Results

This section analyzes two main extra-functional metrics: memory (SRAM and
FLASH) and latency.

Fig. 2.13a shows the RAM and FLASH consumed by MobileNetV1. The
shaded area in the plot outlines the feasible region: configurations within this
region meet both RAM and FLASH constraints and can be ported on the
target hardware7. Sparse and tiled networks (⋄) are those that meet both
SRAM and FLASH constraints at full scale; hence, they can be deployed at
full accuracy offering the highest quality with the minimum memory usage.
The same is not for configurations obtained with the other knobs. Among
the dense networks (•), only two (.50@160 and .50@192) meet the memory
budget at the cost of a large penalty in terms of accuracy (Tab. 2.10). Sparse
networks (◦) show a lower FLASH footprint thanks to the sparse matrix format;
this lets a new configuration join the feasibility region (.75@160), while the
remaining ones violate the SRAM constraint. The tiled networks ( ■) obtained
with graph restructuring technique (w/o sparsification) show ≈50% lower
SRAM usage and are compliant with the constraint. However, they exceed the
available FLASH in most cases, which calls for aggressive width modulation

7Due to additional overhead to run the network, the flash constraint is set to 1.9MB and
the RAM constraint to 500KB
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Fig. 2.13 a) FLASH and RAM requirements for different configurations of Mo-
bileNetV1. Width values are 0.50, 0.75, 1.00. b) Latency measurements for Mo-
bileNetV1. Bars sorted for accuracy, from least accurate (left) to most accurate
(right).

(α ≤ .50). The bar chart in Fig. 2.13b shows the latency measured on the
device; the negative bars are used to indicate the models not fitting the memory
space. Sparse-tiled networks get much faster than dense only and tiled only
nets; this can be observed for the first two networks on the left side of the
chart ({.50@160, .50@192}). Moreover, they can be processed at any width
({.75@192, 1.0@160, 1.0@192}), ensuring the highest quality, which is a good
option for non-time-critical tasks. Obviously, latency increases proportionally.
As explained in Section 2.4.1, the restructuring procedure adds overhead due
to redundant computations: ≈10% penalty compared to dense and sparse
(as shown for the two configurations {.50@160, .50@192}). The three sparse
configurations ({.50@160, .50@192, .75@160}) dominate the sparse-tiled version,
which, however, could still be adopted in case additional RAM is occupied by
concurrent applications running on the MCU, e.g., a sensor sampling procedure.

Similar conclusions can be inferred for MobileNetV2, whose results are
reported in Fig. 2.14a and 2.14b showing even greater benefits. The sparse-tiled
configurations are those that fit into memory. Unlike MobileNetV1, none of the
dense networks is compliant with the memory constraints, mainly due to the
larger activations. Aggressive scaling factors, both for the width multiplier and
the input resolution, are needed to push one configuration within the feasible
region (.50@160), resulting in a high accuracy drop. Tensor tiling is mandatory
to bring SRAM below the threshold, but still not enough due to the model size
that gets close to the boundaries of the feasible region for highly scaled widths.
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Fig. 2.14 a) FLASH and RAM requirements for different configurations of Mo-
bileNetV2. Width values are 0.50, 0.75, 1.00. b) Latency measurements for Mo-
bileNetV2. Bars sorted for accuracy, from least accurate (left) to most accurate
(right).

A side comment raises from the observation that shrinking α from 1.0 to .75
does not reflect a reduction of the activations. The main reason is that the first
layers of the 1.0 and the .75 configuration have the same hyper-parameters;
hence, since the activation memory peak is achieved while processing the first
layers of the network, they share the same activation footprint. In terms of
latency, we observed the same trend reported for MobileNetV1, except for the
non-monotonic behavior recorded for one configuration (1.0@160), where the
speed-up by sparsity accumulates in a specific way due to the topology of the
network and the width-resolution ratio.

2.4.3 Discussion

This work introduced a memory optimization pipeline combining data-driven
DL techniques with a data-independent dataflow restructuring optimization.
The weights of the model are block-pruned by a sparsification procedure,
while the subgraphs of the model contributing to the peak memory value are
substituted with functional-equivalent but smaller independent sub-graphs. The
overall effect is a reduction of both RAM and FLASH footprint. The collected
results show the effectiveness of the proposed pipeline, as several configurations
of MobileNets can be deployed on an ARM M7 core with 512KB/2MB of
SRAM/FLASH. We expect further investigations of joint data-driven and data-
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independent optimizations to enable more efficient tensor graph computing,
meeting the needs of embedded intelligent applications.

2.5 Conclusions

This chapter focused on how to build small CNNs. Specifically, it first reviewed
and quantitatively assessed on a large benchmark suite the main algorithms
adopted to tackle the problem of memory allocation in DL compilers. As the
main outcome, it demonstrated the need to revisit the dominant trends, as
the commonly adopted heuristics can introduce a substantial memory penalty,
whereas a MILP method, which was disregarded by previous works due to its
complexity, can always find the optimal solution in a reasonable run time. The
second part of the chapter introduced a novel functionality-preserving graph
restructuring procedure to reduce the memory footprint of the intermediate
activations of a CNN. The technique achieves remarkable memory savings at
the cost of small computational overhead when tested on a wide variety of
CNN architectures. As a key feature, the proposed approach can work on
any CNNs without specialized code or hardware components, resulting in a
widely applicable and highly effective technique. The last part of the chapter
presented a new compression pipeline, which combines weight pruning with
graph restructuring to deploy more accurate CNNs on tiny MCU devices. The
experimental results revealed that the combination of graph- and operator-level
transformations could push further the efficiency of tensor graph computing on
small embedded devices.



Chapter 3

Enabling Monocular Depth
Estimation on Low Power
Devices

3.1 Introduction and Motivation

Embedded applications are usually characterized by a performance constraint,
which corresponds to a minimum throughput, and by a set of hardware con-
straints, dictated mainly by cost and power consumption limitations. For this
reason, an end-to-end evaluation of possible optimizations is crucial to assess
different design choices and find the most suitable trade-off. Thus, in this
chapter, we focus on a specific application use case to highlight the importance
of the vertical optimization approach proposed in this thesis. Specifically, the
framework presented in this chapter is assessed in the context of monocular
depth estimation, one of the most important components of embedded computer
vision applications.

Depth perception is a low-level vision kernel adopted in many real-world
applications, like autonomous or assisted driving and robotics. While effective
active technologies, such as Time-of-Flight (ToF) and Light Detection and
Ranging (LiDAR), can be used for depth estimation, they are expensive, signif-
icantly sized, and only provide sparse depth measurements. A more attractive
method involves inferring depth from images acquired using conventional image
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sensors, namely, integrated cameras, which are usually already available in
many embedded vision systems. For this reason, depth estimation from images
represents an important problem in computer vision, and various approaches
have been extensively investigated over time [94].

Estimating depth from two calibrated cameras, namely, a stereo acquisition
pipeline, has recently achieved remarkable improvements thanks to the adoption
of CNNs. However, since energy consumption, form-factor, and assembling
cost severely constrain the design space of an embedded system, there is an
increasing interest in using a more ubiquitous and cheaper setup, where dense
depth predictions are inferred from a single image. An acquisition setup
requiring only one camera reduces implementation cost, improves portability,
and minimizes energy consumption, enabling the deployment of emerging
applications, like augmented reality and virtual reality (AR/VR), on portable
devices and intelligent automation systems.

Despite the recent improvements in monocular techniques based on CNNs,
the problem of estimating depth from a single image is theoretically ill-posed,
requiring a huge computational power to bridge the accuracy gap with geometry-
aware methods like stereo [94]. The CNNs used for monocular depth estimation
are, in fact, resource-demanding, both in terms of computational complexity
and memory footprint, leading the authors of previous works [95] to rely
on power-hungry accelerators like high-end GPGPU cards. Thus, deploying
CNNs for monocular depth estimation on embedded platforms while preserving
accuracy and performance represents an open research question.

To this end, this chapter briefly reviews the literature related to monocular
depth estimation (Section 3.2). Then, it presents design methods and optimiza-
tion techniques for implementing a monocular depth estimation pipeline on a
low-cost CPU powered by an ARMv7a architecture (Section 3.3). Finally, it
introduces the novel lightweight CNN architecture, referred to as µPyD-Net, as
well as the algorithmic-and operator-level optimization strategies we proposed
to push depth estimation within the constraints of the MCUs adopted as
end-nodes of the IoT (Section 3.4).

The content of this chapter is an extended and improved version of our
previous publications found in [96–99].
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3.2 Deep Learning for Depth Estimation

Early methods have relied on the geometrical (epipolar) constraint to estimate
the depth from two images acquired by two aligned and synchronized cameras.
With this setup, the depth can be inferred by mean of triangulation once
the correspondence between pixels in the two views is addressed. Due to the
importance of depth estimation in computer vision, many algorithms have been
then proposed in the literature [100–102], and, more recently, DL methods have
achieved better results compared to classical ones [103, 104],

Unfortunately, the adoption of depth-from-stereo may be limited by the
requirements of two calibrated cameras and synchronized image acquisition,
which could be not available (e.g., on existing installations), too expensive, or
cumbersome. Moreover, stereo vision also suffers from unreliability issues in
the case of miscalibration or when large dis-occlusions occur between the two
cameras. Therefore, inferring depth using only a single camera has recently
gained more interest. Despite monocular depth estimation being theoretically a
strongly ill-posed problem, in the last few years, CNNs have been able to learn
how to exploit clues such as shadows, occlusions, and relative scales between
objects to estimate the depth from a single image.

Early approaches for monocular depth estimation powered by CNNs have
used ground truth depth supervision [105, 106], achieving unmatched accuracy
compared to previous works in the field [107, 108]. Unfortunately, collecting
large amounts of images with depth annotations is extremely expensive, and
it requires additional sensors and hand-made post-processing. To overcome
the need for ground truth data, CNNs can be trained by casting depth estima-
tion as an image reprojection across different viewpoints [109, 95], thus in a
self-supervised manner. To this end, there are two prominent (not mutually
exclusive) strategies usually adopted to obtain different viewpoints of the same
scene: taking multiple images acquired with a single but moving camera [109–
111] or using a stereo camera [112, 95, 113, 114]. Godard et al. [95] achieved
better results than previous works combining the (sub-)differentiable bilinear
sampler mechanism proposed in [115] with a left-right consistency constraint, a
better neural architecture design, and a more robust appearance matching loss
function [116]. Concurrently, [113] and [117] improved the results achieved by
stereo supervision using, respectively, a novel trinocular paradigm and adver-
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Table 3.1 Evaluation metrics. y denotes the predicted depth, y∗ the ground-truth
depth. N represents the amount of valid pixels in the ground-truth depth map.

Notation Definition Equation

Abs Rel Absolute Relative Error 1
N

∑N
i=1

|yi−y∗
i |

y∗
i

Sq Rel Squared Relative Error 1
N

∑N
i=1
∥yi−y∗

i ∥
2

y∗
i

RMSE Root Mean Squared Error
√

1
N

∑N
i=1 ∥yi − y∗

i ∥
2

RMSE log Logarithmic Root Mean
Squared Error

√
1
N
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i=1 ∥log yi − log y∗

i ∥
2

an Prediction Accuracy
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(
yi

y∗
i
,

y∗
i

yi

)
< 1.25n,

n ∈ {1, 2, 3}

sarial loss during training. Other strategies based on stereo pairs have relied on
semi-supervised training data [118] or enforcement of temporal consistency [119].
Finally, a more unconstrained strategy used to infer depth from a single image
consists in using unlabeled monocular videos for training [111, 110].

Unfortunately, despite their effectiveness, the CNN architectures used in
these works are pretty complex, they require high computing capabilities (e.g.,
those available on high-end GPGPUs), and they occupy a large memory foot-
print during the inference phase. In order to reduce compute and memory
requirements, FastDepth [120] and EDA [121] proposed novel compact architec-
tures tailored for mobile GPUs, like the NVIDIA Jetson TX2 board powered
by a mobile version of the Pascal architecture. However, both methods rely on
a standard supervised training procedure, which, as stated before, requires a
full annotated dataset rarely available in real-life applications.

This chapter targets the deployment of self-supervised monocular depth
estimation on low-power CPU-based devices (Section 3.3) and on MCU-based
devices (Section 3.4).

Evaluation

For the sake of clarity, this subsection reports the definition of the standard
metrics adopted to evaluate the accuracy of depth estimation methods [105].
The Absolute Relative Error (Abs Rel), the Squared Relative Error (Sq Rel),
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the Root Mean Squared Error (RMSE), and the Logarithmic Root Mean
Squared Error (RMSE log) are commonly used to compute the error (the lower,
the better) between the predicted and ground-truth depth. Additionally, an
accuracy score (the higher, the better) αn is adopted to compare different depth
estimations methods. αn is defined as the percentage of predicted depth values
whose ratio and inverse ratio with the ground truth is below a given threshold
of 1.25n. We summarized the definition of each metric in Tab. 3.1.

3.3 Enabling Depth Estimation on ARMv7a
CPUs

This section presents our end-to-end framework aimed at enabling monocular
depth estimation on ARMv7a platforms. Two key factors are needed to make
the high-end GPGPU to low-power CPU shift successful for CNNs targeting
monocular depth estimation. First, a network topology capable of achieving high
accuracy while complying with the computational and memory resources of an
off-the-shelf low-power CPU. Second, the availability of a vertical optimization
stack for code optimization and deployment to real hardware. To this end, we
borrow the Pyramidal Depth Network (PyD-Net) recently introduced in [122],
achieving close to state-of-the-art accuracy and almost real-time performance
on commercial high-end CPUs. Then, we propose an end-to-end optimization
framework to reduce the complexity of the network and to deploy the compiled
network on the target device. Specifically, the front-end of the optimizer
performs an algorithmic-level optimization through quantization to 16-bit and
to 8-bit fixed-point; the method is fast, highly accurate, and compliant to the
hardware characteristics of off-the-shelf CPUs. The back-end is in charge of code
compilation and of mapping the model on the target ARMv7 architecture by
exploiting integer neural kernels designed in-house to maximize the utilization
of the Single Instruction Multiple Data (SIMD) units available in the Cortex-A
architecture.

The obtained results show that the quantized versions of PyD-Net (16-
and 8-bit) have marginal accuracy losses, substantial speed-up w.r.t. the
floating-point (32-bit) version, and remarkable memory savings.
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3.3.1 Related Works

Quantization of CNNs

From a technical viewpoint, quantizing a network consists of searching the
fixed-point format that minimizes the accuracy loss of the quantized network
compared to the full precision network. Specifically, defining the fixed-point
format requires choosing the bit-width and the radix-point position used for
both the activation and the weight tensors of the network. As discussed in
section 1.2, existing quantization techniques are based on classic methods from
digital signal processing theory and differ in the strategy used to scale the
radix-point, namely, linear or non-linear scaling, symmetric or asymmetric
mapping, and in the granularity of the quantization, namely, per-network,
per-layer, or per-channel. Note that a one-size-fits-all solution does not exist
as the best method depends on the combination of the CNN architecture and
on the characteristics of the underlying hardware.

Fixed-Point CNNs with ARMv7

Efficient processing of fixed-point CNNs requires optimized convolutional opera-
tors for integer operands. ARM released Computing Library [54] an open-source
repository of low-level routines that support all the basic building blocks of
neural models (e.g., Activation, Convolution, Fully-Connected, Normalization,
and Pooling layers). Our preliminary analysis of version 18.0.5 of this library
revealed that fixed-point convolutions with 8-bit performed slower than with
32-bit (single precision) floating-point. The same was confirmed at the time
by another technical report [123], where authors claimed a 25% performance
overhead.

3.3.2 PyD-Net Design and Training

Fig. 3.1 depicts an abstract view of PyD-Net, the CNN architecture adopted
in this work. PyD-Net [122] is a Convolutional Neural Network designed to
run efficiently on CPUs. Inspired by the most popular networks for vision
applications, it relies on an encoder-decoder architecture. The encoder is an
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extremely lightweight pyramidal encoder that extracts high-level low-resolution
features; the decoder has a modular architecture composed of multiple branches,
generating high-resolution and dense disparity maps from the extracted features.

The pyramidal encoder halves the resolution of the feature maps at each level
such that each decoder branch operates at a different spatial resolution. In this
way, the top decoders capture the fine-grain details of the input image, while
the bottom decoders the general context. A deconvolutional layer upsamples
the disparity map obtained at a lower level before using it as an input for the
higher-resolution branches.

The encoder comprises two 3× 3 convolutional kernels at each level (from
H to Sf), the first having a stride 2 for down-sampling, the second a stride 1
for feature extraction. The number of filters increases when moving from the
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top to the bottom of the pyramid: 16, 32, 64, 96, 128, and 192. The decoder
comprises six branches, producing depth maps at six different resolutions, from
1
2 (H) to 1

64 (Sf) of the input resolution. The decoder branches are structurally
equivalent, having four 3× 3 convolutional layers with 96, 64, 32, and 8 output
channels and a leaky ReLU as the activation function. Each decoder branch
processes the concatenation of the upsampled depth map from the previous
level with the pyramidal features of the same level. Thus, the decoder branches
on the bottom require fewer operations and occupy a smaller RAM footprint
than those on the top, as they process tensors with a lower spatial resolution.
The tensor produced by the sigmoid operator of the decoder branches at half
H, quarter Q, and eighth E resolution constitute the three possible outputs of
the network. By choosing which output decoder is used as the main output of
the network, it is possible to trade-off accuracy and energy during inference.
For instance, working at low-resolution E, the two topmost depth decoders
are disabled, reducing the number of convolutional layers to be processed.
This topic will be analyzed in greater detail in chapter 4.3. When compared
with the more complex state-of-the-art encoder-decoder architecture of [95],
PyD-Net [122] is about 16× smaller in size and 5× faster1 (at half resolution
H), yet achieving comparable depth accuracy.

Following [95], the network is trained on binocular stereo pairs, processing
a single frame as input and reprojecting the other according to the estimated
disparity. The following three paragraphs detail the loss terms composing the
loss function, namely, appearance, smoothness, and left-right consistency, and
describe all the steps of the reprojection process.

The appearance term measures the photometric difference between the input
image I l and the reprojected one Ĩ l obtained by warping the corresponding
right image Ir, available during training, according to the estimated dl:

Ldl

ap = α
1− SSIM(I l, Ĩ l)

2 + (1− α)||I l − Ĩ l|| (3.1)

where SSIM represents the Structural Similarity Index Measure [116] adopted
to measure the similarity between the two images in combination with a
standard ℓ1 loss.

1On an Intel Core i7-6700K CPU (4.2Ghz) using 32-bit floating-point [122]
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Fig. 3.2 Optimization and deployment flow targeting ARMv7a cores.

The smoothness term discourages large discontinuities in the estimated
depth map, this term penalizes the difference between neighboring pixels in dl,
except where strong edges occur in I l:

Ldl

ds = |δxdl|e−||δxIl|| + |δydl|e−||δyIl|| (3.2)

where δx(.) and δy(.) are gradients in horizontal and vertical direction, respec-
tively.

The left-right consistency term [95] enfornces consistency between dl and
reconstructed d̃l obtained by warping dr, a second output of the network aligned
to Ir, according to dl:

Ldl

lr = |dl − d̃l| (3.3)

The three loss terms can be computed over dr as well, by replacing dl, I l, Ĩ l

with dr, Ir, Ĩr. Finally, the single-scale loss is obtained by summing the three
terms computed over both dl and dr. Note that supervision is provided to each
output decoder by downsampling all terms to the resolution of the decoder.

3.3.3 Optimization Framework

Fig. 3.2 shows the end-to-end framework developed for the optimization and
the deployment of quantized CNNs on ARMv7a cores. The flow comprises two
main stages. The front-end translates a CNN trained with 32-bit floating-point
numbers (FP32 in the figure) into a fixed-point model (16- or 8-bit). The
back-end maps the high-level description of the CNN on an optimized low-
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level code that can run on the target hardware platform. As efficient integer
convolutional kernels were missing in publicly available libraries, such as the
ACL [54] by ARM [123], we developed a new set of integer kernels (Q.Neural-
Kernels) optimized for 16- and 8-bit inference. Such kernels are tailored to
the Cortex-A architecture to fully exploit the single-instruction multiple-data
(SIMD) unit embedded in modern ARM CPUs.

Model Optimization: Fixed-Point Quantization

Quantization to fixed-point arithmetic relies on an affine mapping of integers
Q (represented with 16 or 8 bits) to floating-point numbers V :

V = K · (Q−Q0) (3.4)

where K is scale factor, and Q0 the quantized value corresponding to the
floating-point value 0.

In this work, we resorted to a linear quantization with symmetric binary
scaling: Q0 is fixed to 0 (symmetric scaling); the scale factor K is a power of
2, i.e., K = 2−F L, where FL is the fraction length, i.e., the position of the
radix-point in Q (binary scaling). Thus, the affine mapping can be rewritten as

V = Q · 2−F L (3.5)

Moreover, we adopted a hybrid quantization scheme, where the bit-width
(either 16-bit or 8-bit) is fixed for all layers, whereas the radix-point is assigned
per layer. Other quantization strategies, e.g., asymmetric scaling [40], may
achieve higher accuracy but at the cost of additional computational stages. For
instance, an asymmetric method, e.g. [40], requires additional output pipeline
stages that negatively affect the performance as demonstrated in [123], while
floating-point scaling requires complex data-type conversions instead of the
simple shift operation required by the binary scaling. For the specific case of
PyD-Net, our linear symmetric binary scaling quantization achieves almost the
same accuracy of floating-point, making other more complex schemes irrelevant.

Given a set of real values, e.g., the weights and activations of PyD-Net, the
bitwidth of the integer representation and the value of FL affect the accuracy
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Fig. 3.3 Floating-Point to Fixed-point quantization.

loss due to quantization. This trade-off is pictorially shown in Fig. 3.3, where
the gradient bar refers to the density distribution of the floating-point values,
|Vmax| is the largest value representable with the fixed-point number, and Qstep

represents the quantization step. Specifically, a small value of FL increases Qstep

but also |Vmax|, enlarging the range of representable numbers. The decision
of which constraint to guard more (|Vmax| or Qstep) mainly depends on the
distribution of the original values and their importance in the neural model.

Since the bit-width is defined by the available hardware (16 or 8 bits for the
ARMv7a), the problem reduces to searching the optimal |Vmax| value. Then,
the FL can be computed from |Vmax| using the following equation:

FL =
⌊
log2

(
2BW −1 − 1
|Vmax|

)⌋
(3.6)

To choose the value of FL, we implemented an optimization procedure that
minimizes the L2 distance between the original 32-bit floating-point values
X and the quantized values Q. The procedure is applied to both activations
and weights independently, and it works as follows. First, it performs a value
distribution analysis of weights and activations; for the latter, a subset of
the training set is used (referred as calibration set). Second, it computes the
lower-bound and upper-bound of the fraction length: FLlb, FLub using the
following equation:

Vmax =

max(|Xmin|), |Xmax|) for FLlb

max(|Xmin|), |Xmax|)/K for FLub

(3.7)
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with K an arbitrary large integer2. Third, it samples multiple values of FL in
the range [FLmin, FLmax] and it sets the FLopt as the one minimizing the L2
error. Half-even rounding is used for the quantization of trainable parameters.

To emulate integer arithmetic during the training and validation stages, we
built an in-house emulation engine that leverages the acceleration of GPGPUs.
The engine implements the fake-quantization method introduced in [40]. During
inference, a software wrapper converts activations and weights (stored in fixed-
point) to the 32-bit floating-point. Once processed, data are converted back
in fixed-point and adjusted with auxiliary transformations (e.g., saturation,
truncation, binary-shift) that replicate the behavior of the fixed-point units of
the ARMv7 core (e.g., the saturation of the accumulator register, the set-up of
the radix-point position).

Finally, a fine-tuning stage is operated to recover the possible accuracy
loss introduced by the quantization process. The fine-tuning works as follows:
(i) the forward-propagation is run with fake-quantization; (ii) the gradients are
back-propagated using the straight-through estimator method [124]; during this
step, weights are kept in a floating-point format to allow small weight updates;
(iii) weights are quantized at the end of each epoch using stochastic rounding.
Compared to standard floating-point training, the execution time increases by
20%. For the backpropagation, we leveraged knowledge distillation by setting
the quantized model as the student and the original floating-point network as
the teacher. The training loop is driven by a multi-scale loss function that
minimizes the mean squared error between the disparity maps inferred by the
two actors (teacher dF and student dQ) at the different output resolutions:

L =
∑

s∈[ 1
2 ,..., 1

32 ]

||dQ
s − dF

s ||2 (3.8)

Fixed-point Neural Kernels

The common belief that fixed-point representations reduce energy consumption
due to less complex arithmetic is not exactly true. Indeed, the correct processing
of a fixed-point 2D convolution requires additional instructions not needed in
floating-point, such as data extension and arithmetic shifts.

2We empirically verified K=100 is an optimal choice for PyD-Net
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Fig. 3.4 Q.Neural-Kernel: execution flow for 16-bit fixed-point.

The Cortex-A CPU targeted in this work hosts the NEON Media Processing
Engine, a programmable Single-Instruction Multiple Data (SIMD) architecture
that relies on multiple arithmetic units to accelerate parallel workloads, like
CNN inference. The NEON architecture supports both parallel floating-point
and integer instructions. The register file can be configured to host 8-, 16-, 32-,
64-, or 128-bit data, while the integer data-path supports 8-, 16-, 32- or 64-bit
operations.

The proposed Q.Neural Kernels leverage a custom implementation of a
GEneral Matrix-Multiplication (GEMM) algorithm [125], tailored to the NEON
unit. A 2D convolution is then mapped to a GEMM through an im2col operation.
In an optimized GEMM implementation, the input matrices are iteratively split
into regular tiles to maximize data reuse across the memory hierarchy. Among
all possible tiling choices, we resorted to an output stationary dataflow [126]
(Fig. 3.4a), where the output matrix is divided in tiles of shape Nx×Ny and
each output pixel stays stationary in a dedicated register of the register file
till the end of all accumulations. As explained later in the text, the adopted
dataflow is the most efficient choice in fixed-point convolutions.

The processing of each output pixel involves a sequence of MAC operations.
Multiple output pixels can be computed in parallel depending on the precision
adopted, 2 for 16-bit and 4 for 8-bit. A detailed example is reported in the
schematic representation of Fig. 3.4b. It illustrates the parallel calculation of two
outputs C00 and C01. In general, Cij = ∑

k Aik ·Bkj, with i ∈ [0, Nx), j ∈ [0, Ny).
The example is for 16-bit fixed-point (the same holds for 8-bit, yet with doubled
parallelism). The flow is as follows:
(1) the 16-bit (8-bit) input operands, Aik and Bkj are extended to 32-bit (16-bit)
obtaining A′

ik and B′
kj (Fig. 3.4b refers to Bkj only);
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(2) the input operand A′
ik is broadcasted to all arithmetic units to exploit

data-reuse, while the other input B′
kj is streamed across the units; two (four)

fused MAC operations are executed in parallel; the result is stored into a 64-bit
(32-bit) register C ′

ij;
(3) at the end of the loop, the two (four) results are ready to be packed and
then stored in the main memory; an output processing stage (highlighted in
green) performs a simple binary shift based on the input and output radix-point
position;
(4) the result is shrunk to the original bit-width, i.e., 16-bit (8-bit), and
eventually saturated.

The bit-extension of step (1) guarantees 32- (16-) guard-bits for the ac-
cumulation. This operation is crucial as it avoids overflow/underflow during
accumulation. Bypassing this stage may achieve twice the parallelism, but the
results are highly inaccurate. Considering the larger bit-width of the partial
sums, adopting an output stationary flow is of paramount importance, as it
reduces the number of bytes moved across the memory hierarchy.

Concerning the shape of the output tiles, we empirically found that (Nx =
6, Ny = 4) for 16-bit and (Nx = 6, Ny = 8) for 8-bit achieve a good balance
between computing and memory intensity.

Thanks to the adopted implementation choices, the benefit of precision
scaling is twofold. First, the number of elements in the output tile doubles
at lower precision, halving the data movement across the memory hierarchy,
therefore reducing memory energy. Second, the number of MAC operations
processed by a single instruction doubled from 2 (16-bit) to 4 (8-bit), enabling
faster processing, hence improving energy efficiency.

As a side note, we point out that the parallelism of floating-point is 4.
Moreover, floating-point requires fewer operations in the inner-loop as the
additional output stage (steps (3) and (4) in Fig. 3.4b) is not needed. Despite
that, the performance of fixed-point CNNs are better than the floating-point
version. This gain is due to the following factors: (i) enhanced utilization
of memory bandwidth; (ii) smaller memory footprint for storing weights and
partial results, hence less RAM usage; (iii) higher hit-rate in caches. This
analysis is confirmed by the experimental results discussed next.
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3.3.4 Experimental Results

Experimental set-up

PyD-Net infers disparity maps at different resolutions. The three options
for the output resolution, i.e., H, Q, and E, have been explored to assess
the relationship between depth accuracy and the non-functional properties,
namely, binary footprint, RAM space, throughput, and energy efficiency. All
experiments were repeated for the three arithmetic precision configurations,
namely, 32-bit floating-point, (FP32), 16-bit fixed-point (FX16), and 8-bit
fixed-point (FX8). The baseline is PyD-Net with output resolution H and
FP32 precision (i.e., H@FP32).

KITTI raw [56] is the reference dataset in this field [95, 122]. It collects
23297 images split, according to the standard protocol proposed by Eigen et
al. in [105], into a training-set (22600 stereo pairs) and a test-set (697 images)
with sparse ground-truth labels acquired with a LiDAR for the evaluation.
The disparity maps obtained through the inference stage are transformed into
depth maps following the methodology introduced by [95]. The baseline and
the starting point of our work is the pre-trained PyD-Net model [122]. It was
trained, as described in [122], for 200 epochs on batches of 8 images resized to
512×256.

For the quantization stage, we used a calibration set containing 5000 images
randomly selected from the training set. Note that there is no intersection
between the testing and calibration sets. The fine-tuning stage (applied after
the quantization) consists of 25 training epochs over the full training set using
the Adam optimizer [127]. We used the following hyper-parameters: learning
rate 1.0e-7, β1 = 0.9, and β2 = 0.999, weight decay = 0.

The proposed GEMM-based Q.Neural-Kernels are written in C++ and
inline assembly code. They are integrated into the ARM Compute Library
version 18.05 built with scons ver. 2.4.1 and the gcc-linaro toolchain ver.
6.4.0-2018.05.

The embedded platform used as a test-bench is the Raspberry PI 3B with
a 32-bit Ubuntu Mate 16.04 as the operating system. The board hosts a
quad-core BCM2837 chip-set. The board consumes 3.5 W under full utilization
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Table 3.2 Experimental results concerning depth estimation accuracy. Comparison
between original PyD-Net [122] (FP32) and optimized architectures at different
resolutions.

Lower is better Higher is better
Config. Abs Rel Sq Rel RMSE RMSE log a1 a2 a3

H@FP32 0.146 1.298 5.859 0.241 0.802 0.927 0.968
H@FX16 0.147 1.331 5.925 0.243 0.801 0.926 0.967

H@FX16-ft 0.147 1.302 5.945 0.244 0.798 0.925 0.967
H@FX8 0.177 1.893 6.621 0.272 0.768 0.911 0.958

H@FX8-ft 0.148 1.337 6.018 0.246 0.795 0.924 0.967
Q@FP32 0.149 1.350 6.128 0.246 0.795 0.923 0.966
Q@FX16 0.149 1.365 6.155 0.246 0.794 0.923 0.966

Q@FX16-ft 0.149 1.342 6.176 0.248 0.790 0.921 0.966
Q@FX8 0.183 2.364 7.457 0.270 0.766 0.908 0.957

Q@FX8-ft 0.158 1.427 6.290 0.257 0.778 0.917 0.964
E@FP32 0.162 1.699 7.141 0.266 0.768 0.907 0.959
E@FX16 0.165 1.770 7.327 0.271 0.762 0.904 0.957

E@FX16-ft 0.162 1.712 7.163 0.266 0.768 0.907 0.958
E@FX8 0.193 2.758 8.507 0.288 0.745 0.893 0.950

E@FX8-ft 0.171 1.829 7.430 0.276 0.751 0.901 0.956

(4 cores active and maximum utilization); moving from FP32 to FX16 or FX8
has a negligible effect on the total power consumption, dominated by memory
accesses. Thus, energy consumption is inversely proportional to latency.

Accuracy vs. Quantization

Tab. 3.2 reports an evaluation of several variants of the original PyD-Net
architecture. As the model by Godard et al. [95] has 15× the parameters of
PyD-Net (30 vs. 1.9 million), it is not suited for embedded devices, and so we
did not use it as a benchmark for non-functional properties in the following
subsection. Here, we discuss in detail the effects of the data-type (single-
precision floating-point, 16 or 8 bit fixed-point, referred to as FP32, FX16, and
FX8) on the accuracy of the network at the different output resolution (H, Q,
E) and optional fine-tuning (-ft) carried out after quantization. Specifically, we
analyze error and accuracy metrics commonly adopted for evaluating depth-
from-mono performance [105], assuming a 80m cap distance [95] (see section 3.2
for further details on the metrics). Tab. 3.2 reveals a similar trend for the three
resolution H, Q, and E, for all the seven metrics. Specifically, the 16-bit fixed-
point quantization FX16 introduces a negligible accuracy drop compared to the
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Fig. 3.5 Top row: Input image from KITTI dataset (left) and depth map H@FP32
computed by the original PyD-Net network [122] (right). Bottom row: depth maps
H@FX16-ft (left) and H@FX8-ft (right).

original PyD-Net FP32; thus, the additional fine-tuning (-ft) brings a marginal
accuracy gain. The 8-bit fixed-point quantization (FX8) leads to a more
substantial accuracy loss, especially for Q and E output resolutions. However,
fine-tuning the network (-ft) remarkably improves performance, closing the gap
with FX16 quantization and, most notably, with the original FP32 strategy.
Fig. 3.5 reports a qualitative comparison between the depth estimated at
different resolutions and quantization levels.

Performance, Memory Space and Energy Efficiency

Tab. 3.3 reports the hardware-related metrics measured during the test-run,
namely, memory space (for weights storage), RAM usage (during PyD-Net
processing), and energy efficiency (average Frames per J). The throughput
(Frames/second) can be derived by multiplying energy efficiency (Frames/J) by
the total average power consumption (3.5 W).

As expected, energy efficiency improves when working at lower resolu-
tions: the upper branches of the decoders are disabled, highly reducing the
computational burden. For instance, considering the FP32 configuration, the
improvement from high (H@FP32) to low resolution is 5.64× thanks to the
reconfigurable topology of PyD-Net. When fixing the output resolution, energy
efficiency increases with smaller data representations. For instance, at high
resolution, the gain from H@FP32 to H@FX8 is 49%; at low resolution, the
gain grows up to 63.7%. To notice that, as previously outlined, moving from
floating-point to fixed-point affects accuracy only marginally. The combined
action of resolution scaling and precision scaling enables even larger optimiza-
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Table 3.3 Non-functional metrics of PyD-net at different resolutions and precisions
on ARMv7-A

Resolution Precision Space (MB) RAM (MB) Frame/J

H
FP32 7.6 206 0.141 (×1.00)
FX16 3.8 118 0.156 (×1.11)
FX8 1.9 62 0.210 (×1.49)

Q
FP32 7.2 60 0.386 (×2.74)
FX16 3.6 34 0.420 (×2.99)
FX8 1.8 19 0.635 (×4.51)

E
FP32 6.8 53 0.794 (×5.64)
FX16 3.4 28 0.922 (×6.55)
FX8 1.7 14 1.299 (×9.23)

tion: from H@FP32 (0.141 Frames/J) to E@FX8 (1.299 Frames/J) the energy
efficiency increases by 9.23×.

This first analysis gives clear evidence of the scaling properties of the
quantized PyD-Net model, the benefits of multiple precision configurations,
and the effectiveness of the porting flow on the target architecture. A sensing
technology with such energy-quality scaling characteristics represents a practical
option for those embedded applications that can tolerate lower accuracy for
higher energy efficiency by tuning resolution (coarse-knob) and precision (fine-
knob). For a more detailed discussion, the reader could refer to chapter 4.3.

Concerning memory, both the binary space and the RAM usage are im-
portant metrics as they reflect the efficiency of the proposed implementation.
As expected, the space for storing network parameters reduces linearly with
the precision, e.g., from 7.6 MB with H@FP32 to 1.9 MB with H@FX8. At low
resolution and low precision, the memory space is just 1.7 MB (E@FX8), which
brings the overall savings w.r.t. H@FP32 up to 4.5×. Even more interesting is
the analysis of the RAM. Its utilization is dramatically reduced with an overall
scaling factor of 14.7×: from H@FP32 (206 MB) to E@FX8 (14 MB).

As a final remark, Fig. 3.6 provides a technology comparison among different
hardware options: a GPU (Titan X Maxwell), a high-end CPU (Intel i7-6700K
CPU), and the ARMv7 at FP32, FX8, and FX16. The bar chart shows
the energy efficiency (Frames/J) for all the possible permutations of output
resolution, precision, and hardware; the labels refer to the normalization w.r.t.
high resolution (H) for each hardware option separately. Moving from H to E
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Fig. 3.6 Energy efficiency vs. Resolution using GPU, CPU and the ARMv7-A.

with the ARMv7@FX8 improves energy by 6.2×. A more interesting aspect is
that the lower the arithmetic precision, the larger the gain brought by resolution
scaling. While for the GPU and the desktop-CPU, the gain from H to E is
limited to 2.5× and 4× respectively, the energy gain increases to 5.6× with
the ARMv7@FP32 and 6.2× with the ARMv7@FX8.

3.3.5 Discussion

This work introduces a comprehensive design and optimization framework to
improve the energy efficiency of depth perception on low-power embedded
devices. To assess the effectiveness of our proposal, we conducted an extensive
evaluation on an embedded system powered by the ARMv7a, a widely adopted
RISC architecture. The collected experimental results showed that the joint
co-operation between (i) the design of the tiny yet reconfigurable PyD-Net and
(ii) the optimization enabled by the hardware-friendly fixed-point quantization
allows achieving acceptable accuracy with energy efficiency beyond the state-of-
the-art. These features pave the way to the widespread deployment of monocular
depth sensing in applications constrained by stringent energy requirements.

3.4 Enabling Depth Estimation on Microcon-
trollers

Enabling monocular depth estimation on tiny end nodes powered by MCUs may
offer interesting opportunities in the Internet-of-Things (IoT) space. Specifically,
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distributed visual sensors can evolve from data collectors to smart hubs capable
of inferring depth locally with higher quality-of-service and increased users
privacy. Unfortunately, MCUs are orders of magnitude less performing than
embedded CPUs and GPUs, so despite the efforts carried out in our previous
work and by other active researchers in the community, deploying monocular
depth estimation on such devices is still extremely challenging. Even the
smallest CNNs [122, 120], in fact, are designed for platforms with multi-core
high-frequency CPUs and large RAMs, thus consuming 3.5 to 10 W. Instead,
common MCUs run at a much lower frequency (hundreds of MHz vs. 1–2 GHz)
and have very few on-chip memory resources (hundreds of kB vs. 2–8 GB).
Meeting such constraints represents a challenge in computer vision and depth
perception, which, in our opinion, calls for a paradigm shift: quality is no longer
the only objective as other extra-functional metrics need to be considered at
the algorithmic level and during the whole compilation flow.

To this end, the first assumption made in this work is that processing
high-resolution images is not feasible nor beneficial for practical use cases.
Hence in this work, differently from the traditional high-quality vision systems,
we adopt low-resolution images to meet the stringent hardware constraints
of MCUs. Processing low-resolution tensors, in fact, reduces the number of
operations to be processed and the memory footprint to store hidden features
maps. However, the in-depth analysis conducted in Sec. 3.4.5 demonstrates
that resolution scaling alone is not enough to fit current models on MCUs and
that achieving such a goal requires additional design and optimization efforts.
On the neural architectural side, we propose a novel lightweight architecture
referred to as µPyD-Net designed explicitly for processing low-resolution images
(i.e., 48× 48 or 32× 32) on MCUs. The internal topology of µPyD-Net was
optimized with hardware-conscious techniques to maximize the savings brought
by inputs resolution scaling. At the algorithmic level, we present a supervised
training flow from images and full-resolution disparity maps obtained with
SGM. The training process is characterized by low requirements but equivalent
performances of more costly strategies. At the operator level, we perform
a highly-accurate 8-bit quantization and an efficient mapping on low-level
routines specialized for the target architecture.

The two main achievements of the work presented in this section are:
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Fig. 3.7 Example of traffic monitoring system based on µPyD-Net.

• enabling for the first time monocular depth estimation on low-power
MCUs, such as the Arm Cortex-M7 CPU;

• demonstrating how to obtain a meaningful coarse depth representation
from a low-resolution image, as low as 48×32 and 32×32 pixels.

An extensive experimental assessment shows that, despite the low input
resolution, µPyD-Net achieves, on the standard KITTI dataset [56], a depth
accuracy comparable to seminal works [105, 128], although not on par with
the current state-of-the-art [129, 114, 130]. However, this is not surprising as
such methods use higher input resolution and much more complex models,
unfeasible requirements for the devices used at the edge of the IoT.

3.4.1 Practical Use Cases

Processing high-resolution images to produce high-resolution dense depth maps
is paramount to meet the quality constraint of some vision tasks, such as 3D
reconstruction and SLAM. However, a coarse low-resolution depth estimate
may be sufficient in other common edge applications, such as object/people
counting [131, 132], pose estimation [133], action recognition [134], and vehicle
detection [135]. Indeed, millimetric depth estimations are not strictly required
to accomplish such tasks. To this end, in this section, we qualitatively assess
the use of coarse depth estimation on two applications reported in Fig. 3.7 and
Fig. 3.8.

The first one is a simple traffic monitoring system for counting, for instance,
cars. Fig. 3.7 shows a traffic monitoring system based on µPyD-Net. For each
example, we show the high-resolution frame, followed by the 32 × 32 image
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a) b) c)

d) e) f)

Fig. 3.8 Results on a testing image of the VAP dataset [136]. a) RGB original frame,
b) ground-truth depth acquired using Kinect, c) RGB input image resized to 32× 32,
d) maps predicted by PyD-Net, e) maps predicted by µPyD-Net, and f) outcome of
the super-resolution network fed with the µPyD-Net map.

processed by the network (top-right corner) and its output (mid-right corner).
In the bottom-right corner, for each example, we show the differences in the
coarse 3D structure of the scene with respect to the structure of the environment
itself, which has been acquired in absence of vehicles (top-left example). The
highlighted regions depict the changes in the depth maps inferred by µPyD-Net
when a vehicle enters the scene. It is worth noticing that, even with small input
images, the low operating frequency and parallelism of MCUs prevent real-time
performance (i.e., >30 FPS). However, the focus here is on those applications
with no strict timing constraints, like traffic congestion monitoring, and not on
those requiring fast decision-making, such as autonomous driving.

The second application concerns a simple privacy-preserving monitoring
system capable of performing a remote video analysis without revealing the
user identity [134]. The idea is that user privacy can be enforced by performing
the analysis in the depth domain. Fig. 3.8c reveals that low-resolution images
can only partially hide distinctive features of the person as some clues can still
be inferred. Instead, by moving the image to a pure depth domain as reported
in Fig. 3.8 d, it is possible to hide personal details while keeping the relevant
information required for the high-level task. Enabling these sensing capabilities
on tiny devices can reduce the design cost and the power consumption of systems
compared to using RGB-D cameras (e.g., the Kinect in (b)) or standard CNNs
for monocular depth estimation (d) while achieving similar accuracy. Indeed,
the map inferred by µPyD-Net (e) and post-processed by a super-resolution
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3x3 conv 3x3 conv upsample concat
(stride 1) (stride 2)

Fig. 3.9 µPyD-Net architecture.

network running on the cloud (f) achieves results comparable to the two
baselines.

3.4.2 µPyD-Net architecture

Fig. 3.9 sketches the architecture of µPyD-Net. It follows the encoder-decoder
architecture of PyD-Net 3.3.2, but it has a different topology and different
pooling and stride parameters to work with low-resolution inputs and to reduce
the computational complexity at higher resolutions. Specifically, a shallow
encoder extracts a three-level pyramid of features using six 3× 3 convolutional
layers with leaky ReLU as activation function (y = α · x if x > 0 else x, with
α=0.125), producing 8, 8, 16, 16, 32, and 32 output channels. The decoder
comprises three branches composed of three convolutional layers, followed by
leaky ReLU (except the last one). Each decoder branch processes one pyramid
level, producing 32 features. The output of the last layer of each decoder branch
is up-sampled through a 2×2 transposed convolution layer. This extremely
compact architecture, having only 100K parameters, is designed to process
tiny resolution images, and thus it is tailored to low power devices such as
MCUs. The topology of the network, its low parameter count, and the use of a
low image resolution, i.e., 48×48 and 32×32, allow the model to fit within the
512 kB of RAM and to break the 1 FPS barrier on off-the-shelf MCUs, as it
will be shown in detail in the experimental results section. Adding more layers
either to the features extractor or to the decoders would make one or both the
requirements not met.

Achieving a reasonable accuracy in the depth estimation with such small
architecture is not straightforward. Specifically, in addition to the issues induced
by processing low-resolution images, e.g., loss of details, providing supervision
at shallow resolution is challenging. In particular, when the annotation is
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sparse like in the KITTI dataset [56], downsampling the sparse depth data
to the input resolution of µPyD-Net would make labels no longer reliable
due to the interpolation process. For this reason, during training, we rely
on proxy-supervision [114] obtained through Semi-Global Matching (SGM), a
traditional stereo algorithm [100].

3.4.3 Proxy Supervision

Similar to other seminal works in the field [109, 95], we replace the need for
accurate ground truth depth annotations during training using view synthesis.
In particular, we exploit a pair of synchronized images acquired by a stereo
camera to formulate a re-projection loss for supervision [95]. Formally speaking,
given a stereo pair made of images L and R, the network is trained to infer
an inverse depth map (i.e., the disparity map) DL starting from L. Then, R̃

is obtained by warping the R view according to DL. Finally, we compute a
photometric loss Ll

ap between L and the warped image R̃ as proposed in [95]
and reported in the following equation:

Ll
ap = 0.85 · (1− SSIM(L, R̃)

2 + 0.15 · |L− R̃| (3.9)

To further enforce the self-supervision, we train the network also to infer a
synthetic disparity map DR for the right image R such that a consistency loss
can be computed between the two disparity maps. Specifically, an equivalent
Lr

ap signal can be obtained comparing R with warped image L̃.

However, due to the low resolution of the input images, a photometric
loss alone cannot provide sufficiently reliable supervision. Hence, inspired
by other recent works [137, 94, 114], which have leveraged noisy disparity
estimations produced by traditional stereo algorithms for supervision, we use
the SGM algorithm [100] to generate dense proxy labels from stereo pairs [114].
Specifically, for each pixel p and disparity hypothesis d, a Hamming matching
cost C(p, d) is computed between 9× 7 census transformed images and then
refined through multiple scanline optimizations as follows:
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Fig. 3.10 Examples of self-sourced proxy labels on 48× 48 (left) and 32× 32 (right)
images. From top to bottom, reference images, disparity maps produced by SGM
[100], and predictions by µPyD-Net.

E(p, d) =C(p, d) + min
q>1

[C(p′, d), C(p′, d± 1) + P1,

C(p′, d± q) + P2]− min
k<Dmax

(C(p′, k))
(3.10)

where P1 and P2 are two smoothness penalties, which discourage disparity
gaps between p and previous pixel p′ along the scanline path. A winner-takes-
all strategy is applied after summing up the outcome of each optimization
phase. Finally, the left-right consistency constraint is used to filter out the
outliers as follows. We first compute the disparity maps DL and DR with SGM,
respectively assuming as reference left and right images, then we invalidate the
pixels having different disparities across the two maps higher than a certain
threshold. The method is reported in the following equation:

D(p) =

d̃(p) if |DL(p)−DR(p−DL(p))| ≤ ε

−1 otherwise
(3.11)

To effectively scale the proxy labels to the resolution of the network inputs,
SGM is run on the images at the original resolution W ×H, then the proxy
is downsampled respectively to 48 × 48 and 32 × 32 using nearest-neighbor
interpolation, and the disparity values are properly scaled by 48

W
and 32

W
. As

outliers are filtered out, enforcing the left-right consistency constraint, the
produced labels are not fully dense. Nonetheless, most points survive this
process, and each valid value available in the inverse depth map is obtained
without any interpolation from nearby points.
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The obtained labels are then used to provide supervision to µPyD-Net
employing a reverse Huber (berHu) loss [138]:

Lps = 1
N

∑
p

berHu(d(p), d̃(p), c) (3.12)

berHu(d(p), d̃(p), c) =

|d(p)− d̃(p)| if |d(p)− d̃(p)| ≤ c

|d(p)−d̃(p)|2−c2

2c
otherwise

(3.13)

where d(p) and d̃(p) are, respectively, the predicted disparity and the proxy
annotation for pixel p while c is set as αmaxp|d(p)− d̃(p)|, with α = 0.2.

Fig. 3.10 shows, from top to bottom, some qualitative examples of low-
resolution images (48 × 48), followed by proxy labels generated by SGM
and disparity maps estimated by µPyD-Net. µPyD-Netaccurately reproduces
inverse depth estimations consistent with the self-sourced annotations.

Finally, the loss function is obtained summing the proxy-supervision with
the contribution given by photometric loss:

Linit = αap(Ll
ap + Lr

ap) + αps(Ll
ps + Lr

ps) (3.14)

We tuned αap and αps following [114]. Although we verified that SGM is
highly effective, other sources of proxy labels can be adopted as well, such as
stereo networks trained in a self-supervised manner with photometric losses [139],
or in a supervised manner at the cost of requiring ground truth labels. The
effect of the different strategies on the accuracy of µPyD-Net will be assessed
in the experimental results section.

3.4.4 Optimization Stack

The optimization stack designed for the deployment of µPyD-Net into Cortex-M
MCUs is depicted in Fig. 3.11. It is similar to the stack presented in section 3.3.3,
and it comprises two main stages. The front-end quantizes the model to an 8-bit
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Fig. 3.11 Optimization framework.

fixed-point representation; the back-end translates the high-level description of
the quantized network into low-level routines optimized for the target device.

Given the tight memory constraints and limited computational resources
of low-power MCUs, quantization, in this case, represents a must rather than
an optimization option. For instance, for the case of the Arm Cortex-M MCU
family, widely used in low-cost and low-power embedded systems, the FLASH
memory is limited to 1 − 2 MBs, while the SRAM to 16 − 512 KBs. The
FLASH memory stores the application binary file and the network weights,
copied into the SRAM at initialization time. The SRAM stores the intermediate
feature maps of the network, whose size is not negligible in deep CNNs like
µPyD-Net. Intuitively, with such minimal memory resources, 8-bit quantization
is highly desirable, as it brings a 4× memory footprint reduction compared to
32-bit values. Second, the floating-point unit is optional for many chip-sets
of the Cortex-M architectural family, and, when available, it only supports
scalar operations. On the other hand, the integer instruction set provides a
2-way Single-Instruction Multiple-Data (SIMD) data path (available on the M7
core), which double the theoretical throughput achievable by optimized integer
kernels.

Similar to the work presented in Section 3.3, we adopt a linear quantization
scheme with power-of-two scaling. The radix-point of both feature maps
and weights is assigned layer-by-layer, and the bitwidth is fixed at 8-bits.
To calculate the optimal radix-point, we use the same heuristic described in
section 3.3.3. The accuracy loss due to quantization is recovered through a
post-training fine-tuning stage based on knowledge distillation [93].
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After quantization and fine-tuning, the network is deployed on the target
device. To this end, we use the CMSIS-NN library developed by ARM, as it
includes a series of efficient handwritten routines for integer CNNs. However,
we had to develop some operators as the CMSIS-NN version available at the
time of this project was missing a 2D transposed convolution (also called
deconvolution) and the leaky ReLU activation function. For the transposed
convolution, we implement it as a two stages operator: first, the input features
are upsampled using a factor equal to the stride, then convolved with unit
stride. For the leaky ReLU, we implement it as a simple masked shift operation
by constraining the slope α to be a power of two. We observed that this choice
achieves better performance without affecting the network accuracy.

3.4.5 Experimental Results

This section reports the results of the exhaustive experimental evaluation aimed
at assessing the accuracy and the non-functional figures of merit, namely,
latency and memory footprint, of µPyD-Net.

Dataset & Training

The KITTI stereo dataset [56] is a collection of rectified stereo pairs, comprising
61 scenes (more than 42K stereo frames) related to driving scenarios. It is the
standard dataset for evaluating monocular depth estimation methods. The
average image resolution is 1242× 375. The depth annotations were obtained
through a LiDAR device, mounted and calibrated in proximity to the left
camera. We divided the overall dataset into two subsets, composed respectively
of 29 and 32 scenes, according to the Eigen split [105, 95]. We used 697 frames
of the first group as the test set and 22600 frames of the second as the training
set.

The CityScapes dataset [140] contains stereo pairs capturing scenes from 50
cities in Germany taken from a moving vehicle in various weather conditions. It
consists of 22, 973 stereo pairs with a resolution of 2048×1024 pixels. It is often
adopted only for pre-training [95, 113, 114] the network since no ground truth
maps are provided. As in [95] the lowest 20% of each stereo pair is discarded
at training time.
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The Make3D dataset [107] consists of a set of images and depth maps from a
custom-built 3D scanner, collected during daytime in a diverse set of urban and
natural areas in the city of Palo Alto and its surrounding regions. It contains
534 images at 1704× 2272 resolution. We run experiments on the 134 testing
images without retraining as in [95, 58].

Hardware Set-up

The proposed µPyD-Net is tested and validated on a NUCLEO-F767ZI[62]
development board by ST-Microelectronics. It is powered by a chip-set fea-
turing an Arm Cortex-M7 CPU clocked at 216 MHz and hosting 512 kB of
SRAM and 2 MB of FLASH memory. As reported in the data-sheet [141], the
current consumption is ≈100 mA for a data-intensive application run in similar
operating conditions of our experiments. Hence, the power consumption is
<400 mW. The .C description of the optimized µPyD-Net model is compiled
using the GNU Arm Embedded Toolchain, version 6.3.1, and flashed into the
board using the mbed-cli toolchain.

Evaluation – Functional metrics

We evaluate predictions according to standard functional metrics [105, 95]: Abs
rel, Sq rel, RMSE and RMSE log represent error measures (⇓, the lower the
better), while α < K the percentage of predictions whose maximum between
ratio and inverse ratio with respect to the ground truth is lower than a threshold
K (⇑, the higher the better). The detailed formulation of each metric can be
found in sec. 3.2.

Since the performance of µPyD-Net is limited to the accuracy of the proxy
labels used for supervision, we study the effect of the strategy used to obtain the
labels on the accuracy of the network. Specifically, we consider labels obtained
by SGM and by distillation [139] from two state-of-the-art CNNs, namely,
UnOS by Wang et al. [142] and DispNet-CSS by Ilg et al. [143], respectively
trained with self-supervision and ground truth. For both, we use the weights
made available by the authors, respectively trained with the photometric loss
on the full KITTI dataset (UnOS) or with ground truth on the SceneFlow
dataset [103] and fine-tuned on KITTI 2015 training set (DispNet-CSS).
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Table 3.4 Proxy labels accuracy on the test set of KITTI dataset [56] using the split
of Eigen et al. [105], maximum depth set to 80m.

Lower is better ⇓ Higher is better ⇑
Method Resolution Abs Rel Sq Rel RMSE RMSE log α <1.25 α < 1.252 α < 1.253

SGM [100] native 0.064 0.584 3.700 0.149 0.951 0.976 0.986
UnOS [142] native 0.064 0.582 3.690 0.169 0.932 0.964 0.979
DispNet-CSS [143] native 0.060 0.442 3.543 0.167 0.940 0.967 0.981
SGM [100] 48× 48 0.415 10.963 11.836 0.481 0.539 0.785 0.881
SGM [100] ↓ 48× 48 0.107 1.594 5.556 0.199 0.906 0.960 0.978
UnOS [142] ↓ 48× 48 0.102 1.145 5.140 0.197 0.901 0.955 0.976
DispNet-CSS [143] ↓ 48× 48 0.089 0.723 4.420 0.183 0.909 0.961 0.980
SGM [100] 32× 32 0.652 21.745 15.319 0.638 0.370 0.667 0.797
SGM [100] ↓ 32× 32 0.133 2.083 6.448 0.222 0.873 0.949 0.974
UnOS [142] ↓ 32× 32 0.131 1.622 6.040 0.221 0.867 0.945 0.972
DispNet-CSS [143] ↓ 32× 32 0.110 0.940 4.948 0.199 0.882 0.955 0.978

Tab. 3.4 collects results concerning a comparison between the three, con-
ducted on the Eigen test split. We first report the accuracy of the disparity
maps processed at full resolution to highlight the importance of spatial reso-
lution. We highlight the almost equivalent performance of SGM and UnOS
on error metrics, whereas DispNet-CSS produces better results. Concerning
alphas, SGM produces better accuracy. Considering the 48× 48 resolution, we
report four main experiments respectively evaluating disparity map obtained by
running SGM on 48× 48 images and by either SGM, UnOS, and DispNet-CSS
at full resolution and then downsampled using nearest-neighbor interpolation
(↓ 48×48), i.e., to the resolution used to train µPyD-Net. We cannot run either
UnOS or DispNet-CSS at 48× 48 because of their high compression factor ( 1

64),
requiring larger images. It is important to notice that running SGM directly on
48× 48 images leads to terrible performance. The high quantization of pixels
at this resolution, in fact, makes this solution unreliable for training CNNs
using these labels. Conversely, full-resolution images downsampled to 48× 48
maintain acceptable performance, with DispNet-CSS labels resulting in a more
performant training. In general, SGM and UnOS are close in performance,
with the former resulting slightly more accurate and thus preferable to train
µPyD-Net. The same behavior can be observed by running experiments at
32× 32 resolution. Although DispNet-CSS labels show much higher accuracy
compared to SGM and UnOS, they need ground truth labels to be obtained.
Next, we will highlight that training µPyD-Net on DispNet-CSS rather than
SGM achieves only minor improvements, thus making SGM better suited for
practical applications.



88 Enabling Monocular Depth Estimation on Low Power Devices

Table 3.5 Ablation study on the test set of KITTI dataset [56] using the split of
Eigen et al. [105], maximum depth set to 80m.

Lower is better ⇓ Higher is better ⇑
Supervision Res. Abs Rel Sq Rel RMSE RMSE log α <1.25 α < 1.252 α < 1.253

Photo 48× 48 0.260 3.386 9.416 0.391 0.593 0.805 0.903
SGM ↓ 48× 48 0.200 2.107 7.144 0.295 0.707 0.871 0.943
UnOS ↓ 48× 48 0.200 2.095 7.224 0.298 0.701 0.870 0.944
DispNet-CSS ↓ 48× 48 0.191 1.825 6.697 0.286 0.716 0.881 0.949
Photo 32× 32 0.315 4.984 11.007 0.451 0.539 0.764 0.879
SGM ↓ 32× 32 0.221 2.547 7.625 0.312 0.681 0.858 0.935
UnOS ↓ 32× 32 0.221 2.625 7.623 0.313 0.677 0.853 0.935
DispNet-CSS ↓ 32× 32 0.217 2.195 7.171 0.314 0.680 0.855 0.934

Finally, we study the effectiveness of µPyD-Net variants trained with
different sources of self-supervision. Tab. 3.5 collects results of 48 × 48 and
32× 32 models trained respectively with image reprojection losses [95], proxy
labels sourced through SGM algorithm, UnOS and DispNet-CSS. At first, we
point out how the supervision from photometric losses performs much worse than
using proxy labels. Although this approach is extremely popular [95, 122, 113],
we argue that, intuitively, the image content at such low resolution is much lower
compared to the one available at the original resolution, thus leading to poor
supervision. Exploiting the guidance from accurate disparity maps at training
time boosts the accuracy achieved by µPyD-Net. Nevertheless, although the
proxy labels show different accuracy according to Tab. 3.4, in particular
comparing rows 4, 5,6 and 8, 9, 10 sourcing supervision from SGM algorithm
results slightly better than using UnOS, with a small margin compared to
DispNet-CSS, although DispNet-CSS needs ground truth for training. Thus,
we prefer the SGM solution for practical applications because of the smaller
accuracy gap than DispNet-CSS but greater flexibility.

In Tab. 3.6 we compare µPyD-Net with state-of-the-art solutions for
monocular depth estimation. The upper portion of the table contains complex
architectures with millions of trainable parameters, suited only for high-end
GPUs (e.g., the NVIDIA Titan XP). On the other hand, the lower portion
of the table lists networks requiring much less computational and memory
requirements compatible with a broader range of devices. Moreover, we also
report the resolution of the input image for each network. At first glance,
we can notice the large gap between the amount of information processed
by µPyD-Net and other proposals. However, shrinking the image using this



3.4 Enabling Depth Estimation on Microcontrollers 89

extreme factor (down to 1
38 for width, 1

11 for height in case of 32×32 images) has
a non-negligible impact on the input image fed to µPyD-Net. This degradation
is particularly evident for small objects at a longer distance or thin structures as
poles, causing higher errors than the ground truths acquired at full resolution.
For this reason, Tab. 3.6 also includes the lightweight PyD-Net [122] network
processing much larger 256 × 512 images. Nonetheless, it is important to
notice that, even stretching the input of other proposals to either 48× 48 or
32× 32, they would not run on the targets hardware device due to excessive
memory requirements. Moreover, PyD-Net [122] would not be compatible
with such tiny image sizes since its pyramidal structure is too deep. However,
as pointed out by previous studies in other fields [144], the image content
encoded in such tiny images is still enough to estimate a coarse estimation
of the scene, comparable to state-of-the-art techniques proposed just a few
years ago [105, 128], with hundred times fewer parameters and computational
requirements. Not surprisingly, 48× 48 input images yield better results than
32× 32.
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Table 3.6 Quantitative evaluation on the test set of KITTI dataset [56] using the split of Eigen et al. [105] with maximum depth
set to 80m. Methods with ∗ run post-processing [95].

Lower is better ⇓ Higher is better ⇑
Method Resolution Params MCU Abs Rel Sq Rel RMSE RMSE log α <1.25 α < 1.252 α < 1.253

Eigen et al. [105] Fine 172× 576 54.2M No 0.203 1.548 6.307 0.282 0.702 0.890 0.958
Liu et al. [128] - 40.0M No 0.201 1.584 6.471 0.273 0.680 0.898 0.967
Zhou et al. [109] 128× 416 34.2M No 0.198 1.836 6.565 0.275 0.718 0.901 0.960
MonoDepth [95] ResNet50∗ 256× 512 48.0M No 0.114 0.898 4.935 0.206 0.861 0.949 0.976
3Net [113] ResNet50∗ 256× 512 65.0M No 0.111 0.849 4.822 0.202 0.865 0.952 0.978
MonoDepth2 (S) [58] 192× 640 11.0M No 0.109 0.873 4.960 0.209 0.864 0.948 0.975
DSVO [129]∗ 256× 512 96.2M No 0.097 0.734 4.442 0.187 0.888 0.958 0.980
MonoResMatch [114]∗ 384× 1280 42.5M No 0.096 0.673 4.351 0.184 0.890 0.961 0.981
DepthHints [130]∗ 320× 1024 34.5M No 0.096 0.710 4.393 0.185 0.890 0.962 0.981
PyD-Net [122] 256× 512 1.9M No 0.146 1.291 5.907 0.245 0.801 0.926 0.967
µPyD-Net 48× 48 0.1M Yes 0.193 2.312 6.952 0.277 0.735 0.890 0.953
µPyD-Net 32× 32 0.1M Yes 0.215 2.395 7.252 0.301 0.696 0.866 0.939

Table 3.7 Quantitative evaluation on the test set of KITTI dataset [56] using the split of Eigen et al. [105] with maximum depth
set to 80m.

Lower is better ⇓ Higher is better ⇑
Method Resolution Params Abs Rel Sq Rel RMSE RMSE log α <1.25 α < 1.252 α < 1.253

MonoDepth2 [58] ↓ 32× 32 ↑ 34.5M 0.188 1.724 7.447 0.318 0.686 0.869 0.938
MonoResMatch [114] ↓ 32× 32 ↑ 42.5M 0.191 2.103 6.670 0.279 0.742 0.896 0.953
µPyD-Net 32× 32 0.1M 0.215 2.395 7.252 0.301 0.696 0.866 0.939
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Fig. 3.12 Qualitative results concerning traffic monitoring. For each example, we
show the high-resolution frame, followed by 32× 32 images processed by µPyD-Net.

To further support that µPyD-Net is effective at extracting most of the
knowledge available from low-resolution images, we show the performance
achieved by two state-of-the-art networks, respectively MonoDepth2 [58], and
MonoResMatch [114] when processing 32 × 32 images. Being these latter
not able to process such tiny images because of architectural limitations,
we simulate low-resolution images by downsampling the inputs to 32 × 32
(↓ 32× 32) and then upsampling (↑) them back to the original resolution. Tab.
3.7 collects the outcome of this evaluation, showing how µPyD-Net places in
between the two competitors for most metrics (i.e., Sq Rel, RMSE, RMSE log,
α < 1.25, α < 1.253) although counting two order of magnitude less parameters.
This supports the fact that µPyD-Net itself is enough to extract most of the
information available from low-resolution content while keeping low complexity.
This latter property is crucial for deployment on the target microcontrollers,
over which MonoDepth2 and MonoResMatch parameters alone would not fit
into the available memory.

We stress the fact that the farther points in the scene are those most
affected by the degradation introduced by processing tiny images since each
pixel senses a larger portion of the real scene. Therefore, we will assess the
accuracy of µPyD-Net when sensing at different ranges the scenes included
in the datasets. Tab. 3.8 reports a detailed comparison between µPyD-Net
and its optimized counterpart considering different depth ranges, from 0 m to
15, 25, 50 and 80 m. The upper part shows the results obtained by µPyD-Net
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Table 3.8 Evaluation of µPyD-Net and quantized variants at different ranges. Com-
parison with state-of-the-art [114] on the same ranges.

Lower is better ⇓ Higher is better ⇑

R
es

.
R

an
ge

Precision Abs Rel Sq Rel RMSE RMSE log α <1.25 α < 1.252 α < 1.253

float32 0.215 2.395 7.256 0.302 0.695 0.865 0.939
int8 0.498 11.712 15.133 0.656 0.439 0.714 0.850

0-
80

m

int8-ft 0.219 2.478 7.379 0.307 0.687 0.861 0.937
float32 0.206 1.865 5.710 0.287 0.710 0.875 0.946

int8 0.421 6.004 9.769 0.529 0.461 0.751 0.889

0-
50

m

int8-ft 0.209 1.928 5.809 0.292 0.702 0.872 0.943
float32 0.172 0.929 3.155 0.238 0.764 0.910 0.965

int8 0.308 2.023 4.717 0.354 0.546 0.854 0.944

32
×

32
0-

25
m

int8-ft 0.174 0.939 3.179 0.240 0.758 0.908 0.964
float32 0.136 0.448 1.800 0.189 0.822 0.939 0.979

int8 0.219 0.761 2.438 0.248 0.718 0.919 0.972

0-
15

m

int8-ft 0.138 0.457 1.815 0.191 0.817 0.938 0.978
float32 0.193 2.308 6.943 0.277 0.736 0.890 0.953

int8 0.322 5.919 10.648 0.394 0.615 0.837 0.925

0-
80

m

int8-ft 0.193 2.252 6.922 0.276 0.735 0.890 0.954
float32 0.182 1.685 5.308 0.261 0.751 0.901 0.960

int8 0.285 3.329 7.266 0.343 0.636 0.860 0.942

0-
50

m

int8-ft 0.182 1.656 5.299 0.260 0.750 0.901 0.960
float32 0.149 0.748 2.843 0.212 0.804 0.932 0.975

int8 0.220 1.208 3.629 0.261 0.716 0.914 0.967

48
×

48
0-

25
m

int8-ft 0.150 0.744 2.854 0.212 0.803 0.931 0.975
float32 0.118 0.348 1.601 0.168 0.856 0.956 0.986

int8 0.166 0.501 1.967 0.199 0.821 0.948 0.983

0-
15

m

int8-ft 0.119 0.347 1.608 0.168 0.855 0.955 0.986

[114] 0-80m 0.096 0.673 4.351 0.184 0.890 0.961 0.981
[114] 0-50m 0.092 0.504 3.336 0.174 0.899 0.965 0.984
[114] 0-25m 0.078 0.242 1.799 0.141 0.925 0.977 0.990
[114] 0-15m 0.067 0.119 1.027 0.111 0.949 0.986 0.994
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Table 3.9 Quantitative evaluation on Make3D dataset [107].

Lower is better ⇓
Method Resolution Abs Rel Sq Rel RMSE RMSE log
MonoDepth [95] ResNet50 256× 512 0.451 7.299 10.139 0.223
3Net [113] ResNet50 256× 512 0.407 5.060 8.558 0.203
MonoDepth2 [58] 192× 640 0.375 3.694 8.218 0.204
MonoResMatch [114] 384× 1280 0.375 4.072 8.859 0.213
DepthHints [130] 320× 1024 0.350 3.385 8.242 0.200
PyD-Net [122] 256× 512 0.510 9.106 10.538 0.225
µPyD-Net 48× 48 0.531 7.607 9.726 0.226
µPyD-Net 32× 32 0.607 10.687 10.252 0.237

processing 32× 32 images and in the middle processing with the same network
48 × 48 images. At the very bottom of the same table, we also report for
comparison results yielded by state-of-the-art [114]. We can notice in general
how, independently of the input resolution and evaluation range, introducing
the quantization dramatically drops the performance of µPyD-Net (float32
vs. int8 entries), as already observed in [96]. However, by fine-tuning the
model after quantization (int8-ft entries), the original performance is restored
for most metrics and sometimes even improved. Focusing on how the metrics
change across the different evaluation ranges, we can perceive how, on nearby
measurements, the gap between µPyD-Net and much more complex state-of-
the-art [114] gets lower. For instance, by looking at the RMSE metric, we
can observe how the difference in terms of average error is about 3 when
considering the full evaluation range 0-80 m, while it drops to about 0.6 and 0.8
respectively for 48× 48 and 32× 32 images when dealing with the 0-15 m range.
This behavior suggests that µPyD-Net might not be particularly suited for
long-range depth measurements. However, close-range depth-sensing provides a
valid alternative when a low-power budget is paramount. For instance, Fig. 3.12
shows a qualitative example of a traffic monitoring system processing images
from the KITTI dataset [56] downsampled to 48 × 48 resolution. We show
four images acquired from a static point of view to simulate a monitoring
camera placed on a crossroad. For each one, we report on the right their
downsampled counterpart, the estimated disparity map sourced by µPyD-Net
and a segmentation map detecting objects on the scene over imposed to the
original KITTI image. To this aim, given the depth layout estimated for the
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Fig. 3.13 Qualitative results on Make3D. From top to bottom, reference images,
inverse depth maps by MonoResMatch [114] and by 48× 48 µPyD-Net.

empty scene (i.e., in the absence of vehicles) estimated by µPyD-Net, a simple
change-detection algorithm in the depth domain is sufficient to detect nearby
cars reliably. Although this application allows for simple traffic monitoring, the
depth cue provided by µPyD-Net can be exploited for other purposes (e.g., 3D
tracking) and replace other sensors. Therefore, such information could be used
in place of other sensors or to enrich other image-based cues such as object
detection or semantic segmentation.

In order to assess the generalization properties, in Tab. 3.9 we report results
on the Make3D dataset [107] following the evaluation proposed in [58], on a
center crop of 2× 1 ration and without applying median scaling (not required
when training on stereo pairs). We point out how state-of-the-art networks
suffer from huge drops when moved to unseen environments as well. µPyD-Net
can still provide meaningful predictions, very close to those by MonoDepth
when running at 48× 48. Fig. 3.13 show some qualitative examples, showing in
particular how the coarse disparity maps by µPyD-Net are often less affected
by artifacts with respect to the predictions by MonoResMatch.

Evaluation – Hardware-related metrics

The shift from high-performance GPUs to ultra-low-power MCUs encompasses
the evaluation of hardware-related metrics besides accuracy, i.e. latency and
memory, in order to assess the portability and efficiency. As shown in Tab. 3.6,
the number of parameters of standard monocular networks exceeds by far the
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Table 3.10 Extra-functional metrics of µPyD-Net at different input resolutions on
the NUCLEO-F767ZI board.

Resolution RAM Execution Time
32× 32 208 kB 290 ms
48× 48 337 kB 651 ms

memory constraints of commercial MCUs, preventing the deployment on the
edge and therefore a direct comparison with µPyD-Net. For this reason, this
section focuses on the hardware characterization of µPyD-Net, demonstrating
that the adopted architectural choices are mandatory to guarantee compliance
with the limited resources of the hosting system.

Tab. 3.10 reports the hardware-related metrics measured at run-time on
the NUCLEO-F767ZI board: RAM usage and execution time (averaged on 100
inference runs). The proposed µPyD-Net reaches a throughput of 3.4 FPS,
which can be considered a remarkable result considering the limited power
budget of the adopted device. Moreover, the collected results demonstrate that
input resolution is an effective knob in the accuracy-latency-memory space:
a resolution of 32 × 32 enables 38% of memory savings and 2.24× higher
throughput compared to 48 × 48. This comes at the cost of some accuracy
loss (as already shown in Tab. 3.8). However, this might be a false problem
as errors can be masked by subsequent processing stages. The resolution is a
design choice indeed, and it should be weighted depending on the requirements
of the downstream application.

Even though the limited computational resources of the hosting MCU pre-
vent real-time processing even for such a compact network, the measured per-
formance meets the requirements of the applications described in Section 3.4.1.
However, if higher power and area budgets are available, µPyD-Net can be
ported to more powerful systems and its application extended to other use-cases.
To assess the scalability of µPyD-Net from the IoT to the embedded segment,
we tested its performance on the mobile CPUs (ARM Cortex-A53) adopted in
our previous work [96]. In this system, µPyD-Net processes up to 320 frame/s,
a 94× boost that comes at the cost of 10× power consumption (~4 W).

It might seem like the high efficiency brought by µPyD-Net is simply due
to the input rescaling, and hence our proposal may seem a relatively naive
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Fig. 3.14 Memory breakdown of PyD-Net and µPyD-Net at different input resolutions.
The dash (-) indicates that the resolution is not compliant with the network topology.

approach. A more detailed analysis reveals that the design of µPyD-Net goes
beyond this simplistic analysis. On the one hand, it is correct that a lower
input space reduces the memory footprint as all the inner feature maps get
intrinsically smaller. On the other hand, what makes µPyD-Net smaller and
faster, hence less energy-hungry and able to fit tiny MCUs with marginal
accuracy loss, lies in the topology of the network. Input resolution scaling
alone is not enough, but, when jointly applied on the structure of µPyD-Net
it enables design options that would not be possible otherwise. Like other
pyramidal architectures, µPyD-Net applies a coarse-to-fine strategy where
information is processed hierarchically. Since features of higher semantic level
are inferred layer-by-layer traversing the pyramid bottom-up, it is intuitive
to understand that the lower the resolution of the input image, the lower the
number of layers needed to achieve a certain accuracy. This is a general trend
also recognized in other CNNs, but it has a much higher impact on the specific
case of µPyD-NetẆith smaller inputs, it is possible to compress the topology
by reducing the number of encoders and decoders, not just their size, thus
achieving aggressive RAM reduction.

To support this analysis, the bar chart in Fig. 3.14 shows the memory
footprint vs. input resolution of PyD-Net (hatched bars) and µPyD-Net
(plain bars), both quantized to 8-bit; the comparison is made by splitting the
contributions of weights (blue) and inner features (orange). The horizontal
black line marks the RAM constraint (512 kB). For both the networks, the
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dimensionality of the internal activations is re-scaled according to the input
size. It is worth noticing that the minimum input resolution of PyD-Net is
64 × 64 since the input image is down-sampled by a factor of 26 across the
pyramidal encoders. For such reason, the results below are not reported. We
can infer the following considerations. First, PyD-Net runs out of space and
cannot fit into MCUs because the size of the weights does not scale with the
input resolution. Even using the smallest input size (i.e. 64× 64), the weight
storage is about 2 MB, namely 4× the RAM on-board. Second, µPyD-Net
shows an activations/weights ratio larger than PyD-Net. For instance, with the
highest input resolution (256×128) the RAM taken by the features significantly
increases, from 2.3 MB (PyD-Net) to 3.2 MB (µPyD-Net). The reason is that,
in PyD-Net, the size of the feature maps processed by the topmost decoder,
which is the most energy-hungry layer, is half of the input resolution, while
in µPyD-Net it is not. Therefore, µPyD-Net is less suited for high resolution.
However, as inputs are re-scaled to 48× 48, the activation footprint scales well,
meeting the memory constraint. Working with 32× 32 images ensures some
free space for other background applications or tasks.

These findings support our claim: µPyD-Net does work not just because
of the lower cardinality of the input space but precisely because it has been
tailored to adapt to the requirements of tiny applications.

3.4.6 Discussion

Depth is of paramount importance in many practical computer vision appli-
cations and the terrific results recently achieved by monocular methods have
dramatically increased the interest in this topic. Unfortunately, in most cases,
these methods rely on high-end GPGPUs or sufficiently capable embedded
devices, precluding their practical deployment in those application contexts
involving ultra low-power devices such as MCUs. Thus, in this section, we
proposed a two-fold strategy to enable monocular depth estimation on MCUs.
First, we designed an ultra-lightweight Convolutional Neural Network based on
a pyramidal architecture, which is trained in a semi-supervised manner leverag-
ing proxy-supervision obtained through a conventional stereo algorithm. Then,
we quantized the network to an 8-bit fixed-point representation, and we mapped
the high-level description of the network to low-level routines optimized for the
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target hardware. Exhaustive experimental results and an in-depth evaluation
performed on an Arm Cortex-M7 MCU confirm that obtaining monocular depth
cues is feasible even on devices characterized by ultra low-power constraints.

3.5 Conclusions

This chapter focused on how to build fast CNNs targeting low-power devices.
Specifically, it introduced a comprehensive design and optimization framework
to accelerate the inference of quantized, lightweight CNNs on ARM Cortex-A
CPUs and ARM Cortex-M MCUs. The optimization framework combines a
hardware-friendly fixed-point quantization method with integer neural kernels
custom-tailored to the target platform. The first part of the chapter discussed
the acceleration of PyDNet, a lightweight CNN capable of achieving close to
state-of-the-art accuracy in the challenging task of monocular depth estimation.
The experimental evaluation performed on a multi-core ARM Cortex A53
CPU proves the efficiency of the proposed framework, as the 16-bit and 8-bit
quantized versions of PyDNet suffer from negligible to marginal accuracy loss
compared to the floating-point version while achieving remarkable latency
and memory savings. The second part of the chapter introduced the design
and development of µPyD-Net, a lightweight Convolutional Neural Network
specifically designed to perform monocular depth estimation on MCUs. The
experimental assessment showed that, despite meeting the strict constraints of
tiny MCUs, µPyD-Net achieves a depth accuracy comparable to seminal works
on the KITTI dataset. As the primary outcome, this chapter demonstrated that
combining a hardware-aware neural design process, an efficient quantization
method, and computational kernels custom-tailored to the target architecture
can remarkably improve the efficiency of challenging CNN inference tasks on
low power devices.



Chapter 4

Energy-Quality Scalable
Convolutional Neural Networks

4.1 Introduction and Motivation

As discussed in previous chapters, the optimization of CNNs for low-power
embedded devices is a well-established problem in many application contexts.
The recent literature has proposed several solutions, from design methodologies
of hardware-aware neural architectures [15, 84] to model compression strategies,
like weight pruning [35] and quantization [40], and low-level code optimiza-
tions [145]. Although such methods have enabled a remarkable reduction of the
complexity of a CNN, they allow embedded designers to tune the optimization
process for the worst-case constraints, producing a static CNN capable of
working in only one performance-quality point. An embedded system relying
on such a static CNN spends the same computational effort in all circumstances,
neglecting the changes in external conditions, quality-of-service demands, and
the requirements of other applications running concurrently on the same device.
In this context, satisfying the worst-case constraints corresponds to either
reducing the CNN accuracy or reducing its performance.

An alternative solution relies on what is known in the approximate com-
puting field as “energy-quality” scaling. By leveraging the error resilience of
many real-life applications, the quality-of-result can be gracefully degraded at
run time to achieve higher energy efficiency, depending on the specific task,
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the external context, or the battery level. In this scenario, the worst-case
constraints can be satisfied only when needed, optimizing for energy efficiency
in all other cases. For instance, a mobile surveillance system can reduce the
prediction quality to consume less battery on average and switch to a more
accurate but more energy costly mode only when something suspicious is de-
tected. In a depth estimation application, a less accurate estimate could still
be sufficient to accomplish simple tasks, such as object and people counting,
action recognition, and vehicle detection. However, the system can switch to an
accurate configuration for a more precise 3D scene reconstruction or when the
scene is particularly cluttered and “complex”. More in general, when the scene
analyzed is “easy” and requires less effort to be understood, the computational
effort of the system should be scaled accordingly to release system resources or
to reduce energy consumption. Beyond these context-driven speculations, the
run time environment of the system could force the inference process of a CNN
to run under more stringent latency and energy constraints in certain intervals
of time, to allocate more time and resources for other applications running
concurrently. Therefore, the availability of energy-quality (EQ) scalable CNNs
capable of efficiently trading-off at run time accuracy with computational cost
represents an extremely valuable tool in embedded applications.

Building an energy-quality scalable CNN encompasses the availability of
proper knobs that can be tuned at run time to set the most appropriate working
point. Several knobs have been proposed in the literature: to mention a few,
width modulation [15, 24] and layer skipping [22, 23] play with the topology
of the network, resolution scaling [15, 146] with the size of the intermediate
feature maps, precision scaling [147, 148] with the complexity of the arithmetical
operations. Nevertheless, previous works have been focused only on image
classification tasks based on CNNs [149], but not, or very marginally, in more
complex applications, such as monocular depth estimation. Moreover, how to
implement an energy-quality scalable system on tiny devices powered by MCUs
is still an open research challenge, as the scalable knobs must be compatible
with the minimal memory resources available on device, namely, 1−2 MBs of
FLASH and tens to hundreds of KBs of RAM.

This chapter first reviews the main knobs proposed in the literature to
implement energy-quality scalable CNNs (Section 4.2). Then, it introduces
the design and characterization of an efficient dynamic system for energy-
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quality scalable depth-sensing called EQPyD-Net (Section 4.3). Finally, the
last part of the chapter presents an end-to-end optimization flow comprising a
training methodology, a novel compressed sparse storage format, and purposely
built sparse operators to deploy energy-quality scalable CNNs on tiny MCUs
(Section 4.4).

The content of this chapter is an extended and improved version of our
previous publication found in [98].

4.2 Energy-Quality Scaling Knobs

This section reviews the most common knobs proposed in the literature to scale
the energy-quality working point of a CNN at run time.

Resolution scaling

High-resolution features help the model achieve high prediction accuracy at
the cost of a remarkable increase in the computational cost. Therefore, tuning
the resolution depending on the actual constraints of the system represents an
effective way to scale the energy-quality point of a CNN. Resolution scaling
can be achieved by changing the spatial resolution of the network inputs [15]
or, in the case of multi-scale architectures [146], by selecting the branches of
the network to process.

Width Modulation

Static solutions scale uniformly the number of filters of the convolutional layers
of the network through a scaling ratio, called the width-multiplier [15]. More
advanced solutions [24] share the weights across the different configurations
(i.e., for different values of the width-multiplier) to avoid the overhead of storing
multiple weight-sets.



102 Energy-Quality Scalable Convolutional Neural Networks

Depth Modulation

The depth of the network, i.e., the number of layers traversed during the
inference pass, can be selected at run time by the user or by the system.
Alternatively, the depth can be modulated automatically by attention modules,
gating blocks [22], or early-exit branches [23]. Multi-scale networks like PyD-Net
combine resolution scaling with layer skipping.

Arithmetic precision

The data-type of weights and activations can reduce the computational effort
and alleviate the memory bandwidth requirements [40]. The data-type scaling
can be performed per layer or per network. The latter is usually preferred in
the case of general-purpose cores, such as those targeted in this work, thanks
to its simple implementation.

4.3 Energy-Quality Scalable Monocular Depth
Estimation on Embedded CPUs

This section introduces the design and characterization of an efficient energy-
quality scalable system for depth sensing. When designing an EQ system,
the first implementation choice is the selection of the underlying CNN model
that has to be enhanced with dynamic features. In the case of a monocular
depth estimation pipeline, PyD-Net [96] is an excellent candidate. Indeed, its
modular structure allows the resolution of the predicted depth maps to be set
at run time, skipping the most demanding computations, hence saving energy
when running at lower output scales. Moreover, its tiny memory footprint
enables the storage of multiple weight-sets at different arithmetic precisions.
These different configurations can then be dynamically selected at run time
without any latency overhead to tune the energy-accuracy working point of the
system. Therefore, building upon our previous work [96] described in Sec. 3.3,
we present an energy-quality scalable system named EQPyD-Net.
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The dynamic energy-quality trade-off attainable with EQPyD-Net is the
result of the following optimizations orchestrated across all levels of the design
and deployment stack:

• at training time, the adoption of a multi-scale self-supervised training
procedure to infer high-quality depth maps at five different resolutions;

• at optimization time, the use of a quantization procedure to convert
PyD-Net into 16- and 8-bits fixed-point configurations;

• at run time, the adoption of energy-proportional neural kernels for fixed-
point tensor operators custom-tailored for the ARMv7a architecture.

A thorough assessment of EQPyD-Net on a COTS system powered by
an ARM Cortex-A53 CPU shows that it can cover a wide range of energy-
quality space with a Pareto front comprising five operating points. In fact,
on the KITTI dataset, EQPyD-Net can be as accurate as 82.2% processing
0.4 Frame/J, or it can save up to 92.6% of energy savings with only 6.1% of
accuracy loss. Nevertheless, EQPyD-Net requires only 5.2 MB for the weights
and 38.3 MB (worst-case) for the processing, representing thus a promising
solution for embedded computer vision applications.

4.3.1 Training and Optimization Flow for EQPyD-Net

Neural Network Architecture

As we adopt the same neural architecture of our previous work, the reader
could refer to section 3.3.2 for a more detailed description. For the sake of
clarity, Fig 4.1 shows the abstract view of PyD-Net. In this section, we only
highlight the key elements that make PyD-Net an excellent candidate for an
energy-quality scalable system. Specifically, PyD-Net is characterized by the
peculiar combination of a super lightweight encoder with decoder branches
that require a computational effort proportional to the quality demand. Such
a design choice is motivated by observing that the encoder is always processed
regardless of the final resolution; thus, it is designed to be as fast as possible.
On the other hand, the high-resolution decoders are active only when a high
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output resolution is set as the network output, and so, they are designed to be
energy-quality proportional. For comparison with common architectures used
as the encoder in other monocular networks, Tab. 4.1 reports the number of
MAC operations and the number of parameters of the encoder of PyD-Net and
of VGG16, ResNet-18, and MobileNetV2. The encoder of PyD-Net requires at
least 3.4x less space and at least 1.93x less MAC operations.

The Training Procedure

We follow the state-of-the-art methodology described in sec. 3.3.2 to train our
network in a self-supervised manner, assuming that stereo data is available
during training. The model is trained to minimize a multi-scale combination
of appearance, smoothness, and consistency loss terms as proposed in [58].
Specifically, we compute each single-scale loss signal at full resolution by
upsampling each estimated depth ds at scale s to the full resolution map d ↑s.
Then, the final loss signal L is obtained as the sum of each single-scale loss
Ld↑s . This approach differs from what we did in our previous work, where
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Table 4.1 Number of parameters (# Params) and multiply&accumulate operations
(# MACs) of the most common encoders and PyD-net encoder.

Network # Params (M) # MACs (G)

VGG16 138.36 40.37
ResNet-18 11.69 4.76
MobileNet v2 3.50 0.85
PyD-net Encoder 1.02 0.44

the I l, Ir are first downsampled at each scale to compute Lds [95, 122], and
then used to provide supervision at the different decoders. Fig. 4.2 gives a
preliminary qualitative comparison between the results obtained by the original
training adopted in [122] for PyD-Net and the new one deployed in this work
for EQPyD-Net. The figure shows that the former can only provide meaningful
estimations down to 1

8 of the input resolution while EQPyD-Net allows for
scene understanding even at a resolution as low as 1

32 of the input.

Optimization Flow

We adopt the same optimization flow presented in section 3.3.3. Here, we
highlight only the two main benefits of precision scaling in reducing energy
consumption. First, at lower precision, the number of elements fitting in
the lower levels of the memory hierarchy, namely, caches and register files,
doubles, reducing the data movement across the hierarchy and so the energy
consumption. Second, the number of MACs processed by a single instruction
doubles from 2 (16-bit) to 4 (8-bit), enabling faster processing.

Original

H Q E S T

This Work

Fig. 4.2 Depth estimated at different output resolutions for an input taken from the
KITTI dataset. On top [122], on the bottom EQPyD-Net.
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4.3.2 Experimental Results

This section aims at assessing the performance of EQPyD-Net, according to
several figures of merit, both functional, namely, error and accuracy metrics,
and extra-functional, namely, energy consumption and memory footprint. The
analysis reported at the end of the section describes in-depth the effect of
the arithmetic and neural topology knobs on the energy-quality scalability of
EQPyD-Net.

Training set-up

We extensively tested the energy-quality scalability of EQPyD-Net on the
KITTI raw dataset [56], a widely adopted dataset for depth estimation. It
comprises 42K rectified stereo image pairs framing driving scenarios. It was
produced starting from 61 video sequences collected by a driving car. Besides
stereo pairs, the dataset also contains metric depth measurements produced
by a LiDAR sensor mounted on the car. Following previous works [105], [95],
We split the dataset into two subsets according to the Eigen split [105], i.e.,
the set of 61 sequences is split into 29 and 32 sequences, and 697 frames are
picked from the first split and 22600 from the second group for test and training
purposes respectively.

To train the network, we adopted the schedule described in [122] to compare
with the original PyD-Net version [122, 96]. Specifically, we first pre-trained
the network for 50 epochs on the CityScapes dataset [140], then we trained for
200 epochs on the Eigen training split. For both both cases, we adopted a batch
size of 8 images with resolution 512×256. We used the Adam optimizer [127]
with β1 = 0.9, β2 = 0.999, and ε = 10−8, a learning rate of 10−4 for the first 60%
epochs, halved every 20% epochs until the end of the training process. During
training, we performed the following augmentations with a 50% probability to
be applied: random horizontal image flipping, random color augmentation in
terms of gamma correction, brightness modification, and color shifting. Gamma,
brightness, and color shift values are sampled from a uniform distribution in
[0.8,1.2], [0.5,2.0], and [0.8,1.2] ranges respectively.

The post-quantization fine-tuning was performed for 5 epochs with the
Adam optimizer, learning rate 1.0e−5 on the Eigen training split.
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Table 4.2 Error metrics and accuracy scores on the KITTI raw data using the Eigen
split [105] at different scales and precision options. For each resolution, the first row
refers to PyD-Net trained with the single-scale loss [96]. The best results at each
resolution are highlighted in bold, while the absolute bests in red.

Lower is better Higher is better
Config. Abs Rel Sq Rel RMSE RMSE log a1 a2 a3
H@FP32 [96] 0.146 1.298 5.859 0.241 80.2% 92.7% 96.8%
H@FP32 0.135 1.154 5.550 0.234 82.1% 93.2% 96.9%
H@FX16 0.136 1.157 5.556 0.235 82.1% 93.2% 96.9%
H@FX8 0.200 1.820 6.797 0.329 69.8% 86.9% 93.2%
H@FX8-ft 0.141 1.152 5.634 0.239 80.9% 92.9% 96.9%
Q@FP32 [96] 0.149 1.350 6.128 0.246 79.5% 92.3% 96.6%
Q@FP32 0.135 1.134 5.505 0.233 82.1% 93.3% 97.0%
Q@FX16 0.135 1.136 5.506 0.233 82.2% 93.3% 97.0%
Q@FX8 0.196 1.918 6.735 0.297 72.9% 88.8% 94.6%
Q@FX8-ft 0.146 1.164 5.608 0.241 80.5% 93.0% 96.9%
E@FP32 [96] 0.162 1.699 7.141 0.266 76.8% 90.7% 95.9%
E@FP32 0.137 1.151 5.546 0.233 81.7% 93.1% 97.0%
E@FX16 0.137 1.153 5.546 0.233 81.7% 93.1% 97.0%
E@FX8 0.264 2.964 8.252 0.324 61.1% 86.8% 94.4%
E@FX8-ft 0.145 1.157 5.675 0.241 80.1% 92.8% 96.9%
S@FP32 [96] 0.221 2.768 8.960 0.347 64.3% 84.5% 92.5%
S@FP32 0.143 1.235 5.679 0.235 80.4% 92.8% 97.0%
S@FX16 0.143 1.238 5.680 0.235 80.4% 92.8% 97.0%
S@FX8 0.215 2.176 7.062 0.291 70.6% 89.0% 95.2%
S@FX8-ft 0.155 1.335 5.843 0.240 79.6% 92.7% 97.0%
T@FP32 [96] 0.416 9.184 12.384 0.502 45.6% 71.8% 84.7%
T@FP32 0.165 1.514 5.990 0.243 77.8% 92.2% 97.0%
T@FX16 0.165 1.517 5.993 0.243 77.8% 92.2% 97.0%
T@FX8 0.199 1.982 6.816 0.285 70.6% 89.1% 95.5%
T@FX8-ft 0.178 1.667 6.161 0.249 76.1% 92.1% 97.0%

Device set-up

We adopted the Raspberry Pi 3B (RPI3B) powered by the BCM2837 System-
on-Chip by Broadcom, hosting a quad-core ARM Cortex-A53 CPU and 1GB

of DRAM. The CPU can run at a maximum clock frequency of 1.2 GHz. The
Q.Neural Kernels (see Section 3.3.3) were integrated into the ARM Compute
Library (ACL) [54] version 18.05, which collects the floating-point operators
used as baselines in our analysis. The code was cross-compiled with gcc-linaro
toolchain version 6.4.0-2018.05. We adopted Ubuntu Mate 16.04 (32-bit) as
the operating system. We used Google benchmark version 1.5.0 [150] to collect
the performance statistics of the inference stages at the maximum operating
frequency.
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Functional Metrics

Tab. 4.2 reports a quantitative assessment of EQPyD-Net under the different
error measures (Abs Rel, Sq Rel, RMSE, RMSE log) and accuracy scores (a1,
a2, a3), assuming a 80 m cap distance [95] (see sec. 3.2 for further details).
The table is organized in five sections, one for each resolution (H, Q, E, S,
T); results are reported for different data types (32-bit floating-point, 16- or
8-bit fixed-point, referred to as FP32, FX16, and FX8) with fine-tuning (-ft)
performed post-quantization. The first row of each section reports the metrics
of the original version of PyD-Net [96].

The collected results show the higher accuracy achieved by EQPyD-Net
thanks to the multi-scale loss. Scaling down to S, EQPyD-Net outperforms
the original version at H resolution in all metrics, obtaining better results
while being faster and requiring fewer resources. Moving to T, it still achieves
competitive accuracy (a1 = 77.8%) with only 4.3% loss related to H, whereas,
in the original version, the accuracy drops down to 45.6%. The benefits can
also be perceived qualitatively from Fig. 4.3. Moreover, as the Q configuration
of EQPyD-Net achieves better results than H for all metrics, we removed the
H-decoder from the network at deployment time with substantial energy and
memory savings, as will be described in the following subsections.

Tab. 4.2 shows that the FX16 configuration achieves equal or better results
than the FP32, whereas switching to FX8 causes a substantial accuracy drop
(the worst case is -20.6% for a1 in E@FX8). Luckily, fine-tuning the network
reduces the accuracy gap with FX16 and FP32, as shown qualitatively in
Fig. 4.3. The 3D structure of the scene is well preserved even at the lowest
scales independently from the adopted data type, with a slight deterioration at
T resolution only. Moreover, it can be noticed how the FX8 configuration after
fine-tuning performs similarly to standard FP32.

Overall, these findings demonstrate the efficiency of the multi-scale loss and
the effectiveness of the quantization procedure for all output resolutions.
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Comparison to state-of-the-art techniques

In Tab. 4.3, we compare the accuracy of our best configuration Q@FP32 with
the accuracy of other state-of-the-art monocular depth strategies. Compared
to the PyD-Net, the new training procedure based on the multi-scale loss
further improves the depth estimation accuracy closing the gap with larger self-
supervised models such as MonoDepth [95], MonoDepth2 [58], and 3Net [113].
On the other hand, the methods leveraging other forms of supervision such
as SGM as done in DepthHints [130] and MonoResMatch [114], still produce
better depth estimations. However, the higher accuracy comes at the cost of a
huge computational and memory burden, making the use of high-performance
CPUs or GPUs mandatory. EQPyD-Net, instead, is highly compact, and so it
represents an excellent candidate for embedded applications.
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Fig. 4.3 Depth images obtained for each value of precision and output resolution for an input taken from the KITTI dataset. The
last row illustrates depth images inferred after fine-tuning (-ft).

Table 4.3 Quantitative evaluation of KITTI test set using the split of Eigen et al. [105] with maximum depth set to 80m.

Lower is better Higher is better
Method SGM Abs Rel Sq Rel RMSE RMSE log δ <1.25 δ < 1.252 δ < 1.253

DepthHints [130] ✓ 0.096 0.710 4.393 0.185 0.890 0.962 0.981
MonoResMatch [114] ✓ 0.096 0.673 4.351 0.184 0.890 0.961 0.981
MonoDepth [95] - 0.114 0.898 4.935 0.206 0.861 0.949 0.976
3Net [113] - 0.111 0.849 4.822 0.202 0.865 0.952 0.978
MonoDepth2 [58] - 0.109 0.873 4.960 0.209 0.864 0.948 0.975
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Fig. 4.4 Energy breakdown of different modules of EQPyD-Net at FX16. Similar
values have been observed also for FX8.

Energy-Quality Scaling

This section presents an extensive characterization of the energy-quality char-
acteristics of EQPyD-Net. Specifically, the aim is to dissect the effect of
the adopted scaling knobs, namely, resolution and precision, on energy and
accuracy scaling. As the quality metric, we selected the a1 score, which is
commonly adopted to assess the prediction accuracy in the case of CNNs for
monocular depth estimation [120]. To evaluate the energy consumed during
inference, we measured the average Frame/J over 100 runs, assuming a constant
power consumption of 3.5 W. Although this is a worst-case assumption, as the
adopted scaling knobs could slightly lower the average power consumption, the
latency scaling represents the main factor affecting the energy efficiency on a
general-purpose CPU.

Fig. 4.4 shows the energy breakdown of the different modules composing
EQPyD-Net. Although the pie-chart reports only the number for the FX16
configuration, similar percentages hold for the other precision options. The
main advantage of EQPyD-Net lies in the limited contribution (only 10.8%)
of the modules that are always executed regardless of the selected resolution
(orange area). Thanks to its lightweight pyramidal encoder, EQPyD-Net pushes
the computational efforts to those decoder branches processed exclusively when
high quality is needed. Moreover, the improved training procedure allows us
to remove the H-decoder, which is the most consuming block with 62.8% of
energy.
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Fig. 4.5 Energy efficiency at different output scales and precision configurations. An-
notations indicate the relative improvement with respect to H@FP32 (0.141 Frame/J).

The cooperation with precision scaling further extends the achievable savings,
as depicted in Fig. 4.5. The bar-plot illustrates the energy gains (normalized
to H@FP32) achieved through fixed-point quantization at each scale. The
observed trends validate the proposed Q.Neural Kernels (see Section 3.3.3),
since the energy efficiency lowers with the precision. Most importantly, FX16
consistently outperforms FP32 while keeping the same accuracy. A more in-
depth analysis reveals interesting aspects of the nature of the two knobs. The
savings achieved by resolution scaling gets lower at smaller scales, ranging from
2.69× (H→Q at FX16) to 1.09× (S→T at FX16), whereas the savings brought
by reduced bit-width keeps almost constant, around 1.38× (FX16→FX8-ft at
constant resolution). Indeed, precision scaling operates as a coarse-grain knob
and improves efficiency by reducing the complexity of all the network layers.

A more intelligible representation of this concept is reported in the Pareto
analysis of Fig. 4.6. The plot places each configuration of EQPyD-Net in the
energy vs. accuracy space. The Pareto curve connects the five non-dominated
points (orange line). This analysis reveals that switching across high-resolution
configurations (Q, E, S) brings significant energy savings with a small accuracy
loss. Instead, when moving towards the lowest resolution (S→T), the accuracy
degradation gets substantial (-2.6%) with limited energy savings (-9.38%).
Conversely, precision scaling (S@FX16→S@FX8-ft) achieves 31.2% savings, yet
with negligible accuracy drop (only 0.8%).
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Fig. 4.6 Energy and accuracy at different output resolutions (from left to right
H→T) and precision configurations (FX16 and FX8-ft). The orange curve connects
Pareto-optimal solutions.

Memory

This subsubsection aims to evaluate the cost of storing the Pareto optimal
configurations of EQPyD-Net (those of Fig. 4.6), enabling energy-quality scaling
at run time. The overall memory footprint is the sum of two main contributions:
the network weights, stored on the flash memory and block-loaded into RAM
at initialization time, and the partial activations produced by the intermediate
layers during inference. The latter are stored on the RAM through a time-
shared buffer to reduce peak memory usage. At a given arithmetic precision,
different resolution options share the same network weights since resolution
scaling implies layer skipping (see Section 3.3.2). By contrast, configurations
centered on different arithmetic precisions need the availability of two separate
weight sets, i.e., 16-bit and 8-bit. Nevertheless, as depicted in the barplot of
Fig. 4.7a, the weights of the original PyD-Net (H@FP32) occupies 7.6 MB (red
bar), whereas the sum of the two configurations Q@FX16 and S@FX8-ft takes
only 5.2 MB (yellow and gray bars), 44% less memory.

Concerning the RAM requirements, the decoder branches determine the peak
usage due to their large number of channels (up to 96). Therefore, the RAM
depends on the selected scale, as can be inferred from Fig. 4.7b. Besides that,
precision scaling allows further savings with a linear reduction of RAM resources.
Indeed, the transition S@FX16→S@FX8-ft halves the memory utilization. In
all cases, the resources needed are limited to few tens of MBs, from 38.3 MB
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Fig. 4.7 Flash (a) and RAM (b) requirements for Energy-Quality scaling with
EQPyD-Net.

to 13.3 MB, instead of 206.0 MB required by the original PyD-Net (H@FP32),
making EQPyD-Net extremely suitable for several embedded platforms.

4.3.3 Discussion

This section presented a thorough assessment of EQPyD-Net, an energy-quality
scalable system capable of performing monocular depth estimation on low-
power devices. The energy-quality scalability of EQPyD-Net comes from the
use of two knobs acting at different optimization levels: the resolution scaling
enabled by the reconfigurable topology of the network and the multi-scale
training; the precision scaling enabled by network quantization and low-level
code optimizations. Experimental results collected on the Cortex-A53 CPU
validate the efficiency of the adopted strategy. Future works could investigate
the feasibility of a similar energy-quality scalable solution also for binocular [94]
or multi-view stereo setup.

4.4 Energy-Quality Scalable CNNs on Tiny De-
vices via Nested Sparsity

As extensively highlighted in the previous sections, building a dynamic CNN
encompasses the choice of proper knobs that enable the latency-quality trade-off
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Fig. 4.8 A pictorial representation of a Nested Sparse CNN

at run time. In the case of MCUs, such a choice is very challenging as it must
be compatible with the minimal storage and memory resources available on
the device, namely, a few MBs of FLASH (1-2MB) and hundreds of KBs of
RAM (≤512kB). Architectural-level knobs recently proposed, like the network
depth [22] or the layers width [24], only offer a coarse-grain control for latency
(hence energy) and accuracy, and they do not alleviate the pressure on the
storage memory as the full model configuration, i.e., the one at the maximum
width or maximum depth, might still be too large to fit into the FLASH memory.
The availability of fine-grain control knobs capable of modulating the latency
but also keeping the model footprint minimal is highly desirable here, and
model sparsity is a good candidate. Sparse training is less prone to accuracy
loss, and sparse models can be compressed via sparse encoding formats [28].
However, how to leverage the weight sparsity as the dynamic knob on compact
CNNs, e.g., the MobileNets [15], and how to deploy dynamic sparse CNNs
efficiently on general-purpose cores are still open issues.

To address such issues and so to enable the use of model sparsity as a
dynamic knob on tiny MCUs, we propose a new class of dynamic CNNs called
Nested Sparse CNNs. A Nested Sparse CNN is a neural model with a single
weight-set capable of working in N different configurations of increasing sparsity.
It can be viewed as a super-network containing N sparse sub-networks with
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nested weight-sets (like the Matryoshka doll depicted in Fig. 4.8). A low sparsity
value corresponds to high accuracy, whereas a high sparsity value results in a
faster inference process at lower accuracy. A Nested Sparse CNN is the result of
a novel end-to-end optimization pipeline, covering different levels of the design
stack:

• at training time, we introduce a gradient masking technique that properly
routes the learning signals between the nested sparse networks guarantee-
ing convergence and high accuracy;

• at compile time, we propose a new sparse matrix compression format that
fruitfully exploits the nested structure of the weight-sets to minimize the
storage footprint;

• at run time, we present sparse compute kernels capable of performing
tensor operations using the compressed weights without expensive decod-
ing stages and ensuring no additional latency cost when switching among
different sparse configurations.

4.4.1 Related Works

In this section, we briefly review the main compressed sparse storage formats
adopted for sparse CNNs and the work of Wu et al. [151] as it is the one closer
to our proposal and deserves more attention.

Compressed Sparse Storage Format

In the case of a sparse tensor, substantial memory savings can be achieved by
storing only the value and the position of the non-zero entries. Many different
sparse storage formats exist in literature [152], and the optimal one to use
depends on the sparsity level, the structure, and the access pattern needed,
e.g., random, streaming, or transposed access. For example, to maximize the
compression efficiency, a simple bitmap is preferable for low sparsity regimes,
whereas coordinate-offset schemes (COO) are more suitable in high-sparse
regimes [28]. Sparse storage formats like Compressed Sparse Row (CSR) or
Columns (CSC) [33] enables fast row access and hence they can be used to
efficiently perform sparse-matrix-vector and sparse-matrix-matrix operations.
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Dynamic Sparsity

Following the theoretic principle the higher the sparsity, the lower the latency,
the authors of [151] introduced a learning method for deep neural models
capable of working at different sparsity levels but using a unique weight-set.
The training loop was tested only on Recurrent Neural Networks (RNNs)
for Automatic Speech Recognition (ASR), known to be more redundant and
hence more reliable to pruning [153]. As an anticipation of the experimental
sections, we observed substantial accuracy loss when the technique is applied to
lightweight CNNs for image classification tasks. Most importantly, the resulting
storage footprint and the deployment on a real processing core are open issues
that received no attention in prior works.

4.4.2 Building Nested Sparse CNNs

Training

Training a Nested Sparse CNN means learning N sub-networks with increasing
sparsity within a single weight-set θ concurrently. Collecting and composing
the learning contributions coming from (and directed to) the many sparse
sub-networks is not a trivial task, mainly because the learning of the shared
weights must be appropriately balanced.

Let’s begin with the standard sparse training procedure of static CNNs.
While pioneering works, e.g., [29], prevented the pruned weights from getting
gradient updates, more recent works [27] have proposed pruning-while-training
strategies that regrow lost connections and achieve better results. This pro-
cedure is the state-of-the-art approach for sparse training. Managing the
regrowth mechanism for a Nested Sparse CNN is not straightforward, as the
"state" of a single weight (i.e., pruned or not-pruned) might differ among the
N sub-networks. To handle the many constraining states that may bubble up,
we propose gradient masking, a novel method conceived to route the learning
signals among the sub-networks.

A representation of the dynamics governing the training is reported in
Fig. 4.9. At each training step, the sub-networks are sequentially evaluated
with increasing order of sparsity value, from low to high, while the weight-set
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increasing order of sparsity (i.e s1 < s2 < s3).

θ is updated only at the end. Each frame in the picture shows a consecutive
evaluation of a different sub-network, consisting of forward (solid line) and
backward (dashed line) passes. L indicates the training loss. The first frame
on the left (labeled as Dense) is for the full weight-set θ (i.e., sparsity s0=0%),
while the following ones refer to sub-networks with increasing order of sparsity
(i.e., si+1>si), from left to right. Note that the dense network is utilized only
during the training phase for stability but discarded at inference time. With
gradient masking, the weights pruned for a specific sparsity value si no longer
contribute to the following stages, neither to the forward nor to the backward
propagation; this is graphically depicted in Fig. 4.9 by shadowed gray regions.
For instance, the gradient computation from the sub-network with sparsity
level s2 (i.e., g(s2)) does not interfere with the gradients previously computed for
the less sparse sub-networks. This flow allows the entire weight-set θ to evolve
during the training process while guaranteeing that each sparse sub-network
receives the correct gradient, i.e., only the one related to its active weights.

Formally, to extract the N nested weight-sets θ(si) for i ∈ {1, ..., N} from a
single weight-set θ we use a set of binary masks M = {M (s1), ..., M (sN )} such
that θ(si) = θ ◦M (si)1. Each mask M si is obtained by ranking the weight-set
θ by magnitude, then selecting the weights to prune according to the desired
sparsity level si. Such a strategy enforces the nesting of all weight-sets θi, which
can be formalized as:

s1 < s2 < ... < sN ⇒ θ(s1) ⊃ θ(s2) ⊃ ... ⊃ θ(sN ). (4.1)

1◦ indicates the Hadamard product between two matrices.
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Algorithm 4: Nested Sparse Training
1 Function main(steps, S, block_shape, optimizer):
2 for t in steps do
3 optimizer.zero_grad() // Ĝ = 0
4 soft_labels = forward (θ)
5 Ĝ += backward (θ)
6 if pruneStep (t) then
7 for s in S do
8 M s = getMask (θ, s, block_shape)
9 θs = θ ◦M s

10 forward(θs, soft_labels)
11 ĝs = backward (θs)
12 Ĝ += M s ◦ ĝs // Gradient Masking
13 end
14 optimizer.step() // Ĝ update
15 end
16 M = { getMask (θ, s, block_shape) for s in S }
17 return θ, M

18 Function getMask(θ, s, block_shape):
19 blocks = groupBlocks (θ, block_shape)
20 idx = rankBlocks (blocks, s)
21 mask = ones_like (θ)
22 mask[idx] = 0
23 return mask

The pseudocode of the proposed training loop is reported in Algorithm 4.
It follows the skeleton of the state-of-the-art iterative pruning procedure [154]
where a model is gradually pruned until a target sparsity level is reached.
The procedure is fed with the set of sparsity levels S = {s1, ..., sN} and the
block_shape (m×n); it returns the weight-set θ and the set of masks M , one
for each sparsity level s ∈ S.

The training loop alternates dense and sparse training epochs, according to
a fixed scheduler (line 6). At the beginning of each epoch, the gradient is zeroed
(line 3), then the forward and backward passes are performed with the entire
weight-set θ (lines 3-5). The weights are directly updated using the gradient
value (line 14) during the dense steps. During the sparse steps, for each sparsity
level s (line 7), the getMask function generates a mask M s (line 8). This mask
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is point-wise multiplied with θ to extract the sparse sub-network θs (line 9),
which is used to complete the forward and backward passes (lines 10-11). Notice
that the predictions of the dense model (line 4) are used as soft labels for the
sparse sub-networks (line 10), as a form of in-place distillation [155]. As the
last step, the local gradient ĝs, relative to the sub-network θs, is masked and
merged with the previous gradient contributions (line 12). The effect of the
gradient masking is twofold: first, it allows less sparse (and possibly more
accurate) sub-networks to influence the weights of the more sparse and weaker
ones; second, it shields the more sparse (and hence less accurate) sub-networks,
preventing abrupt changes in the learning curve. Once the contributions of
each sub-network are accumulated in the global gradient Ĝ, the weight-set θ

is updated (line 14). At the end of the training phase, the weight-set and the
set of nested masks M are returned (lines 16-17), ready to be used during the
inference stage.

The getMask function used to extract a binary mask given the sparsity
value si works as follows. First, weights are grouped into blocks of shape m×n

(line 19), where m is in the output-channels axis. Second, blocks are ranked
according to their magnitude (L2-norm) through the rankBlocks function,
which returns the position (idx) of the sorted weights in descending order.
Finally, the less important si · |θ| weights are pruned (line 20) by setting to
zero their value in the binary mask Msi

(lines 21-22).

Compression

Fig. 4.10 illustrates an example of the proposed sparse matrix compression
format, named NestedCSR, for a nested model trained with three generic
sparsity levels s1 < s2 < s3 and using a 1 × 2 block shape. It is worth
emphasizing that the compression format is general and can be used with any
number of sparsity levels or block sizes. At the lower sparsity level (s1), the
matrix comprises the red, green, and blue non-zero blocks; at the medium
sparsity level (s2), the red and green blocks; at high sparsity level (s3), the
red blocks. As shown in the figure, the three configurations can be seen as a
composition of three disjoint sparse matrices, and this is precisely the property
exploited by NestedCSR. Each sparse sub-set is compressed using a block CSR
format [33]: the nz-values array stores the values of the non-zero blocks in
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Fig. 4.10 Example of the proposed NestedCSR format applied to a 1×2 block sparse
matrix W that can work in three sparsity levels {s1, s2, s3}.

row-major order, the nz-iidx the number of non-zero blocks on each row, and
the nz-jidx the column position of each non-zero blocks. The three arrays of
each sparse sub-set are concatenated row-wise, from the most sparse to the
least sparse (from red to blue in Fig. 4.10).

The footprint of a block-sparse matrix W of dimensions R×C encoded with
NestedCSR depends on the block shape m×n and on the number of sparsity
levels (N). The size of the arrays is reported in the following equations:

|nz-values| = (1−smin) ·R·C
|nz-iidx| = N ·R

|nz-jidx| = (1−smin) · R·C
n·m

(4.2)

The main advantage of such a format is that the amount of storage memory
is weakly affected by the number of nested configurations. In fact, the number
of sparse configurations (N) only affects the size of nz-iidx, which, however, is
usually negligible compared to that of the other two arrays. Thus, the overall
footprint is mainly set by the smallest adopted sparsity value (smin).

To accelerate the processing of a nested and compressed sparse layer on a
general-purpose core, we implemented a custom compute kernel that performs a
matrix multiplication C = A ·B between a sparse matrix (A) encoded using the
NestedCSR format and a dense matrix (B), as shown in Fig. 4.11a. The kernel
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Fig. 4.11 Example of the proposed compute kernel performing a sparse matrix-matrix
multiplication between a 1×2 block sparse matrix A encoded using the NestedCSR
format and a dense matrix B.

can be used to process both fully-connected and convolutional layers, where,
for the latter, a convolution-as-GEMM implementation is adopted [33, 39].

Similar to CSR-based sparse matrix multiplication, the whole operation is
carried out as a sequence of small matrix operations between M columns of
the dense matrix and 1 row of the sparse matrix as shown in Fig. 4.11b. Such
implementation choice amortizes the cost of the indirection process needed to
access one element of the sparse matrix across multiple multiply-and-accumulate
operations. Specifically, we experimentally found out that M=4 represents a
good trade-off between data-reuse and register pressure on small MCUs. Since
in the NestedCSR format, a single row of the sparse matrix is encoded as N

sparse components, also the multiplication operation is decomposed into at
most N sparse operations as shown in Fig. 4.11c. Then, based on the sparsity
value si selected at run time, only some operations are performed while the
others are skipped, exploiting the higher sparsity level to effectively reduce the
overall computational complexity. Notice that there is no additional cost from
switching the sparsity level, as the kernel implementation can be specialized at
compile time and then simply called at run time based on the input si of the
procedure.
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4.4.3 Experimental Results

Experimental Set-up

The proposed method was evaluated on image classification (IC) and object
detection (OD) using the following data-sets.
Cifar-10/100 (IC) [156]: 60k 32×32 RGB images annotated with 10/100 labels
and split into 45k samples for training, 5k for validation, and 10k for testing.
PASCAL VOC (OD) [157]: 15870 RGB images picked from the 2007 and
2012 PASCAL Visual Object Classes Challenge, counting of 37813 objects
annotated with 20 different labels. As suggested in [158], VOC07 and VOC12
trainval data were used for training, while VOC07 was dedicated to testing.
We limited the number of different classes to the top-10 classes recognized by
the full-scale model. The image resolution was re-scaled to 160× 160 with a
bi-linear interpolation; this is mandatory due to the strict memory constraints
of the target MCU (512KB of RAM, 2MB of FLASH).

As CNN benchmarks we opted for lightweight architectures suitable for
the IoT segment: a 9-layer ResNet (ResNet9) [1] for IC on Cifar-100; Mo-
bileNetV1 [15] for IC on Cifar-10; MobileNetV2 [84] as backbone for a Single
Shot Detector (SSD) [158].

The training procedure for the IC task was driven by the SGD optimizer
(momentum 0.9, weight decay 0.0005) for 300 epochs with batch size 128. The
learning rate followed a cosine annealing schedule starting from 0.05. The
same procedure was adopted for the SSD training, except for the batch-size
set to 32. Images were flipped and rotated for data augmentation on the IC
task, whereas, for OD, we followed the same strategy presented in [158]. Each
training experiment was run three times with different seeds, and the average
accuracy is reported. In order to train the sparse networks, both single and
nested, the block shape is set to 1× 2, and a uniform sparsity value is used for
all layers, except for the first layer, which is kept dense (following [34]). After 8
warm-up epochs, the sparsity levels start to increase with a polynomial decay
schedule [154]. The training algorithm was implemented within the PyTorch
framework (v1.5.1) and accelerated with a single consumer graphic card by
NVIDIA (Titan Xp).
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Table 4.4 Accuracy results. Best results for each sparsity level are highlighted in
bold.

a) MobileNetV1 on CIFAR-10.

Training Sparsity Accuracy Top-1 [%]
[%] w=1.00 w=0.75 w=0.50 w=0.25

Dense 0 90.08 89.35 88.32 85.31

Single Sparse
70 89.70 88.56 87.27 83.32
80 89.02 88.13 87.04 73.22
90 88.81 86.02 75.20 57.88

DSNN [151]
70 86.30 86.21 84.09 78.84
80 86.42 85.96 83.69 76.10
90 85.49 84.62 81.78 72.22

Ours
70 89.90 88.48 87.55 83.29
80 89.20 88.24 86.95 82.12
90 88.50 87.03 85.86 78.20

b) ResNet9 on CIFAR-100.

Training Sparsity Accuracy Top-1 [%]
[%] w=1.00 w=0.75 w=0.50 w=0.25

Dense 0 73.78 72.24 69.66 63.05

Single Sparse
70 72.93 71.09 68.29 58.90
80 72.61 70.90 67.72 57.40
90 72.15 69.98 65.04 52.15

DSNN [151]
70 72.9 70.48 63.38 45.25
80 72.83 69.70 62.48 44.69
90 71.62 67.56 60.15 40.92

Ours
70 73.56 72.04 68.82 58.70
80 72.94 71.05 68.38 57.30
90 71.19 69.59 65.92 52.93

The set of sparsity levels S used to collect the results cover three values:
{70%, 80%, 90%}. Finding the optimal set S to achieve the best accuracy,
latency, and storage trade-off is out of the scope of this work.

In the remaining sections we refer to Dense as the dense baseline network,
Single Sparse as the model optimized for a single sparsity level [29], Nested
Sparse CNNs for our proposal, Slimmable as the dynamic model obtained by
layers width scaling [24], and DSNN as the dynamic sparse model [151]. For
Slimmable, we adopted the official implementation2, whereas for DSNN we used
an in-house implementation as no open-source code was available at the time
of writing.

The inference latency was measured on a NUCLEO-F767ZI powered by
an ARM Cortex-M7 MCU operating at 216MHz. The board hosts 512KB of
on-chip SRAM and 2MB of FLASH. The CMSIS-NN library v.5.6.0 [39] was
extended by the sparse matrix multiplication kernels described in the previous
section, with a block-shaped set to 1×2 to exploit the Single Instruction Multiple
Data media accelerator of the M7 core [33]. To comply with the arithmetic
requirements of the CMSIS-NN library, the CNNs under analysis were quantized
to 8-bit using a layer-wise symmetric binary scaling [40]. We adopted the GNU
Arm Embedded Toolchain (version 6.3.1) for cross-compilation.

2https://github.com/JiahuiYu/slimmable_networks
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Training Evaluation

To assess the quality and generalization properties of the proposed nested
training, we analyzed the accuracy achieved over the IC tasks by CNN ar-
chitectures of decreasing capacity, that is, reduced by a width scaling factor
w ∈ {1.00, 0.75, 0.50, 0.25}. Such scaling should not be confused with the
dynamic width scaling of [24], which is discussed later (Section 4.4.3).

The main results are collected in Tab. 4.4a and Tab. 4.4b. Training a
network for a single sparsity level should be considered as the best case because
the parameters are optimized for that specific sparsity level. Contrarily, the
training of a Nested Sparse CNN has to concurrently optimize multiple sub-
networks while trying to drive each of them towards the highest accuracy.
Despite the multi-objective nature of the optimization, Nested Sparse CNNs
actually perform better than individually trained sparse models in several cases.
The gap is rather small when they achieve inferior accuracy: the (worst case)
accuracy drop is 0.31% for MobileNetV1 and 0.96% for ResNet9. These results
prove that the gradient masking technique enables less sparse sub-networks
to boost the accuracy of more sparse ones. For instance, the single sparse
MobileNetV1@w0.25 with s=90% shows a drastic quality drop, whereas the
Nested Sparse model is 20.32% more accurate, closing the gap with the less
sparse configurations. The joint training benefits configurations with higher
sparsity values, but it also improves the least sparse ones due to proper usage
of the dense model in the training loop. Nested Sparse ResNet9@w0.75 at the
lowest sparsity ratio (s=70%) is ≈ 1% more accurate than the single sparse
model, and hence much closer to the dense model.

Tab. 4.4 collects the accuracy obtained with DSNNs [151]. While the
training of DSNNs has proven effective on RNNs for ASR, our results reveal
they get worse on tiny CNNs for IC tasks: 3.40% less accurate than the
single sparse configuration on MobileNetV1 and 13.65% on ResNet9. Except
for ResNet9@w1.00 with s=90%, Nested Sparse CNNs outperform DSNNs,
improving for compact networks with a lower width and a higher sparsity level.
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Fig. 4.12 Latency values normalized for each width to the NestedCSR@s=70%. The
latency of the dense model at w=1.00 is not shown as it exceeds the FLASH memory
of the adopted device (2MB).

Compression Pipeline Evaluation

Tab. 4.5 reports the storage profiles for ResNet9 and MobileNetV1, showing
that Nested Sparse CNNs achieve substantial savings: three nested sparse
configurations require as low as 1016kB (54% smaller than the dense baseline)
in the case of ResNet9@w1.00, while 1464kB (53% smaller) in the case of
MobileNetV1@w1.00. Interestingly, a Nested Sparse CNN takes almost the same
storage of its least sparse configuration. For instance, encoding a 70% sparse
model with block CSR [33], calls for 1014KB in the case of ResNet9@w1.00
(only 2kB less than NestedCSR) and 1458kB for MobileNetV1@w1.00 (only
6kB less than NestedCSR). The models centered on the other widths follow
similar trends, confirming the effectiveness of the NestedCSR format across a
wide set of topology configurations.

With the aid of custom-designed compute kernels, not just the memory but
also the latency take advantage of the NestedCSR format. Fig. 4.12 reports a
comparative analysis for ResNet9 and MobileNetV1, both dense and sparse,
using a classical CSR [33] and the proposed NestedCSR. As expected, the
sparse kernels introduce a remarkable speed-up w.r.t. the dense versions, but
even more remarkable, they allow Nested Sparse CNNs to reach comparable
performance to single sparse CNNs. For ResNet9, the multi-sparse kernels
perform slightly better than single sparse kernels (1.83% on average) at high
width (w=1.00 and w=0.75), and show more overhead at low width (4.04% in
the worst case). For MobileNetV1, the multi-sparse kernels perform moderately
worse (10.91% slower on average), and the overhead increases more notably
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Table 4.5 Storage footprint of ResNet9 trained on Cifar100 and MobileNetV1 trained
on CIFAR10.

Model Method Sparsity Storage [KB]
[%] w=1.00 w=0.75 w=0.50 w=0.25

Dense 0 3132 1774 800 208
MobileNetV1 Single 70 1458 834 384 106

Nested {70, 80, 90} 1464 839 387 108

Dense 0 2232 1259 562 143
ResNet9 Single 70 1014 575 260 68

Nested {70, 80, 90} 1016 576 260 68

(up to 14.08% in the worst case) for more sparse and smaller networks. The
architectural differences between ResNet9 and MobileNetV1 originate from
the differences in the performances of the sparse and multi-sparse kernels. In
MobileNetV1, there are many convolutional layers, but only the point-wise
1× 1 are sparsified. Whereas, in ResNet9, there are fewer convolutional layers,
but they are all sparse, and they have a higher number of channels with larger
kernels (3× 3). Although the use of multi-sparse kernels incurs such a latency
penalty, it still preserves the latency gain brought by sparsity while occupying
much lower storage. In fact, multiple sparse networks would require storing all
weight-sets on-device, an unfeasible requirement for tiny end-nodes.

Latency-Quality Scaling

Fig. 4.13 depicts the latency vs. accuracy trade-off achievable by Nested Sparse
CNNs. The best dynamic behavior is observed at the highest width. Looking
at MobileNetV1@w1.00, an increase of sparsity from 70% to 90% has a minimal
effect on accuracy (1.4%), but the speed-up is remarkable: 51% of latency
reduction. ResNet9@w1.00 follows the same trend, where a higher sparsity
level improves latency by 62% with a moderate effect on accuracy (2.37% loss).
Reducing the model width makes the trade-off slightly worse as smaller CNNs
are less resilient to pruning. As a result, the accuracy gap increases when the
model gets smaller, and the latency speed-up lowers. Still, for the smallest nets
(width=0.25) an accuracy drop of 5.09% (5.77%) for ResNet9 (MobileNetV1)
corresponds to a latency savings of 52% (31%).
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Fig. 4.13 Latency-accuracy scaling for Slimmable CNNs and Nested Sparse CNNs.
Grey area shows the unfeasible solution space for the adopted MCU, i.e., FLASH
footprint > 2MB.

Fig. 4.13 shows the dynamic behavior of CNNs optimized with the Slimmable
approach [24]. Slimmable networks at maximum width w=1.00 do not satisfy
the FLASH constraints (≤ 2MB). Only three smaller but weaker configurations
can be deployed on-device indeed. Thanks to sparse encoding instead, Nested
Sparse CNNs at maximum width meet the memory constraints. Except for the
smallest width (w=0.25), Nested Sparse CNNs at s=70% and s=80% turn out
to be more accurate and faster than the slimmable models. A Nested Sparse
CNN presents a moderate scaling capacity than a slimmable model, which is
intuitive as the sparsity acts as a fine-grain control knob. Nevertheless, the
low storage footprint paves the way to an attractive hybrid solution, where the
width multiplier serves as the static knob complementary to dynamic sparsity.
The Pareto analysis of Fig. 4.13 reveals that the three Nested Sparse CNNs, i.e.,
width {0.75, 0.50, 0.25}, made scaling over the three sparsity levels, outperform
the slimmable counterparts, originating eight Pareto optimal implementations
that, if stored together, consume less storage than a slimmable model. Precisely,
904kB for ResNet9 and 1334kB for MobileNetV1, that is, 28% and 25% less
than the deployable configurations of the slimmable models (width ≤ 0.75).

As final remark, it worth noticing that the newer scalable training methods,
e.g., EfficientNet [159] and OFA [160], play smartly at design time not only
with the width but with all network dimensions, namely, width, depth, kernel
sizes, and input resolution, to translate a higher computational/memory budget
into higher accuracy. Such scaling methods are of utter importance to the
design of efficient CNNs, but their purpose is different from that of our work.
We demonstrated that tweaking at run time the accuracy-latency trade-off via
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Table 4.6 SSD-MobileNetV2. Best results for each sparsity level are highlighted in
bold.

Training
w=0.50 w=0.35

Sparsity mAP Storage Latency mAP Storage Latency
[%] [%] [kB] [ms] [%] [kB] [ms]

Dense 0 68.32 869 1549 63.42 523 998

Single Sparse
70 66.01 508 1080 60.58 329 752
80 62.72 407 972 55.20 274 689
90 29.40 306 862 23.06 219 625

Ours
70 68.30

514
1225 63.12

334
883

80 66.37 1103 61.03 807
90 60.33 951 55.84 712

sparsity is feasible even with a reduced storage footprint: only one compressed
weight-set must be stored on-device for a Nested Sparse CNN. Thus, our solution
can be used in conjunction with existing scaling mechanisms implemented at
design time. The proposed pipeline, in fact, enables optimally designed networks
to cover a broader region of the accuracy-latency space while consuming the
same amount of storage space.

Object Detection

To prove the generalization capability of our approach, we evaluated a Nested
MobileNetV2 on a bounding-box detection task. The results reported in Tab. 4.6
are for w={0.50, 0.35}, which are the only configurations feasible given the
FLASH constraint of our target MCU. The Nested Sparse object-detector gets
more accurate than the sparse models trained as separate instances. More
in detail, for the most sparse configurations (i.e., s=90%), it is 31.85% more
accurate (average over the two widths), confirming the stability of the proposed
training. As for the image classification task, a hybrid solution is highly effective
also here: combining width scaling with nested sparsity enables scalability
across a wide latency-accuracy range (∆Top-1/∆L = 12.46(%)/368(ms)) while
cumulatively occupying 848kB, which is still less than the single dense model
at w=0.50.
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4.4.4 Discussion

The training and compression pipeline proposed in this section enables the
use of model sparsity as a dynamic knob on tiny off-the-shelf devices. The
training procedure ensures high accuracy, while a custom compressed storage
format and custom compute kernels enable the deployment on tiny off-the-shelf
devices. Although the experimental assessment revealed that Nested Sparse
CNNs outperform other dynamic strategies while occupying a smaller storage
footprint, some issues have not been addressed in the current version of the
work. First, the sparsity levels have to be fixed manually before the training
procedure. However, as the trade-off accuracy vs. latency depends on the model
architecture and the task, designing the optimal set of sparsity values is not
trivial and should be automated. Second, although using the same sparsity ratio
for all layers of the network was proven effective in previous works [34], exploiting
the effects that different layers have on both accuracy [161, 162] and latency [163]
may lead to new Pareto solutions. Thus, future works could investigate the
integration of an automatic search engine (e.g., [164, 165]) in the proposed
pipeline such that multiple sparse configurations are sampled and tested at
training time to optimize storage, latency, and accuracy simultaneously.

4.5 Conclusions

This chapter focused on increasing the energy efficiency of CNNs. Specifically,
the works presented in this chapter extended the achievable accuracy-energy
trade-off proposing dynamic knobs capable of tuning the working point of
a CNN at run time. The first part of the chapter described and assessed
the use of two dynamic knobs, namely, scalable neural topology and multiple
arithmetic precision, to build an energy-quality scalable system for monocular
depth estimation named EQPyD-Net. This work demonstrated that arithmetic
precision serves as a fine-grain knob to extend the energy-quality scalability
offered by a dynamic neural topology. Tested on an off-the-shelf ARM Cortex
A53, EQPyD-Net can work in a wide range of energy-quality space, comprising
five operating points. The second part of the chapter introduced a new training
and compression pipeline aimed at using sparsity as a dynamic knob for
deploying energy-quality scalable CNNs on MCU devices. Sparsity is an



4.5 Conclusions 131

excellent candidate as it offers fine-grain control over the energy-quality trade-
off and reduces the model footprint as sparse models can be compressed via
sparse encoding formats. When tested on image classification and object
detection tasks on an off-the-shelf ARM-M7 Micro Controller Unit (MCU), the
dynamic sparse CNNs obtained with the proposed pipeline outperform other
state-of-the-art dynamic strategies.



Chapter 5

Conclusions and Future Works

This dissertation investigated the challenges of deploying modern CNNs on
embedded systems. We strongly believe that the on-device processing of
CNNs can pave the way for new disruptive applications with low latency and
high privacy standards. For this reason, the research questions addressed in
this dissertation were inspired by the practical constraints that are currently
limiting the deployment of CNNs on an embedded system: the lack of memory
resources, the limited amount of computing power, and the need for extreme
energy efficiency. Overcoming such strict limitations relies on the availability
of small, fast, and energy-efficient CNNs, and achieving it with vertical and
automated optimizations is precisely the main contribution of this work.

Chapter 2 presented our effort towards building small CNNs. This chapter
first reviewed the main algorithms adopted to tackle the problem of memory
allocation in DL compilers. Specifically, the extensive quantitative assessment
demonstrated the need to revisit the dominant trends in memory allocations,
showing that a MILP-based method can achieve better results (up to 33% of
memory savings) than commonly adopted heuristics in a reasonable run time
(28.31 s in the worst case). The second part of the chapter introduced a novel
functionality-preserving graph restructuring procedure aimed at reducing the
activation memory footprint of CNNs. The proposed technique exploits the spa-
tial locality of the tensor operators adopted in virtually all CNN architectures,
achieving remarkable activation memory savings (62.9% on average) at the
cost of small computational overhead (8.6% on average). Finally, the chapter
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presented a new compression pipeline, which combines weight pruning with
graph restructuring to deploy high-resolution and wide CNNs, like MobileNetV1
and MobileNetV2, on MCU devices with 2MB of FLASH and 512KB of RAM.

Chapter 3 focused on how to build fast CNNs on low-power devices. This
chapter introduced a comprehensive design and optimization framework to
accelerate the inference of quantized, lightweight CNNs on ARM Cortex-A
CPUs and ARM Cortex-M MCUs. Specifically, the first part of the chapter
discussed the acceleration of PyD-Net, a CNN for monocular depth estimation,
on a multi-core ARM Cortex-A53 mobile CPU. The experimental evaluation
showed marginal accuracy loss on the KITTI dataset with 16-bit (8-bit) integers,
latency reduction up to 1.16× (1.64×), and memory footprint reduction up
to 2× (4×) compared to single-precision floating-point. The second part of
the chapter introduced a CNN named µPyD-Net designed through a mix
of optimizations working at the neural architectural level, algorithmic level,
and operator level to perform monocular depth estimation on MCUs. The
experimental evaluation proved that µPyD-Net is capable of breaking the 1FPS
barrier with a power envelope of 0.4 W. Specifically, µPyD-Net on an MCU
powered by an ARM Cortex-M7 takes about 600ms and 300ms to perform
depth estimation on 48×48 and 32×32 RGB images while occupying less than
512KB of memory.

Chapter 4 focused on increasing the energy efficiency of CNNs. Specifically,
the works presented in this chapter proposed dynamic knobs capable of tuning
the accuracy-energy trade-off of a CNN at run time. The first part of the
chapter described and assessed the use of two dynamic knobs, namely, scalable
neural topology and multiple arithmetic precisions, to build an energy-quality
scalable system for monocular depth estimation. This work demonstrated
that arithmetic precision serves as a fine-grain knob to extend the energy-
quality scalability offered by a dynamic neural topology. Tested on an off-
the-shelf ARM Cortex A53, EQPyD-Net can be shifted across five operating
points, ranging from a maximum accuracy of 82.2% on the KITTI dataset
with 0.4 Frame/J up to 92.6% of energy savings with 6.1% of accuracy loss.
Nevertheless, EQPyD-Net still has a minimal memory footprint of 5.2 MB for
the weights and 38.3 MB (in the worst-case) for the run-time processing. The
second part of the chapter introduced a new training and compression pipeline
using sparsity as a dynamic knob for deploying energy-quality scalable CNNs
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on MCU devices. The experimental evaluation carried out on an off-the-shelf
ARM-M7 MCU showed that the proposed pipeline produces dynamic sparse
CNNs that outperform other state-of-the-art dynamic strategies, like slimmable
networks. Specifically, the Pareto analysis reveals that Nested Sparse CNNs
are Pareto dominant in the accuracy-latency space, still occupying less storage
than a single slimmable model. Precisely, Nested Sparse ResNet9 occupies
904kB while Nested Sparse MobileNetV1 1334kB, that is, 28% and 25% less
than the deployable configurations of the slimmable models.

In summary, this dissertation presented novel optimization techniques, which
act vertically across the different layers of the computing stack to reduce the
memory footprint, lower the inference processing time, and increase the energy
efficiency of state-of-the-art CNNs with minimal to no accuracy loss. Finally,
this dissertation further extended the achievable accuracy-complexity trade-off
of a CNN by introducing novel dynamic knobs to modulate the energy quality
working point at run time. Overall, the works presented in this thesis contribute
to the state-of-the-art by pushing further the boundary of accurate CNNs that
can be deployed on tiny embedded devices. However, at the moment, the
optimizations introduced in this thesis have not been integrated into existing
CNN compiler technologies yet. As reported in Section 1.2, all current CNN
compilers are structured as multi-level compilers, comprising a graph-level
IR and one or multiple operator-level IRs. Thus, the proposed methods do
not add further engineering constraints to existing frameworks, which may
fundamentally prevent their near-future adoption in a production environment.
At the same time, specific design choices of the adopted IRs may make the
integration challenging to do in practice. For this reason, as will be discussed
in the next section, the modularity of a CNN compiler infrastructure represents
a promising direction for future investigations.

5.1 Future Perspectives

This thesis addressed some of the most immediate questions and challenges
that arise from the proliferation of DNNs on tiny devices. However, many
optimization opportunities are still left on the table, and we believe that
they could be explored by building upon the insights revealed by the works
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presented in this dissertation. Specifically, we showed that a cross-layer, vertical
optimization approach could bring more remarkable gains and allow the quality-
of-result to be co-optimized with all non-functional figures of merit of the system.
Such specialization of algorithms, compilers, and hardware platforms is crucial
to let the performance of DNNs continue to scale, as programmers cannot rely
anymore on Moore’s Law to get more computational power every few years.
In our opinion, bringing forward such a vertical optimization methodology is
the most exciting and promising research direction. Thus, in the following
paragraphs, we summarise some of the most important steps to address.

Generalization

The optimization techniques presented in this dissertation can be applied to vir-
tually all modern DNNs and to a broad set of general-purpose MCUs and CPUs.
However, targeting other DL architectures and different hardware devices may
require a considerable engineering effort, as many of the characteristics of the
algorithms and the hardware platforms must be manually recognized, repre-
sented, and encoded in the optimization process. As domain-specific hardware
accelerators for DNNs [166] and novel neural architectures, like Transform-
ers [167] and Sparsely activated multi-task models [168], have started to become
more broadly adopted, having a vertical optimization stack ready from day-zero
is of uttermost importance. To this end, Google has recently introduced the
Multi-Level Intermediate Representation (MLIR) framework [169] as a toolkit
for building domain-specific compilers. The key feature of MLIR is the ability to
define custom abstract intermediate representations, called dialects, which can
coexist concurrently during the optimization process. This approach provides
a significant level of modularity and composability by letting the optimization
framework use the right abstraction level for solving a particular problem. For
example, a hardware dialect can capture the semantic of a hardware accelerator
that natively supports some tensor operations, providing primitive building
blocks. Then, such building blocks can be gradually composed with generic
optimization algorithms into larger blocks and exposed to the algorithmic level.
At the same time, high-level information can be captured by an algorithmic
dialect and kept as meta-data during the whole lowering process to guide
more low-level, hardware-specific optimization passes. We believe that new
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methodologies to create dialects and retargetable optimizations algorithms that
can work on many different dialects represent an exciting step forward.

Cross-device offloading

With the advent of the Internet-of-Things era and the promises of future network
infrastructures, users and intelligent environments will become increasingly
equipped with more connected embedded devices. In this dissertation, we
have investigated how to optimize the deployment of a DNN when targeting
a single device. However, for example, a smartwatch might be able to offload
some more heavy workload to a smartphone, thus taking advantage of a nearby
device with more computational power. The smartphone could then use the
powerful infrastructure available in the cloud to run some re-training due to
the availability of new data or to fine-tune the model for some new tasks. In
this space, future research efforts may be directed to explore this ecosystem of
interconnected devices as a new axis in the vertical optimization space.
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