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Summary

Being able to accurately predict human perceived quality of multimedia con-
tent (e.g., images and videos) through computer algorithms is an important and
hot research topic, since it directly leads to several advantages: storage capacity
and bandwidth savings for large organizations, and possibility to offer higher qual-
ity services when the communication channel capacity is limited. This PhD thesis
focuses on using machine learning algorithms and advanced statistical methods to
find new ways of addressing the problem.

Human viewers can easily distinguish between an image with a pleasant per-
ceptual quality and another one whose quality is corrupted by artifacts introduced
for instance by a codec. This task that is straightforward for a human due to his
daily experiences and background, is absolutely not easy for an algorithm. For
this reason, in the literature, human opinion scores on the perceptual quality of a
multimedia content are considered as ground truth data. Any quality prediction
algorithm (QPA) is then designed to predict the so-called Mean Opinion Score
(MOS) of a multimedia content, i.e., the average of the scores that a group of hu-
man viewers would express if they were asked to watch that content and rate its
perceptual quality on a given numerical scale.

Several QPAs aiming at MOS prediction have been proposed in the literature
but the state-of-the-art in media quality assessment is still suffering some crucial
limitations. Some of these limitations can be summarized as follows: i) none of the
existing QPAs is accurate in all application scenarios, and thus there is still large
room for their improvement; ii) QPAs, as estimators of the MOS, do not provide
a complete measure of quality-of-experience (QoE). In fact, QPAs simply measure
the quality perception of an “average viewer” and only marginally account for the
individual expectation and uncertainty that characterize different users of the same
service. For instance, QPAs do not provide answers to the following questions: what
is the percentage of final users that would not be satisfied by the perceptual quality
of a given video sequence? What are the characteristics of the final users that are
expected to not be satisfied? The answers to these two questions are obviously
of primary importance for any company that produces and markets multimedia
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content. There is therefore a crucial need to go beyond the MOS as suggested by
recent publications in the literature.

This thesis contributes to advancing the state-of-the-art by proposing some so-
lutions to cope with the aforementioned state-of-the-art limitations. Such proposals
can be summarized under three main items.

• The perceptual quality as a random variable: A large number of
stochastic influence factors, e.g. the subject’s emotional state and the way
each subject interprets the quality scale, that are not under the control of the
test designer, influence the scores of a human subject during a subjective test.
To jointly account for the inaccuracy of existing QPAs and these stochastic
influence factors, both the prediction of a QPAs and the MOS are defined as
random variables. A probabilistic approach is proposed to find the quality
range to which the perceptual quality of a given processed video sequence
(PVS) is expected to belong with a user specified probability.

• Measuring the reliability of a MOS prediction: since existing QPAs are
not always accurate, integrating their prediction with an index that informs
on how reliable the predicted quality score is, acquires a significant impor-
tance. Two different approaches to cope with this issue are proposed in this
thesis. The first one is based on machine learning and it aims at predicting
the intrinsic ability of a PVS to confuse human viewers and hence the QPAs
as they are trained to predict human ratings. The second approach is instead
based on the level of disagreement between many different QPAs when used
to assess the quality of a given PVS. In fact, an index to measure the dis-
agreement of QPAs is proposed and it is shown that such an index allow to
distinguish between the cases in which QPAs are accurate and when they are
not.

• Artificial Intelligence-based observers: finally this thesis presents a more
complete approach to quality assessment. Unlike traditional approaches, the
proposed one allows to fully consider individual expectations when automat-
ically assessing the perceptual quality of multimedia content. Instead of pre-
dicting the MOS for each content under evaluation, as it is traditionally done
in the literature, a different direction is proposed. An artificial neural net-
work is trained to mimic an individual observer in terms of quality perception.
Such a neural network can then be considered as a “virtual observer”, and
it is called an artificial intelligence-based observer (AIO). A large number
of AIOs can then be trained, each representing an actual observer with well
known characteristics and expectations. The advantage of this approach is
to be able to more accurately model the distribution of the opinion scores
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that form the quality prediction as well as the uncertainty that intrinsically
characterizes human viewers. The proposed approach therefore allows to: i)
predict the percentage of viewers that would not appreciate the perceptual
quality of a given processed content; ii) make inference on the characteristic
of the unsatisfied viewers; iii) perform the simulation of subjective tests.

v





Acknowledgements

Having reached the end of this beautiful three-year journey, I feel extremely
grateful to many persons and organizations who have made it possible to achieve
my goal. I would therefore like to dedicate the next few paragraphs to thank them
even though I am aware that it would take a whole book to express all the gratitude
I have towards them.

First of all, I would like to thank Prof. Enrico Masala, my supervisor. His
acquaintances have always been a beacon that continually assured me by showing
me the direction to follow in periods of darkness. I couldn’t have hoped for a better
guide. Despite his busy schedule, he has always made himself available, encourag-
ing and ready to provide any advice that can help me both in the present and in
general in the future. He offered me the opportunity to interact with the interna-
tional scientific community and be part of an important network. This allowed me
to disseminate my research activities and collaborate with international researchers
with great expertise. This also helped me to contribute to several research papers
and projects while improving my capacity to efficiently and effectively interact with
the audience.

Secondly, I would like to express my deep gratitude to Prof. Antonio Servetti,
my co-supervisor. Without his acquaintances and his unconditional willingness to
help me in any situation, the results on which this thesis strongly depends would
never have been achieved. I would also like to thank him for his patience and the
fundamental advice he provided me with during the last three years. They will
remain an asset that I will use throughout my career and that I will proudly pass
on to those who are younger generations.

My gratitude is also strongly addressed to the Polito Interdepartmental Centre
for Service robotics (PIC4SeR) that initially financed my PhD scholarship. I would
also like to thank all my colleagues in PIC4SeR for the constructive discussions we
have had on the topic of precision agriculture. This helped me to better perceive
the context and allowed me to advance the state-of-the-art through the following
journal paper [126].

vii



I would then like to address special thanks to all my international collaborators.
In particular, I am really grateful to Prof. Marcus Barkowsky, Prof. Peter Pocta,
Dr. Tomas Mizdos, Prof. Glenn Van Wallendael, Dr. Ahmed Aldahdooh and Dr.
Florence Agboma. Their expertise has helped me a lot throughout the path to this
thesis.

I could not terminate these acknowledgments without mentioning the following
members of the operation research and optimization group of the control and com-
puter engineering department of the Politecnico di Torino: Prof. Roberto Tadei,
Dr. Daniele Manerba and Dr. Edoardo Fadda. I sincerely thank them for their
collaboration and support.

viii



I would like to dedicate
this thesis to my wife
and my sons. Their
unconditional love and
support have been for
me an inexhaustible
source of motivation.



Contents

List of Tables xiv

List of Figures xvi

1 Introduction 1
1.1 Traditional Approaches to Media Quality Assessment . . . . . . . . 1

1.1.1 Subjective Quality Assessment . . . . . . . . . . . . . . . . . 1
1.1.2 Objective Quality Assessment . . . . . . . . . . . . . . . . . 3

1.2 Some Limits of State-of-the-Art Approaches . . . . . . . . . . . . . 4
1.2.1 Accounting for Human Viewers’ Inconsistency . . . . . . . . 5
1.2.2 Predicting Multimedia Content Ambiguity . . . . . . . . . . 5
1.2.3 The Diversity in Users’ Expectation . . . . . . . . . . . . . . 6
1.2.4 The Need for Appropriate Data Augmentation Approaches . 7

1.3 Going Beyond the MOS: the Thesis Contribution . . . . . . . . . . 8
1.3.1 The Perceptual Quality as a Random Variable . . . . . . . . 8
1.3.2 Integrating the MOS with Measures of Reliability . . . . . . 9
1.3.3 Mimicking Individual Quality Perception . . . . . . . . . . . 9

1.4 The Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 A Probabilistic Approach for Computing Quality-of-Experience
Ranges in Video Quality Assessment 13
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Accounting for Stochastic Influence Factors . . . . . . . . . . 15
2.2.2 Analyzing VQMs’ Accuracy . . . . . . . . . . . . . . . . . . 15
2.2.3 Dealing with Large Scale non-Annotated Datasets . . . . . . 15

2.3 QoE Ranges Estimation . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.1 Problem Settings . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2 The Dataset for the Joint Density Estimation . . . . . . . . 17
2.3.3 Joint Probability Distribution of the MOS and a VQM . . . 18
2.3.4 Deriving the QoE Ranges . . . . . . . . . . . . . . . . . . . 19

2.4 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 23

x



2.4.1 Experimental Settings . . . . . . . . . . . . . . . . . . . . . 23
2.4.2 VQMs Figure of Merit . . . . . . . . . . . . . . . . . . . . . 23
2.4.3 Accuracy of the Predicted Quality Ranges . . . . . . . . . . 25
2.4.4 Analyzing a Large Scale Dataset . . . . . . . . . . . . . . . . 25

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 A Neural Network-based Approach to Predict the Diversity of
Users’ Opinion Scores 27
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 The SOS as a Measure of Users’ Diversity of Opinion Scores . . . . 29

3.3.1 Computing MOS Confidence Intervals . . . . . . . . . . . . 29
3.3.2 The SOS Hypothesis and its Limits . . . . . . . . . . . . . . 30

3.4 Modeling the SOS in Subjective Tests . . . . . . . . . . . . . . . . . 31
3.4.1 The Ground Truth SOS (gtSOS): Link with VQM Scores . . 31
3.4.2 The SOS Error Term . . . . . . . . . . . . . . . . . . . . . . 35
3.4.3 The SOS Model . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5 SOS Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.6 Application of the SOS Model to Anomalies Detection . . . . . . . 42
3.7 Deep Neural Network-based Prediction of the gtSOS . . . . . . . . 45

3.7.1 Data Augmentation . . . . . . . . . . . . . . . . . . . . . . . 46
3.7.2 The Network’s Architecture and the Training Process . . . . 47
3.7.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . 48

3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Estimating the Accuracy of Subjective Score Prediction through
the Disagreement of Video Quality Measures 51
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3 Dataset Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.4 An Index for Measuring the VQMs Disagreement . . . . . . . . . . 57
4.5 A Small Scale Subjective Experiment . . . . . . . . . . . . . . . . . 59
4.6 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.6.1 MOS Prediction Accuracy vs VQMs Disagreement . . . . . . 62
4.6.2 MOS Prediction Inconsistency vs VQMs Disagreement . . . 63
4.6.3 Open-source vs Proprietary VQMs . . . . . . . . . . . . . . 63
4.6.4 Effective Selection of PVSs in Subjective Experiments . . . . 65
4.6.5 Robustness of the VQMs Disagreement index . . . . . . . . 65
4.6.6 Towards Modeling the VQMs Disagreement with Bitstream

Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

xi



5 Mimicking a Single Viewer’ Quality Perception with an Artificial
Neural Network 73
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.3 Comparative Analysis of the AIOs-based Approach . . . . . . . . . 76

5.3.1 Accounting for Individual Expectations and Inconsistencies . 77
5.3.2 Generality of the AIOs-based Approach . . . . . . . . . . . . 79
5.3.3 The Issues with the MOS Definition . . . . . . . . . . . . . . 79
5.3.4 Simulation of Subjective Experiments . . . . . . . . . . . . . 80

5.4 Implementation of the AIOs-based Approach . . . . . . . . . . . . . 80
5.4.1 Dealing with the Data’s Noisy Nature . . . . . . . . . . . . . 80
5.4.2 Network Architectures and the Training Process . . . . . . 84
5.4.3 A Measure of Subjects Inconsistency . . . . . . . . . . . . . 86

5.5 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.5.1 The Experimental Setup . . . . . . . . . . . . . . . . . . . . 87
5.5.2 The AIOs Accuracy in Mimicking Actual Observers . . . . . 91
5.5.3 The AIOs Robustness . . . . . . . . . . . . . . . . . . . . . 94
5.5.4 Subjects’ Inconsistency . . . . . . . . . . . . . . . . . . . . . 96

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6 CNNs-based AIOs for No Reference Images Quality Assessment101
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.3 From Shallow NN to Deep CNN-based AIOs . . . . . . . . . . . . . 104

6.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.3.2 Challenges and Solution Approach . . . . . . . . . . . . . . 105

6.4 Training Deep CNNs-based AIOs . . . . . . . . . . . . . . . . . . . 106
6.4.1 Large Scale Synthetically Created Annotated Dataset . . . . 106
6.4.2 The JPEGResNet50: Architecture and Training Process . . 109
6.4.3 Deriving the Deep CNNs-based AIOs . . . . . . . . . . . . . 111

6.5 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.5.1 Deep CNN-based AIOs vs Human Observers . . . . . . . . . 113
6.5.2 Predicting the MOS . . . . . . . . . . . . . . . . . . . . . . 118
6.5.3 Predicting the Distribution of Users’ Opinion Scores . . . . 119

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7 Conclusions 123
7.1 Future Developments . . . . . . . . . . . . . . . . . . . . . . . . . . 125

A List of my Publications 127
A.1 Journal Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
A.2 To Be Submitted to Journal . . . . . . . . . . . . . . . . . . . . . . 128

xii



A.3 Book Chapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
A.4 Proceedings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

B Datasets Description and Usage 131
B.1 VQEG HD Phase 1 Experiment Datasets . . . . . . . . . . . . . . . 131
B.2 The ITS4S Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
B.3 VQMs Disagreement-based Dataset . . . . . . . . . . . . . . . . . . 132
B.4 The LIVE Multiply Distorted Phase 1 Experiment Dataset . . . . . 133
B.5 Other Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Bibliography 135

xiii



List of Tables

2.1 Predicted quality range accuracy. . . . . . . . . . . . . . . . . . . . 23
4.1 The 8 different Hypothetical Reference Circuits (HRCs) used to gen-

erate the 368 (46 ∗ 8) PVSs of the dataset. . . . . . . . . . . . . . . 56
4.2 The variance of the VQMs’ prediction error is larger, with statistical

significance, in case of high VQMs disagreement. . . . . . . . . . . . 63
4.3 Analyzing the performance drop of the VQMs when used on challeng-

ing PVSs. The performance drop (∆) for each statistical indicator
was determined by performing the difference between the value ob-
served when the VQMs are likely to be very accurate, i.e., in case of
low VQM disagreement (Low D), and the one observed when there
is high VQMs disagreement. . . . . . . . . . . . . . . . . . . . . . . 64

4.4 PLCC scores observed between the predicted disagreement index
and the actual one using several different machine learning-based
regression methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.5 SROCC scores observed between the predicted disagreement index
and the actual one using several different machine learning-based
regression methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1 Description of the datasets used in the experiments . . . . . . . . . 89
6.1 Mapping JPEG Quality parameter intervals to ACR scale. . . . . . 108
6.2 PLCC value between the scores of each measures and the MOS sep-

arated per dataset and distortion type. It can be noticed that the
proposed metrics, i.e. the MOSres and the MOSAI, yield quite
competitive PLCC values. (T) indicates that the dataset on which
the metric is tested is a part of its training set. . . . . . . . . . . . . 113

6.3 SROCC value between the scores of each measures and the MOS
separated per dataset and distortion type. It can be noticed that
the proposed metrics, i.e. the MOSres and the MOSAI, yield quite
competitive SROCC values. (T) indicates that the dataset on which
the metric is tested is a part of its training set. . . . . . . . . . . . . 113

xiv



6.4 RMSE value between the scores of each measure and the MOS sep-
arated per dataset and distortion type. It can be noticed that the
proposed metrics, i.e. the MOSres and the MOSAI, yield quite
competitive RMSE values. (T) indicates that the dataset on which
the metric is tested is a part of its training set. . . . . . . . . . . . . 114

6.5 Results of the statistical test performed for comparing the PLCC
values provided by the different metrics on all the datasets. Consid-
ering the datasets ordered as they appear in Table 6.2, the k-th digit
of the binary sequence in the i-th row and j-th column is 1 if and
only if on the k-th dataset, the i-th metric performed significantly
better than the j-th one with 95% of confidence. For instance, on the
TID2013 dataset (k=4) the MOSres performed significantly better
than the BRISQUE. . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.6 Percentage of the images for which the predicted users’ distribution
of opinions is not statistically different from the empirically observed
one. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

xv



List of Figures

2.1 The figure shows the value of the Bayesian Information Criteria
(BIC) obtained from the fitted GMM as function of the number of
Gaussian components of the GMM in the MSSSIM case. As it can
be noticed, using more than three Gaussian components does not
yield a significant variation of the BIC and thus of the model perfor-
mance. Therefore in the MSSSIM case, three Gaussian components
were used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 A 2D representation of the fitted GMM for each VQM. In general,
the larger density of points in whiter regions highlights the GMM
accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 The curves determine the predicted MOS ranges as function of each
VQM score. The curves are shown for two different values of α. Each
point corresponds to a single PVS in the dataset. the MOS values
belong to [0.82, 5.26] due to the realignment of the six VQEG-HD
subsets [139]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Results obtained for VMAF when considering only coding artifacts. 22
2.5 Size (MOS spread) vs center of the predicted quality range. The

analysis is done on the JEG-DB. α=0.10 (left), and α=0.20 (right).
Colors indicate the PVS bitrate (Mbps) (top), and different sources
(bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 Sample video frames, each column corresponds to a single dataset
and the order is: ITS4S, Netflix Public, VQEG HD1, VQEG HD3
and VQEG HD5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Correlation coefficient (Spearman rank order) between pairs of VQMs
(PSNR, SSIM, VIF), in a given subjective experiment (the ITS4S,
Netflix public dataset, VQEG-HD1, HD3 and HD5), when the PVSs
with low (green) or high (red) SOS are considered. The statistical
significance of the difference is indicated in percentage. For PVSs
affected by coding (C) distortions, low SOS always implies higher
VQM correlation. For transmission (T) distortions this is not al-
ways the case (percentage in grey). . . . . . . . . . . . . . . . . . . 33

xvi



3.3 Correlation coefficient (Kendall rank order) between pairs of VQMs
(PSNR, SSIM, VIF), in a given subjective experiment (the ITS4S,
Netflix public dataset, VQEG-HD1, HD3 and HD5, when the PVSs
with low (green) or high (red) SOS are considered. The statistical
significance of the difference is indicated in percentage. For PVSs
affected by coding (C) distortions, low SOS always implies higher
VQM correlation. For transmission (T) distortions this is not always
the case (percentage in grey). . . . . . . . . . . . . . . . . . . . . . 34

3.4 Comparison between the empirical cumulative distribution function
(orange curve) of Dexp and that of a Gaussian random variable hav-
ing 0 as mean and similar standard deviation with Dexp (blue curve).
The analysis was done on five different datasets. The fact that the
empirical cumulative distribution of Desp, for each dataset, so closely
approximates the cumulative distribution of the related Gaussian
distribution shows that Desp can also be considered distributed ac-
cording to this Gaussian distribution. . . . . . . . . . . . . . . . . . 38

3.5 VQEG-HD1 dataset: the predicted gtSOS vs the SOS. . . . . . . . 39
3.6 VQEG-HD3 dataset: the predicted gtSOS vs the SOS. . . . . . . . 39
3.7 VQEG-HD5 dataset: the predicted gtSOS vs the SOS. . . . . . . . 40
3.8 Netflix Public dataset: the predicted gtSOS vs the SOS. . . . . . . 40
3.9 ITS4S dataset: the predicted gtSOS vs the SOS. . . . . . . . . . . . 41
3.10 Analyzing the Netflix Public dataset. The value of Dexp is large for

the PVS #63. An inspection of the related distribution of opin-
ion scores (left chart) revealed that an observer rated the quality of
that PVS as ”Bad” despite most of the test participants scored it as
”Excellent”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.11 Analyzing the ITS4S dataset. The value of Dexp is large for PVSs
#257 and #278. The opinion scores for PVS #257 are almost uni-
formly distributed over the quality scale; this highlights the peculiar
nature of the subjective evaluation of such a PVS. On the other hand,
the analysis indicated that the low SOS value of the PVS #278 may
not be a reliable estimation of its ability to generate diversity among
viewers’ ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.12 Assessing the performance of the deep NN based model when esti-
mating the gtSOS with (bottom) and without (top) the data aug-
mentation. The NN was trained using only the VQEG-HD1 and
VQEG-HD5 datasets (coding artifacts only). . . . . . . . . . . . . . 45

xvii



3.13 The diagram summarizes the data augmentation approach described
in Section 3.7.1. A 6D Gaussian Mixture Model (GMM) is used to fit
the multidimensional probabilistic distribution underlying the point
cloud of the initial training samples. From the fitted GMM, 100,000
realizations are simulated. These realizations are then combined
with the initial training set to obtain a greater number of training
samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1 Evaluating the heterogeneity in terms of the temporal and spatial
activity index of the used 46 sources. The labels identify different
sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 The diagram summarizes the implementation steps of the proposed
disagreement index. VMAF is chosen as the reference VQM, hence,
the VQM sensitivity δ1 is set to 7. VP SNR is the quality score ob-
tained after performing a least square fitting of the PSNR to the
VMAF scale using a third-other polynomial function. The same def-
inition holds for all the other VQMs. By considering eight different
VQMs, in total, 28 absolute differences were computed that corre-
sponded to the number of unique pairs of VQMs that can be formed
by selecting two VQMs from the eight available. . . . . . . . . . . . 58

4.3 Subjective testing procedure: first, the subject was asked to watch
the source video, then, after two seconds, the PVS. Finally, he was
given six seconds to provide his/her rating. . . . . . . . . . . . . . . 60

4.4 The distribution of the MOS values on the quality scale. . . . . . . 60
4.5 Each point corresponds to a PVS. The PVS’s bit rate is shown on

the x axis, while the y axis shows the PVS’ mean opinion score. The
color is used to highlight different resolutions. As expected, larger
MOS scores were observed on PVSs with higher bit rate (kbps) and
resolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.6 Accuracy of the VQMs, in terms of RMSE, as function of the dis-
agreement index. When there is high disagreement, all the VQMs
are less accurate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.7 The SOS vs the proposed VQMs disagreement index. The subjects’
diversity of opinion scores seems to not be correlated with the dis-
agreement index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.8 The results show that, on average, the subjects consistently evalu-
ated the quality of all the sequences used during the subjective test
since the so called ”Recovered Quality” of each processed video se-
quence does not differ significantly from the MOS. . . . . . . . . . . 66

4.9 Individual subjects’ inconsistency as function of the proposed VQMs
disagreement index. Subjects seem to experience the same difficulty
in assessing the quality of a PVS independently on the disagreement
index value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

xviii



4.10 Study of the effect of the number of VQMs on the introduced dis-
agreement index. The disagreement index obtained by using all the
eight metrics considered in this chapter is looked at as the reference
or ground truth. The Figure shows the RMSE between the reference
value and the one obtained by using n (n=5, 6 and 7) metrics. For
each n, all possible combinations of n metrics out of 8 were used to
perform the disagreement index. The minimum, the mean and the
maximum RMSE values observed for each n is reported on the Figure. 68

4.11 The VQMs’ accuracy, in terms of RMSE, for low and high values of
the disagreement index computed only with the open-source VQMs.
For all the metrics, when there is high disagreement of open-source
VQMs, the predicted quality score is likely to be affected by larger
error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.12 The final SVR model’s accuracy on all the dataset. Despite the
presence of some outliers, the model has been in general able to sat-
isfactory predict the VQMs disagreement index, yielding high PLCC
(0.85) and SROCC (0.87) scores. . . . . . . . . . . . . . . . . . . . 71

5.1 The Bob’s AIO. A NN is trained to mimic Bob’s quality perception.
This NN can then predict the Bob’s choice probabilities on the ACR
scale for a given PVS . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Illustration of the proposed approach in comparison with the tradi-
tional approaches to media quality assessment. In particular, note
that similarly to subjective experiments, the proposed approach con-
siders also human factors and provides individual opinions yielding,
in practice, more flexibility. . . . . . . . . . . . . . . . . . . . . . . 78

5.3 Proposed data augmentation approach. Each viewer of the Lab 1
was put together with a viewer of the Lab 3 and a viewer of Lab 5
based on the solution of the optimization problem. This yielded 24
viewers that were considered to have rated 456 PVSs instead of 168. 83

5.4 Accuracy of the AIOs. The AIOs were trained on the VQEG-HD1
and VQEG-HD5 datasets, and tested on the VQEG-HD3 dataset.
The average performance ratios of the AIOs (green lines) are signifi-
cantly higher than those of a randomly voting subject (orange lines)
and do not differ more than 12% from the benchmark values (violet
lines). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.5 The ROC curves associated with the AIOs, which models each ob-
server. In all the cases, the curve is above the 45 degree line: the
AIOs is therefore effectively modeling some of the aspects that con-
cur with the way how the observer perceives the visual quality. . . . 90

xix



5.6 The AUC indexes associated with the AIO, which models each ob-
server. The closer to 1, the better. The AIOs seem to be more
accurate when modeling the observer’s behavior in the case of the
PVSs with the very low or high quality. . . . . . . . . . . . . . . . . 90

5.7 Results obtained when deploying the AIOs trained on the VQEG-
HD1 and VQEG-HD5 datasets on the PVSs coming from the VQEG-
HD3 dataset to simulate a subjective experiment. The AI MOS
and SOS are computed respectively as the average and the standard
deviation of the AIOs’ opinion scores. . . . . . . . . . . . . . . . . . 91

5.8 Average correct and acceptable ratios of the AIOs (green bars) in
comparison to those of a random classifier and the benchmark values.
CA and TA stand respectively for coding artifacts and transmission
artifacts. The analysis suggests that higher performances might be
expected from the AIOs when focusing only on coding artifacts. . . 92

5.9 Comparison of the average correct and acceptable ratios of the AIOs
prediction on the training and the test set. . . . . . . . . . . . . . . 93

5.10 Probability, for each AIO, that its output will not change (the correct
ratio) or will change by at most 1 quality level on the ACR scale (the
acceptable ratio) after adding, to each input feature, a noise term
which is uniformly distributed between -1% and 1% of the range of
values assumed by such feature in the dataset. . . . . . . . . . . . 94

5.11 Probability that each AIO would predict a higher score for the PVS
encoded with a higher bitrate when assessing the visual quality of
a pair of PVSs generated from the same SRC and affected by the
coding artifacts only. The closer it is to 100 %, the better. . . . . . 95

5.12 Fitting of the inconsistency value with second (red) and fourth (yel-
low) order polynomials. Fitting functions tend to present an absolute
maximum in the central part of the quality scale for almost all the
observers, as expected by an inconsistency measure. . . . . . . . . . 96

5.13 The effectiveness of the proposed inconsistency measure on the large
scale JEG-Hybrid dataset. The results show that low quality PVSs
create less ambiguity (average inconsistency) for the AIOs indepen-
dently from the SRC as it would have happened with real observers. 97

5.14 The average observers’ inconsistency tends to decrease as the ”Block-
loss” feature value increases for almost all the AIOs. For each value
of the Blockloss feature on the x axis, the graph shows the aver-
age inconsistency of the observer evaluated on PVSs for which the
Blockloss feature value is greater than or equal to the one on the x
axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

xx



6.1 Comparison of the deep CNN-based approach and the shallow NN-
based one. In both cases the system, after receiving an image or
a set of features returns the probability of choosing any of the five
options offered by the ACR scale. Note however that, unlike the deep
CNNs that receive as input the raw image, the shallow NNs receive
hand-crafted features that may not correctly and/or exhaustively
characterize the input image. Furthermore, the hand-crafted features
are not computed based on the opinion scores of the observers to be
modeled when relying on shallow NNs. As such, they might not be
the most suitable ones for the observer to be mimicked. . . . . . . . 106

6.2 Least square fitting of the JPEG quality parameter to the average
perceptual quality, on the phase 1 of the first release of the LIVE
image quality assessment dataset, using a third order polynomial
function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.3 Architecture of the JPEGResNet50 as well as of the AIOs. This
network receives as an input a 224 × 224 color image and provides
as an output an estimation of the probability that an average viewer
would choose any of the five options of the ACR scale. . . . . . . . 108

6.4 Comparing the correlation values observed between the actual ob-
servers and the ones of the actual observers and AIOs. The higher
the overlap, the better. MD stands for Multi distortion. . . . . . . . 112

6.5 Showcasing the use of the AIOs in practice. The figure shows the
distribution of the user opinions as predicted by the AIOs. The
quality of the image given as an input is progressively degraded by
applying JPEG compression. . . . . . . . . . . . . . . . . . . . . . . 116

6.6 The predicted distribution of the user opinions for each image as a
function of its MOS. Note that the mode of the distribution tends
to increase as the MOS increases. Furthermore, as expected, the
distribution is concentrated around the value of the mode in most of
the cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

xxi



Chapter 1

Introduction

The volume of multimedia content (mostly images and videos) exchanged over
the internet has significantly increased in the last decades [131]. This has been
made possible in part thanks to the development of more effective multimedia pro-
cessing systems (MPSs). MPSs are designed to perform many tasks, i.e., capturing,
compression, transmission, restoration, enhancement and reproduction of multime-
dia content. For any of these tasks the MPS is expected to deliver a content with
the best possible perceptual quality (few visible artifacts) under the constraints
imposed by the availability of resources such as the bandwidth and the storage
capacity [3]. In other words, MPSs constantly solve optimization problems whose
objective functions involve a measure of perceptual quality. For this reason, tools
that enable the assessment of the perceptual quality represent a fundamental com-
ponent for any MPS.

1.1 Traditional Approaches to Media Quality As-
sessment

The question of how to assess the perceptual quality of a processed multimedia
content has been and continues to be of large interest for researchers as witnessed
by these very recent papers [132, 76, 150]. In particular, two main approaches
have been investigated. The first one, is known as “subjective assessment” and the
second approach is referred to as “objective assessment”.

1.1.1 Subjective Quality Assessment
Human viewers are in general the final users of processed multimedia content.

The more natural approach to media quality assessment therefore consists of ask-
ing human subjects to score the perceptual quality of a processed content. This
approach is known as the subjective assessment. The subjective assessment of
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the perceptual quality of a multimedia content is usually obtained by designing a
subjective test. A subjective test consists of inviting a group of human viewers,
typically in a controlled environment, to watch a number of multimedia content
and rate their perception of artifacts on a given scale. At the end of the test, the
quality of each evaluated multimedia content can be rated by pooling the viewer
ratings on it. The most common pooling strategy is the arithmetic average that
leads to the so-called Mean Opinion Score (MOS) of the content.

A large number of ITU-T recommendations have been produced to define some
formal guidelines that should be followed when designing a subjective test [92, 103].
The aim of these recommendations is to enhance the reproducibility of the results.
Nonetheless, there is still not a common agreement on what is the best quality scale
and the assessment method to be used, since each has advantages and drawbacks
depending on the application under investigation [99, 47, 121].

For a complete discussion on the existing and standardized methods, the in-
terested readers might refer to [125]. Here, just two methods that will later be
considered in this thesis are briefly described.

• The Absolute Category Rating (ACR): the ACR is the most widespread
approach within the research community. The viewers are provided with a five
points quality scale reporting the following options: “Bad”, “Poor”, “Fair”,
“Good” and “Excellent”. They are then asked to watch each content and
choose the option that matches their perception of its quality. The five points
scale is usually mapped to the integers numbers from 1 to 5, i.e., “Bad”=1,
“Poor”=2 and so on, in order to get numeric scores and hence compute the
MOS;

• The Degradation Category Rating (DCR): in this case the viewer is
provided with the so-called Double Stimulus Impairment Scale (DSIS). The
DSIS is a five points scale with the following options: “Very annoying”, “An-
noying”, “Slightly annoying”, “Perceptible but not annoying” and “Imper-
ceptible”. The viewer is then asked to watch first the reference unimpaired
source content, then the processed one, and score how annoying he/she found
the artifacts in the processed content with respect to the reference one using
the DSIS. Just like in the ACR case, the five options are usually mapped to
integers from 1 to 5 in order to compute the MOS of the evaluated content.

The efforts of the media quality assessment community to enhance the repro-
ducibility of the results of subjective tests have yielded some very interesting results.
For instance, when running a subjective test with the same set of stimuli in two dif-
ferent labs, even though the obtained MOS scores are usually not equal in absolute
terms due to the potential offset/bias caused by each test’ context influence factors
(IFs), they typically show a very high rank and linear correlation [100]. In other
words, humans can consistently order the impairment levels during a subjective
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test even if they score them differently in different contexts. Therefore, the re-
sults of a subjective test conducted under the ITU-T recommendations are usually
considered as reliable.

Despite the reliability of the subjective approach to quality assessment, it suffers
some crucial drawbacks that prevent its deployment in many applications. For
instance, human viewers assess the quality in a time frame that would not enable a
real time monitoring of the perceptual quality during a live streaming section. Also,
to fully compare two MPSs, it might be necessary to evaluate the perceptual quality
of thousands of content processed by each one of them. Such a task would require an
eternity if one relies on human viewers. In short, while human viewers are reliable,
they are very inefficient, this is one of the reasons why an alternative approach to
media quality assessment, based on algorithms, has been largely investigated.

1.1.2 Objective Quality Assessment
The objective approach to media quality assessment aims at the development

of QPAs that can predict the perceptual quality as perceived by the human view-
ers. In this context, the result coming from the subjective assessment is typically
considered as the gold standard and QPAs are designed to predict the MOS as
accurately as possible. An impressive number of papers proposing different QPAs
has been published in the last decades [140, 2, 11].

Depending on the information required as input, the QPAs can be classified in
three main classes.

• Full Reference (FR): FR QPAs require as input both the source/reference
unimpaired content and the processed one. The quality of the reference con-
tent is assumed to be the desired one. The quality of the processed content
is then assessed by measuring how degraded it is with respect to that of the
reference one. Several approaches to measure such a degradation have been
proposed. The most basic one consists of simply relying on the euclidean
distance at the pixel level between the processed and the reference content;
this yields to the so-called Peak Signal to Noise Ratio (PSNR) [147]. The
PSNR has been shown to not correlate very well with human scores, for this
reason, more elaborated ideas have been proposed. In [115, 9], authors relied
on natural scene statistics; they compared the characteristics of the processed
content with those of a natural scene. The authors in [35] proposed a FR QPA
that measure the degradation of the quality of the processed content by mod-
eling some characteristics of the human visual system (HVS). In [155, 156],
machine learning-based approaches are investigated. In general FR QPAs are
more accurate than the other ones. However, the need to have available the
reference signal in order to run the algorithm represents a severe drawback,
since for some applications the source content is not directly accessible. FR
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QPAs are therefore more indicated for offline tasks such as codecs comparison.

• Reduce Reference (RR): RR QPAs do not require the availability of the
whole reference content; they make use only of some features of it. Only
those features have to be accessible in order to measure the degradation of
the perceptual quality of the processed content with respect to the reference
one. RR QPAs therefore maintain reasonable the amount of reference infor-
mation to store and/or transmit. This makes them effective for some online
applications. It is however worth noting that the loss of details on the ref-
erence signal typically occurs at the expense of accuracy in terms of MOS
prediction. Some examples of RR QPAs can be found in [106, 73, 137].

• No Reference (NR): NR QPAs are algorithms that focus only on the pro-
cessed content. The quality in this case is evaluated in absolute terms as
the reference signal is not used. The lack of information on the source con-
tent makes the development of accurate NR QPAs very challenging. They are
therefore usually designed for assessing the presence and level of annoyance of
a specific type of artifact. NR QPAs are in general less accurate than the other
QPAs, however, they offer more flexibility in practice as one does not need to
handle the reference signal. With the success of machine learning, NR QPAs
have received particular attention. An impressive number of authors, [80, 66,
16], proposed novel models regressing features extracted from the processed
content on the quality scale to obtain machine learning-based MOS predic-
tion. Despite the lack of large scale subjectively annotated datasets, some
authors [134] succeeded by smartly using deep neural networks (DNNs) that
are however known to be demanding in terms of training samples.

QPAs are obviously faster than human viewers. Furthermore, unlike human
viewers that one needs to find and convince or pay so that they accept to participate
in a subjective test, QPAs are directly accessible on demand. Unfortunately, the
state-of-the-art in the development of QPAs is still suffering some crucial limitations
that are discussed in the next section.

1.2 Some Limits of State-of-the-Art Approaches
This section presents some of the fundamental problems still open in the media

quality assessment community. The list of problems discussed here is not intended
to be exhaustive, but rather an introduction to the hot research questions to which
this PhD thesis contributes to finding preliminary answers.
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1.2.1 Accounting for Human Viewers’ Inconsistency
Human viewers are not always able to repeat their previous opinion score when

asked to rate again the perceptual quality of a content they have previously eval-
uated [55]. This characteristic of the human viewers is referred to as the subject’s
inconsistency in the context of media quality assessment. Because of the subject’s
inconsistency, if a subjective test is run twice in exactly the same conditions, i.e.,
with the same stimuli, the same viewers and the same environment, there is a really
low probability to get for each content the same MOS scores in both tests.

The subject’s inconsistency is typically caused by several IFs, some of which are
not under the control of the subjective test designer. For instance, one might think
about the viewer’s emotional state and his/her ability to maintain concentration
for a long time. In any case, these IFs make the MOS a stochastic quantity as the
same test conditions would lead to different values. Unfortunately, the uncertainty
that characterizes the MOS of a given content has long been disregarded. The
MOS has instead been traditionally treated as a deterministic value for the sake of
convenience. This directly impacts on the accuracy of QPAs as they are trained to
predict a ground truth quality score that is supposed to be affected by some noise
in practice.

Several publications [79, 54, 44, 122, 114] have underlined the need to design
more comprehensive objective quality assessment approaches that account for the
stochastic IFs that affect the human perception and judgment of the quality. How-
ever the problem still remains open since there is large room for improvement of
existing approaches.

1.2.2 Predicting Multimedia Content Ambiguity
The complexity of a multimedia content, in terms of scene characteristics for

instance, is a determining factor in the ability to accurately predict its perceptual
quality. For example, at the same compression level, a video showing a scene with
fast moving objects in a landscape full of details might appear to a human of better
quality than another video with almost static content.

For this reason, existing QPAs usually have an accuracy that very much depends
on the type of content they are requested to evaluate. They are not therefore
accurate in all situations. A question of interest to researchers is therefore that of
being able to determine the ability of a video sequence to mislead humans and/or
QPAs on its perceptual quality. This is of crucial importance, since once identified,
problematic multimedia content could benefit larger resources to avoid potential
degradation of final users’ quality-of-experience (QoE).

In [55, 68] approaches to estimate the ambiguity of a multimedia content, i.e., its
ability to confuse human viewers, were proposed. Unfortunately these approaches
can be used only to estimate the level of ambiguity of a video sequence that has
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already been subjectively evaluated. This is a severe limitation, as subjective tests
are time demanding and the approach can not be used for real time monitoring of
the quality. Therefore the question of how to objectively predict the problematic
nature of a content from the point of view of quality assessment is still open.

1.2.3 The Diversity in Users’ Expectation
QPAs aim at measuring the perceptual quality as judged by the end users,

which is strictly related to the users’ QoE. The concept of QoE has been defined
by ITU [50] as ”the overall acceptability of an application or service, as perceived
subjectively by an end-user”. This definition implicitly underlines the importance
of considering individual user expectations while measuring the QoE. A more recent
and more encompassing definition has been given by the QualiNet white paper [21]:
”QoE is the degree of delight or annoyance of the user of an application or service.
It results from the fulfillment of his or her expectations with respect to the utility
and/or enjoyment of the application or service in the light of the user’s personality
and current state”. This latter definition explicitly mentions the user expectations
and personality among factors that are to be considered when assessing the end
user’ QoE. In other words, the user characteristics as well as personal experience
contribute to determine his/her opinion regarding the perceptual quality of a media
and should therefore be considered as much as possible when predicting the QoE.

While subjective evaluation methods account for the diversity in users’ expec-
tations up to some extent, it is typically disregarded by the traditional objective
approaches to quality assessment. In fact, subjective tests are carried out by invit-
ing a number of subjects selected according to certain heterogeneity criteria. That
allows to consider a sample of observers that best represents some end-user’s char-
acteristics, e.g. the user’s age [86], user’s gender [48] or the user’s preferences [93]
that can have an impact on the subject’s judgment. The effect of such human IFs
is represented by the diversity typically observed between the individual opinions
gathered during the test.

On the contrary, the traditional objective approaches to media quality assess-
ment fundamentally focus, for the sake of convenience, on predicting a single value,
i.e., the MOS. To compute the MOS, individual opinion scores coming from a sub-
jective test are averaged. This pooling step keeps out of the assessment process the
diversity among the users’ opinion scores and thus the information related to the
personality of the viewers and their expectations.

The media quality assessment community is therefore still lacking effective and
efficient objective approaches to assess the perceptual quality and in general the
final users’ QoE while accounting for the diversity in terms of expectations, back-
ground and experience. Such approaches would give answers to the following ques-
tions that are of primary importance for streaming vendor companies: i) what is
the percentage of customers that would be satisfied if a given content is encoded
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in a certain manner? ii) What are the characteristics of the customers that are
expected not to be satisfied with the quality of a processed content?

1.2.4 The Need for Appropriate Data Augmentation Ap-
proaches

Obtaining large scale subjectively annotated datasets is very expensive and
time consuming. This makes it difficult to effectively train deep NN-based QPAs
for instance. Data augmentation approaches and algorithms have therefore been
naturally adopted by the media quality assessment community.

The computer vision community has developed a number of data augmentation
approaches [119]. Most of these approaches represent an implementation of a set
of rules that, applied to an entity of the training set (image, video, audio), creates
an additional entity that is expected to have the same label. For example, in an
image classification task, a translation, rotation, and scaling of the objects in an
image does not change its content and therefore its label.

As it can be seen from the latter example, the typical data augmentation ap-
proaches mainly affect the geometry of the elements present in a multimedia con-
tent. While this type of modification can generate particularly challenging samples
from the point of view of the computer vision tasks, they may not constitute sig-
nificant added value for the training of a model aimed for predicting visual quality.
In fact, a modification of geometrical shape of the objects alone keeps constant fea-
tures such as contrast, resolution, spatial and temporal activity and also quantity
of motion (in case of video), which are important for visual quality assessment.
The model could therefore perceive these new samples as substantially equivalent
to the initial one from which they are generated.

For this reason, alternative approaches for generating more data in order to
effectively train machine learning based QPAs have been proposed. In [59, 75], in
addition to the subjectively annotated training samples, the authors included new
training samples for which they used the output of a QPA as a substitute of the
MOS. The main drawback of this approach comes from the fact that one does not
know a priori on which content the score provided by the used QPA is not accurate.
Hence the obtained dataset might be very noisy.

The authors in [62, 81], instead, proposed an approach to combine different
subjectively annotated datasets into a single larger one, thus overcoming the issues
stemming from the different contexts in which the subjective experiments have been
conducted. In particular, the MOS values had to be realigned to take into consid-
eration the context influence factors that affect the result of each experiment [98].
Therefore, the MOS values in the newly created dataset are, in practice, only an
estimate of the ones that would be expected while running a single large scale
subjective experiment.

Although some authors have focused on the the question of how to effectively
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augment the number of training samples in media quality assessment, the question
remains open as existing approaches suffers some limitations.

1.3 Going Beyond the MOS: the Thesis Contri-
bution

This PhD thesis advances the state-of-the-art in media quality assessment by
proposing some approaches to cope with the open problems discussed in Section 1.2.
In particular, the thesis contribution can be mainly summarized under the three
main points presented in this section. Also, for completeness sake, a list of all the
scientific papers I coauthored and published during the PhD period is provided in
Appendix A, while a short description of all the used datasets and the motivation
behind their choice is provided in Appendix B.

1.3.1 The Perceptual Quality as a Random Variable
To account for the large number of IFs that affect the results of a subjective test

and are not under the control of the test designer, I proposed in [29] to consider the
MOS as a random variable instead of looking at it as a single deterministic value.

I therefore proposed to express the quality of a given video sequence in prob-
abilistic terms. More precisely, I proposed an approach to compute an interval
to which the MOS of a given video sequence is expected to belong with a user’s
specified probability. Note that this is very different from the concept of confidence
intervals (CIs) that can be computed only after a subjective test and for which a
deterministic estimate of the MOS is still required.

The proposed approach relies on well known FR QPAs. The outputs of the
considered FR QPAs are considered as random variables. This is to account for the
fact that existing QPAs are not accurate in all cases and might provide different
quality predictions for two PVSs that are expected to have the same quality score.
A Gaussian mixture model is then used to fit the joint probability distribution
of each FR QPA and the MOS. From the fitted joint probability distribution, the
conditional probability distribution of the MOS to the score of the considered QPAs
is computed. Finally the quantiles corresponding to the user’s specified probability
are derived from the conditional distribution of the MOS to get the desired interval.

In addition to the fact that the approach has the advantage of taking into
account the uncertainty in the quality evaluation process, as I have shown in [29],
it also allows to make a more complete evaluation of the accuracy of QPAs and
it can be very useful to identify peculiar stimuli in large scale not subjectively
annotated datasets.
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1.3.2 Integrating the MOS with Measures of Reliability
As pointed out in Section 1.2, one of the problems of major interest for the

quality assessment community is to automatically recognize video sequences that
are likely to mislead QPAs or human viewers when scoring their quality.

I have shown in [128] that some well known and widely used QPAs are likely to
overestimate the perceptual quality when used on video sequences with few spatial
details. Such QPAs do not therefore perfectly model the fact that the visibility of
artifacts is emphasized by the absence of details. I then proposed a neural network-
based improvement of these QPAs in [127].

The standard deviation of the opinion scores (SOS) of viewers is generally con-
sidered by the media quality assessment community as a measure of the reliability
of the MOS. In [30], I highlighted two main sources of noise that affect the SOS
directly computed from the result of a subjective test conducted with a limited
number of viewers. I then introduced the so-called ground-truth SOS (gtSOS).
The gtSOS of a content is intended to be the standard deviation of the opinion
scores that would be observed if a very large number of human viewers (ideally
infinite) was asked to score its quality using a continuous quality scale. Therefore
a large gtSOS stands for higher complexity of the content in terms of quality pre-
diction. I have shown that the gtSOS can be predicted from the outputs of many
different QPAs. I then trained shallow NNs that can perform such a prediction.

Being able to predict the gtSOS allows to distinguish between the intrinsic
complexity of a video sequence in terms of quality assessment, i.e., its ability to
confuse human viewers and/or QPAs, and the diversity among the user’s opinion
scores that derive only from potential anomalies or noise in the evaluation process.
I therefore also proposed in [30] a statistical model of the SOS that takes into
account the gtSOS and some noise terms. I showed that such a model is very
useful for identifying stimuli whose evaluation would deserve further attention after
a subjective test.

In [130], instead, I proposed a more intuitive approach to identify peculiar PVSs
for QPAs. In fact, instead of relying on NNs that are black box models, I introduced
an index based on the level of disagreement between the quality scores predicted
by different QPAs. Through the results of a small scale subjective test conducted
to assess the performance of the proposed index, I have shown that it allows to
effectively distinguish between PVSs on which QPAs are expected to be accurate
and those on which they are likely to wrongly predict the quality.

1.3.3 Mimicking Individual Quality Perception
I have proposed in [32] to train a NN that can mimic an individual human

viewer in terms of quality perception. Once trained, this NN can receive as input
an image/video and predict with which probability the related human viewer would
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choose any of the five options on the ACR scale if asked to rate the quality of
the same content. Such a probabilistic output allows to also model the subject’s
inability to repeat his/her previous ratings when evaluating the same PVS more
than once. The idea is therefore to use the trained NN as a substitute of the human
viewer it is trained to mimic. For this reason I called such a NN an “Artificial
Intelligence-based Observers” (AIO).

I then suggested training several different AIOs, each modeling a human viewer
with particular characteristics. This allowed me to propose a more complete ap-
proach to objective quality assessment. In fact, the use of the AIOs goes beyond
the prediction of the MOS. Given a PVS as input to the AIOs, they produce in
output a list of opinion scores as it happens in a subjective test. One can then: i)
average them to get an estimate of the MOS; ii) compute the distribution of the
obtained scores on the quality scale and thus obtain an estimate of the percentage
of final users that would not be satisfied by the quality of that PVS; iii) look at
the characteristics of the AIOs that predicted the quality as unsatisfactory to get
potential information on the type of final viewers that would not be satisfied.

The AIOs therefore offer the opportunity to objectively assess the quality while
taking into account the expectations of individual human viewers, this is a funda-
mental feature that previous approaches missed.

It is important to note that being able to accurately train AIOs brings new chal-
lenges within the media quality assessment community. The MOS by definition is
affected by less noise than the individual opinions scores; in fact the average is
performed for this purpose. Nevertheless, existing subjectively annotated datasets
are already limited in size for training QPAs that can predict the MOS. This situ-
ation becomes more critical when one has to deal with the task of predicting single
opinion scores that are affected by more noise.

To effectively collect data tailored to the training of the AIOs, it is important to
rethink the traditional recommendations that are valid for subjective tests aimed
at MOS prediction. For instance, while having many viewers in the test is not
fundamental for the training of AIOs, it is instead very important that the same
viewer rates a large number of stimuli. One therefore needs new recommendations
on how to handle the viewer fatigue, since doing the test in many different sections
would still introduce some noise in the process. This issue is still open, and there-
fore I proposed in [129] and [31] two approaches to smartly make use of existing
subjective experiments in order to train the AIOs.

In [129], I propose to form a cluster with viewers that have similar perception
of quality, i.e., those that have expressed similar opinion scores on a given set of
video sequences they all rated. A single AIO was then trained to represent all those
viewers while exploiting all the subjective scores gathered from each of them.

In [31] instead, I propose to first create a large scale synthetically annotated
dataset containing JPEG compressed images, then I trained on it a DNN that I
called JPEGResNet50. The JPEGResNet50 is a DNN that is able to classify images
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on the basis of their JPEG compression level. It is therefore a DNN that is able
to extract useful features for perceptual quality assessment. Finally I performed
a transfer learning step to convert the JPEGResNet50 into a DNN-based AIO
by continuing its training process on the data gathered from the observer to be
modeled. In this last training step the weights of the JPEGResNet50 were adjusted
to extract features that better characterize the quality perception of the viewers to
be mimicked.

Both approaches adopted to train the AIOs have led to very promising results
that clearly show the feasibility and effectiveness of the AIOs-based approach.

The idea of training many different models, i.e. the AIOs, instead of designing
a single model that predicts the MOS gives rise to two fundamental questions: i)
how to select the subjects to be modeled when designing the AIOs? ii) How many
AIOs need to be considered to ensure that the mean of their predicted opinion
scores yields a robust estimate of the quality? It is important to note that these
two questions come up every time one designs a subjective experiment. For this
reason, part of the previous media quality assessment literature has been devoted
to these questions.

By relying on AIOs to assess the quality of a PVS, one actually attempts to
simulate the process of a subjective test. Therefore, recommendations that are
valid for an actual subjective test should be followed when designing and using the
AIOs.

In particular, the recommendations on how to select the participants in a subjec-
tive experiment [92] should be followed to identify a suitable set of actual observers
to be modeled. As it should happen in a subjective test, the actual observers should
be sampled in such a way that the related AIOs are representative of the whole
population of potential users of the multimedia service of interest.

According to the following ITU-T recommendations [49, 92], the MOS deriving
from a subjective experiment conducted in a controlled environment with at least
15 viewers is expected not to change with statistical significance when different
sets of viewers are used. A quality measure deriving from a set of at least 15 AIOs
could therefore be considered as robust when the related actual observers have been
selected in order to best represent all potential users of the service.

1.4 The Thesis Structure
The rest of this thesis is structured as it follows. Chapter 2 introduces a prob-

abilistic approach to quality assessment aiming at accounting to both the incon-
sistency of the human viewers and the inaccuracy of existing QPAs. In Chapter 3
and Chapter 4 two different approaches to derive measures that can inform on the
reliability of a MOS prediction are presented and some related applications are
discussed. The Chapter 5 will introduce the concept of AIOs and their training
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with shallow NNs. The AIOs are further studied in Chapter 6, in particular an
approach to train DNNs-based AIOs despite the challenges imposed by the lack of
large scale subjectively annotated datasets is presented. Finally, conclusions are
drawn in Chapter 7.
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Chapter 2

A Probabilistic Approach for
Computing Quality-of-Experience
Ranges in Video Quality
Assessment

2.1 Introduction
The distribution of the opinion scores gathered for a given PVS during a sub-

jective test is generally modeled as a Gaussian distribution. Hence the subjective
assessment approach typically leads to a mean opinion score (MOS) and a Gaussian-
modeled confidence interval for this MOS. The assumption that the opinion scores
distribution is indeed Gaussian and that a single value is sufficient, is challenged
by a large number of system and human IFs.

Among the system IFs, one might list the diversity of source contents, the
large number and type of degradation, especially multi-dimensional degradation
where dimensions can be, for instance, image distortions and temporal distortions.
All these factors contribute to shape the complexity of the stimuli, which in turn
generates uncertainty in the evaluation process of each human subject [55, 68].

Human IFs, on the other hand, are all those characteristics that make viewers
perceive and judge quality in a different way. For example, a person’s background,
experience, and expectations in terms of quality significantly influence his/her as-
sessment. Furthermore, this influence is very variable over time, causing a human
subject to evaluate the same stimuli differently under the same conditions [55]. It
is evident that reducing the subjective quality of a content to a single value does
not allow to take into account the uncertainty caused by all these IFs.

A possible approach to account for such uncertainty is to express the perceptual
quality in probabilistic terms. This Chapter describes the approach I published

13



A Probabilistic Approach for Computing Quality-of-Experience Ranges in Video Quality Assessment

in [29]. In this approach, the perceptual quality of a PVS is expressed as a range
instead of a single value. More precisely, given a PVS, the scope of the approach
is to derive a range of numerical values to which the score of its perceptual quality
belongs with a certain probability. Such probability should be specified by the user
of the approach.

This approach should not be confused with confidence interval estimation for
video quality, which starts from the assumption that an estimate of the MOS is
available, and that the opinions of human subjects are distributed according to a
Gaussian distribution.

To compute the score range, i.e., a minimum and maximum value, well-known
objective full-reference video quality measures (FR VQMs) that can be easily com-
puted were used. The underlying idea is that the use of several VQMs, each based
on different approaches, could somehow capture the multi-dimensional degradation
that may affect the PVSs quality.

The main steps of the approach presented in this chapter can be summarized
as it follows. Given a PVS, its MOS is considered as a random variable. The joint
probability distribution of the MOS and the scores of the considered FR VQMs is
derived. The conditional distribution of the MOS to the score of the FR VQMs and
the related quantiles are computed and used to obtain the desired range of quality.
This approach is quite innovative in the media quality assessment community as it
represents the first attempt to work in the direction of predicting ranges of quality
to account for uncertainty. The motivation and examples of the usefulness of such
approach are discussed in more details in Section 2.2.

To implement the approach, the results of the VQEG HDTV Phase I experi-
ment [139] (VQEG-HD) which is one of the most extensive subjectively-annotated
publicly-available datasets, with a large variety of high resolution (1920x1080) con-
tent, were used. Such dataset reasonably covers the large majority of cases in which
the video quality research community could be interested.

The rest of the chapter is organized as it follows: Section 2.2 elaborates more on
the usefulness of the approach while Section 2.3 presents the technical steps behind
it. Some computational experiments conducted to showcase the effectiveness of the
approach are presented in Section 2.4, and the conclusions are drawn in Section 2.5

2.2 Motivation
The probabilistic representation of the subjective quality of a PVS presented

here is mainly motivated by the three points that are discussed in this section.
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2.2.1 Accounting for Stochastic Influence Factors
In Section 2.1 several reasons that cause an intrinsic difficulty in trying to ex-

press and determine a single QoE value for each test case, e.g., each PVS, regardless
of the goodness of the algorithm used to estimate such single QoE value have been
highlighted.

The approach presented in this chapter is therefore strongly motivated by the
meed to report the quality score under a format that clearly considers the stochastic
nature of the problem. To be coherent with the human behavior in terms of quality
perception, MPSs should also report the estimation of the perceptual quality in
probabilistic terms. For a given PVS, it is more complete to state that its perceptual
quality lies in a given range with certain probability. Each value in the predicted
range would be a feasible quality score, and this would account for the fact the
same PVS might be judged differently when watched under different conditions.

Finally, it is worth noting that for some applications, one might simply be
interested in guaranteeing with a certain probability that the perceived quality
would not go under a certain threshold. In that case, it is enough to encode
the PVS such that the lower bound of the quality range derived by the approach
described in this chapter matches the desired threshold.

2.2.2 Analyzing VQMs’ Accuracy
The accuracy of Quality Prediction Algorithms (QPAs) is usually measured by

relying on statistical indicators such as the Pearson linear correlation coefficient,
the Spearman rank order correlation coefficient and the root mean square error.
Despite the usefulness of these indicators, they do not allow a local analysis of the
performance of QPAs on each part of the quality scale. Instead they provide a
global idea on the performance of the QPA on the whole quality scale.

To compute the quality ranges, the approach presented in this chapter first de-
rives the conditional distribution of the MOS with respect to the output of the
considered VQMs. By drawing the curves reporting the quantiles of that distribu-
tion as a function of the VQM score, one obtains a figure of merit of the VQM.
As it will be discussed later in the chapter, such a figure has the advantage that it
provides local information on the accuracy of the VQMs while accounting for the
uncertainty that characterizes the MOS.

2.2.3 Dealing with Large Scale non-Annotated Datasets
From a practical point of view, estimating a range without even attempting

to compute a single QoE value can be useful also for analyzing large scale not
subjectively annotated datasets. For instance, the size of the predicted quality
range, seen as a measure of uncertainty, can be analyzed separately for each source
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content to figure out the content that is peculiar in terms of quality assessment.
Another example could be the selection, from a large scale dataset, of a subset

of stimuli to use for a subjective test. For a subjective test it is important to ensure
that the used stimuli are a good choice in terms of variety of quality. This can be
done by computing the expected quality range for all selected stimuli, so that the
heterogeneity of the stimuli is assessed while accounting for the stochastic IFs that
will undoubtedly affect the result of the test.

2.3 QoE Ranges Estimation
This section details the steps towards the derivation of the QoE range for a

given PVS.

2.3.1 Problem Settings
Let denote by:

• V = (vqm1, vqm2, . . . , vqmn) a vector containing the quality scores of n VQMs
determined for a given PVS;

• α ∈ [0,1] a user specified tolerance, i.e., the probability that the MOS might
not be in the predicted range;

• mospvs
Min and mospvs

Max the lower and upper bound of the range of quality to be
determined for the considered PVS.

The problem to address consists of computing the values of mospvs
Min and mospvs

Max

such that:

Pr (MOS ≤ mospvs
Min|V ) = α/2,

Pr (MOS ≥ mospvs
Max|V ) = α/2,

(2.1)

where Pr means probability.
In words, given a PVS for which the scores of n VQMs are known, one want to

get an interval in which the MOS is expected to stay with probability 1 − α. This
is the reason why the parameter α is referred to as a tolerance. The smaller is α,
the larger is the size of the predicted range.

Mote that the problem in Eq (2.1) consists of finding the quantiles at α/2 and
1 − α/2 of the conditional probability distribution of the MOS with respect to the
vector containing the scores of the n VQMs. To this aim, one needs first to estimate
the joint probability distribution of the MOS and the vector V of the VQM scores,
then derive from it the conditional distribution whose quantiles are of interest.

While jointly considering all the VQMs in the vector V together is certainly
the most desirable approach to the problem, their differences in terms of scale and
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how to map them on the MOS make it very difficult and generate computational
instability. Therefore, for simplicity sake and for easier graphical interpretation,
each VQM is treated individually. A final pooling step is then implemented to
account for the effect of all the VQMs.

2.3.2 The Dataset for the Joint Density Estimation
To estimate the joint probability distribution of the MOS and each VQM, the

VQEG-HD dataset [139] was considered. The VQEG-HD dataset was designed in
such a way that the evaluated stimuli cover a large set of content, conditions, and
quality ranges.

The perceptual quality of the used stimuli was impaired with both coding arti-
facts, (MPEG-2 and AVC encoded PVSs with bit rates varying from 1 to 15Mbps),
and transmission ones (bit error and bursty packet loss). The used video content
involved movies, sports, general TV material with much variability as possible.
Therefore, by relying on such a dataset, one might expect to get a rather good
representation of most of the conditions that can be encountered in the majority
of real-world applications.

While more details can be found in the VQEG-HD experiment final report [139],
a short description of the experiment settings is provided here for completeness sake.

Test environment: The VQEG-HD experiment took place in six different labo-
ratories, leading to six different datasets named VQEG-HD1, 2, 3, 4, 5 and
6. The environment of each laboratory was prepared in accordance with the
ITU-R Recommendation BT.500-11 [49]. In general, a test session involved
only one viewer per display assessing the stimuli. The viewer was seated in
front of the screen at a distance equal to three times the height of the picture.
Either high-end consumer TVs (Full HD) or professional grade LCD monitors
were used in all the laboratories. In all the cases, the display resolution was
1920x1080.

Participant cohort: In each of the 6 laboratories, 24 viewers participated in the
test. The viewers were screened for normal visual acuity (with or without
corrective glasses) by means of the Snellen test [123] and for normal color
vision by means of the Ishihara test [18]. After the completion of the test,
a statistical criteria was used to assess whether each viewer’s ratings were
consistent with the average of the others viewers. If not, that viewer’s ratings
were rejected and a new one was invited to participate in the test (more
details on the criteria in [139].)

Assessment procedure: The absolute category rating with hidden reference [92]
was used. Each video sequence, also including the reference one, was shown
exactly once to the subject that was then asked to rate the visual quality
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by choosing one among the following alternatives: ”Bad”, ”Poor”, ”Fair”,
”Good” and ”Excellent”. In all the six laboratories, before starting the ex-
periment, each subject received a short tutorial aimed at familiarizing not
only with the assessment procedure but also with the software used to record
the votes. After this tutorial, the stimuli were shown in a randomized order
to the subjects. A break was given to each subject after evaluating half of
the stimuli to minimize potential inaccuracies due to fatigue. Each video se-
quence was 10-second long; between one stimulus and the other the display
was kept grey until the subject expressed the opinion.

For each PVS in the VQEG-HD dataset, five well known and widely used FR
VQMs were computed, i.e., the PSNR, the SSIM, the MSSSIM, the VIF [39], and
the VMAF 0.6.2 [87]. Since most of these VQMs do not easily handle interlaced
video, the analysis was restricted to non-interlaced sequences, i.e., the VQEG-HD1,
VQEG-HD3 and VQEG-HD5 subsets. The vector V of VQM scores for each PVS
therefore included the scores computed with the five aforementioned VQMs.

Please note that for the VQEG-HD complete dataset, created by aligning and
joining the results of the six different laboratories (see Chapter 7 of [139]), the MOS
scores range in [0.82, 5.26].

2.3.3 Joint Probability Distribution of the MOS and a VQM
Let demote by f(vqm, mos) the joint probability distribution of the MOS and a

VQM. I proposed in [29] to approximate such a joint probability distribution with
a 2D Gaussian mixture model (GMM) and use the VQEG-HD dataset to fit the
parameters of the GMM for each VQM.

Therefore, exploiting the general expression of a GMM, the joint probability
distribution of the MOS and each VQM can be written as it follows:

f(vqm, mos) =
k∑︂

i=1
πi · N

(︃
(vqm, mos)|µi, Σi

)︃
(2.2)

Where N ((vqm, mos)|µi, Σi) is the p.d.f. of a bivariate normal distribution with
mean µi and covariance matrix Σi and k is the number of Gaussian components of
the GMM.

The parameters (πi, µi, Σi and k), for each VQM, have been estimated from the
data collected during the VQEG-HD experiment using the expectation maximiza-
tion (EM) algorithm [84]. When using the EM, there are many different criteria to
determine which is the best number of Gaussian components to use. The Bayesian
Information Criterion (BIC) was used to find out the optimal number of Gaussian
components to use for each VQM, i.e., the point at which the BIC curve (as a
function of k) becomes almost flat [6]. In practice, for the considered application,

18



2.3 – QoE Ranges Estimation

Figure 2.1: The figure shows the value of the Bayesian Information Criteria (BIC)
obtained from the fitted GMM as function of the number of Gaussian components
of the GMM in the MSSSIM case. As it can be noticed, using more than three
Gaussian components does not yield a significant variation of the BIC and thus of
the model performance. Therefore in the MSSSIM case, three Gaussian components
were used.

this happens either for k = 3 or k = 4 depending on the VQM. The Figure 2.1
illustrates such a procedure in the case of the MSSSIM.

The Figure 2.2 shows how the fitted density for each VQM models the disper-
sion of the samples in the VQEG-HD dataset. As one could expect from a good
model, there is in general a greater density of samples in the areas where the fitted
distribution assumes large value and vice versa. This indicates that the assumption
that a GMM can capture the relation between the MOS and each VQM scores is
rather reasonable.

2.3.4 Deriving the QoE Ranges
Once a suitable 2D GMM is fitted for each VQM, it is possible to compute the

conditional probability distribution of the MOS for a given VQM score.
In particular, let divide the useful variation range of each of the five considered

VQMs in the VQEG-HD dataset into 100 equal parts. For the center vqmj of each
interval, one wants to compute the function:
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(a) (b) (c)

(d) (e)

Figure 2.2: A 2D representation of the fitted GMM for each VQM. In general, the
larger density of points in whiter regions highlights the GMM accuracy

G(x|vqmj) = Pr (MOS ≤ x|vqmj − δ ≤ V QM ≤ vqmj + δ) (2.3)
where δ = (max(V QM) − min(V QM))/100.
Note that as δ is a small value, the function G(x|vqmj) approximates the prob-

ability that the MOS assumes a value smaller or equal to x when the VQM score is
equal to vqmj. It is therefore the conditional probability distribution of the MOS
with respect to the score of the VQM.

From the definition of conditional probability, and exploiting the properties of
the joint probability distribution, the following formula for G(x/vqmj) holds:

G(x|vqmj) =
∫︁ x

−∞
∫︁ vqmj+δ

vqmj−δ f(r, t)drdt∫︁ vqmj+δ
vqmj−δ

∫︁∞
−∞ f(r, t)dtdr

(2.4)

where the function f is the joint probability distribution expressed in Eq (2.2)
and whose parameters have been fitted for each VQM using the VQEG-HD dataset.
Therefore, for each VQM, given a value of x and the score vqmj of the VQMs, the
probability G(x|vqmj) that the MOS is smaller or equal to x can be numerically
computed using the formula in Eq (2.4).

For each VQM, the following equations are numerically solved respectively for
mos

vqmj

Min and mos
vqmj

Max to determine the desired MOS bounds when that VQM score
is equal to vqmj, j = 1,2, . . . , 100:
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G(mos
vqmj

Min |vqmj) = α/2,
G(mos

vqmj

Max |vqmj) = 1 − α/2.
(2.5)

If one remembers the meaning of the function g, these equations are simply
stating that mos

vqmj

Min and mos
vqmj

Max are respectively the quality scores to which the
MOS is smaller respectively with probability α/2 and 1 − α/2 if the VQM score is
equal to vqmj.

For instance, let substitute the generic VQM in the used notation with the
PSNR. It will be assumed in the experimental section that the typical range of
variation of the PSNR in practice is from 20 to 50 dB. Let divide such a range
in 100 equidistant intervals and call psnrj the center of the jth interval. psnrj

corresponds to vqmj in the generic notation. Then the interval [mos
psnrj

Min , mos
psnrj

Max ]
is the range to which the MOS of a given PVS belongs with probability 1 − α if the
PSNR score of that sequence is equal to psnrj. The same interpretation holds for
all the other VQMs considered in this chapter.

Note that by interpolating the 100 values mos
vqmj

Min and mos
vqmj

Max j = 1,2, . . . ,100,
for each VQM, one can obtain two curves delimiting the range to which the MOS
belongs for any given value of the VQM (see Figure 2.3).

The min and max values for each single VQM obtained in Eq (2.5) and ploted
in Figure 2.3 can now be combined together to obtain a global min and max MOS
value for a given PVS. To perform such a pooling step, the average of the ranges
obtained for each VQM was computed.

Hence, the expressions of the bounds of the final quality range are as it follows.

mosPVS
Min = 1

n

∑︁
i

(︃
mos

vqmPVS
i

Min

)︃
mosPVS

Max = 1
n

∑︁
i

(︃
mos

vqmPVS
i

Max

)︃ (2.6)

where n is the total number of used VQMs (n = 5 in this chapter’s case), mos
vqmPVS

i
Min

and mos
vqmPVS

i
Max are respectively the lower and the upper bound of the quality range

of the ith VQM.
Therefore, at the end of the procedure, when a new PVS with unknown MOS

is presented to the proposed system, the scores of the five VQMs considered in
this chapter are first computed. Then the values mos

vqmPVS
i

Max and mos
vqmPVS

i
Max , i =

1,2, . . . , 5 are computed for each VQM. Finally they are aggregated using the aver-
age to form the final MOS range for that PVS.
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(a) (b) (c)

(d) (e)

Figure 2.3: The curves determine the predicted MOS ranges as function of each
VQM score. The curves are shown for two different values of α. Each point corre-
sponds to a single PVS in the dataset. the MOS values belong to [0.82, 5.26] due
to the realignment of the six VQEG-HD subsets [139].

(a) (b)

Figure 2.4: Results obtained for VMAF when considering only coding artifacts.
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Table 2.1: Predicted quality range accuracy.

VQEG-HD Netflix Public
α Expected Actual Expected Actual
0.01 4/415 0/415 1/70 0/70
0.05 21/415 21/415 4/70 4/70
0.10 42/415 44/415 7/70 13/70
0.15 63/415 70/415 11/70 19/70
0.20 84/415 85/415 14/70 23/70

2.4 Numerical Experiments

2.4.1 Experimental Settings
To validate the effectiveness of this approach, two datasets were considered

in addition to the used VQEG-HD dataset. These two datasets contain video
sequences not considered by the proposed system when fitting the joint probability
distributions that are used to compute the quality ranges.

Both datasets include high resolution content (1920x1080). The first is the
Netflix Public Dataset [68], which includes 70 subjectively annotated PVSs covering
the full MOS range. The second is the VQEG JEG-Hybrid Large Scale Database
(JEG-DB)[14] which includes 19,840 1080p PVSs obtained by compressing a few
source sequences in HEVC format using a large set of coding parameters, including
bitrates ranging from 500 Kbps to 16 Mbps.

2.4.2 VQMs Figure of Merit
Figure 2.3 shows the curves obtained by interpolating the 100 mos

vqmj

Min and
mos

vqmj

Min points for each VQM, for two different α values. The original points in
the VQEG-HD dataset are also reported on the figure. Looking at the green curve
in Figure 2.3a, it can be observed, for instance, that for a PVS with PSNR equal
to 47 dB, the MOS is expected to be in the range [3,5] with a probability of 0.9
(1-0.1).

In addition to allowing to compute the quality range to which the MOS belongs
with a certain probability, each of the Figures 2.3a, 2.3b, 2.3c, 2.3d and 2.3e can be
considered as a figure of merit of the related VQM, since the distance between the
curves and their shape for a given value of α provides interesting information on
the metric behavior. The less distant the curves are, the more accurate and robust
the metric is to noise that affects the MOS. It is interesting, for example, to observe
how the PSNR, MSSSIM and VMAF do not seem to have a uniform accuracy on
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Figure 2.5: Size (MOS spread) vs center of the predicted quality range. The analysis
is done on the JEG-DB. α=0.10 (left), and α=0.20 (right). Colors indicate the PVS
bitrate (Mbps) (top), and different sources (bottom).

all their scales. While the SSIM and the VIF have almost parallel curves, and
thus the same uncertainty is maintained in the estimation of the subjective quality
regardless of the score they have predicted.

Note that, being derived from the VQEG-HD dataset, the curves in Figure 2.3
represent the expected ranges of quality in case the VQMs would be used to assess
the quality of a PVS that might involve transmission or coding artifacts. Therefore,
the obtained ranges of quality are large in size also because the information on the
type of artifacts is not known a priori and the system accounts for this additional
source of uncertainty.

For instance, the VMAF was originally designed to be used on PVSs whose
quality has been impaired only with coding artifacts. The Figure 2.4b shows the
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quality ranges for each VMAF scores, for two different values of α, when the analysis
is restricted to PVSs whose quality is affected only by coding artifacts. It can be
seen that smaller quality ranges were obtained in comparison to what happened in
the generic application case in Figure 2.3e. For completeness’ sake the graph of the
GNN fitting the joint density of the VMAF and the MOS for the particular case of
coding artifacts is also shown in Figure 2.4a.

2.4.3 Accuracy of the Predicted Quality Ranges
The effectiveness of the approach was also assessed by checking whether the

predicted interval actually contains the MOS with the user specified probability.
The experiment was done on the VQEG-HD and the Netflix Public datasets.

In practice, for each PVS in these datasets, the values of the five VQMs needed
to compute the quality range were first computed. Then, the quality range was
computed for many different value of α. As the MOS is expected to belong to the
predicted interval with probability 1 − α, to check the effectiveness of the system,
it is enough to verify how close is the actual number of PVSs whose MOS is out
of the predicted ranges to the expected number given by α ∗ NP V S, where NP V S

denotes the total number of PVSs in the test set.
The Table 2.1 shows a comparison between the actual number of PVSs out of

the predicted range and the expected one for the VQEG-HD and the Netflix Public
dataset. The result shows that the proposed system can compute the MOS ranges
accurately even when used on a dataset not considered when fitting the GMMs
that are used to compute the quality ranges. In particular, the fraction of MOS
values outside the range is close to the expected one, determined by the α value.
In all cases, the number of PVSs falling outside the range differ from the expected
one for max 8 units.

2.4.4 Analyzing a Large Scale Dataset
Now, let consider the JEG-DB, i.e., a dataset with a huge number of PVSs

for which the MOS values are not available. The top part of Fig. 2.5 shows the
distribution of the length of the ranges obtained, as a function of the center of the
predicted ranges. Clearly, as α increases, the size of the range (the MOS ”spread”)
decreases. Moreover, as expected, when the bitrate of the PVS is at one extreme
(low or high), the range size is reduced, i.e., there is less doubt on the MOS position,
respectively low or high. However, for intermediate values, the range size increases.

Despite not having MOS values, it is however possible to spot interesting pecu-
liar behaviours. In the bottom part of Fig. 2.5 for instance, the points corresponding
to two source contents are highlighted (all others are in grey): the blue shows a
sequence (a cartoon) which exhibits a quite peculiar behavior in terms of MOS
(less uncertainty for high quality), whereas manual inspection showed that the red
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points correspond to sequences with some digital noise in the original source. This
simple analysis underlines the usefulness of being able to estimate even just MOS
ranges to identify interesting behaviors in a large database of video sequences.

2.5 Conclusion
Typically, the tool to measure the QoE for PVSs are designed to predict a single

value, in most cases the MOS. Predicting this value using various algorithms has
been widely studied. However, deviation from the MOS is often handled as an
unpredictable error. The approach presented in this chapter allows to estimate
an interval of video quality to which the MOS is expected to belong with a user
specified probability. Such a probabilistic interpretation and representation of the
perceptual quality allows to account for the several IFs that make the MOS a
random variable.

To derive the desired interval of quality scores for a given PVS, well known
and widely used video quality estimators are fused together to output a lower and
upper border for the expected video quality, on the basis of a model derived from
a well-known subjectively annotated dataset. Results on different datasets provide
insight on the suitability of the well-known estimators for this particular approach.

While the approach described in this chapter argues that the MOS of a PVS
should not be treated as a deterministic value and proposes to compute ranges of
quality, many practitioners, for the sake of convenience, however continue to prefer
to have available a punctual estimation of the quality. A good trade-off is therefore
to account for the uncertainty by integrating any punctual estimation of the MOS,
with a measure that informs on how reliable it is. This is the approach that will
be adopted in the next two chapters of this thesis.
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Chapter 3

A Neural Network-based
Approach to Predict the Diversity
of Users’ Opinion Scores

3.1 Introduction
Subjective tests are considered the most reliable way to assess the perceptual

quality of any type of media. However, human opinion scores are characterized by
large diversity: in fact, even the same subject, is often not able to exactly repeat
his/her first opinion when assessing once more the quality of a given stimulus. This
makes the mean opinion score (MOS) alone, in many cases, not sufficient to get full
information about the perceived visual quality [43].

It is therefore important to have measures characterizing to what extent the
observed or predicted MOS value is reliable and stable. For instance, the Standard
deviation of the Opinion Scores (SOS) is usually considered as a measure of the
MOS reliability when evaluating the quality subjectively [43].

Unfortunately, the literature is still lacking models or algorithms that allow to
objectively explain and predict how much diversity would be observed in subjects’
opinion scores in terms of SOS. In this journal paper [30], I focused on this problem
and proposed a machine learning-based approach to cope with it. This chapter
presents and discuss the main technical steps behind such an approach.

The approach to model the users’ diversity of opinion scores presented here
is strongly based on a statistical analysis made on several subjectively annotated
datasets. The result of that analysis revealed that on a set of processed video
sequences (PVSs) for which there is large diversity among the observers’ ratings,
the scores predicted by different video quality measures (VQMs) are expected to
be less correlated, in comparison to what happens when the same VQMs are used
instead to assess the quality of PVSs on which there is low variability among users’
opinions.
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In light of this observation, I hypothesized in [30] that part of the variability
observed among the subjects’s opinion scores can be captured/modeled by exploit-
ing the quality scores output by several VQMs on the same PVS. Therefore the
SOS was modeled as the sum of two components: i) a deterministic component
called ground truth SOS (gtSOS) that can be estimated through the use of neural
networks (NNs) by exploiting the quality scores of several VQMs that are provided
as input features to the NN; ii) a random term modeling the two main sources of
error caused by subjective tests, i.e., the quantization of the quality scale and the
limited number of subjects used to conduct the test.

In this way, a distinction is made between the SOS directly observed in a typical
subjective test (with a finite and often very limited number of observers’ rating on
a discrete scale) and the gtSOS, that is to be looked at as the standard deviation
that would be observed if an infinite or very large number of subjects were asked
to assess the quality of the same PVS on a continuous scale.

The gtSOS is thus intended to be a measure of how much the intrinsic complexity
of a PVS contributes to generate diversity among the subjects’ ratings. Complexity
is indeed influenced by many factors such as, for instance, the amount of details
and motion, as well as potentially different types of distortions in the PVS.

By predicting the gtSOS of a PVS, one expects to measure how much reliable
would be any estimation of the perceptual quality of that PVS. The ability to
predict such a value has important practical implications. For instance, to maximize
the Quality of Experience (QoE) for final users, it would be better to make sure that
the PVSs whose perceptual quality is difficult to predict consistently receive higher
attention, thus ensuring that all users experience a uniform and high satisfaction
level.

The validity and the effectiveness of the proposed SOS model was assessed on
several datasets. In particular it was shown to be a suitable tool to identify potential
anomalies in the data gathered in subjective tests.

The rest of the chapter follows the following structure. The related work is
briefly presented in Section 3.2. The SOS importance in media quality assess-
ment as well as the innovativeness of the approach described in this chapter are
discussed in Section 3.3. The SOS model is presented in Section 3.4, followed by
the Section 3.5 where the model is validated by means of numerical experiments.
Section 3.6 illustrates how it is possible to highlight potential anomalies in the
data collected during a subjective test using the SOS model described in this chap-
ter. Section 3.7 is devoted to the design and training of NNs specific for gtSOS
prediction. Conclusions are drawn in Section 3.8.
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3.2 Related Work
More and more researchers, working in different areas, are relying on machine

learning (ML) techniques due to their ability to extract information from data
without necessarily making assumptions about a model underlying the data [57].
Depending on the used methods, ML approaches can generate predictions on the
basis of an input, e.g., regression models, or simply provide insights in the observed
data, e.g., clustering techniques. The media quality assessment research community
has naturally also adopted ML approaches and relied on them to propose several
models aiming at predicting the subjective quality, i.e., the MOS, of a PVS starting
from a number of different features extracted from it by means of algorithms [149,
17].

Unfortunately, the ML applications in media quality assessment community
have been mostly restricted to the quality prediction [19, 27, 33], while the problem
of predicting the deviation from the MOS, despite being a hot topic, has benefited
only slightly from the success of such an approach [82]

In fact, in some recent papers, the authors highlighted the inability of the MOS
to fully capture all the aspects necessary to measure the perceptual quality of a
media. In [29], the deviation from the MOS is handled by determining ranges of
QoE rather than a single MOS value. The authors in [114] illustrated the funda-
mental advantages of using the distribution of opinion scores to assess the quality
rather than the MOS, thus underlining the importance of explicitly taking into ac-
count the opinions’ diversity when assessing the perceptual quality. The approach
in this chapter therefore aims at being one of the first steps toward predicting the
variability among users’ opinion scores by leveraging ML-based approaches.

Finally, the analysis of data coming from subjective tests has also taken very
limited advantage of ML methods to figure out potential anomalies and thus elim-
inate noise in the collected data [7]. Traditional techniques to identify unusual and
strange behavior in the subjectively annotated datasets, makes use of standard sta-
tistical approaches (e.g. outlier detection, likelihood estimation, etc.) [49, 55, 68].
The approach of this chapter showcases the usefulness of ML-based methods also
for investigating the quality of subjective data.

3.3 The SOS as a Measure of Users’ Diversity of
Opinion Scores

3.3.1 Computing MOS Confidence Intervals
In media quality assessment, the SOS has typically been exploited to compute

95% confidence intervals (CIs) for the MOS as follows:
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CI = MOS ±
SOS · τ 97.5

n−1√
n

(3.1)

where n is the total number of subjects that participated in the subjective test
and τ 97.5

n−1 is the 97.5% quantile of a Student’s t-distribution with n − 1 degrees of
freedom.

The CIs has been traditionally looked at as the main tool to distinguish between
PVSs whose quality has been or can be consistently evaluated (those with a small
CIs) and the PVSs that caused high uncertainty (those with large CIs) during the
quality assessment process.

Based on Eq. (3.1), the computation of a CI requires to first collect the subjects’
opinion scores, since they are required to calculate the MOS and the SOS. CIs can
therefore only be computed after carrying out a subjective test. This precludes the
possibility of using them in real-time to automatically determine which PVSs need
to be granted more resources in an attempt to reduce the high uncertainty that
affects their perceptual quality.

This difficulty to effectively use in practice CIs as computed by the formula in
Eq (3.1) can be overcome by using predicted CIs. This would however require to
predict not only the MOS but also of the SOS. Unfortunately, while many advances
have been made in estimating the MOS using the features extracted from the PVS,
this has not been the case for the SOS.

3.3.2 The SOS Hypothesis and its Limits
The most widespread approach to the SOS estimation within the quality as-

sessment community is the one presented in this paper [43]. The authors studied
the SOS in relation to the MOS, postulating that the SOS is linked to the MOS
through a second order polynomial function as it follows:

SOS = α ∗ (−MOS2 + 6 ∗ MOS − 5) (3.2)
where the parameter α is to be calibrated and its value depends on the appli-

cation under investigation.
The crucial drawback of this postulate is that it is useful for estimating the

SOS if and only if the MOS is available. Therefore, it does not solve the problem
related to the CI estimation at all. Furthermore, this way of estimating the SOS
yields a measure that strongly depends on the context in which the subjective test,
whose data are used to compute the MOS, was conducted. So, the estimated SOS is
therefore no longer a measure of the intrinsic ability of a PVS to confuse observers
when evaluating its quality but rather a good metric for analyzing the reliability of
the data gathered during a specific subjective test.

The approach in this chapter explores, for the first time, the possibility of es-
timating the subjects’ diversity of opinions on a given PVS using only features
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extracted from it, namely the VQM scores. More precisely, the main sources of
errors that might affect the SOS computed from the raw data of a subjective test
are highlighted. The gtSOS is introduced and shown to be predictable from the
PVS’ characteristics only. The gtSOS, being an estimate of the SOS not affected
by the errors introduced by any specific subjective test, results in a more stable
and reliable measure of the observers’ opinion scores diversity.

Authors in various scientific fields have proposed several sophisticated metrics
aiming at measuring the level of consensus between the opinion scores of subjects
gathered in Likert scale-based studies [138, 146]. Unfortunately, the media quality
assessment research community still did not adopt such measures. Instead, the SOS
remains, until now, the only measure of the subjects’ diversity of opinion scores.

For some of the research fields in which opinion scores are collected using a
Likert scale, it is possible to re-adjust the experimental setup or the questionnaire
before resubmitting it to the attention of the participants. Moreover, there is the
possibility to iterate in this way until reaching a certain consensus among the sub-
jects involved in the study. Unfortunately, the media quality assessment process is
influenced by so many factors even unknown to the subjective test designer [107].
This prevents the implementation of a consensus-based process and precludes the
deployment of the related sophisticated consensus measures. The gtSOS, if in-
terpreted as a measure of consensus in the video quality assessment community,
therefore acquires even more significance and importance since it represents a first
step towards the development of objective consensus measures within the media
quality assessment community.

3.4 Modeling the SOS in Subjective Tests
This section introduces and describes the two main components that contribute

to determine the SOS values observed in a subjective test. In particular, it is argued
that the observed SOS value for a given PVS results from the sum of a deterministic
predictable quantity (gtSOS) and a stochastic noise caused by the subjective test
settings.

3.4.1 The Ground Truth SOS (gtSOS): Link with VQM
Scores

The gtSOS of a PVS is supposed to be the systematic part of the SOS value that
represents a measure of the uncertainty intrinsically associated with the perceptual
quality of that PVS due to its complexity. As such it should be computed using the
features extracted from the PVS itself. In the context of the approach described
in this chapter, the scores of many VQMs obtained when using them to assess the
quality of the PVS, were used as features.
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Figure 3.1: Sample video frames, each column corresponds to a single dataset and
the order is: ITS4S, Netflix Public, VQEG HD1, VQEG HD3 and VQEG HD5.

The motivation of this choice is at it follows. Different VQMs are in general
based on the modeling of different aspects of the human visual system. Therefore,
There might be artifacts, which a certain VQM is very sensitive to, while others
less so. An important and systematic part of the diversity observed among human
viewers opinion scores is also devoted to that same effect, i.e., the fact that some
persons see artifacts that others do not perceive, and the level of annoyance of
perceptible artifacts varies from one viewer to another. The idea is therefore to
capture the predictable part of the diversity of human opinion scores by leveraging
the misalignment observed between the scores of several VQMs.

To verify to which extend such an idea is reasonable, a statistical analysis was
performed to verify whether there is lower rank correlation between the VQM scores
in the presence of greater diversity of viewers opinion scores.

The analysis was done on five subjectively annotated datasets, i.e., the ITS4S
dataset [96], the Netflix public dataset [68] and three datasets released by the
Video Quality Expert Group (VQEG): the VQEG-HD1, VQEG-HD3, and VQEG-
HD5 [139]. Some examples of images extracted from the sources (SRCs) used to
generate the PVSs in each of those datasets are presented in Figure 3.1.

The analysis was performed as it follows. For each dataset, the PVSs were sorted

32



3.4 – Modeling the SOS in Subjective Tests

Figure 3.2: Correlation coefficient (Spearman rank order) between pairs of VQMs
(PSNR, SSIM, VIF), in a given subjective experiment (the ITS4S, Netflix public
dataset, VQEG-HD1, HD3 and HD5), when the PVSs with low (green) or high
(red) SOS are considered. The statistical significance of the difference is indicated
in percentage. For PVSs affected by coding (C) distortions, low SOS always implies
higher VQM correlation. For transmission (T) distortions this is not always the
case (percentage in grey).

in ascending order of SOS values. Then, the Spearman Rank Order Correlation Co-
efficient (SROCC) and the Kendall Rank Order Correlation Coefficient (KROCC)
were used to measure the alignment of the scores of three VQMs, i.e., the Peak
Signal to Noise Ratio (PSNR) [147], the Structural Similarity Image (SSIM) [157]
and the Visual Information Fidelity (VIF) [115], on the 50 PVSs having recorded
the lowest SOS values as well as on 50 ones with the largest SOS values.

The three VQEG datasets used in the study contain PVSs the quality of which
was impaired by both coding and transmission artifacts. While the ITS4S and the
Netflix public dataset consider only coding distortion. Therefore, for the VQEG
datasets, the analysis was also made on the basis of the type of distortion in order
to reach a more precise conclusion.

The results are shown in Figure 3.2 and Figure 3.3 for the SROCC and KROCC
respectively. One can observe that in all the cases in which the PVSs are only
affected by coding artifacts, the VQM scores show greater correlation on the set
of sequences with the less diversification of opinion scores (low SOS). This greater
correlation of VQMs in presence of greater agreement between human observers is
not clearly observed in the case of PVSs whose quality is corrupted by transmission
artifacts. This behavior might be explained by the fact that the considered VQMs
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Figure 3.3: Correlation coefficient (Kendall rank order) between pairs of VQMs
(PSNR, SSIM, VIF), in a given subjective experiment (the ITS4S, Netflix public
dataset, VQEG-HD1, HD3 and HD5, when the PVSs with low (green) or high
(red) SOS are considered. The statistical significance of the difference is indicated
in percentage. For PVSs affected by coding (C) distortions, low SOS always implies
higher VQM correlation. For transmission (T) distortions this is not always the
case (percentage in grey).

have empirically shown poor accuracy in handling transmission artifacts.
To make sure that the observations made from the analysis would be indepen-

dent of the particular used datasets and that they are not the result of chance,
statistical tests to determine how confident one should be in stating that a cer-
tain correlation value is greater than another were conducted. The percentages in
Figure 3.2 and Figure 3.3 show these confidence levels for each pair of correlations
under comparison.

For example, in the ITS4S dataset case, the correlation between the SSIM and
the PSNR on PVSs with low SOS can be considered greater than the one obtained
in presence of large SOS with 99% of confidence. Hence the difference between the
two values cannot reasonably be considered as a result of chance. Similar large
values of confidence are observed among all other pairs of VQMs for the ITS4S, the
Netflix public dataset and the VQEG-HD3 dataset when restricting the analysis to
PVSs with coding artifacts. In the case of PVSs affected by coding distortion in the
VQEG-HD1 and HD5 datasets, although the correlation coefficients between the
VQMs observed in the presence of low SOS values are larger than those observed
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in correspondence of large SOS values, the percentages of confidence are less than
95%.

In short, the study suggested that the degree of alignment between the PSNR,
SSIM and the VIF scores, measured through the SROCC and the KROCC, is
generally greater when calculated on PVSs whose quality is affected by coding
artifacts and for which observers have expressed opinion scores characterized by
little diversity. This supports the idea that the scores of different VQMs, when
jointly exploited could provide information on the diversity among users’ opinion
scores at least in the case of PVSs whose quality is impaired by only coding artifacts.
On the other hand, for the PVSs affected by transmission artifacts, this preliminary
analysis does not allow such a conclusion. However, this does not preclude the
existence of a more sophisticated measure of alignment than the SROCC and the
KROCC between the VQMs that may explain the diversity of the observers’ opinion
scores when rating PVSs whose quality is impaired by transmission artifacts. Such
a measure could be obtained for instance by fitting the VQM scores to the SOS
using a highly nonlinear function as done later in Section 3.5.

3.4.2 The SOS Error Term
The SOS computed directly from the data gathered in subjective tests with a

limited number of subjects differs from the gtSOS since it is affected by two main
sources of error:

1. The quantization of the quality scale: In general, the main focus of
subjective tests is to assess the average perceptual quality in terms of MOS
rather than the spread of opinions in terms of standard deviation [43]. When
the standard deviation is needed, it is computed from opinion scores collected
on a quantized Likert scale. Likert scales are useful to make sure that viewers
understand what they are required to do so that they can rate the quality
consistently. Unfortunately, this type of scale constitutes a source of noise
when one is interested not only to the mean of the opinion scores, but also to
their standard deviation. In a typical five points Absolute Category Rating
(ACR) scale test, for a given PVS all viewers might select the same option,
yielding to an integer MOS value and a SOS value equal to zero. This actually
occurred in subjective tests even with 24 observers. The VQEG HDTV phase
I test [139] can serve as a good example in this context. However, it is very
likely that having a standard deviation equal to zero is induced by the use of
a quantized ACR-scale, since it would be really improbable that all observers
perfectly agree on the perceptual quality of a given PVS if a continuous scale
was instead used.
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2. Limited number of viewers: The statistics of the samples, such as the
mean and the standard deviation are in general asymptotically consistent
estimators. As the sample size increases, they become less unstable and con-
verge to the exact value of the estimated parameters. Unfortunately, typical
subjective tests are conducted with a limited number of subjects. In this case,
the standard deviation of the opinion score gathered from a limited number
of viewers can become, with a not negligible probability, an unstable esti-
mator of the intrinsic ability of the PVS to confuse the viewer in terms of
quality perception. Therefore the inability to use a large number of raters in
subjective tests generates a stochastic oscillation term that impairs the SOS
value.

It is worth noting that the aforementioned two sources of error are to be taken
into account when analyzing the diversity of opinion scores coming from any study
that considered a limited number of subjects and used an ordinal Likert scale.
Therefore, the approach presented in this chapter is not intended to be restricted
to the media quality assessment community and it can be useful to explain the
diversity among users’ opinion scores in other research fields.

3.4.3 The SOS Model
In light of the discussion in Section 3.4.1 on the relation between the alignment

of VQM scores and the diversity of users’ opinion scores, the following hypothesis
is formulated: the gtSOS of any given PVS (gtSOSpvs) can be estimated from the
quality scores of a certain number of VQMs computed on the PVS.

To that aim, the PSNR, the SSIM, the VIF [115], the Multi-Scale Structural
Similarity Image (MS-SSIM) [143], and the Video Multimethod Assessment Fusion
(VMAF) [87] were considered, and thus:

gtSOSpvs = f(PSNR, SSIM, V IF, MSSSIM, V MAF ) + ϵpvs
obj (3.3)

where ϵpvs
obj is an error term modeling the potential inability of completely predict-

ing gtSOSpvs by only considering the values of the set of chosen objective measures
as features, and f a function mapping the information related to the objective met-
rics’ misalignment to the gtSOS. The estimation of the function f will be discussed
in the next sections.

Now, taking into account the two sources of error discussed in Section 3.4.2, I
proposed in [30] to model the standard deviation SOSpvs

exp of the subjects’ opinion
scores observed during a subjective experiment for a given PVS (here indexed by
exp) as the sum of two components, i.e. a deterministic component gtSOSpvs ∈
[0, ∞) intrinsic to the PVS itself and, a non-predictable, stochastic and normally
distributed component Dexp = (errquant

exp + errsubj
exp ) dependent on the experimental
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settings, i.e. the effect of quantization (errquant
exp ) and the use of a limited number

of subjects (errsubj
exp ). This yielded the following SOS model:

SOSpvs
exp = gtSOSpvs + Dpvs

exp. (3.4)

Summarizing, this model argues that the SOSpvs
exp observed for any PVS during

a subjective test is a realization of a normally distributed random variable due to
the Dpvs

exp component, and has the mean equal to gtSOSpvs that is predictable from
the scores of several VQMs modeling the characteristics of the sequence. Further
insights into the validity of such a model are given in Section 3.5.

3.5 SOS Model Validation
In this section, using NNs, an approximation of the function f in Eq. (3.3) is

derived. The validity of the SOS model in Eq. (3.4) is then shown by performing
numerical experiments on several datasets.

To obtain an approximation of the function f , the VQM scores were regressed
to the SOS observed during the subjective tests. An impressive number of ML al-
gorithms to perform regression tasks has been proposed in the literature, however
NNs-based models and support vector regression (SVR) have empirically demon-
strated greater accuracy in the field of media quality assessment. To estimate the
function f , both NN as well as SVR based models were tested. However, NNs were
seen to be more effective, as they provided gtSOS predictions that showed better
correlation to the SOS.

The NN that approximates the function f is trained using the quality scores of
the five VQMs considered in Eq 3.3 as input features, and the target is the noisy
value SOSpvs

exp. However, on the basis of the model in Eq. (3.4) and the Eq. (3.3), it is
implicitly assumed that the stochastic component Dexp of SOSpvs

exp is not predictable
being a random error. Therefore, the NN prediction corresponds to an estimation
of the the deterministic component of SOSpvs

exp and thus to the gtSOS.
To approximate the function f , only very simple architectures (single hidden

layer with few neurons) were investigated because of the small size of the training
sets. The use of a deep NN would have conducted to an overfiting of the the dataset.
The obtained estimate of the gtSOS in that case, would therefore no longer be an
intrinsic characteristic of the PVS since it would be affected by the two sources of
error presented in Section 3.4.2, i.e., the noise due to the scale quantization and
the limited number of viewers.

To determine the NN architecture that would perform best in approximating
f , different numbers of neurons for the hidden layer were tested starting from two
neurons. As the number of neurons increased there was more and more correlation
between the predicted gtSOS and SOS on the training set. However, this was not
the case when the NN was cross validated. In fact, the performance gap between

37



A Neural Network-based Approach to Predict the Diversity of Users’ Opinion Scores

(a) VQEG-HD1 (b) VQEG-HD3

(c) VQEG-HD5 (d) Netflix Public

(e) ITS4S

Figure 3.4: Comparison between the empirical cumulative distribution function
(orange curve) of Dexp and that of a Gaussian random variable having 0 as mean
and similar standard deviation with Dexp (blue curve). The analysis was done on
five different datasets. The fact that the empirical cumulative distribution of Desp,
for each dataset, so closely approximates the cumulative distribution of the related
Gaussian distribution shows that Desp can also be considered distributed according
to this Gaussian distribution.

what was observed on the training set and what was obtained in cross validation
became more and more important. However, the minimum performance gap be-
tween training and validation was achieved using five neurons on the hidden layer.
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(a) Training set (b) 5-fold cross validation

Figure 3.5: VQEG-HD1 dataset: the predicted gtSOS vs the SOS.

(a) Training set (b) 5-fold cross validation

Figure 3.6: VQEG-HD3 dataset: the predicted gtSOS vs the SOS.

Therefore the function f was approximated with a NN having a single hidden layer
with five neurons.

It is worth noting that the architecture of the network which approximates f
strongly depends on the amount of available training samples. The architecture
used here is therefore not to be considered as an absolute reference, but rather as
a valid architecture if one is working with a number of training samples similar to
those considered in this chapter, i.e., 150 to 200 training samples.

To validate the model in Eq. (3.4), the function f was estimated on five different
annotated datasets, i.e. the VQEG-HD1, VQEG-HD3, VQEG-HD5, Netflix public
and ITS4S dataset. Once the NN approximating the function f is trained, it is
possible to i) estimate the value of gtSOSpvs for each PVS, thus identifying content
whose quality is intrinsically difficult to assess consistently (i.e., high gtSOSpvs); ii)
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(a) Training set (b) 5 folds cross validation

Figure 3.7: VQEG-HD5 dataset: the predicted gtSOS vs the SOS.

(a) Training set (b) 5 folds cross validation

Figure 3.8: Netflix Public dataset: the predicted gtSOS vs the SOS.

deduce from Eq. (3.4) the value of the stochastic component Dexp for each PVS.
In order to assess the fact that the stochastic component Dexp of the SOS model

is normally distributed, the following experiment was conducted. The empirical
cumulative distribution of the set of Dexp values of each dataset was computed and
compared with the cumulative distribution of a Gaussian random variable with zero
mean and standard deviation equal to the one derived from the set of Dexp values.

The Figure 3.4 presents the results of the experiment. In all the cases, the
empirical cumulative distribution of Dexp seems to be very well approximated by a
Normal cumulative distribution. This is aligned with the assumptions of the SOS
model proposed in Eq (3.4).

Figures 3.5, 3.6, 3.7, 3.8 and 3.9 show the correlation between the predicted
gtSOS and the SOS for all the used datasets. On the various training sets, i.e.,
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(a) Training set (b) 5 folds cross validation

Figure 3.9: ITS4S dataset: the predicted gtSOS vs the SOS.

when training the NN using all the data in the dataset, the obtained Pearson linear
correlation coefficient (PLCC) values range from 0.30, in the worst case, up to
0.82, whereas in cross validation the observed PLCC values range from 0.29 to
0.77. However, the SROCC values are a bit lower. In fact, on the various training
sets they range from 0.24 to 0.69, and in cross validation from 0.23 to 0.62. This
difference with respect to the PLCC values is an artifact of the quantization of the
scale on which the subjective tests are conducted. In fact, the computation of the
SOS value on ordinal data increases the probability of getting ties, the presence of
which typically leads to an underestimation of the SROCC.

Statistical tests were performed to check whether the aforementioned PLCC
and SROCC values can be considered statistically different than zero with 95%
of confidence while taking into account the size of each dataset i.e., the number of
PVSs evaluated in the dataset. In all cases, the test result revealed that the obtained
PLCC and SROCC values can be considered greater than zero with statistical
significance. Therefore, the hypothesis that it is possible to obtain information
about the diversity observed in the opinions expressed by different observers about
the visual quality of a PVS using several VQMs scores cannot be rejected.

Lower PLCC and SROCC values were obtained in the case of the ITS4S dataset
in comparison to those observed on the other datasets. This could be due to the
fact that, unlike the other subjective tests considered in this chapter, the one that
led to the ITS4S dataset was designed for the development of no-reference metrics.
Therefore, during the experiment, the original source content, was never shown to
the observers. Hence, the full reference VQMs considered in this study did not
allow to obtain as much information on the diversity between the opinions of the
observer as in the case of the other datasets. Nevertheless, the obtained PLCC and
SROCC values on the ITS4S dataset were still seen to be significantly greater than
0 with 95% of confidence.
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(a) Subjective scores distribution for PVS
#63

(b) Predicted gtSOS, with labelled PVSs

Figure 3.10: Analyzing the Netflix Public dataset. The value of Dexp is large for the
PVS #63. An inspection of the related distribution of opinion scores (left chart)
revealed that an observer rated the quality of that PVS as ”Bad” despite most of
the test participants scored it as ”Excellent”.

3.6 Application of the SOS Model to Anomalies
Detection

This section illustrates an application of the SOS model. In particular, the
model’s capability to highlight potential anomalies in the data collected during a
subjective test is showcased.

The issue of how to identify potential anomalies in the result of a subjective test
is still open. These anomalies are typically caused by the use of peculiar source
content or unexpected subjects’ behaviors. For instance, a viewer may just assign
random votes or the opinion scores gathered for a specific stimuli may be remark-
ably inconsistent. The presence of such anomalies negatively affect the accuracy
of objective measures developed, relying on raw data collected during subjective
tests. The typical approach adopted for anomalies detection is to model the ob-
server opinion on each sequence using the normal distribution [49, 55, 68] and then
estimate the related parameters to identify unexpected situations.

While using the normal distribution is very convenient from the theoretical
point of view, in practice, the use of such a distribution may not always be the
best option. For instance, the normal distribution can difficultly model the opin-
ions’ distribution for PVSs with very high or very low perceived visual quality as
illustrated in Figure 3.10a, which shows the scores distribution for a specific PVS
in the Netflix dataset.

The problem can be approached differently if one relies on the SOS model
described by Eq. (3.4). The term Dexp in the model represents the part of the
inconsistency in the votes introduced by the subjective test settings. As such, it
also models the average inconsistency of the sample of people chosen for the test.
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(a) Subjective scores distribution for PVS
#257

(b) Subjective scores distribution for PVS
#278

(c) Predicted gtSOS, with labelled PVSs

Figure 3.11: Analyzing the ITS4S dataset. The value of Dexp is large for PVSs #257
and #278. The opinion scores for PVS #257 are almost uniformly distributed over
the quality scale; this highlights the peculiar nature of the subjective evaluation of
such a PVS. On the other hand, the analysis indicated that the low SOS value of
the PVS #278 may not be a reliable estimation of its ability to generate diversity
among viewers’ ratings.

Therefore, an estimate of Dexp would allow to determine the stimuli for which a
high inconsistency of the votes has been observed and also those for which, due
the quantization of the scale, the observed SOS is less than that, which could have
been observed considering a greater number of subjects in a subjective test that
uses a continue scale.

The approach to find potential anomalies using the SOS model can be summa-
rized as follows. Starting from the data of the subjective test under examination,
one estimates the function f as discussed before, then from Eq. (3.4) and Eq. (3.3),
for each PVS, one gets:

Dexp ≈ SOSexp − f(PSNR, SSIM, V IF, MSSSIM, V MAF ) (3.5)
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The values of Dexp (for all PVSs) form a sample having a normal distribution
with zero mean as indicated by the SOS model in Eq. (3.4). Finally, the PVSs,
whose evaluation might be affected by anomalies, are those for which the estimated
Dexp value is an outlier of this distribution. In practice, denoting with Dpvs

exp the
value of Dexp for a given PVS and by stdDexp the standard deviation of Dexp, it is
suggested to give a closer look to the ratings of each PVS for which:⃓⃓⃓

Dpvs
exp

⃓⃓⃓
> 3 · stdDexp (3.6)

and carefully consider an examination of the opinion scores gathered for each of
those PVSs before using the data.

In order to investigate the effectiveness of the method in practice, it was tested
on the Netflix public dataset and the ITS4S dataset.

Figure 3.10, shows again the comparison between the predicted gtSOS and the
SOS after determining the function f on the Netflix public dataset. The PVSs
were numerically labeled to facilitate the interpretation of the results. For each
PVS, Dpvs

exp is estimated by subtracting the predicted gtSOSpvs from the SOSpvs
exp.

Consider, for instance, PVS #63 for which the condition in Eq. (3.6) holds. The
ratings collected in the subjective test are shown in Figure 3.10a. For such a PVS,
even if the mode of the distribution of the subjects’ opinion scores is equal to 5
(”Excellent”) and 22 observers out of 26 ranked the quality of the PVS at least
4, i.e. ”Good”, there is surprisingly an observer ranking it as 1, i.e. ”Bad”. It is
therefore reasonable to be skeptical about the latter rating. This is indeed more
curious when one notice that there are even sequences, such as PVS #19, where the
previous anomalous observer is in a full agreement with all the observers. In the
case of the ITS4S dataset shown in Figure 3.11, the scores collected for PVS #257
and #278 that exhibit a high value of |Dexp| were also analyzed. The individual
subjects’ ratings for PVS #257 (shown in Figure 3.11a) are almost uniformly dis-
tributed between ”Poor” and ”Excellent” leading to an observed SOS value, which is
significantly larger than the predicted gtSOS. That suggests the intrinsic difficulty
of evaluating this PVS should be lower than what has been observed. Therefore,
its characteristics should be investigated in more details. On the contrary, for PVS
#278 (shown in Figure 3.11b), a low value of the SOS is observed since 21 ob-
servers rated its perceived visual quality as 1 (”Bad”) and 5 observers rated it as
2 (”Poor”). However the analysis indicates that the observed SOS underestimates
the gtSOS and thus the intrinsic capacity of such PVS to confuse the observer in
terms of quality perception. This suggests that higher diversity among the opinions
should be expected in case more ratings are gathered. This is therefore another
interesting case for further investigation. For instance, such a PVS could be reeval-
uated asking many observers to vote on a continue scale in order to make sure that
the low SOS value previously observed is not just due to the scale quantization
effect and the use of a limited number of observers.
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(a) Netflix public dataset, no data augmen-
tation

ł
(b) VQEG-HD3, no data augmentation

(c) Netflix public dataset, with data aug-
mentation

(d) VQEG-HD3, with data augmentation

Figure 3.12: Assessing the performance of the deep NN based model when estimat-
ing the gtSOS with (bottom) and without (top) the data augmentation. The NN
was trained using only the VQEG-HD1 and VQEG-HD5 datasets (coding artifacts
only).

3.7 Deep Neural Network-based Prediction of the
gtSOS

To assess the validity of the model in Eq. (3.4) for the SOS values obtained in a
subjective test, the analysis has been done so far separately for each dataset. This
section instead, focuses on the training of a NN that can be used to predict the
gtSOS in a general context. The aim is therefore to attempt to train a model that
can provide hints about the uncertainty that characterizes the perceptual quality
of a PVS independently from the context in which it is rated.
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Figure 3.13: The diagram summarizes the data augmentation approach described in
Section 3.7.1. A 6D Gaussian Mixture Model (GMM) is used to fit the multidimen-
sional probabilistic distribution underlying the point cloud of the initial training
samples. From the fitted GMM, 100,000 realizations are simulated. These realiza-
tions are then combined with the initial training set to obtain a greater number of
training samples.

To train such a NN, the data gathered during the VQEG-HD1 and VQEG-
HD5 experiments were selected as training set. Only the PVSs whose quality was
impaired by coding artifacts were considered. This restriction was necessary since
the VQMs used as features have empirically shown higher accuracy in assessing the
quality of PVSs corrupted by this type of artifacts only.

3.7.1 Data Augmentation
As pointed out in Section 1.2.3, the size of freely available subjectively annotated

datasets in media quality assessment does not allow to effectively train on them
deep NN-based models. A data augmentation approach was therefore designed in
order to get more training samples and hence to enable the use of a deep NN for
the gtSOS estimation. The main steps behind such an approach are explained in
the next paragraphs.

Each data point in the training dataset was considered to be a realization of
a 6-dimensional random vector: (PSNR, SSIM, V IF, MSSSIM, V MAF, SOS).
This is in line with the model in Eq. (3.4) that explicitly considers the SOS for each
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PVS as a random variable. This, coupled with the potential inaccuracy of the used
VQMs in some situations, suggests that data points available in the training dataset
can be considered as realizations of a 6-dimensional random vector. Starting from
this observation, the multivariate distribution from which the training set samples
derive was fitted. Then it was used to simulate more samples for training the deep
NN for gtSOS prediction.

Note that by proceeding in this ways, the influence of the settings of the specific
subjective test chosen for the training is reduced. Hence, one expects to get an
estimation of the gtSOS that would account only for the PVS’ characteristics as
desired.

The joint probability distribution g of the available training samples was mod-
eled with a 6-dimensional Gaussian Mixture Model (GMM), i.e.

g(V QMpvs, SOSpvs
exp) =

k∑︂
i=1

πi · N
(︃

(V QMs, SOSpvs
exp)|µi, Σi

)︃
(3.7)

where V QMs = (PSNR, SSIM, V IF, MSSSIM, V MAF ), N
(︂
V QMs, SOSpvs

exp|µi, Σi

)︂
is a probability density function of a multivariate normal distribution with mean µi

and covariance matrix Σi and k is a number of components of the GMM. The pa-
rameters (πi, µi, Σi and k) of the GMM are estimated using a maximum likelihood
estimation approach.

Denoting by M the number of PVSs in the training set, the following optimiza-
tion problem was solved to estimate all the parameters and obtain the desired joint
probability distribution of the training samples:

(πi, µi, Σi, k) = arg max
(︄

M∏︂
s=1

(︄
k∑︂

i=1
πi · N

(︃
(V QMspvs, SOSpvs

exp)|µi, Σi

)︃)︄)︄
(3.8)

where V QMspvs is the vector containing the scores of the five VQMs computed
on each PVS. The optimization problem in Eq. (3.8) was solved by using the
Expectation-Maximization (EM) algorithm [84].

Once the joint distribution of the training samples was obtained, to augment the
data for the training process, 100,000 more samples were simulated from it yielding
a very large number of training samples. The diagram in Figure 3.13 summarizes
the whole process.

3.7.2 The Network’s Architecture and the Training Process
The availability of a large set of training samples enabled the exploitation of

the prediction capability of deep NNs that would otherwise have led to overfitting
if trained on the initially available limited size datasets.
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Extensive numerical experiments to determine the deep NN architecture that
best fits the task requirements were conducted. The best results were obtained
using a NN with 5 neurons on the input layer, i.e. one for each VQM score, three
hidden layers having 11, 17 and 5 neurons respectively and finally an output layer
with 1 neuron that provides the desired estimation of the gtSOS value.

3.7.3 Results and Discussion
To evaluate the effectiveness of the deep NN based model, it was tested on

the Netflix public dataset and the VQEG-HD3 dataset that have not been used
during the training process. The results are shown in Figure 3.12 (bottom part).
On the Netflix public dataset, the gtSOS predicted by the trained deep NN, when
compared to the SOS, yielded a PLCC of 0.5 and a SROCC of 0.41. While on
the VQEG-HD3 dataset the PLCC and the SRCC between the predicted gtSOS
and the actual SOS reached respectively 0.48 and 0.44. Although these values were
tested to be greater than zero with 95% of confidence, they are lower than those
reported previously when training and cross validating small networks on the data
collected during a single subjective experiment. However, the obtained correlation
values are not a result of chance as they are greater than zero with statistical
significance. Hence, the approach described in this section represents a promising
preliminary step toward the capability to automatically predict the intrinsic ability
of a video sequence to confuse viewers independently from the context in which it
is evaluated.

It is important to notice that the accuracy of ML-based model for this task
can be further improved if it would be possible to use data from a subjective
tests designed specifically to create good predictors for the gtSOS value. This is
unfortunately not the case for typical subjective tests that are designed to cover, as
uniformly as possible, the quality scale in terms of MOS of the chosen PVSs, but
often do not take into account what could be the SOS for each PVS. However, in
order to effectively train ML algorithms for gtSOS prediction, a sufficiently uniform
coverage of the SOS range is required to avoid models that need to extrapolate the
results for certain conditions. Therefore, it is necessary to design a subjective
experiment with this aim in mind since the beginning.

Finally, to evaluate the effectiveness of the data augmentation approach, i.e. the
simulation of more training data points by the fitted GMM, a shallow NN, having
the structure presented in Section 3.5, was trained. The training was done using
the VQEG-HD1 and VQEG-HD5 datasets without the data augmentation, i.e.,
without simulating more training data from the GMM. When testing this NN on
the Netflix public dataset and VQEG-HD3 dataset, the results shown in Figure 3.12
(top part) were obtained. The much lower PLCC values (0.17 < 0.53, 0.25 < 0.48)
as well lower SROCC values (0.26 < 0.41, 0.29 < 0.44) compared to those reported
in the bottom part of the corresponding picture show the strong need for data

48



3.8 – Conclusion

augmentation as well as its effectiveness. This further supports the hypothesis
that gathering enough data during a subjective test specifically designed for gtSOS
modeling and prediction would potentially improve predictive models performance.

3.8 Conclusion
The study presented in this chapter showed how machine learning techniques

and neural networks in particular can be a helpful tool in analyzing the details of
subjective experiments. Neural networks, typically used in the literature to predict
only the average perceptual quality, can also be a helpful tool in analyzing the data
coming from subjective experiments in order to identify, for instance, anomalies or
peculiar behaviors.

The analysis focused on analyzing and modeling the diversity observed among
the subjects’ opinions in subjective experiments. In particular, a model of the stan-
dard deviation of the ratings of different observers on single PVSs was provided.
Such a model argues that the standard deviation of viewers’ opinion scores is dis-
tributed according to a normal distribution whose mean, referred to as the ground
truth SOS, can be effectively estimated by exploiting the quality scores of a set of
video quality measures.

Relying on this model, it was shown that it is possible to identify PVSs that
might present anomalies when the subjects’ scores are considered together with their
variance. The identified cases can then be manually analyzed to better investigate
potential causes. Furthermore, it was observed that it is possible to train neural
networks that, taking the scores computed by several video quality measures as an
input, can predict how much diversity would be observed among subjects’ votes
if the PVS would be subjectively evaluated. When trained and cross validated on
the same dataset, these neural networks led to a prediction that is significantly
correlated with the standard deviation observed in the actual subjective test.

Finally, by applying a data augmentation approach, it was trained a deep neural
network that is supposed to predict the ground truth standard deviation of any
PVS affected by compression artifacts after receiving, as an input, only the scores
of several video quality measures computed on that PVS. This deep neural network
provided predictions showing a 0.5 correlation with the actual SOS value. This
correlation is demonstrated to be statistically significantly different from zero with
95% of confidence. This shows that the used features can explain to some extend
the variability of users’ opinions. Hence, the ML-based approach looks promising
and future work in the same direction would contribute to refine it.

Just like any neural networks-based model, the approach to assess the intrinsic
complexity of a given PVS in terms perceptual quality prediction presented in this
chapter yields black box models. In fact it is not very clear how the trained neural
networks make use of the scores of the video quality measures taken as input to
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provide an estimate of the ground truth SOS. Therefore, in the next chapter, a
more intuitive approach to figure out video sequences whose quality is difficult to
assess will be presented.
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Chapter 4

Estimating the Accuracy of
Subjective Score Prediction
through the Disagreement of
Video Quality Measures

4.1 Introduction
A fundamental objective for content providers and content aggregators is to

guarantee high quality of experience (QoE) to their customers. The last decades
have therefore witnessed numerous publications that have proposed novel algo-
rithms to generate video quality measures (VQMs) that can predict the mean
opinion score (MOS [15, 104]. Quite often, significant differences occur between
the MOS values predicted by these different VQMs, for the same processed video
sequence (PVS). Unfortunately, works that investigated whether any useful infor-
mation is obtainable about the accuracy of VQMs from their disagreement are still
lacking in the literature.

In the following journal paper [130], I proposed an index to measure the level
of disagreement between the VQMs when used to measure the quality of a given
PVS. I then showed that this index is able to distinguish between PVSs for which
the VQMs are expected to accurately predict the perceptual quality and those on
which the VQM predictions are likely to be inaccurate. This Chapter introduces
the reader to such an index and presents the results of some numerical experiments
showing that index’ effectiveness.

The proposed index has the potential of being very useful in academia and
industry, since it can determine if predictions made by VQMs are accurate or not.

In academia, this index will facilitate the creation of effective tooling to identify
appropriate subsets of PVSs to be used in subjective tests. It is useful for two
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additional reasons. Firstly, it saves time and resources by excluding from subjective
experiments, PVSs whose end-user scores are accurately predictable using VQMs
alone. Secondly, it can be used in identifying problematic PVSs for which VQMs
are poor at predicting the end-user scores. Results from experiments using such
PVSs are typically of great value to researchers.

In the media industry, it is of primary importance to be able to quickly and
automatically identify the PVSs on which the quality predictions provided by the
VQMs could be misleading. Misleading quality predictions often result in unex-
pected degradation of customers’ QoE through inadequate resource provisioning.
The index presented in this Chapter is the outcome of a collaborative work with
a global media company. This index was therefore intended to be used internally
by the company to figure out peculiar PVSs from the point of view of perceptual
quality assessment.

To perform the analysis that yielded the proposed index, a dataset comprising
368 industry grade PVSs was created. Industry-grade (mezzanine format) content
is minimally compressed during data acquisition [109]. This dataset differs from
other widely used video quality datasets, which are typically built by using pristine-
quality content and acquired without any compression. In media industries, content
is usually of the mezzanine format, which is of high quality but not pristine. A
decision was made to work with industry grade content to closely replicate the
conditions encountered in actual media industry processing chains.

The following VQMs were considered: Peak Signal to Noise Ratio (PSNR) [147],
Structural Similarity Index Measure (SSIM) [157], Multi-Scale Structural Similarity
Index Measure (MSSSIM) [143], Visual Information Fidelity (VIF) [115], Extended
Weighted Peak Signal-to-Noise Ratio (XPSNR) [41], Video Multi-method Assess-
ment Fusion (VMAF) [87], and two proprietary VQMs internally used by the media
company, i.e., PVQM1 (the first proprietary VQM), and PVQM2 (the second pro-
prietary VQM). Due to corporate legal considerations, the full names of the two
proprietary VQMs cannot be mentioned.

There are newer VQMs than the ones listed above, some of which are presented
in the ITU recommendation P.1203 [52], and others are based on deep learning
approaches. The academic and industry communities have not yet adopted these
VQMs on a large scale since many of them have not yet been tested in real-world
environments. As such, the focus of the study was not on these more recent VQMs.
Unlike the newer VQMs, the VQMs considered in this chapter are those typically
used by academic researchers for designing and evaluating state-of-the-art video
processing applications [71, 94, 25, 83, 67]. Therefore, an index, as the one presented
in this chapter, that provides information on the accuracy of those VQMs, is of great
interest for the scientific and industrial community.

To compute the value of the proposed index, all the VQM scores were mapped
onto the same scale. For each PVS, it was counted the number of unique VQM
pairs from the collection of possible VQM pairs, where one VQM provided a quality
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prediction that was perceptually different from the other VQM of the pair. This
number, expressed as a fraction, was shown to be an effective index for measuring
the accuracy of the VQMs. In other words, if many VQMs disagree on the percep-
tual quality of a given PVS, then each VQM is also likely to wrongly estimate the
MOS of that PVS. While some standardised techniques for comparing VQMs [53]
already exists, it is important to note that the index presented in this chapter aims
at investigating the implications of VQMs disagreement rather than comparing the
VQMs.

Also, a support vector regression model to predict the introduced index was
trained and cross validated. Its accuracy shows that the proposed index can be
predicted from bitstream features such as the bit rate, the quantisation parameter
and the motion vector components. This model has the following two purposes: i)
identification of the bitstream features that contribute towards the VQM disagree-
ments and thus the difficulty of objectively estimating the MOS of a PVS ii) the
development of an efficient method for identifying, in a large set of PVSs, those for
which it is strongly recommended to perform a subjective evaluation test.

To assess the effectiveness of the proposed measure, a small-scale subjective
experiment was carried out on a subset of PVSs characterized by both low and
high VQMs disagreement. The results showed the effectiveness of the proposed
index in deducing the accuracy of VQMs.

This chapter is organized as follows. Section 4.2 presents a short review of
previous works exploiting the agreement and/or disagreement of a set of VQMs.
Section 4.3 provides a description of the dataset used for the analysis. Section 4.4
details the proposed VQMs disagreement index. Section 4.5 describes the subjective
experiment setup. Results are discussed in Section 4.6. Section 4.7 draws final
conclusions.

4.2 Related Work
The idea of leveraging many VQMs together in order to deliver more accurate

prediction of perceptual quality has been investigated in the literature [74]. It
has been shown that a machine learning (ML) model that takes, as input, a set of
different VQMs computed on a given PVS, can yield improved quality predictions as
opposed to using only single VQM. In [70], the authors designed a support vector
regression model that jointly utilizes several VQMs to provide a more accurate
MOS estimations. The work presented in [127] argues that PVSs whose sources
are characterized by a low spatial activity index are challenging to work with from
the point of view of objective quality assessment. In that work, a neural network-
based model was proposed to address such challenges. The model relied on the
scores from many full-reference metrics in addition to the spatial and the temporal
activity index to mitigate the inaccuracies of single VQMs when estimating the
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quality of these PVSs. By feeding a ML based model with many different VQMs,
the authors aimed at exploiting the diversities and/or similarities between the VQM
scores in order to reach a better MOS estimation.

The approach of using the differences between the predictions of many VQMs
has not been exploited solely for accurate MOS estimations. In fact, in [30] the
authors showed that the agreements between different VQMs, as measured by the
Spearman and the Kendall rank order correlation coefficients, were related to the
standard deviation of subjective ratings for a given PVS. They designed a neural
network-based model that takes as input five VQMs and estimates the diversity
among users’ ratings. Still focusing on the quality scores as predicted by different
VQMs, in [29], the authors proposed an approach based on Gaussian mixture mod-
els to find the range of quality values to which the MOS of a given PVS is expected
to belong with a given probability.

In all the papers mentioned so far, the VQMs were studied together with ML
models to enhance some aspects of the quality assessment processes. Despite the
useful results reported in all these papers, their use of ML models means that they
relied on black box models whose internal workings might not be trivial or easy to
understand.

Instead of using ML models, some other authors have exploited the information
associated with the diversity or similarity between VQM scores in a more intuitive
and easier to interpret way. In [5] and [4] the authors investigated the disagreements
between PSNR, SSIM and the VIF at the frame and sequence level. In both
works the authors analyzed the behavior of the three metrics on a given pair of
PVSs. They evaluated, for different source content, the ability of these metrics to
coherently rank the perceptual quality of a pair of PVSs.

The approach presented in this chapter differs from those in [5] and [4] in that
the proposed index for measuring the VQMs disagreement focuses on pairs of VQMs
instead of PVSs, thus yielding an indicator that determines how difficult it is to
assess the quality of a given PVS using VQMs. A small-scale subjective experiment
was used in validating this concept, and the results showed that such a simple indi-
cator could provide relevant information regarding the ability to accurately predict
the perceptual quality of a PVS without resorting to a subjective experiment.

Another fundamental difference between the study presented in this chapter and
many others in the literature is the inclusion of proprietary VQMs. Researchers
typically use open-source tools to benchmark their proposals. As such, VQM com-
parison studies have mostly focused on freely available VQMs [116]. However, in
some cases, open-source software are not properly optimised for effectively operat-
ing in real-world scenarios. There is just a small number of published works that
have conducted studies involving proprietary VQMs [78]. Therefore, this study
also contributes in shedding light on the existence of a potential gap between the
accuracy of well-known and widely used open-source VQMs and proprietary ones.

54



4.3 – Dataset Description

4.3 Dataset Description

Figure 4.1: Evaluating the heterogeneity in terms of the temporal and spatial
activity index of the used 46 sources. The labels identify different sources.

To create the dataset used for the analysis, a total of 46 Full HD (FHD) industry
grade source videos were selected according to guidelines in [97]. These comprised
a range of entertainment videos including sports, movies and animations. Depend-
ing on which region (Europe or US), the video frame rates per second (fps) were
either 23.976, 25.000 or 29.970. Figure 4.1 shows the selected sources covered a
wide range in terms of Spatial Information (SI) and Temporal Information (TI) as
recommended in [92].

The source videos were encoded using H.264/AVC constant bit rates. The
Apple’s HLS authoring specification [10] was used as guidelines in producing the
eight hypothetical reference circuits (HRCs) summarized in Table 4.1. Some of the
key encoding configurations included one-pass encoding preset, the instantaneous
decoder refresh (IDR) interval was set to two seconds, with an option of inserting
an I-frame if there was a scene change within a given IDR interval. The size of
the video buffer verifier was set to 5 seconds and the deinterlacing mode was set
to motion adaptive interpolation. A summary of the bit rates and resolutions are
given in Table 4.1.

From each of the 46 source videos, eight PVSs were created resulting in a total
of 368 PVSs. The PVSs in the dataset were also divided into two main categories,
namely movies and sports. For sports content in Europe, the frame rates were
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interpolated from 25.00 fps to 50.00 fps. For sports content in the US, the frame
rates were interpolated from 29.97 fps to 59.94 fps. This was done to reduce judder
during playback, caused by camera panning movements. The frame rates for the
movie content were untouched, so they were the same as the source videos.

The duration of each video was 10 seconds. But, allowing for an extra two
seconds of content before and after the video, results in a total duration of 14
seconds. The purpose of the extra amount of time was to allow the video encoder
to stabilize to the requested bit rate, thus removing quality fluctuations that may
be present due to the rate control algorithm. Once each source was encoded, the
FFMPEG application was used to trim off the extra four seconds of content.

The video quality of the 368 PVSs were evaluated using the eight considered
VQMs - PSNR[147], SSIM[157], MSSSIM[143], VIF[115], XPSNR[41], VMAF[87]
and the two proprietary VQMs PVQM1 and PVQM2.

The scores of each of these VQMs were recorded in the dataset, resulting in a
total of 46 sources · 8 HRCs · 8 VQMs = 2944 VQM scores to be analyzed.

All eight VQMs considered in this chapter are full reference VQMs, i.e., they
evaluate the quality of a distorted signal by comparing it to the source. PSNR mea-
sures the quality of the distorted content by deriving its mean square error (MSE)
with respect to the source pixels. SSIM evaluates the similarity between the source
and the distorted signal by considering three main aspects, namely the luminance,
the contrast and the preservation of the structures. MSSSIM implements the same
steps as SSIM but at multiple scales. VIF uses natural scene statistics models to
define the image information perceived by the human visual system (HVS). It then
quantifies the amount of information shared between the source and the distorted
signal. XPSNR is an enhancement of PSNR, which uses a distance between the
source signal and the distorted signal considering some characteristics of the human

Table 4.1: The 8 different Hypothetical Reference Circuits (HRCs) used to generate
the 368 (46 ∗ 8) PVSs of the dataset.

HRC Resolution Bit rate (kbps)

HRC1 512 x 288 365
HRC2 768 x 432 730
HRC3 768 x 432 1100
HRC4 960 x 540 2000
HRC5 1280 x 720 3000
HRC6 1280 x 720 4500
HRC7 1920 x 1080 6000
HRC8 1920 x 1080 7200
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vision system which are not considered when using the MSE alone. VMAF fuses
together multiple elementary full reference metrics using machine learning. The
rationale behind VMAF is that each elementary metric may have its own strengths
and weaknesses with respect to the characteristics of the source video, the type of
artifacts, and the degree of distortion. VMAF seeks to preserve the strengths of
the individual metrics and to deliver a more accurate final score.

PVQM1 is a machine learning based VQM. It was trained using a diverse range
of interlaced and progressive video content including sports, TV shows and movies.
Currently, it is used by the global media company to set the desired target MOS
for content-aware encoding and for video-on-demand solutions. PVQM2 is based
on a model of HVS. The aim is to produce scores which are proximal to how human
viewers would judge the perceptual quality. The design scope of PVQM2 includes
both interlaced and 1080p TV viewing conditions.

Note that PSNR, SSIM, MSSSIM and VIF were originally developed for as-
sessing the quality of still images. However, due to their analytical properties and
low complexity, they are also the most used metrics for monitoring quality when
designing video processing applications [71]. PSNR is even considered a kind of
baseline in the context of video quality assessment. The Video Quality Experts
Group (VQEG) [136] for instance, often uses PSNR as a benchmark for validation
experiments, as was done during the performance evaluation of full reference VQMs
in the HDTV experiment [139]. Many papers have considered the PSNR, SSIM,
MSSSIM in their analysis [120, 41, 105]. The study in this chapter examines their
accuracy with respect to that of VQMs used to optimize the delivery pipeline of
media companies.

4.4 An Index for Measuring the VQMs Disagree-
ment

This section is devoted to the definition of the proposed index for measuring
the VQMs disagreement. Such an index enables the establishment of whether a
VQM would accurately estimate the perceptual quality of a given PVS as it will be
shown in Section 4.6.

Let denote by Dpvs the value of the desired index for a given PVS. To formally
define Dpvs, let introduce the following notation:

• n, the number of VQMs used to evaluate the perceptual quality of the PVS;

• V QM1, V QM2, . . . , V QMn, the n VQMs used to evaluate the quality of the
PVS;

• vqmpvs
1 , vqmpvs

2 . . . , vqmpvs
n , the respective predicted quality scores of the n

VQMs
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Figure 4.2: The diagram summarizes the implementation steps of the proposed
disagreement index. VMAF is chosen as the reference VQM, hence, the VQM
sensitivity δ1 is set to 7. VP SNR is the quality score obtained after performing a
least square fitting of the PSNR to the VMAF scale using a third-other polynomial
function. The same definition holds for all the other VQMs. By considering eight
different VQMs, in total, 28 absolute differences were computed that corresponded
to the number of unique pairs of VQMs that can be formed by selecting two VQMs
from the eight available.

In order to compute Dpvs, one of the VQMs is chosen as the reference metric.
Assume that V QM1 is the reference metric, let the following functions

• fi (i = 1,2, . . . , n) be for mapping each V QMi from its original scale to the
V QM1 scale.

• δ1 denote the V QM1 sensitivity, which is the minimum variation in quality
perceptible by most human viewers if the quality were to be predicted using
V QM1.

For instance, it has been empirically observed that two pictures having VMAF
scores that differ by less than seven points are likely to be judged as equal in
terms of perceptual quality [88]. Therefore, for VMAF, the δ would be seven.
The consideration of the VQM sensitivity is not a peculiarity of this study; similar
approaches have already been proposed in the literature [51].

Relying on the previously introduced notation, the index Dpvs is defined as
follows:

DP V S =
∑︁n−1

i=1
∑︁n

j=i+1 1(|fi(vqmpvs
i )−fj(vqmpvs

j )|>δ1)(︂
n
2

)︂ (4.1)
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where 1 is the indicator function, whose value is 1 if the subscript proposition is
true and 0 otherwise.

The denominator in Eq (4.1) is the total number of unique pairs that can be
formed using the n VQMs. The numerator counts the number of these pairs for
which the two VQM scores that constitute the pair disagree on the perceptual
quality of the PVS. Two VQMs are said to disagree when the absolute value of the
difference between the predicted quality scores (using the reference metric scale) is
greater than δ1.

In the context of this chapter, VMAF was chosen as the reference VQM and
δ1 was therefore set to 7. Furthermore, the mapping functions were computed by
performing a least square fitting of each of the other VQM scores to the VMAF scale
using third-order polynomial functions [53]. The diagram in Figure 4.2 summarizes
the implementation steps for the computation of the proposed index.

For any PVS, Dpvs ∈ [0,1]. The closer the value of Dpvs is to one, the larger the
disagreement between the VQMs regarding the perceptual quality of the PVS.

The main contribution of this chapter is the following statement. The larger the
value of Dpvs for a given PVS, the more likely it is that VQMs will be inaccurate
when assessing the perceptual quality of that PVS. To verify such a statement, a
subjective experiment whose details are provided in the next section was conducted.

4.5 A Small Scale Subjective Experiment
A subjective experiment was conducted to investigate the reliability of the pro-

posed index. Due to time constraints, the experiment was conducted on a small
scale.

Since the main goal was that of investigating the implications of VQMs disagree-
ment, viewers were shown PVSs on which the VQMs strongly agreed and those for
which the VQMs strongly disagreed.

The VQMs disagreement index Dpvs, as described in Section 4.4 was computed
for each of the 368 PVSs in the dataset. Afterwards, the PVSs were sorted in
ascending order of Dpvs. From this, the following were found: i) at the lowest
scale, 31 PVSs had Dpvs < 0.2 ii) at the highest scale, 36 PVSs had Dpvs > 0.6.
These PVSs at the lowest and highest scales were selected for the subjective test
dataset. In addition to these 67 PVSs (31 + 36), 16 additional PVSs were added
onto the dataset to ensure viewers evaluated a dataset whose perceptual qualities
covered the entire quality scale, as this is a good practice in designing subjective
experiments.

A total of 16 subjects (viewers) working in the media industry participated
in this subjective experiment across two laboratories in Italy and Germany. The
Double Stimulus Impairment Scale (DSIS) method was used (see Chapter 1). The
DSIS method closely follows how most of the full reference VQMs operate; that is

59



Estimating the Accuracy of Subjective Score Prediction through the Disagreement of Video Quality Measures

Figure 4.3: Subjective testing procedure: first, the subject was asked to watch the
source video, then, after two seconds, the PVS. Finally, he was given six seconds
to provide his/her rating.

by computing the perceptual differences between the original reference video and
the degraded test video. The DSIS was therefore used with the aim of aligning the
subjective evaluation as closely as possible to how full reference VQMs assess the
quality. This was to mitigate against any extraneous sources of inaccuracies not
directly related to the VQMs.

The source video was shown first, followed by the encoded one (PVS) as il-
lustrated in Figure 4.3. After watching the source video, the PVS was shown two
seconds later. The subjects were then given six seconds to rate their perception and
the annoyance of artifacts within the PVS against the source video using the DSIS.
To aid in the computation of the MOS values, the five options on the DSIS were
assigned unique numeric scores (ratings) from 1 to 5 respectively. For each subject,
the viewing distance to the monitor was fixed in accordance with the relevant ITU
recommendations [92].

Figure 4.4 shows a histogram of the MOS values obtained from the subjective

Figure 4.4: The distribution of the MOS values on the quality scale.
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Figure 4.5: Each point corresponds to a PVS. The PVS’s bit rate is shown on the
x axis, while the y axis shows the PVS’ mean opinion score. The color is used to
highlight different resolutions. As expected, larger MOS scores were observed on
PVSs with higher bit rate (kbps) and resolution.

test. The histogram shows the MOS scores span across the quality scale, and the
numbers in the different bins are reasonably well balanced. This is a fundamental
requirement to ensure that the conclusions of the analysis based on this dataset are
valid on the whole quality scale.

Figure 4.5 presents the MOS values as a function of the bit rate and the res-
olution. It is evident that subjects were consistent in discerning between low and
high video qualities. For example, the video quality at 512×288@365kbps and
768×432@730kbps were rated lower than those encoded at 1280×720@3000kbps.
For 1280×720 and 1920×1080 resolutions, an increment in bit rate from 3000 kbps
to 4500 kbps and from 6000 kbps to 7800 kbps respectively did not result in no-
ticeable difference in perceived quality.

4.6 Results and Discussion
In this section, the effectiveness of the proposed index as a measure of the

reliability of VQMs is shown. its robustness to the choice of the set of VQMs used
to compute it is discussed. Finally, it is shown that the PVS bitstream features can
be used to effectively predict it.
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4.6.1 MOS Prediction Accuracy vs VQMs Disagreement
This section outlines, the effectiveness of the Dpvs index as an indicator of VQM

accuracy.
As typically done in the literature, the root mean square errorr (RMSE) between

the MOS and the VQMs scores was considered as an indicator of VQMs accuracy.
Figure 4.6 shows the RMSE values for two groups of PVSs. The first group

of PVSs is where the disagreement between VQMs, measured by the Dpvs index,
is low (Low D, Dpvs < 0.2); the second group of PVSs is where the disagreement
between VQMs is high (High D, Dpvs > 0.6).

In general, in cases of high disagreement (High D), each VQM yielded a predic-
tion affected by a larger RMSE, i.e., larger deviation from the actual MOS value.
On the other hand, when the VQMs agree, (i.e., Low D) the average of the ob-
served RMSE values was around 0.4. This is quite interesting since this value is
close to the average mutual RMSE that would be observed between MOS values
obtained for the same PVSs evaluated in two different subjective experiments [99].
Therefore, this result seems to indicate that, if the proposed Dpvs index for a given
PVS yields a small value, then the VQMs will provide good approximations of the
perceived quality that is obtained in a subjective test for that PVS.

In short, as stated in the section 4.4, the value of the Dpvs is able to inform

Figure 4.6: Accuracy of the VQMs, in terms of RMSE, as function of the disagree-
ment index. When there is high disagreement, all the VQMs are less accurate.
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on the level of accuracy of the VQMs when used to predict the quality of a given
PVS. In particular, according to the results in Figure 4.6, a high value of the index
(Dpvs > 0.6) indicates that VQMs predictions are expected to be affected with
larger error and vice versa.

4.6.2 MOS Prediction Inconsistency vs VQMs Disagree-
ment

The inconsistency of the VQMs in predicting the MOS was also studied as a
function of the Dpvs index. In measuring the VQMs inconsistency, the variance
of the predictions errors (on all PVSs) for each VQM was used. The prediction
errors are the differences between the quality score predicted by the VQMs and
their corresponding MOSs.

The variance was chosen in order to run statistical tests of significance. These
tests (F-test) were performed to check whether VQNs are more inconsistent when
predicting the MOS in case of large disagreement with statistical significance.

Table 4.2 reports on the variance of each VQM’s prediction errors for PVSs
with low and high VQMs disagreements, as well as the p-value of the F-test. In all
cases the the test’s p-value is smaller than 0.05. Hence, with a more than 95% of
confidence, it might be claimed that VQMs are more inconsistent in predicting the
MOS of PVSs for which the Dpvs index assumes a large value.

4.6.3 Open-source vs Proprietary VQMs
Table 4.3 shows a comparison of the performance drop of the different VQMs

when used on PVSs whose quality assessment is challenging rather than on those
that are easy to evaluate. The results in Figure 4.6 and Table 4.2, show that the
challenging PVSs are those corresponding to a high value of the Dpvs index, and

Table 4.2: The variance of the VQMs’ prediction error is larger, with statistical
significance, in case of high VQMs disagreement.

Metrics Low D High D F test: p-values Decision
PSNR 0.32 1.23 0.000 yes
SSIM 0.30 1.14 0.000 yes
MSSSIM 0.25 0.85 0.000 yes
VIF 0.25 0.94 0.000 yes
XPSNR 0.14 0.66 0.000 yes
PVQM1 0.20 0.58 0.001 yes
PVQM2 0.20 0.43 0.014 yes
VMAF 0.12 0.32 0.002 yes
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Table 4.3: Analyzing the performance drop of the VQMs when used on challenging
PVSs. The performance drop (∆) for each statistical indicator was determined by
performing the difference between the value observed when the VQMs are likely
to be very accurate, i.e., in case of low VQM disagreement (Low D), and the one
observed when there is high VQMs disagreement.

Metric ∆ PLCC ∆ RMSE ∆ Var
PSNR -0.44 +0.51 +0.91
SSIM -0.61 +0.55 +0.84
MSSSIM -0.35 +0.42 +0.6
VIF -0.48 +0.57 +0.69
XPSNR -0.27 +0.46 +0.52
PVQM1 -0.18 +0.32 +0.38
PVQM2 -0.10 +0.23 +0.23
VMAF -0.07 +0.20 +0.20

vice versa. Therefore, for each statistical indicator in Table 4.3, the drop ∆ was
calculated by taking the difference between the values obtained respectively on the
PVSs with high VQMs disagreement (Dpvs > 0.6) and those with low disagreement
(Dpvs < 0.2). It is very interesting to note that excluding VMAF, all open-source
VQMs had a higher accuracy drop than the proprietary ones when moving from
less to more challenging PVSs.

Specifically, PVQM1, which is a proprietary metric, had the greatest drop in
accuracy, it showed a +0.32 RMSE increase and a -0.18 MOS correlation decrease.
On the other hand, the lowest performance drop observed among open-source met-
rics (excluding VMAF) was +0.42 and -0.27 for RMSE and PLCC respectively.
Similar considerations can be made for the variance of the MOS prediction errors
∆V ar. These results showed that VMAF and the PVQMs are more robust to the
intrinsic ability of a PVS to confuse or mislead VQMs.

It is worth noting that VMAF has a different history and circumstance to the
other open-source VQMs considered in this study. Open-source VQMs, in general,
mainly originate from academia where access to resources is often constrained in
terms of funding and the availability of large libraries of test PVSs. However,
VMAF was the result of extensive R&D efforts aimed at optimizing the delivery
pipeline of a major media company - Netflix.

The results in Table 4.3 therefore highlight a gap of accuracy between widely
used open-source VQMs within the research community and three metrics used to
measure the perceptual quality in media industry.
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4.6.4 Effective Selection of PVSs in Subjective Experiments
This section presents some results aiming at showcasing the usefulness of the

Dpvs index when selecting the PVSs to be used in a subjective test in order to get
the most from it.

The lack of accuracy observed in cases where VQMs disagreed was not actually
caused by subject inconsistency. It can be seen, for instance, that the proposed
VQM disagreement index is poorly correlated to the subject opinions’ standard
deviation (SOS) as shown in Figure 4.7. This means subjects did not experience
any less or any more difficulty in rating the perceptual quality for cases of high
VQM disagreements.

To further investigate how difficult it is to humans to evaluate PVS, labeled as
challenging for VQMs on the basis of the Dpvs index, the Netflix’s SUREAL software
that implements the model proposed in [68] for subjective quality recovering was
applied. Such a model was chosen because there has been some evidence of its su-
periority over traditional approaches such as BT.500 [49] and Z-score normalisation
[113]. See [68] for more details. The model recovers the so called ”true subjective
quality” for each PVS while automatically estimating and removing subjects’ biases
and inconsistencies.

Figure 4.8 shows comparisons between the MOS obtained from the subjective
test and the recovered quality (the ”true subjective quality”) values by the SUREAL
software. As seen in Figure 4.8, there was a very good agreement between the two
sets of values. This suggests that there were no PVSs whose evaluation had been
particularly problematic to the subjects.

The inconsistency that affected the ratings of each individual subject who par-
ticipated in the test, as computed by the Netflix’s SUREAL software is shown in
Figure 4.9. The analysis was dome separately for PVSs with low and high disagree-
ment of the VQMs. It can be seen in Figure 4.9 that each subject’s inconsistency
did not seem to be consistently larger in cases of high VQM disagreements.

Therefore, the indication is that the proposed Dpvs index as shown previously,
allows for the identification of PVSs whose quality would be difficult to accurately
predict using a VQM. In any case, such PVSs do not pose specific challenges to
human viewers because their perceptual quality can be effectively determined using
subjective tests. The proposed index can therefore be considered as a tool to identify
only the PVSs for which subjective evaluation is strongly recommended, thereby
reducing the number of PVSs to be used in a subjective test.

4.6.5 Robustness of the VQMs Disagreement index
The dependencies of the VQM disagreement index on the number and the types

of VQMs (i.e. open-source or proprietary) was examined. The value of the Dpvs

index obtained by using in the Eq (4.1) all the eight VQMs involved in this study
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Figure 4.7: The SOS vs the proposed VQMs disagreement index. The subjects’
diversity of opinion scores seems to not be correlated with the disagreement index.

Figure 4.8: The results show that, on average, the subjects consistently evaluated
the quality of all the sequences used during the subjective test since the so called
”Recovered Quality” of each processed video sequence does not differ significantly
from the MOS.
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Figure 4.9: Individual subjects’ inconsistency as function of the proposed VQMs
disagreement index. Subjects seem to experience the same difficulty in assessing
the quality of a PVS independently on the disagreement index value.

was considered as the reference value. Then, the disagreement index was computed
using only n VQMs (e.g., n = 5, 6, 7) chosen from the eight available VQMs, each
time considering all possible combinations of the n VQMs out of eight. For example,
for n = 5, there were 56 distinct combinations. For each combination, the RMSE
between the obtained values and the reference values of the index was computed.
So, for n = 5, 56 values of RMSE were obtained. Note that by considering all
possible combinations of VQMs for each value of n, this experiment also accounted
for the impact of the VQM type used to compute the VQMs disagreement index.

Figure 4.10 shows the minimum, the average, and the maximum values of RMSE
for each value of n. When all combinations of five VQMs were considered, the
average of the RMSE values was 0.12. For combinations where n was greater
than five VQMs, an average RMSE of less than 0.08 was observed. This is less
than 10% of the range [0, 1], which represents the range of variation of the VQMs
disagreement index. This average RMSE value can therefore be considered very
reasonable. For the minimum and maximum RMSE values, one can note that the
difference between them did not exceed 0.07 for any combination of n VQMs. This
difference of 0.07 represents 7% of the variation range of the disagreement index.
So, using any combination of VQMs to estimate the reference disagreement value
would not vary the average estimation error by more than 7% of the variation range
of the VQMs disagreement index.
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Figure 4.10: Study of the effect of the number of VQMs on the introduced dis-
agreement index. The disagreement index obtained by using all the eight metrics
considered in this chapter is looked at as the reference or ground truth. The Fig-
ure shows the RMSE between the reference value and the one obtained by using n
(n=5, 6 and 7) metrics. For each n, all possible combinations of n metrics out of
8 were used to perform the disagreement index. The minimum, the mean and the
maximum RMSE values observed for each n is reported on the Figure.

The results obtained for the RMSE show that the Dpvs index is not very sensitive
to the number and type of VQMs used to compute it.

To further study the impact of the VQM type on the proposed VQMs dis-
agreement index, it was computed using only open-source VQMs and then checked
whether it still remains a good indicator of the accuracy of the VQMs. The re-
sults are shown in Figure 4.11. As one can notice, the results were very consistent
with those shown in Figure 4.6 where the disagreement was obtained considering
all eight VQMs. In other words, when there was high disagreement from the open-
source VQMs, a lower accuracy was observed in predicting the MOS. This result is
quite interesting because even if the two PVQMs were not considered, the obtained
VQMs disagreement index still provided significant indications on the accuracy of
all VQMs. This suggests that the Dpvs index could be used to deduce the accuracy
of any VQM in the literature that had the same design scope as those considered
in this chapter.
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Figure 4.11: The VQMs’ accuracy, in terms of RMSE, for low and high values of the
disagreement index computed only with the open-source VQMs. For all the metrics,
when there is high disagreement of open-source VQMs, the predicted quality score
is likely to be affected by larger error.

4.6.6 Towards Modeling the VQMs Disagreement with Bit-
stream Features

The scope of the analysis conducted in this section was to identify the PVS
bitstream features that contribute to determine the value of the Dpvs index and
show to which extend such features can be useful to predict it without having to
compute the scores of many VQMs.

The bitstream features of each of the 368 PVSs were extracted. The key features
of the bitstream information were the bit rate, the average quantization parameter
(QP), standard deviation of QP over the PVS’s frames, the average motion vector
(MV) components, standard deviation of MV components, percentage of Intra and
Inter coded blocks, the percentage of each block size and the percentage of skipped
blocks. These features were extracted at the single block level and later pooled into
a single value using both the average and the Minkowski norm for each PVS. A
total of 104 features were extracted for each PVS.

A backward sequential feature selection algorithm [1] was then used to find the
bitstream features that were important in predicting the VQM disagreement index.
The features that were seen to have major importance were the average QP, the
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Table 4.4: PLCC scores observed between the predicted disagreement index and
the actual one using several different machine learning-based regression methods.

Folds LM RT NN SVR (Gaus) SVR (rbf)
Fold 1 0.65 0.81 0.78 0.85 0.93
Fold 2 0.53 0.70 0.60 0.65 0.80
Fold 3 0.47 0.59 0.59 0.57 0.74
Fold 4 0.42 0.46 0.55 0.77 0.91
Fold 5 0.50 0.73 0.64 0.78 0.88
Fold 6 0.40 0.54 0.52 0.65 0.83
Fold 7 0.48 0.41 0.48 0.61 0.78
Fold 8 0.73 0.75 0.72 0.84 0.90
Fold 9 0.65 0.73 0.75 0.82 0.95
Fold 10 0.64 0.68 0.74 0.75 0.75
Overall 0.56 0.66 0.65 0.74 0.86

Table 4.5: SROCC scores observed between the predicted disagreement index and
the actual one using several different machine learning-based regression methods.

Folds LM RT NN SVR (Gaus) SVR (rbf)
Fold 1 0.59 0.68 0.60 0.78 0.88
Fold 2 0.54 0.66 0.60 0.67 0.84
Fold 3 0.48 0.63 0.62 0.64 0.79
Fold 4 0.38 0.45 0.48 0.72 0.87
Fold 5 0.53 0.74 0.59 0.71 0.86
Fold 6 0.52 0.56 0.54 0.65 0.84
Fold 7 0.56 0.47 0.51 0.68 0.85
Fold 8 0.76 0.75 0.72 0.86 0.92
Fold 9 0.68 0.74 0.79 0.84 0.95
Fold 10 0.67 0.67 0.66 0.73 0.73
Overall 0.58 0.65 0.62 0.74 0.87

average MV in each direction X and Y, the percentage of Intra blocks in a slice
and the percentage of 2Nx2N Intra coded blocks. Furthermore, the aforementioned
features were pooled to reach a single value for each PVS by using the Minkowski
norm with the exponent set to p = 1.3. In fact, by using the arithmetic average
as pooling strategy, lower correlation scores between the values of the predicted
disagreement index and the actual one were observed as compared to those shown
in Table 4.4 and Table 4.5. Therefore, the Minkowski norm was preferred to the
average as pooling strategy.

After determining the best set of features, they were regressed to the VQMs
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Figure 4.12: The final SVR model’s accuracy on all the dataset. Despite the pres-
ence of some outliers, the model has been in general able to satisfactory predict the
VQMs disagreement index, yielding high PLCC (0.85) and SROCC (0.87) scores.

disagreement index using different machine learning (ML) algorithms. A few re-
gression methods such as linear regression model (LM), regression tree (RT), neural
network (NN) with a single hidden layer having four neurons, support vector re-
gression model with a Gaussian kernel (SVR Gaus) and support vector regression
model with a radial basis function kernel (SVR rbf) were considered.

The 368 PVSs were divided into 10 folds, and all the models were trained
on 9 folds and tested on the one left out. The results are shown in Table 4.4
and Table 4.5. The overall performance was determined by computing the inverse
transform of the average Fisher’s Z transformation of single correlation scores as
recommended in [13].

For all testing conditions, the linear model yielded a PLCC and a SROCC
significantly different from 0, and showed lower performance than other algorithms.
Thus, the relationship between the selected features and the VQMs disagreement
index is probably not linear and thus not trivial. The SVR-based models, and
particularly the SVR model (with an rbf kernel), provided the highest performance,
reaching a global linear and rank correlation of 0.85 and 0.86 respectively.

The final SVR model (with an rbf kernel) was trained using all the data available
in the dataset. The scatter plot in Figure 4.12 illustrates the performance of the
final SVR model on the whole dataset. In general, its predictions correlated quite
well with the actual value of the VQMs disagreement index.

The proposed VQMs disagreement index in Eq (4.1) was related to the VQMs
accuracy through the results in Figure 4.6 and Table 4.2. The final SVR model (with
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an rbf kernel) was also able to accurately predict the proposed VQMs disagreement
index using only the PVS bitstream features as shown in Figure 4.12. This suggests
that it is possible to determine the accuracy of any VQM on a given PVS, by just
relying on its bitstream features, without the need to compute many full reference
VQMs (particularly the proprietary ones). In other words, there is a link between
the ways a PVS is encoded and the difficulty in accurately evaluating its quality
with VQMs.

4.7 Conclusion
In this chapter, an index to quantify the VQMs disagreement was proposed. A

dataset comprising 368 PVSs was created for the analysis. A subset of those PVSs
was selected for subjective evaluation based on the proposed VQMs disagreement
index.

Unlike many studies in the literature that analyzed only open-source video qual-
ity metrics, the analysis presented in this chapter considered two proprietary met-
rics used in the content delivery chain by some media industries to optimize their
content preparation and delivery pipeline. A comparison analysis between some
well-known and widely used open-source VQMs and the proprietary metrics was
conducted on the basis of the introduced VQMs disagreement index. The results
showed that metrics used by the media companies, i.e., VMAF and the two propri-
etary VQMs, are more robust to the uncertainty caused by the intrinsic complexity
of a PVS.

It was shown that the proposed VQM disagreement index can be used to de-
termine a VQM’s accuracy when estimating the MOS. Statistical analyses showed
that when the VQMs agreed, the commonly predicted objective score was an ac-
curate estimation of the MOS. The proposed disagreement index can therefore be
considered as a tool to identify only the PVSs for which subjective evaluation is
strongly recommended, thereby reducing the number of PVSs to be used in a sub-
jective test. Finally, it was observed that the proposed VQM disagreement index
can be effectively predicted from bitstream features. This shows that there is a link
between the way a PVS is encoded and the difficulty in objectively assessing its
perceptual quality.

The small-scale subjective experiment that was carried out in the context of
this analysis showed promising results in the direction of designing indexes that can
measure the reliability of a MOS prediction. Despite this sort of indexes account
for the uncertainty that characterize humans’ perception of quality, it does not
enable an objective quality assessment process that highlights and considers the
individual expectations of final users. The next chapter will introduce a more
complete approach to objective quality assessment that allows to cope also with
this issue.
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Chapter 5

Mimicking a Single Viewer’
Quality Perception with an
Artificial Neural Network

5.1 Introduction
Different users of the same streaming platform or any multimedia service in

general have different expectations in terms of the perceptual quality of the content
offered to them. For example, a customer who follows fashion and regularly buys
devices at the cutting edge of technology is probably much more demanding than
one who only makes use of multimedia tools from time to time. Even the culture
and the place where a customer grew up can make his expectations different from
those of another one [112, 144, 36].

This diversity in expectations introduces two fundamental questions whose an-
swers are of significant value to any company that markets multimedia content.
These questions are as follows: i) what percentage of customers would be satisfied
with the quality of a processed video sequence (PVS) if it is encoded in a certain
way? What are the characteristics of the customers that would not be satisfied?

Unfortunately, the mean opinion score (MOS) that has been largely studied and
predicted does not provide answers to the aforementioned questions. To cope with
the first question, some authors proposed approaches to estimate the distribution
of the opinion scores (DOS) of the users on the quality scale [54, 124]. While the
DOS allows for the estimation of the percentage of users that might not be satisfied,
it does not give information about the characteristics of those specific users. Thus
the second question, before the development of this PhD thesis, was still suffering
a lack of attention in the literature.

This chapter presents a more complete approach to quality assessment that al-
lows not only to predict the MOS, but also represents a preliminary step toward ad-
dressing both aforementioned questions at the same time. The approach described
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in this chapter derives from the analyses published in the following scientific papers
[32, 129].

The idea behind the approach is that of modeling the quality perception of a
single subject through a neural network (NN). Instead of training a single NN to
predict the MOS on the basis of the averaged result of subjective experiments, as
it has been already done many times in the literature, I proposed to train many
NNs, one for each subject, to mimic the behavior of the subjects in terms of quality
perception.

This approach of mimicking a subject with a NN is indeed a kind of artificial
intelligence. For this reason, from now on, the trained NN for each subject will be
referred to as an ”artificial-intelligence-based observer” or ”AI-Observer” (AIO) as
compared to a ”Human Observer”. Each AIO can take, as input, a set of features
computed on a PVS and potentially also other features considering observer char-
acteristics as well as the interaction between the observers and the context in which
the experiment is carried out, and attempts to predict the opinion of the observer
which it is trained to mimic. The results discussed in this chapter suggest that NNs
can be used to effectively model the behavior of single observers in terms of visual
quality perception.

It is worth noting that the modeling of single observers allows to implicitly take
into consideration human factors such as personality traits, cultural diversities,
personal experience regarding multimedia content, and user’s expectations that
have been shown to have an impact on the quality experienced by the end users [112,
144, 36]. In fact, the traits of each observer influence his/her opinion scores that
in turn determine the values of the weights of his AIO during the training process.

Once trained, the AIOs enable a more complete approach to objective quality
assessment. Given a PVS as input, the AIOs predict the opinion scores the related
actual observers would have expressed after evaluating that PVS. These predicted
opinion scores can be used to: i) compute the MOS, ii) compute any other statistical
indicator of interest, e.g., standard deviation or quantiles; iii) estimate the DOS
and thus the percentage of unsatisfied users; iiii) make inference on the class of
customers that would not be satisfied by analyzing the characteristic of the actual
observers whose AIOs predicted a low quality score.

An important added value of the AIOs-based approach is the possibility to
quantify the ability of an observer to repeat his/her rating if he/she would be asked
to evaluate the quality of the same PVS several times. The inability of observers to
repeat themselves is an issue that has been investigated and considered in various
models [55, 68] to recover the so called ”true quality” from subjective data. However
the approach in this chapter allows to measure the subjects’ inconsistency on any
PVS without resorting to a subjective test. Each AIO is designed to output a
probability distribution consisting of five values representing the probability of each
of the five options on the ACR scale, as shown in Figure 5.1. While for the opinion
score prediction, it is enough to select the option with the highest probability,
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the variance of this distribution measures the likelihood that the observer would
give the same score if he/she would have to assess the quality of the PVS again.
Therefore, I proposed to use this variance as a measure of inconsistency of the
observer regarding the quality of the PVS. Numerical results confirmed that such
a value follows the typical characteristics of a subject’ inconsistency measure.

The remainder of the chapter is organized as follows. In Section 5.2 the related
work is briefly presented, followed by Section 5.3 where an in-depth analysis of the
strengths of the AIOs-based approach over the traditional approach is performed.
Section 5.4 presents the methodology behind the design and training of the AIOs.
Numerical experiments and the related results are presented in Section 5.5, followed
by Section 5.6 which draws conclusions.

5.2 Related Work
Effective and accurate objective media quality assessment algorithms are a key

element in optimizing multimedia systems, especially considering their ever increas-
ing share in the global Internet traffic [22]. Many articles in the literature focused
on proposing new approaches to estimate the average quality perceived by the end
users, i.e. the MOS [110, 133, 148] or improvements to the existing approaches [12,
127, 62]. Some authors went even beyond the MOS, attempting to predict the
standard deviation of the opinions of the subjects (SOS), interpreted as a measure
of the dispersion of the observers’ opinions around the MOS [42].

Despite the MOS and the SOS are certainly useful to measure the quality of
experience (QoE) of end users, they alone are not sufficient. For instance, relying
just on the MOS and the SOS, the skewness of the DOS is disregarded. However,
the skewness plays an important role in estimating the actual QoE of final users:
positive values would indicate that the majority of users is actually experiencing a
quality greater than the mean (i.e. the MOS), and vice versa. Some papers pro-
posed to overcome the limits of the MOS and SOS, well characterized in [44], by
means of additional statistical indicators proposed in the same paper [44], or deriv-
ing a range in which the MOS is expected to be with a predefined probability [29].

The use of statistical moments such as mean and standard deviation implies
to work with a numeric score for each subject. However, with the five points
absolute category rating (ACR) scale, subjects are asked to rate each stimulus
by choosing one among five options (”Bad”, ”Poor”, ”Fair”, ”Good”, ”Excellent”)
whose mapping to a numerical scale is somehow arbitrary in terms of distance
between the options. For this reason, it would be better to work with the DOS so
that no arbitrary mapping is introduced.

Until now, few papers focused on the DOS estimation. In [54], the authors pro-
posed a generalized linear model for the DOS estimation, proving its effectiveness
on a case study. In [135] and [152], a deep NN is trained to predict a probabilistic
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representation of the ratings gathered from actual observers. In [114], the authors
highlighted the importance of assessing the quality directly, relying on the subjects’
opinions, and thus using the DOS instead of its statistical moments.

The prediction of the DOS however does not allow to make inference on the char-
acteristics of the unsatisfied users, and thus to avoid loosing important customers.
It is clear that predicting individual subjects’ opinion scores would be the best op-
tion since it allows more flexibility in subsequent processing. The ability to predict
individual opinions is the basis of recommender systems used nowadays in various
fields [46, 24, 61]. However, for many applications, in particular those involving
the visual quality of the media, the preferences of individual users are affected by
a great deal of uncertainty, e.g. successive evaluations of the same stimuli by an
observer typically yield different opinion scores. The approach presented in this
chapter suggested for the first time to create, through NNs, models, which are able
to mimic individual observers’ behavior in terms of quality perception while taking
into consideration the uncertainty that characterizes their choices, thus yielding a
more complete approach to media quality assessment.

5.3 Comparative Analysis of the AIOs-based Ap-
proach

Let’s suppose Bob is invited to participate in a subjective test. At the end of
the test, according to the AIOs-based approach, the ratings collected from Bob are
not to be pooled with those of other raters to obtain a MOS. Instead, a NN, i.e,
Bob’s AIO, has to be trained using his provided scores as ground truth data. The
same should be done for the other participants in the test in order to yield many
different AIOs modeling human subjects with different characteristics.

The Figure 5.1 shows the generic structure of Bob’s AIO. The idea is that of
approximating the Bob choices in terms of perceptual quality with a mathematical
function represented by a NN. Such a NN, once trained, can receive as input a
number of features computed on a PVS and predicts the probability that Bob
would have chosen any of the five possible options on the ACR scale if he were
asked to score the perceptual quality of that PVS. Further details on the feature
set and the NN’s architecture will be given in Section 5.4.

The AIOs-based approach to quality assessment aims at being a step towards
an objective assessment of the perceptual quality that more resembles a subjective
test. In a subjective test, a set of viewers with different characteristics rates the
perceptual quality of a stimuli. The AIOs based approach to quality assessment
aims at designing NNs (AIOs) that can be used as substitutes of actual viewers
with different characteristics. The diagram in Figure 5.2 illustrates the similarity
between the AIOs-based approach and a typical subjective test, while highlighting
some limits of the traditional approach based on MOS prediction. A deep analysis
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Bob’s AIO 𝑝!
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Figure 5.1: The Bob’s AIO. A NN is trained to mimic Bob’s quality perception.
This NN can then predict the Bob’s choice probabilities on the ACR scale for a
given PVS

of this diagram allows to figure out the main advantages of the AIOs-based approach
over the traditional approach. These advantages are summarized from Section 5.3.1
to Section 5.3.4

5.3.1 Accounting for Individual Expectations and Inconsis-
tencies

The authors in [55, 68] have shown that the raw opinion scores of any individual
observer hide two main characteristics, i,e., the subject’s bias and inconsistency.
The bias is up to a certain extent an indicator of the subject’s expectation. For
instance, a subject that has high expectation in terms of perceptual quality tends to
give lower quality scores than those of other subjects, this results in a negative bias.
On the other hand, subjects with positive bias might also be those that are less
demanding. The subject’s inconsistency instead translates his/her ability to remain
coherent when evaluating content with the same visual quality. Both the bias and
inconsistency observable from individual scores are lost when doing operations such
as the mean to get the MOS. In fact, the average leads to less noisy data at the
expense of the information on individual characteristics of the subjects. This is the
reason why in Figure 5.2, it was highlighted that, unlike the subjective tests and
the AIOs-based approach, traditional approaches based on MOS prediction do not
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Figure 5.2: Illustration of the proposed approach in comparison with the tradi-
tional approaches to media quality assessment. In particular, note that similarly to
subjective experiments, the proposed approach considers also human factors and
provides individual opinions yielding, in practice, more flexibility.

account for human influence factors (IFs).
The AIO of each subject is trained on his/her raw opinion scores prior to the

application of any pooling operator, e.g., the average to get the MOS. The weights
of the AIOs, during the training process, capture the subjects characteristics when
trying to replicate his/her opinion scores. Given a PVS whose quality is to be
evaluated, the trained AIOs provide automatically generated ratings (AGRs) as
real observers would do during a subjective experiment. The diversity observed
between these AGRs highlights the impact of individual expectations in the QoE
measurement. On the other hand, as it will shown later, the probabilistic output
of each AIO yields a good measure of inconsistency.

The subjects-specific factors have already been intensively studied. Several pa-
pers [112, 144, 158] suggest that their consideration would improve the accuracy of
models aiming at predicting the end-users’ QoE. Therefore, it seems natural and
appropriate to develop approaches that manage to take into account the differences
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between subjects in terms of sensitivity to distortion and thus expectations. This is
an additional reason to model each single observer relying on data gathered during
subjective experiments.

From a practical point of view, when a subject is invited to a subjective test,
nothing prevents the test designer from collecting any of his/her characteristics
that may in some way impact his/her judgment of perceptual quality. In this way,
the characteristics of the subjects whose AIOs predict a critical opinion score for a
given PVS would consent to make inference on the profile of customers who would
not be satisfied with the visual quality of that PVS.

5.3.2 Generality of the AIOs-based Approach
The AIOs-based approach to quality assessment is much more general in the

sense that it allows an estimation of almost all the statistical indicators used so far
in the media quality assessment literature. In fact, from the AGRs, an estimate of
the DOS can be derived. Almost all the QoE statistical indicators proposed in the
literature can then be rather easily derived from the DOS [114]. For instance, the
MOS and the SOS can, respectively, be derived from the first and the second order
statistical moments of the DOS after mapping the AGRs to a numerical scale.

Furthermore, a complete estimation of the DOS allows to compute more accu-
rate confidence intervals as well as to more accurately run statistical tests regard-
ing an apparent higher perceived visual quality of a PVS with respect to another
one [114]. This is because, using the DOS, it is possible to avoid the usage of the
classical statistical tests designed for normally distributed numerical data, on the
ordinal data collected during a subjective test, since that would inflate the type 1
and type 2 errors of statistical tests, as highlighted in [69].

5.3.3 The Issues with the MOS Definition
Since the arithmetic mean and the standard deviation are not defined for ordinal

data, in order to be able to compute the MOS and the SOS after a subjective test,
each of the options of the quality scale is typically mapped to an integer value
starting from 1 for ”Bad” and ending up with 5 for ”Excellent”. Such an apparently
trivial mapping has strong implications that make the validity of the MOS as an
effective QoE estimator highly questionable. In fact, it is not very clear whether
the effort required by, e.g. reducing compression artifacts to change the opinion of
an observer from ”Bad” to ”Poor” is equal to the one needed to make the change
from ”Good” to ”Excellent”.

In [85, 122], the authors argued that the perceptual distance between ”Fair” and
”Poor” is larger than the one between ”Poor” and ”Bad” and it is also dependent
on the language used during the subjective experiment. In other words, despite the
fact that the five options of the ACR scale can be ordered, one has no guarantee
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that the options are equidistant. Hence the traditionally used 1 to 5 mapping
might include significant bias in the evaluation process, yielding potentially large
errors in the MOS and the SOS estimation (seen as indicators of the user QoE).
Furthermore, the same issue, i.e. mapping ordinal data to numerical scale, has also
been traditionally disregarded when designing models and algorithms for subjective
quality recovering [55, 68].

The question of how to analyze ordinal data with unknown gap sizes between
the categories using statistical indicators and models defined for numeric data is
an issue that attracted and still attracts significant interest [91, 108, 69], hence it
would be misleading to simply ignore such an issue.

In the light of the previous argument, it is important to design new media
quality assessment approaches that rely directly on the ordinal data collected during
subjective experiments as proposed by the AIOs-based approach. In fact, the five
options of the ACR scale are not considered as numbers but rather as five levels
of quality perception. This is reflected in the NNs mimicking different observers.
Given a PVS, they simply attempt to predict the option that the related observer
would have chosen.

5.3.4 Simulation of Subjective Experiments
Subjective experiments are crucial for the development and/or validation of

machine learning-based objective measures for media quality assessment. However,
the performance of machine learning-based models is known to be strongly related
to how informative and exhaustive is the underlying training set. Therefore, when
designing subjective experiments, one of the major concerns is to make sure that the
subjectively perceived visual quality of the PVSs to be submitted to the observers’
judgment fully covers the chosen rating scale.

The AIOs could be used, before running the actual subjective experiment, to
simulate the behavior of observers with different characteristics on the PVSs se-
lected for a subjective test, hence gaining a preliminary insight on the heterogeneity
of the chosen PVSs in terms of perceptual quality.

5.4 Implementation of the AIOs-based Approach
This section describes the main steps towards the derivation of the AIO mim-

icking an actual subject in terms of quality perception.

5.4.1 Dealing with the Data’s Noisy Nature
The media quality assessment community has long proposed learning based

models aimed at predicting the MOS. However, the transition from models for
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MOS prediction to AIOs brings new challenges not only in the data preparation
process but also in the training process. In fact, raw opinion scores of individual
observers are much more noisy than the MOS. Indeed, several models have been
proposed to recover the actual subjective quality from raw opinion scores [55, 68]
while getting rid of noise caused by the subjects’ inconsistency. This observation
justifies why training NNs that can effectively mimic individual subjects results in
a tricky learning task.

Different approaches to cope with noisy labels have been proposed in the ma-
chine learning community [34, 90]. It has been shown that more training samples as
well as more complex learning based models are required when dealing with noisy
labels [34]. In fact, overfitting a clean dataset might yield a model that can still
perform well up to a certain extent on the test sets. Instead when learning on noisy
data, one should absolutely avoid an overfitting of the training set, since the trained
model would memorize patterns coming from the noise and will not be useful on
a different dataset. For this reason an effective data augmentation strategy could
really help to get models able to learn only useful features when dealing with noisy
labels.

To train the AIOs, the data gathered during the VQEG-HDTV Phase I test
[139] were used. This dataset was chosen to ensure that the trained AIOs could
be used for a wide range of applications (A detailed description of this dataset was
provided in Chapter 2).

In particular, as mentioned in Chapter 2, the VQEG HDTV Phase I test was
done in six different Labs. In each Lab, 24 viewers participated in the test and rated
168 PVSs. Each of the six Labs used a different set of stimuli. However, there are
24 PVSs that had been rated by all the 24∗6 participants. In other words, these 24
PVSs were used in all the 6 Labs. From now on, these 24 PVSs will be referred to
as the ”common set”. For the analysis, only the data collected in the Lab 1, 3 and
5 were considered since the tests in the other Labs involved interlaced content that
is out of the design scope of some of the objective video quality measures (VQMs)
that were used as part of the features to train the AIOs.

The 168 raw opinion scores collected from each subject during the VQEG HDTV
Phase I test were seen not to be enough to effectively train and validate the AIO
of that subject. In fact, when splitting these 168 observations in training and
testing sets, independently from the used NN architecture, the trained model was
not able to perform well on both the training and the test set at the same time.
This could have been expected, since training an effective model for the prediction
of a quantity such as the MOS, that is less noisy than individual opinion scores,
is already challenging when working with a hundred of training samples. A data
augmentation strategy to cope with this issue was therefore designed.

The analysis in this chapter aimed at training 24 NNs, each mimicking a single
viewer of Lab 1. The main idea behind the proposed data augmentation approach
was that of finding an estimate of the opinion scores that each viewer of Lab 1
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would have expressed on the set of PVSs used in Lab 3 and 5. This estimated
opinion scores allowed to augment the data available for training the AIOs of each
of the 24 viewers of Lab 1.

The estimated opinion scores of each viewer of Lab 1 for the PVSs used in Lab
3 and 5 was obtained by finding the viewers of Lab 3 and Lab 5 that voted similarly
to him/her on the ”common set”. To this aim, as a measure of dissimilarity on the
”common set”, the ”mutual” root mean square error between the opinion scores of
two viewers was used.

Formally, let denote by:

• i and j two generic viewers taken from two different Labs;

• Cset the ”common set” of PVSs;

• V i
pvs the opinion score of the subject i on a generic PVS in the ”common set”.

The dissimilarity between the subject i of Lab 1 and the subject j of Lab 3 or
5 in terms of quality perception was expressed as it follows:

dij =

⌜⃓⃓⃓
⎷ 1

|Cset|

⎛⎝ ∑︂
pvs∈Cset

(V i
pvs − V j

pvs)2

⎞⎠. (5.1)

Each of the 24 viewers in Lab 1 obviously rated only 168 PVSs. For each viewer
i of Lab 1, one therefore needs to find the viewers j and k respectively from Lab 3
and Lab 5 whose ratings can reasonably approximate those that the viewer i would
have expressed. At the same tine, the viewers j and k should also be similar in
terms of quality perception. For each viewer i of Lab 1, the viewers j and k were
chosen such that the total ”mutual” root mean square error between the ratings of
the triplet of subjects i, j and k on the ”common set” is minimized.

More formally, for each viewer i in Lab 1, let denote by xj,k
i a binary decision

variable equal 1 if and only if the ratings of the viewer i, on the PVSs used in Lab
3 and 5, will be approximated by the ratings expressed by the viewers j and k
respectively from Lab 3 and 5. The values of the decision variables xj,k

i were found
by solving the following optimization problem:

min
x

∑︂
i∈Lab1

∑︂
j∈Lab3

∑︂
k∈Lab5

(dij + dik + djk)xj,k
i

s.t.
∑︂

j∈Lab3

∑︂
k∈Lab5

xj,k
i = 1 ∀i ∈ Lab1

xj,k
i ∈ {0,1}

(5.2)

Mote that the first constraint simply expresses the fact that the ratings of each
single viewers of Lab 1 should be augmented by those of exactly one viewer of Lab
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Figure 5.3: Proposed data augmentation approach. Each viewer of the Lab 1 was
put together with a viewer of the Lab 3 and a viewer of Lab 5 based on the solution
of the optimization problem. This yielded 24 viewers that were considered to have
rated 456 PVSs instead of 168.

3 and one of Lab 5. The second constraint instead expresses the binary nature of
the decision variables.

Note that the solution of the optimization problem in Eq (5.2) could allow to
approximate/augment the ratings of two different subjects of Lab 1 by those of a
single subject of Lab 3 and/or Lab 5. Thus there might be some ratings from Lab
3 and Lab 5 that are not used. The primary scope of the approach is to make
sure that the approximated scores, for each of the 24 participants of Lab 1, are
highly consistent with the scores he/she actually expressed. Putting a constraint
that enforces the use of all ratings might yield a sub optimal solution connecting
together viewers that do not have similar perception of quality.

Once the problem in (5.2) is solved, exactly 24 among the decision variables xj,k
i

are equal to 1. The solution indicates how to augment the ratings of each of the
24 viewers of Lab 1. For instance, if the variable x4,7

2 is equal to 1 in the optimal
solution, then the ratings of viewer #2 of Lab 1 are augmented by using those of
the viewer #4 of Lab 3 and those of the viewer #7 of Lab 5.

The Figure 5.3 summarizes the data augmentation procedure. Based on the
optimal solution of the optimization problem in (5.2), the ratings of each viewer of
Lab 1 are augmented with those of two viewers, one from Lab 3 and the other from
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Lab 5 to form a unique viewer. Therefore the whole data augmentation procedure
combines the original data to generate 24 ”observers” such that each of them can
be considered to have rated 456 (168 ∗ 3 − 24 ∗ 2) PVSs. An AIO was then trained
for each of these 24 observers.

It is important to note that inferring the behavior of an observer on 168 stimuli
starting from what was observed on the ”common set” that contains only 24 PVSs
would be reasonable only if the ”common set” is made out of appropriately selected
stimuli, i.e. a subset of stimuli that reasonably summarizes the characteristics of
all the other ones involved in the experiments. This is the case for the VQEG
HDTV Phase I experiment [139]: the 24 PVSs in the ”common set” were carefully
selected to span the full range of quality considered during the experiment. The
reason behind that is that the ”common set” was originally designed to consent the
alignment of the results of all the six Labs.

5.4.2 Network Architectures and the Training Process
The architecture of the NN modeling each observer depends on both the observer

and the amount of data available in the training set. For some observers, the input
features are already suitable and the network role is to determine the best way
to map them to the quality scale. For other observers, instead, the derivation of
more complex features from the input ones is required. In the former case, a single-
hidden-layer architecture is enough to model these observers’ quality perception,
whereas in the latter case more than one hidden layer is required. This aspect also
allows to classify the observers on the basis of the complexity of the mechanism
that guides their perception of quality. Obviously, the number of hidden layers
suitable for a given observer is not known a priori, thus it should be determined
through numerical experiments. The number of neurons for each layer, instead, is
strongly related to the size of the training set. The larger the training set, the more
the neurons that can be used in each layer. In any case, the output layer of the
NN consists of five neurons, each predicting the probability that the AIO chooses
one of the five options of the ACR scale. The labels in the training set must
therefore be appropriately coded for this purpose. Using probabilities as output
values is fundamental for modeling the inability of subjects to repeat themselves in
subjective experiments.

In the context of the analysis presented in this chapter, to train the NN mim-
icking each of the 24 observers, a set of hand-crafted features, here denoted by F ,
characterizing each PVS was first computed.

The features set F included the following VQMs: PSNR[147], SSIM[157] MS-
SSIM[143], VIF[115] and VMAF[87], as well as six perceptual features, i.e. ”Block-
iness”, ”Blockloss”, ”Blur”, ”Contrast”, ”Flickering” and ”Noise”, which attempt
to quantify how much each of the listed artifacts is presented in each PVS. These
features are described in details in [65]. Finally, the spatial activity index (SI) and
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the temporal activity index (TI) as defined in [92] were also computed.
Note that a set of hand-crafted features were used since the 456 ratings available

for each observer do not allow to directly train a deep convolutional NNs that can
automatically figure out important perceptual features from the PVSs. Small scale
NNs were instead used to regress the extracted features on the quality scale.

For each observer, to create the corresponding AIO, the procedure described in
the following was implemented. First, for each observer, the subset of features as
well as the NN architecture that best model his/her opinion scores were experimen-
tally identified.

In order to identify the optimal set of features and the best architecture for
each observer, the following procedure was adopted. From all the possible subsets
of features selected in F containing at most five features, and the ratings of the
observer in the training set, three different NNs were trained, having respectively
one, two and three hidden layers with five neurons each, and an output layer with
five neurons delivering the probability of choosing any of the five possible options
of the ACR scale. Then, the three NNs obtained for each possible subset of the
features were tested on a test set by comparing the predicted opinions with the
actual ones. For each observer, the NN architecture and the related subset of
features that yielded the highest accuracy on the test set were considered as his/her
final model.

The aforementioned settings of the NNs, i.e. the number of hidden layers and
the corresponding number of neurons, have been experimentally determined as the
most effective. Three NN structures with different depths were examined for each
observer in order to investigate what is the level of complexity required to effectively
model the observer.

Summarizing, each of the 24 observer was modeled by a NN in which the number
of neurons on the input layer is equal to the cardinality of the subset of features
that best models the observer, the number of hidden layers varied from one to three
depending on the complexity of the observer and finally the output layer had five
neurons that predict the probability of choosing each one of the five possibile options
offered by the ACR scale. Once trained, during the testing phase, the predicted
opinion score was obtained by selecting the option with the largest probability.

Avoiding overfitting is a major concern when using machine learning algorithms.
In the case of AIOs, previous studies in quality assessment can be used to determine
an accuracy threshold on the training set above which the presence of overfitting
is highly probable. In fact, in the best case, one expects that the AIOs act with
an accuracy similar to the one of the actual observer. Therefore, it is important
to analyze what is the accuracy of a subject when he/she is used as a classifier
of himself/herself. More precisely, if an observer evaluates for several times the
quality of a PVS, what would be his/her expected accuracy in repeating previously
expressed opinions? The results of the subjective experiments presented in [55]
show that, when re-evaluating a set of video sequences, subjects are able to repeat
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their first opinions, on average, only 57% of the time and the best subject achieved
74% accuracy. Furthermore, on average, for 94% of the PVSs, each subject selected
a rating that differs at most by one quality level on the ACR scale from the previous
rating. These numbers provide indications on the upper bounds for the expected
accuracy of the AIOs on the training set.

More precisely, when training and testing the AIO for mimicking an actual
observer, an accuracy equal or higher than 57% is already suitable. However,
when the AIO accuracy is significantly higher than 74% on the training set, then
the suitability of the model needs to be further investigated. In fact, being the
observer not able to always repeat the same opinion in correspondence to the same
input, the training set is certainly noisy, and thus large accuracy would be observed
only if the peculiarities of the training set are learned. On the other hand, when
an accuracy close to 74% is obtained for an AIO, this does not necessarily mean
that it is accurate: numerical experiments on data never seen during the training
are still required to draw definitive conclusions.

5.4.3 A Measure of Subjects Inconsistency
Once the AIO, trained to mimic an observer o, is deployed on a PVS, it outputs

the following discrete probability distribution pPVS
oi i = 1,2, . . . ,5 , where the index

i represents the five options offered to the observer on the ACR scale.
Denoting by vi i = 1,2, . . . ,5, the actual numerical score of the five options of

the ACR scale, the variance of such a predicted distribution, i.e.

σ2(o, PVS) =
5∑︂

i=1
v2

i · pPVS
oi −

(︄ 5∑︂
i=1

vi · pPVS
oi

)︄2

(5.3)

was defined as a measure of the inconsistency of the observer o regarding the per-
ceived visual quality of the PVS under examination.

In fact, a high value of σ2(o, PVS) indicates that opinion scores different from the
mode (i.e. the one with the highest probability) report a non-negligible probability
value. Modeling the observer o using such a probability distribution allows to
consider the fact that repeated evaluations by the same observer could naturally
yield different opinions over time even for the same PVS. Hence, the σ2(o, PVS)
value informs about how likely it is that the observer o would repeat itself in
subsequent evaluations of the same PVS.

To understand how the measure described in Eq (5.3) captures the observer
inconsistency, lets make the following considerations. For a consistent observer,
there is a way to accurately map the features that characterize the perceptual
quality of stimuli to his/her ratings. In other words, for this type of observer,
the feature space can be almost perfectly partitioned and clustered on the basis
of his/her ratings on the ACR scale. The AIO of this type of consistent viewers

86



5.5 – Numerical Experiments

just needs to learn the mathematical expression of this partition from the training
data to be able to perform a classification with high confidence. It is therefore
expected that for a consistent observer, the variance of the neural network output
is low. The opposite argument holds for non-consistent observers, for which it
is not easy to find a subdivision of the features space in disjoint subsets, each
one associated with a different quality level on the basis of the observer’s ratings.
The high variance of the neural network output expresses precisely this lack of
consistency between the input features that determine the objective quality of the
input video sequence and the corresponding votes given by the observer. In other
words, for stimuli with the same objective quality and thus with the same value of
the perceptual features, an inconsistent observer is inclined to give opinions that
are significantly different. During the training of the AIO of such an observer, by
using only his/her opinions, the model learns that these different opinions given
by the observer on stimuli having the same objective quality are equally probable.
During the test phase, when the AIO receives a stimulus as input, the probabilistic
output is equally distributed over several opinions, leading to greater variance.

A subjective experiment in which the same observer is asked to rate a significant
number of times the same stimuli would be required to fully assess the accuracy
of the inconsistency measure in Eq (5.3). This is unfortunately too expensive to
be carried out in practice. For this reason, in the Section 5.5 a different approach
was adopted to show Eq (5.3) effectiveness as a measure of inconsistency. More
precisely, it was shown that the proposed measure possesses the properties that are
expected from an inconsistency measure.

5.5 Numerical Experiments
To assess the feasibility as well as the effectiveness of the AIOs-based approach to

quality assessment, extensive numerical experiments were conducted. The related
results are presented and discussed in this section.

5.5.1 The Experimental Setup
In order to compare the AIOs with a random classifier and the MOS, and also

to implement the data augmentation approach described in Section 5.4, the widely
used mapping of the ACR scale options to integers from 1 to 5 was employed, de-
spite having pointed out the limit of this behavior. However, note that this is done
only for comparisons and data augmentation purposes and does not imply that it
is a necessary step when using the AIOs-based approach.

The numerical experiments were done considering four subjectively annotated
datasets, i.e. the VQEG-HD1 (Lab 1), VQEG-HD3 (Lab 3), VQEG-HD5 (Lab
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(a) Correct Prediction Ratio

(b) Acceptable Prediction Ratio

Figure 5.4: Accuracy of the AIOs. The AIOs were trained on the VQEG-HD1
and VQEG-HD5 datasets, and tested on the VQEG-HD3 dataset. The average
performance ratios of the AIOs (green lines) are significantly higher than those of
a randomly voting subject (orange lines) and do not differ more than 12% from the
benchmark values (violet lines).
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5) [139] and the ITS4S [96] dataset. In addition, the large scale JEG-Hybrid
dataset [14], that has not been subjectively annotated, has also been used, since it
contains many more PVSs than the former ones. The characteristics of the used
datasets are summarized in Table 5.1. As it can be clearly seen from the table,
during the VQEG-HDTV experiments several types of distortions have been ap-
plied to the PVSs, while only coding artifacts have been considered in the other
datasets. Therefore, most of the experiments were done relying on the VQEG-
HDTV datasets in order to investigate the effectiveness of the AIOs-based approach
for a wider range of cases.

Table 5.1: Description of the datasets used in the experiments

Dataset Size Distortions Notes
VQEG-HD datasets 168 PVSs, 1080p,

10-sec long
MPEG-2 and
AVC-encoded,
1 to 15 Mbps,
transmission ar-
tifacts due to bit
errors and bursty
packet losses

movies, sports,
general TV ma-
terial with as
much variety as
possible

ITS4S 514 PVSs, 720p,
4-sec long

AVC-encoded at
either 512, 951,
1256, 1732, 2340
kbps.

Already classified
into 9 categories:
Broadcast,
Everglades, Mu-
sic&Mexico,
Nature, Ocean,
Public Safety,
Sports, Train-
ing, and Chance
(miscellaneous
content)

JEG-Hybrid 59,520 PVSs,
1080p, 10-sec
long

HEVC-encoded
(0.5 to 16 Mbps
+ constant QP)

Not subjectively
annotated

To assess the ability of each AIO to mimic the corresponding subject, the fol-
lowing two ratios were considered:

Correct prediction ratio = #(predicted OS=actual OS)
#(PVS in test set)
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Figure 5.5: The ROC curves associated with the AIOs, which models each observer.
In all the cases, the curve is above the 45 degree line: the AIOs is therefore effec-
tively modeling some of the aspects that concur with the way how the observer
perceives the visual quality.
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Figure 5.6: The AUC indexes associated with the AIO, which models each observer.
The closer to 1, the better. The AIOs seem to be more accurate when modeling
the observer’s behavior in the case of the PVSs with the very low or high quality.

Acceptable prediction ratio = #(|predicted OS-actual OS| ≤ 1)
#(PVS in test set)

in which OS stands for opinion score. The correct prediction ratio and thus the
accuracy of each AIO achieved on the test set is the number of PVSs for which
the rating predicted by the AIO is equal to the one given by the related observer
divided by the total number of PVSs in the test set. The acceptable prediction
ratio, instead, represents the number of PVSs for which the AIO prediction differs
no more than 1 level on the ACR scale from the rating of the related observer
divided by the total number of PVSs in the test set. For a random classifier (RC),
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(a) (b)

Figure 5.7: Results obtained when deploying the AIOs trained on the VQEG-HD1
and VQEG-HD5 datasets on the PVSs coming from the VQEG-HD3 dataset to
simulate a subjective experiment. The AI MOS and SOS are computed respectively
as the average and the standard deviation of the AIOs’ opinion scores.

i.e. an observer which randomly selects its scores, these ratios are respectively 20%
and 52%, which are the expected values considering all the possible favorable cases
(2/5·1/5+3/5·3/5+2/5·1/5 for the acceptable prediction ratio).

Since each AIO can be looked at as classifier, the correct and acceptable ratios
were used together with the receiver operating characteristic (ROC) curves as well
as the area under the ROC curve (AUC) indexes associated with the AIO modeling
each subject.

In Table 4 of [55], the overall correct and acceptable ratios obtained when asking
a subject to rate again a PVS he/she already rated were respectively 57% and 94%.
These values will be used in this section as a benchmark when analyzing the AIOs
performance. The point is that, one should not expect the AIOs to perform better
than what actual observers would do.

5.5.2 The AIOs Accuracy in Mimicking Actual Observers
For the experiments on the VQEG-HDTV datasets, the data of the VQEG-HD1

and the VQEG-HD5 were used as the training set, while the VQEG-HD3 was used
as a test set. The ”common set” was included only in the training set, and therefore
there were no identical PVSs in the training and test set.

In Figure 5.4 the accuracy of the 24 AIOs is compared to that of a model
randomly rating the PVSs in the test set and the benchmark value. By comparing
the AIOs with an observer voting randomly, one aims at verifying whether the
NN mimicking each observer did learn interesting information about the way the
observer perceives quality. For each of the 24 AIOs both the correct and the
acceptable ratio significantly exceeded the expected accuracy of a model voting at
random. In particular, an average correct ratio of 45% (> 20%) and an acceptable
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prediction ratio of 88% (> 52%) were observed respectively. There were some
AIOs, with an accuracy very close to the benchmark value. The average correct
and acceptable ratios of the AIOs differed from the respective benchmark values
by no more than 12% and 6%.

(a) Correct ratio (b) Acceptable ratio

Figure 5.8: Average correct and acceptable ratios of the AIOs (green bars) in com-
parison to those of a random classifier and the benchmark values. CA and TA stand
respectively for coding artifacts and transmission artifacts. The analysis suggests
that higher performances might be expected from the AIOs when focusing only on
coding artifacts.

It is worth noting here that the aforementioned average performance also ex-
ceeded the one that a very conservative observer, i.e. an observer always judging
”Fair” the quality of any PVS, would achieve. In fact, the expected correct and
acceptable ratios for such an observer would be 20% and 60%, respectively.

To further investigate the accuracy of the 24 AIOs, the ROC curves as well as
the AUC indexes associated with each of the five options of the ACR scale predicted
by the AIO were computed. The results are shown in Figure 5.5 and 5.6. For all the
24 AIOs, the curve associated with each possible alternative is above the 45 degree
line, showing once more the superiority of the AIOs in terms of the perceptual
quality evaluation over the observer rating at random. Furthermore, the values of
the AUC index shown in Figure 5.6a and Figure 5.6b reveal that the 24 AIOs are
reasonably accurate since, on average, they reported AUC indexes ranging from
0.69 to 0.9.

It is important to notice in Figure 5.6b the ability of AIOs to more accurately
model the subjects’ behavior in the context of the PVSs with the very low or high
quality. In fact, higher AUC indexes are observed in the case of the ”Bad” and
”Excellent” options on the ACR scale.
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(a) Correct ratio (b) Acceptable ratio

Figure 5.9: Comparison of the average correct and acceptable ratios of the AIOs
prediction on the training and the test set.

In Section 5.3, the MOS was presented as a limited indicator when used alone to
measure the QoE. Nevertheless, it has been shown to be effective for some purposes,
such as codecs comparison. For this reason, the performance of the AIOs when used
to simulate a subjective test where the expected outcome is a MOS value for each
PVS was also investigated. The 24 AIOs, that were trained using the data from the
VQEG-HD1 and the VQEG-HD5 experiments were used to simulate a subjective
test on the PVSs used in the VQEG-HD3 experiment. The mean of the AIOs’
opinion scores (that is referred to as AI MOS in the following) and the standard
deviation (AI SOS) were then compared to the actual MOS and SOS values.

The results shown in Figure 5.7 are quite promising. In fact, high correlation
coefficients (0.91, 0.89) were obtained between the AI MOS and the MOS. The
correlation coefficients (0.64 and 0.59) observed between the AI SOS and the SOS
appear as a very promising result, since models for SOS prediction are still at their
early stage.

The results presented so far show that the NNs-based AIOs can reasonably
model actual subjects, even when trained on a dataset such as the VQEG-HDTV
that involves a wide range of distortion types. Still, one wonders whether the
obtained accuracy could have been higher if the analysis was restricted to a specific
type of artifacts. In particular, a closer look was given to the case of coding artifacts
that tends to require more attention than transmission ones in this era characterized
by a fair availability of effective network security protocols.

To this aim, other AIOs were trained relying on the ITS4S dataset that provides
514 ratings for each of the 27 observers that participated in that experiment. To
train the 27 AIOs, 7 categories of PVSs out of the 9 available in the dataset were
used and the models were then tested on the remaining two categories, i.e., the
sport content category (ITS4S-SPORT) and the public safety content category
(ITS4S-PUB SAFETY).
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Note that in the case of the ITS4S dataset, no data augmentation technique
was used since each subject had evaluated many more PVSs than the 168 PVSs
rated by each participant in the VQEG-HDTV experiments.

Figure 5.8 presents the average correct and acceptable prediction ratios of all
the 27 AIOs on the two test sets in comparison to the results obtained in the more
general case. An average correct ratio of 54.5% (> 45%) and an average acceptable
ratio of 96% (> 88%) have been obtained. One can also note that the obtained
performance indicators are much more close to the respective benchmark values.
Such result suggests that the performance of the AIOs can be further improved
when they are designed to deal with specific applications.

5.5.3 The AIOs Robustness
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Figure 5.10: Probability, for each AIO, that its output will not change (the correct
ratio) or will change by at most 1 quality level on the ACR scale (the acceptable ra-
tio) after adding, to each input feature, a noise term which is uniformly distributed
between -1% and 1% of the range of values assumed by such feature in the dataset.

Three main aspects were considered in evaluating the AIOs robustness: i) Ana-
lyzing whether the performance of the AIOs on data never seen during the training
is similar to that observed on the training set; ii) Studying the robustness of AIOs
to the noise on input data; iii) Assessing the ability of the AIOs to distinguish
between two input PVSs with significantly different visual quality. For the sec-
ond and the third aspects, the analysis was done with the 24 AIOs trained on the
VQEG-HDTV dataset.

For both the VQEG-HDTV and the ITS4S datasets, the performance of the
AIOs on the training set was not significantly different from that observed on the
test set. In both cases the average performances observed on the training sets
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Figure 5.11: Probability that each AIO would predict a higher score for the PVS
encoded with a higher bitrate when assessing the visual quality of a pair of PVSs
generated from the same SRC and affected by the coding artifacts only. The closer
it is to 100 %, the better.

differed than those obtained on the test sets by no more than 5% as it can bee
seen from Figure 5.9. For instance, when it comes to the VQEG-HDTV dataset,
the average of the correct ratios and the acceptable ratios on the training set were
50% and 84% respectively, whereas on the test set, those ratios were 45% and 88%.
This basically shows that the AIOs did not only memorize the training set and can
therefore generalize what was learned on it to a set of data never seen before.

The robustness of the AIOs to the noise on input data was also studied. For
each AIO, Figure 5.10 reports the probability that its prediction will not change
after adding, to each feature, a noise term which is uniformly distributed between
-1% and 1% of the range of values assumed by such feature in the dataset. In
practice, the noise term ranges from −(M −m)/100 to (M −m)/100, where m and
M are respectively the smallest and the largest value assumed by that feature in
the dataset. The probabilities in Figure 5.10 were obtained by simulating 10,000
realizations of the noise and counting the number of times in which the AIO did not
change its prediction with respect to the noiseless case (the correct ratio) or changed
it at most by one quality level on the ACR scale (the acceptable ratio). Figure 5.10
shows that, on average, in 93% of the cases the AIOs provide a prediction equal
to the one of the noiseless case. In 98% of the cases the prediction changes by at
most one quality level on the ACR scale. This result shows that the trained AIOs
are rather robust to noise.

Finally, it was studied the ability of the AIOs to distinguish between two stimuli,
involving the same source (SRC), with different visual quality. This was done to
assess the ability of the AIOs to coherently rank two PVSs coming from the same
SRC based on their visual quality. The analysis was performed on the PVSs of
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Figure 5.12: Fitting of the inconsistency value with second (red) and fourth (yellow)
order polynomials. Fitting functions tend to present an absolute maximum in the
central part of the quality scale for almost all the observers, as expected by an
inconsistency measure.

the VQEG-HDTV dataset affected only by coding artifacts. Pairs of PVSs derived
from the same SRC but encoded at different bit rates were considered. For each
AIO, it was computed the fraction of times when a lower score for the PVS encoded
with the lower bit rate, as it is typically expected for PVSs derived from the same
SRC, was predicted. The results are summarized in Figure 5.11. On average, in
95% of the cases, the AIOs were, able to effectively classify the input stimuli as
expected, even though #2, #9, #17 and #20 were a bit less accurate than the
other AIOs in this regard.

5.5.4 Subjects’ Inconsistency
Let’s focus now on the results related to the inconsistency measure introduced

in (5.3). It is worth reminding that the AIO, given a PVS, produces not only a
prediction of the opinion of the corresponding observer, but also a measure of its
inconsistency as indicated in (5.3). In the experiments, the 24 AIOs on all the
PVSs trained on the VQEG-HDTV datasets were used. Hence for each observer,
the value of its inconsistency for each PVS was also estimated. To analyze the
properties of the introduced inconsistency measure as a function of the MOS, the
widely used mapping that assumes that the five alternatives on the ACR scale are
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Figure 5.13: The effectiveness of the proposed inconsistency measure on the large
scale JEG-Hybrid dataset. The results show that low quality PVSs create less
ambiguity (average inconsistency) for the AIOs independently from the SRC as it
would have happened with real observers.

equidistant was employed. Therefore, in the analysis, with reference to the Eq 5.3,
vi = i, i = 1,2, . . . ,5.

Figure 5.12 reports the inconsistency of each observer on each PVS as a function
of the MOS of that PVS. To better visualize the average trend from the points, it
was performed a least square fitting of the MOS to the inconsistency values using
a second and fourth order polynomial function. It can be noticed, as expected,
that almost all the AIOs are more consistent when evaluating PVSs with the very
high or very low quality. Even using a fourth order polynomial function which
allows the presence of local minimums, in almost all the cases the fitted curve still
assumed the lower values only in correspondence to extreme values of the perceptual
quality. There were however few AIOs, in particular #7 and #17, that tended to
show higher inconsistency as the perceived quality increases.

To investigate the properties of the inconsistency measure at a larger scale, the
24 AIOs were deployed on the JEG-Hybrid dataset that contains almost 60,000 (not
subjectively annotated) PVSs, whose characteristics are explained in Table 5.1. For
each PVS, the AIOs opinion scores were computed and then averaged to obtain
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the AI MOS. The inconsistency of each AIO on each PVS was also computed.
Figure 5.13 shows the relation between the AI MOS of each PVS and the average
inconsistency of the AIOs on that PVS, separated by SRCs. The results revealed
that the AIOs are able to mimic the higher consistency that characterizes real
observers when rating PVSs with low perceptual quality. In fact, lower average
inconsistency values were observed in correspondence to the PVSs reporting low
values of AI MOS independently from the SRC.

Finally, it was shown that there is a relationship between the introduced measure
of inconsistency and the prominence of artifacts caused by the loss of blocks during
transmission. In fact, as shown in Figure 5.14, the inconsistency of almost all the
AIOs decreases as the visual disturbance due to the amount of macroblocks lost
during transmission becomes more and more perceptible. The Figure 5.14 reports,
for a given value of the ”Blockloss” feature on the x axis, the average inconsistency
evaluated on PVSs for which the ”Blockloss” feature value is greater than or equal
the one on the x axis. The decreasing trend of the curve of almost all the AIOs
indicates that the introduced measure of inconsistency captures the typical reliably
of human viewers in recognizing the distortion caused by the lost of blocks.

5.6 Conclusion
In this chapter a different approach to objectively evaluate media quality as

perceived by the end users has been introduced. In particular, every single subject
was modeled through a neural network rather than predicting the MOS, differently
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Figure 5.14: The average observers’ inconsistency tends to decrease as the ”Block-
loss” feature value increases for almost all the AIOs. For each value of the Blockloss
feature on the x axis, the graph shows the average inconsistency of the observer
evaluated on PVSs for which the Blockloss feature value is greater than or equal to
the one on the x axis.
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from what has traditionally been done in the literature. The approach was called
the AIOs-based approach, since the NN of each subject can be seen as an observer
with artificial intelligence. Using the ratings of an actual observer gathered during
a subjective experiment, a neural network that can then be used as a substitute
for that observer was trained. In this way, each NN accounts for the individual
characteristics of the related observer, such as personal expectations etc., which
have a significant influence on the perception of quality. A deep qualitative analysis
illustrated the advantages of the AIOs-based approach and also the flexibility it
offers in evaluating the perceived media quality in different contexts.

The computational results demonstrated both the feasibility and the effective-
ness of the AIOs-based approach. In particular, neural networks were seen to be a
suitable tool in mimicking the choices of an individual subject, and also in allowing
to estimate how much confident the subject is in expressing his/her opinion on the
quality of a given PVS.

The implementation of the approach was seen to be however data demanding
since raw opinion scores of individual viewers are typically noisy. Therefore, spe-
cially designed extensive subjective experiments where each subject is willing to
evaluate thousands of stimuli, could be required to enhance the effectiveness of
the AIOs-based approach using more complex models such as deep convolutional
neural networks (CNNs). This could allow for instance to create accurate AIOs of
golden eyes viewers. Such AIOs would potentially be very valuable for simulating
subjective tests.

As an alternative to designing large scale subjective experiments that are time
consuming and require effective tools to manage subjects fatigue, one might relies
on approaches such as transfer learning to enable the use of deep CNNs in the
design process of the AIOs. The next chapter will investigate such a direction.
In particular, it will be presented a deep CNNs based approach to automatically
construct, for each observer, the relevant perceptual features to be extracted from
the PVSs instead of choosing among a predefined set of hand-crafted features as
done in this chapter.
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Chapter 6

CNNs-based AIOs for No
Reference Images Quality
Assessment

6.1 Introduction
In Chapter 5, the concept of Artificial Intelligence-based Observer (AIOs) has

been introduced. An AIO has been defined as a neural network (NN) trained to
mimic a human viewer in terms of quality perception. To obtain an AIO, a set of
13 hand-crafted features were first extracted. The AIO of each subject was then
obtained by finding those of these features that best characterized that subject and
mapping them to his/her opinion scores with a shallow NN.

While the use of hand-crafted features and shallow NNs allows to overcome,
up to certain extend, the issues posed by the lack of large scale subjectively an-
notated datasets, it introduces two main sources of noise in the AIOs’ training
process: i) hand-crafted features derives from algorithms that attempt to estimate
the contribution of a specific artifact or characteristic of the image/video to the
determination of its perceptual quality; therefore, due to a potential inaccuracy of
these algorithms, the used features might not correctly and/or exhaustively repre-
sent the raw stimulus that the observer, to be modeled, has seen and evaluated; ii)
the computation of hand-crafted features is not based on the ratings of the observer
to be modeled. Different human viewers typically rely on different characteristics
of a signal when expressing their opinion on its perceptual quality. In fact, viewers
have different sensitivity to the same artifact. Hand-crafted features that are rel-
evant for an observer might not be important for another one. Therefore, when a
pre-selected set of hand-crafted features is used, it might be ineffective for modeling
certain observers.

To address the first issue, it is important to design AIOs such that they directly
process the raw stimulus just like the subject they are modeling do when rating

101



CNNs-based AIOs for No Reference Images Quality Assessment

the perceptual quality. In order to address the second issue, the whole training
process should enable the extraction of all and only the features that are really
useful to model the opinion scores of each observer. Relying on deep convolutional
NNs (CNNs) when training the AIOs would solve both issues.

In fact, deep CNNs-based AIOs would directly receive as input the raw signal
and extract from it, through a sequence of convolutional layers, the features that
really matter based on the opinion scores gathered from the observer to be modeled.
Unfortunately training deep CNNs-based AIOs would be much more demanding in
terms of training samples than the approach presented in Chapter 5. This chapter
aims at showing, in the still image case (for simplicity’s sake), how the transfer
learning concept [145] can be leveraged in this context.

The research focusing on the design of Deep CNNs tailored to image classifi-
cation has attracted and continues to attract the attention of several researchers.
As such a large number of deep CNNs architectures with the related weights have
been proposed in the computer vision literature [8]. Some attempts to leverage
these pre-trained models in media quality assessment for mean opinion score (MOS)
prediction, after a transfer learning step, have already been explored [155, 45]. A
similar approach is adopted in this chapter. More precisely, instead of designing
from scratch a new deep CNN architecture, we make use of the ResNet architecture
that has proven to be suitable for the design of media quality assessment models
[152].

In particular, two learning steps were seen to be necessary in order to reach
accurate deep CNNs-based AIOs. During the first learning step, the architecture of
the ResNet50 [40], pre-trained for image classification, was modified and the weights
were progressively updated to reach a new deep CNN called JEPGResNet50. The
JEPGResNet50 is able to classify images based on their level of JPEG compression.
The second learning step refined the generic perceptual quality features already
learned by the JEPGResNet50 to obtain new ones that really characterize each
subject’s quality perception based on his opinion scores. The main stages behind
this approach were summarized in the following journal paper [31].

Applying this approach on the data collected in the phase 1 of the ”LIVE Mul-
tiply Distorted Image Quality” (LIVE-MD-ph1) experiment [56], each of the 19
observers that participated in that experiment was modeled. Doing so, 19 deep
CNNs were obtained, one for each observer. These CNNs take an image as input
and predict the opinion that the corresponding observer would have expressed af-
ter evaluating the quality of that image. The JPEGResNet50 as well as the 19
deep CNNs-based AIOs mimicking actual observers are freely available for research
purposes at http://media.polito.it/AIobservers.

Extensive computational experiments were conducted in order to assess the
accuracy of the JPEGResNet50 as well as that of the 19 AIOs. When compared
to the PSNR [147], SSIM [157] and the BRISQUE [80], it was observed that the
JPEGResNet50 is particularly suitable to assess the quality of JPEG compressed
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images. Each AIO can mimic, with a rather good accuracy, the corresponding
observer yielding the state-of-the-art performance in terms of MOS prediction while
also providing an estimation of the distribution of opinion scores.

The remainder of the chapter is organized as follows. Section 6.2 presents related
work, followed by Section 6.3 that analyzes in detail the importance of modeling
individual observers with deep CNNs. In Section 6.4 the training process of the
JPEGResNet50 and the derivation of the AIOs are explained. Computational ex-
periments and the related results are presented in Section 6.5, while conclusions
are drawn in Section 6.6.

6.2 Related Work
The training of effective deep CNNs-based models is a task that is demanding

in terms of the number of training samples. [60]. Because of the lack of large scale
subjectively annotated datasets, the question of how to effectively train deep NNs
in the context of image quality assessment (IQA) is still an open issue [72]. Several
authors have however obtained promising results by relying on deep CNNs. When
making use of deep NNs, the following three approaches have mainly been adopted:

1. Features extraction followed by the use of a deep NN with very few hidden
layers. A Some hand-crafted features are first extracted from the image. A
deep NN is then trained feeding it just with the extracted features. In this
case, the deep NN builds more detailed features starting from the high-level
features provided initially in input. Then it maps these new features to the
quality scale. This approach has been used for example in [20, 37, 38].

2. Direct use of a deep CNN with few hidden layers. In this case, feature learning
and regression are jointly considered in a single optimization process. More
precisely, few convolutional and pooling layers are subsequently used to ex-
tract the perceptual features that model in the best way the average quality
perceived by final users. This approach has been leveraged in many papers
in the literature, e.g. [58, 26, 142].

3. Relying on transfer learning. This last alternative is more recent than the pre-
vious ones. To overcome the issue related to the limited size of the training
set that precludes the use of a deep CNN with a large number of convolutional
layers, transfer learning techniques can be employed. Typically, a large scale
pre-trained deep CNN for another task, e.g. image classification, is adjusted
by modifying the architecture and the weights of the network. Typically, the
weights on the last layers are updated, through an additional training step
with a large learning rate on subjectively annotated datasets. In practice,
the parts of the network that produce good results tend to remain unaltered,
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while the rest is adapted to best fit the new task. Transfer learning has been
considered in [77] yielding an objective metric with state-of-the-art perfor-
mance. In [154] the authors relied on a pre-trained deep NN to determine the
type of distortion by which the image quality is impaired and then assessed
its visual quality accordingly.

To further enhance the effectiveness of deep learning-based approaches for per-
ceptual quality prediction, before using one of the three aforementioned approaches,
many authors considered the possibility of increasing the size of the training set by
relying on data augmentation methods (see Section 1.2.3).

The approach in this chapter aims at being a first step toward modeling the
quality perception of individual human observers with deep CNNs. The related
learning task is more challenging since the noisy nature of the raw individual opinion
scores further emphasizes the need of a large set of training samples. To overcome
this issue, a deep CNNs, i.e., the JPEGResNet50, was first trained with many
synthetically generated training samples. The weights of the JPEGResNet50 were
then readjusted on a small scale subjectively annotated dataset in order to obtain
accurate deep CNNs-based AIOs.

6.3 From Shallow NN to Deep CNN-based AIOs

6.3.1 Motivation
Several complex features concur to determine the choices of a subject in terms of

quality perception [107]. Furthermore, the set of relevant features might vary from
one subject to another. This is because different subjects have different sensitivity
to a given type of artifact. Therefore when modeling individual subjects, it is
fundamental to make use of approaches that account for such a diversity in the
characterization of the same image by different observers. Deep CNN-based models
suitably serve this purpose.

Figure 6.1 presents a comparison between the deep CNN-based AIOs presented
in this chapter and the shallow NN-based ones trained in the previous chapter. In
particular, the use of deep CNNs instead of shallow NNs for modeling the quality
perception of an observer allows to address two major issues:

1. Noise due to the approximation of the input image with hand-
crafted features. The hand crafted features, that are required by shallow
NNs as an input, provide a representation of the raw image that might not
be perfect. On the other hand, deep CNNs instead directly receive, as an
input, the raw image. This allows, first of all, to eliminate a potential noise
due to feature inaccuracy that would affect the quality of the final model.
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Furthermore, by directly receiving the raw image as an input, deep CNN-
based AIOs more precisely resemble actual ones. In fact, observers watch
and assess the raw image, not a set of features.

2. Shallow NNs do not extract features based on the observers’ rat-
ings. Shallow NNs take into account the peculiarities and expectation of an
individual observer only during the regression/classification phase of the sub-
ject modeling process. This is because the observer’s opinion scores are simply
used to determine the best way to map the already chosen set of hand-crafted
features to the quality scale. Therefore, if the selected hand-crafted features
are not able to accurately model the quality perception of a given observer,
the resulting model will definitely be inaccurate. On the contrary, by relying
on deep CNNs, specific features that are of interest for each observer are si-
multaneously computed together with the mapping from the feature space to
the quality scale. In fact, an optimal set of deep CNN-based features for each
observer is determined on the basis of his/her opinion scores directly during
the training process of his/her AIO.

6.3.2 Challenges and Solution Approach
Based on the discussion in Section 6.3.1, it should be clear that the transition

from the shallow NN-based approach to the Deep CNN-based one brings consid-
erable advantages when modeling the quality perception of individual observers to
create AIOs that can then be used as needed. In practice, however, this transition
is hindered by the absence of large-scale annotated datasets, which are fundamental
for training deep CNNs.

To overcome this difficulty, a synthetically annotated large-scale dataset was
first created. Relying on this dataset, the JPEGResNet50 was trained. Finally,
the deep CNN-based AIOs were then derived from the JPEGResNet50 by jointly
exploiting a small scale annotated dataset with data collected during a subjective
experiment and the transfer learning concept.

In order to make the transfer learning process efficient, the ResNet50 architec-
ture was chosen as the underlying one for training the JPEGResNet50. In fact,
the ResNet (Residual Network) architecture has the following advantage compared
to the other deep CNNs that have been used in the literature so far: through the
introduction of the so called ”addition layers” that are computationally cost-less,
they learn a residual mapping instead of a direct mapping from the inputs to the
label space. It has been empirically observed that this simple trick speeds up the
weight optimization process considerably [40], thus allowing to train networks with
a very high number of hidden layers in less time than otherwise required.
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6.4 Training Deep CNNs-based AIOs
In this section, the procedure followed for training the JPEGResNet50 and the

AIOs is described in detail. First, the approach adopted for synthetically generat-
ing a large scale annotated training set is explained; then, details on the training
process of the JPEGResNet50 are provided, followed by a description of the transfer
learning steps that yielded the deep CNN-based AIOs.

6.4.1 Large Scale Synthetically Created Annotated Dataset
The main idea adopted here to generate training samples is that of finding a

way to map different levels of JPEG compression to the ACR scale (see the final
result in Table 6.1).

To figure out such a mapping, the data gathered during the phase 1 of the first
release of the LIVE image quality assessment (LIVE-IQA-r1-ph1) experiment [118]

Figure 6.1: Comparison of the deep CNN-based approach and the shallow NN-
based one. In both cases the system, after receiving an image or a set of features
returns the probability of choosing any of the five options offered by the ACR
scale. Note however that, unlike the deep CNNs that receive as input the raw
image, the shallow NNs receive hand-crafted features that may not correctly and/or
exhaustively characterize the input image. Furthermore, the hand-crafted features
are not computed based on the opinion scores of the observers to be modeled when
relying on shallow NNs. As such, they might not be the most suitable ones for the
observer to be mimicked.
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Figure 6.2: Least square fitting of the JPEG quality parameter to the average
perceptual quality, on the phase 1 of the first release of the LIVE image quality
assessment dataset, using a third order polynomial function.

were considered. Since it was not possible to access the JPEG quality parameter
value Q used to create the images in the original dataset, the following procedure
was used to estimate it. For each distorted image used during that experiment, its
PSNR score s was computed, then the related source image was compressed using
many different JPEG quality parameters Q, each time computing the PSNR value.
Finally, the Q value for which the obtained PSNR was the closest to s was chosen.
In this way, for each subjectively evaluated image, the JPEG quality parameter Q
that corresponds to its MOS was obtained.

Figure 6.2 reports the average perceived quality for each value of the JPEG
quality parameter. The average perceived quality represents the mean of the MOS
values of all stimuli sharing the same JPEG quality parameter. The black curve
in the figure was obtained by performing a least square fitting of the Q values
to the quality scale using a third order polynomial function. This curve provides
indications on how different levels of the JPEG compression can be mapped to the
subjective quality scale.

Looking at the Figure 6.2, it can be noticed that the viewers did not use the
whole 0 to 100 quality scale, as it typically happens [98]. For instance, an average
quality of about 45 is observed for images compressed in the very low JPEG quality
parameter range of 0 to 10. For this reason, in order to obtain a mapping of the 0
to 100 scale to the ACR scale, a clipping is often used for the boundaries and the
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Figure 6.3: Architecture of the JPEGResNet50 as well as of the AIOs. This network
receives as an input a 224 × 224 color image and provides as an output an estimation
of the probability that an average viewer would choose any of the five options of
the ACR scale.

remaining part is linearly mapped. In particular, the original 0 to 100 scale was
divided into five quality ranges, and converted to the ACR scale as follows: any
quality score lying in [0, 46] was mapped to ”Bad” (1); the interval [46, 70] was
divided into three equally large intervals corresponding respectively to ”Poor” (2),
”Fair” (3) and ”Good” (4); finally, any quality score in [70, 100] was considered as
”Excellent” (5). Then, exploiting the fitting curve in Figure 6.2, each of these five
quality ranges was mapped to a range of JPEG quality values and the mapping
rule in Table 6.1 was obtained.

It is important to note that this mapping rule is not intended to be directly used
for predicting the quality of individual images but to generate data for training a
neural network to detect quality degradation in a generic way before fine-tuning
it and thus optimizing its accuracy for the targeted task. For instance, as it will

Table 6.1: Mapping JPEG Quality parameter intervals to ACR scale.

JPEG Quality parameter interval Opinion score Image label
[2, 10] 1 Bad
[11, 18] 2 Poor
[19, 25] 3 Fair
[26, 50] 4 Good
[51, 100] 5 Excellent
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be observed later in Section 6.5, if the output of the JPEGResNet50, trained from
the data generated based on this rule, is interpreted under probabilistic terms to
account for the potential imprecision of this mapping rule, it could provide a good
estimator of the MOS of JEPG compressed images.

On the basis of the mapping in Table 6.1, it was created a large-scale syn-
thetically annotated dataset starting from the images available in the ImageNet
competition dataset [63] that contains over a million images dedicated to the train-
ing and evaluation of deep NN-based models for image classification.

More precisely, 100,000 pristine quality images were selected from the ImageNet
dataset. For each of these images, five distorted images were generated by com-
pressing the original pristine quality image using five different values of the JPEG
quality parameter. The five values of the JPEG quality parameter were selected
at random by choosing one in each interval in the first column of Table 6.1. The
quality of each generated image was then annotated by the label associated with
the interval to which the related JPEG quality parameter belongs. Therefore, in
the end of the procedure, a dataset containing 500,000 annotated JPEG compressed
images was obtained.

6.4.2 The JPEGResNet50: Architecture and Training Pro-
cess

Relying on the large-scale synthetically annotated dataset described in the pre-
vious section, the JPEGResNet50, i.e. a DNN having the same architecture as that
of the ResNet50 except for the last three layers was trained. More precisely, the
fully connected, and softmax layers were redesigned to output five probability val-
ues. In fact, the JPEGResNet50, after receiving an image as an input, attempts to
figure out the probability that an average observer would choose any option among
the five available on the ACR scale, after watching and rating the same image. The
prediction of the JPEGResNet50 was assimilated to that of an average viewer since
the annotation of the training set, as discussed before, is based on an objective rule
that maps JPEG compression levels to the average perceived visual quality.

Figure 6.3 presents the architecture of the JPEGResNet50. A 224 × 224 × 3
patch is taken as input image, it then goes through 52 convolutional layers that
are meant to progressively extract more and more detailed features characterizing
the visual quality of it. Once such features are obtained, they are mapped to the
quality scale through the fully connected and softmax layers. The output of such
a layer estimates, as shown in Figure 6.3, the probability that the quality of the
input image will be assessed as ”Bad” (1), ”Poor” (2), ”Fair” (3), ”Good” (4) or
”Excellent” (5) by an average observer.

More formally, to train the JPEGResNet50, the label of each image i in the
synthetically created large-scale dataset, was encoded as a binary vector Vi whose
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entries were defined as follows:

Vi(t) =
{︄

1 if t is the opinion score of image i
0 otherwise (6.1)

where t = 1,2, . . . , 5.
Denoting by

• I the total number of images in the training set;

• β a vector containing all the weights of the JPEGResNet50 to be computed;

• pt
i(β) i = 1,2, . . . , I, t = 1,2, . . . ,5 the predicted probability that the visual

quality of the image i will be rated as t, given the weights defined in β;

the optimization problem that guided the training process of the JPEGResNet50
was formulated as follows:

min
β

∑︂
i=1,2,...,I

∑︂
t=1,2,...,5

−Vi(t) log(pt
i(β)) (6.2)

∑︂
t=1,2,...,5

pt
i(β) = 1 i = 1,2, . . . , I (6.3)

pt
i(β) ∈ [0, 1]; i = 1,2, . . . , I; t = 1,2, . . . ,5. (6.4)

Eq. (6.2) expressed the minimization of the cross entropy, chosen as the cost
function, whereas Eq. (6.3) and (6.4) established the fact that the JPEGResNet50
outputs a probability distribution.

To solve the problem in Eq. (6.2)-(6.4) and thus to train the JPEGResNet50, the
well known and widely used stochastic gradient descent with momentum (SGDM)
algorithm was used. The SGDM was deployed on a batch containing 90 images at
each iteration, this was repeated for 60 periods, i.e. a total of 60 · I/90 iterations.
A small learning rate (0.0001) was adopted to enable the network to progressively
transform the initial image classification features into new ones useful for quality
assessment. The momentum parameter was set to 0.9 as typically recommended
when using the SGDM algorithm.

At the end of the training process all the weights, i.e. the entries of the vector β,
were known. Therefore, receiving an image i as an input, the JPEGResNet50 was
able to provide, as output, the following five probability values: pt

i(β) t = 1,2, . . . ,5,
that represent an estimate of the probability of each of the five options on the ACR
scale.

An estimation of the MOS of each image i using the JPEGResNet50 was ex-
pressed as:

MOSi
res =

5∑︂
t=1

tpt
i(β). (6.5)
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6.4.3 Deriving the Deep CNNs-based AIOs
The weights of the JPEGResNet50 can be considered as a suitable starting point

for the training of the deep CNN-based AIOs, since it is a deep CNN able to process
JPEG compressed images and figure out complex features that characterize their
perceptual quality.

To train the AIOs, the data collected during the LIVE-MD-ph1 experiment [56]
were considered. That experiment was done with 19 participants. Starting from
the JPEGResNet50, exploiting the ratings of the individual subjects and a transfer
learning approach, 19 additional deep CNNs were trained, thus obtaining, for each
participant, a model capable of predicting his/her choices in terms of perceptual
quality.

In more detail, in order to obtain a deep CNN mimicking the quality percep-
tion of each of the 19 observers, the training process of the JPEGResNet50 was
continued using, as ground truth data, the ratings provided by the observer dur-
ing the subjective experiment. In this way, the deep CNN modeling each observer
takes advantage of the perceptual features previously learned during the training of
the JPEGResNet50 on the synthetically generated large-scale dataset. During this
additional training phase, the pre-computed features, i.e. those extracted by the
JPEGResNet50, were further refined on the basis of the ratings actually provided
by each observer. This yielded a new set of deep features for each observer that
are expected to better model his/her quality perception. In order not to overfit the
small scale subjectively annotated training set, the deep CNN modeling each of the
19 observers was trained for 10 epochs with a learning rate 100 times larger than
the one used for training the JPEGResNet50.

All the 19 deep CNNs obtained at the end of this process share the architecture
with the JPEGResNet50 (shown in Figure 6.3) but have different weights. As such,
they are deep CNN-based AIOs.

Let consider the deep CNN mimicking the quality perception of an observer o:
upon receiving in input an image i, it provides as output the following five values
po

it, t = 1,2, . . . ,5, that indicate with which probability the observer o would choose
one of the five possible option of the ACR scale, when he/she would be asked to
assess the quality of the image i. The predicted opinion score OSo

i of the observer
o for the image i is then the one with the highest probability, i.e.

OSo
i = arg max

t
(po

it) . (6.6)

The MOS of each image i can therefore be estimated by the mean of the opinion
scores predicted by the AIOs. It will be referred to as the MOSAI .

Modeling individual observers has the advantage of allowing to estimate not
only the MOS but also and above all the expected distribution of observer’s opinion
scores regarding the quality of a given image. Given any image i, one might be
interested in determining the five probabilities αt

i, t = 1,2, . . . ,5, representing the
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(a) LIVE-MD-ph1 (b) LIVE-IQA-r1-ph1 (c) LIVE-IQA-r1-ph2

(d) MICT (e) LIVE-MD-ph2

Figure 6.4: Comparing the correlation values observed between the actual observers
and the ones of the actual observers and AIOs. The higher the overlap, the better.
MD stands for Multi distortion.

expected percentage of the end users that will rate the quality of i choosing t as
the corresponding opinion score.

Exploiting the output of the trained deep CNN-based AIOs, such percentages
can be estimated as it follows:

αt
i = 1

19

19∑︂
o=1

po
it t = 1,2, . . . ,5, i = 1,2, . . . , I. (6.7)

Note that the proposed estimate of the distribution of the observer’s opinion
scores is not just an empirical distribution derived from the 19 score predicted by the
AIOs. Instead, it is derived from the probability values po

it that takes into account
the inability of each observer o to repeat his/her assessment upon many ratings of
the image i, i.e. his/her inconsistency. By considering the subject inconsistency,
one expects that the formula in Eq. (6.7) provides a more robust estimate of the
desired distribution than the one that is based on a really limited number of opinion
scores.

6.5 Numerical Experiments
A number of numerical experiments were conducted to assess the effectiveness

of the approach described in this chapter. First, the designed deep CNN-based
AIOs were compared to actual observers when used to simulate a subjective test.
Then, the accuracy of the deep CNN-based AIOs, in terms of MOS prediction and
estimation of the distribution of final user opinion scores, was evaluated.
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Table 6.2: PLCC value between the scores of each measures and the MOS separated
per dataset and distortion type. It can be noticed that the proposed metrics, i.e.
the MOSres and the MOSAI, yield quite competitive PLCC values. (T) indicates
that the dataset on which the metric is tested is a part of its training set.

DATASET DISTORTION BRISQUE PSNR SSIM MOSres MOSAI
CSIQ [64] JPEG 0.86 0.89 0.94 0.95 0.91
MICT [89] JPEG 0.90 0.64 0.64 0.88 0.75
SDIVL [23] JPEG 0.56 0.73 0.77 0.82 0.43
TID2013 [102] JPEG 0.81 0.91 0.92 0.94 0.84
VCL-FER[151] JPEG 0.76 0.57 0.82 0.93 0.76
LIVE-IQA-r1 [118] JPEG 0.94 0.85 0.96 0.96 0.92
LIVE-IQA-r2 [117] JPEG 0.96 (T) 0.95 0.92 0.91 0.86
MICT [89] JP2K 0.87 0.84 0.84 0.46 0.69
LIVE-IQA-r1 [118] JP2K 0.91 0.85 0.88 0.59 0.83
LIVE-MD-ph1 [56] BLUR + JPEG 0.12 0.37 0.36 0.25 0.83 (T)
LIVE-MD-ph2 [56] BLUR + NOISE 0.01 0.53 0.42 0.02 0.52

Table 6.3: SROCC value between the scores of each measures and the MOS sepa-
rated per dataset and distortion type. It can be noticed that the proposed metrics,
i.e. the MOSres and the MOSAI, yield quite competitive SROCC values. (T)
indicates that the dataset on which the metric is tested is a part of its training set.

DATASET DISTORTION BRISQUE PSNR SSIM MOSres MOSAI
CSIQ JPEG 0.85 0.90 0.93 0.93 0.87
MICT JPEG 0.92 0.60 0.66 0.87 0.75
SDIVL JPEG 0.54 0.76 0.82 0.71 0.29

TID2013 JPEG 0.83 0.93 0.90 0.92 0.83
VCL-FER JPEG 0.79 0.58 0.82 0.94 0.74

LIVE-IQA-r1 JPEG 0.92 0.93 0.94 0.92 0.85
LIVE-IQA-r2 JPEG 0.97 (T) 0.94 0.95 0.90 0.86

MICT JP2K 0.90 0.88 0.88 0.52 0.67
LIVE-IQA-r1 JP2K 0.92 0.92 0.91 0.69 0.78
LIVE-MD-ph1 BLUR+JPEG 0.12 0.37 0.36 0.27 0.83 (T)
LIVE-MD-ph2 BLUR+NOISE 0.16 0.52 0.37 0.01 0.53

6.5.1 Deep CNN-based AIOs vs Human Observers
The aim of this first experiment was to verify whether, in case the AIOs are

used to simulate a subjective test already done with actual observers, the observed
correlation between the ratings expressed by two actual observers will be similar
to that between the ratings of an AIO and an actual one. If so, the AIOs may
be considered as valid substitutes for real observers. To run the experiment, the
datasets coming from five different subjective tests, i.e. the LIVE-MD-ph1 [56], the
phase 1 and 2 of the of the first release of LIVE image quality assessment dataset,
here abbreviated respectively as (LIVE-IQA-r1-ph1, LIVE-IQA-r1-ph2) [118], the
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Table 6.4: RMSE value between the scores of each measure and the MOS separated
per dataset and distortion type. It can be noticed that the proposed metrics, i.e.
the MOSres and the MOSAI, yield quite competitive RMSE values. (T) indicates
that the dataset on which the metric is tested is a part of its training set.

DATASET DISTORTION BRISQUE PSNR SSIM MOSres MOSAI
CSIQ JPEG 0.63 0.56 0.43 0.37 0.51
MICT JPEG 0.51 0.89 0.90 0.55 0.76
SDIVL JPEG 0.77 0.64 0.60 0.54 0.85

TID2013 JPEG 0.40 0.28 0.26 0.24 0.38
VCL-FER JPEG 0.56 0.70 0.49 0.31 0.56

LIVE-IQA-r1 JPEG 0.33 0.49 0.25 0.26 0.35
LIVE-IQA-r2 JPEG 0.26 (T) 0.31 0.38 0.42 0.50

MICT JP2K 0.60 0.64 0.65 1.06 0.87
LIVE-IQA-r1 JP2K 0.35 0.45 0.41 0.69 0.47
LIVE-MD-ph1 BLUR+JPEG 0.49 0.45 0.46 0.47 0.27 (T)
LIVE-MD-ph2 BLUR+NOISE 0.54 0.46 0.49 0.54 0.46

MICT dataset [89] and the phase 2 of the LIVE Multiply Distorted Image Quality
dataset (LIVE-MD-ph2) [56], were considered. For each of these datasets, the
opinion scores expressed by actual observers were available. The AIOs were used
as substitutes of the actual observers to simulate the considered subjective tests.
More precisely, each image used in each of these five subjective experiments was
used as an input to the 19 deep CNN-based AIOs. The opinion scores of each AIO
were computed as indicated by Eq. (6.6).

Figure 6.4 shows the histograms of the Spearman Rank Order Correlation Co-
efficient (SROCC) values between the ratings of a pair made by two real observers
(orange histogram) and a pair made by an AIO and an actual observer (blue his-
togram). The SROCC values between the AIOs and the actual observers are quite
similar to those obtained for any pair of the actual observers in the case of the
LIVE-MD-ph1, LIVE-IQA-r1-ph1 and the LIVE-IQA-r1-ph2, since the histograms
overlap well. This basically indicates that the choices of the AIOs are coherent
with those of the actual observers, as expected. For the MICT and LIVE-MD-ph2
datasets, less overlap is observed between the histograms, lower SROCC values are
observed among the AIOs and actual observers (from 0.3 to 0.75 for the MICT
dataset, from 0.2 to 0.65 for the LIVE-MD-ph2) than those obtained for the actual
observers (from 0.6 to 0.9 for the MICT dataset, from 0.3 to 0.8 for the LIVE-
MD-ph2). The difference between the SROCC values raises a certain number of
questions that deserve more attention and will form the basis of the next research
steps. In particular, it should be stressed that the AIOs were trained on the LIVE-
MD-ph1 dataset, then tested on other datasets, thus performance might not be
optimal. On the other hand, it is important to investigate how context influence
factors of any of the involved experiments, e.g. the lighting conditions in the lab-
oratory, the monitor size, the subject’s expertise, impacted the reported SROCC
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(a) JPEG Quality Parameter equal to 5

(b) JPEG Quality Parameter equal to 15

(c) JPEG Quality Parameter equal to 35

(d) JPEG Quality Parameter equal to 65

(e) JPEG Quality Parameter equal to 95

Figure 6.5: Showcasing the use of the AIOs in practice. The figure shows the
distribution of the user opinions as predicted by the AIOs. The quality of the
image given as an input is progressively degraded by applying JPEG compression.

values. In fact, while the ratings of the actual observer are influenced by the con-
text in which they were obtained, those of the AIOs are always determined by the
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context influence factors of the subjective experiment whose data are used as the
training set. Furthermore, the quality of part of the images in the LIVE-MD-ph2
is impaired by noise artifacts that have never been seen by the AIOs during the
training process. The test was done to verify to which extend the accuracy of AIOs
depends on the type of distortion considered in the training set.

(a) LIVE-MD-ph1 (b) LIVE-IQA-r1-ph1 (c) LIVE-IQA-r1-ph2

(d) MICT (e) LIVE-MD-ph2

Figure 6.6: The predicted distribution of the user opinions for each image as a
function of its MOS. Note that the mode of the distribution tends to increase as
the MOS increases. Furthermore, as expected, the distribution is concentrated
around the value of the mode in most of the cases.

Table 6.6: Percentage of the images for which the predicted users’ distribution of
opinions is not statistically different from the empirically observed one.

Dataset Percentage of images
LIVE-MD-ph1 100%
LIVE-IQA-ph1 66%
LIVE-IQA-ph2 90%
MICT 50%
LIVE-MD-ph2 68%
Average 75%
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6.5.2 Predicting the MOS
The accuracy of the JPEGResNet50 as well as that of the AIOs in predicting the

MOS of an image was evaluated. The results are summarized in Table 6.2, 6.3 and
6.4. For each image, the PSNR [147], SSIM [157] and BRISQUE [80] scores were
computed. The latter is a no reference quality measure, similarly as the models
trained in this chapter, while the PSNR and SSIM are full reference measures, which
are therefore expected to provide a higher accuracy in terms of MOS prediction.
The MOSres, i.e. the estimation of the MOS by the JPEGResNet50 as indicated by
Eq. (6.5), was also computed. Finally, the MOSAI , i.e. the mean of the predicted
opinions provided by the 19 AIOs, upon receiving as an input the corresponding
image was determined.

Before calculating the Pearson linear correlation coefficient (PLCC) and the
root mean square error (RMSE) shown in the Table 6.2 and 6.4, the quality scores
of all the considered measures were normalized from their original scale to the MOS
scale performing a least square fitting using the following logistic function:

ˆ︁MOS = β1

(︄
0.5 + 1

1 + exp β2(VQM − β3)

)︄
+ β4 · VQM + β5 (6.8)

The PLCC, SROCC and RMSE values presented respectively in Table 6.2, Ta-
ble 6.3 and Table 6.4 show that the trained models are very competitive with respect
to all the other measures considered in the experiments in terms of MOS predic-
tion. The JPEGResNet50 is particularly accurate when estimating the quality of
the JPEG compressed images. For instance, on the VCL-FER dataset, the MOSres

provided by the JPEGResNet50 yielded a PLCC of 0.93 and a SROCC of 0.94,
while the BRISQUE only achieved 0.76 and 0.79, respectively. In this case even
the PSNR and SSIM led to a lower accuracy in comparison to the output provided
by the JPEGResNet50. This is really interesting, if one takes into account the fact
that the JPEGResNet50 has been trained using only synthetically generated data.
One might hypothesize that such accuracy is due to the fact that the weights of
the JPEGResNet50 are learned in such a way that the probability values pt

i(β) in
Eq. (6.5) take into account the potential imprecision that affects the labels in the
synthetically generated dataset. Specific experiments are however needed to verify
the validity of this hypothesis.

The accuracy of the JPEGResNet50 is however strongly dependent on the type
of distortion that affects the perceptual quality of the processed image. In fact, the
JPEGResNet50 is not able to accurately process images whose quality is impaired
by artifacts jointly caused by the blur and the JPEG compression as well as the
blur and the noise. This was somehow expected, since the compression process used
for generating the synthetic data used for the training of the JPEGResNet50 was
strongly related to the JPEG quality parameter. This latter observation highlights
the necessity to develop, in future, approaches for artificially generating large-scale
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datasets suitable for training deep neural network models that can be deployed for
a wider range of applications.

When looking at the prediction of the MOS through the mean of the opinions
of the AIOs, i.e. the MOSAI , one can observe that the MOSAI predicts the quality
of the JPEG compressed images with a lower accuracy than the JPEGResNet50.
However, it does perform better when it comes to the assessment of the visual
quality of the images distorted by blur and noise artifacts.

The competitiveness of the trained models was further investigated by con-
ducting statistical tests. More precisely, the measures were compared in terms of
PLCC on all the datasets while taking into account the statistical significance of
the performance gaps. The results are summarized in Table 6.5. As one can notice,
none of the measures was significantly more accurate than all the others on all the
datasets. Indeed, the results show that the JPEGResNet50 is capable of predicting
the quality of JPEG compressed images with an accuracy comparable to that of full
reference measures. In fact, while SSIM was significantly more accurate in terms of
the PLCC in 19 pair comparisons, the same happened for the MOSres in 18 cases.
On the other hand, the MOSAI demonstrated a lower performance. However, in
comparison to the other measures, it showed a greater robustness in predicting the
quality of the images affected by multiple distortions.

It is fundamental to notice that beyond the high competitiveness of the trained
metrics, i.e. the MOSres and the MOSAI , in terms of the MOS prediction, they
offer in parallel a considerable advantage over the other measures. In fact, both the
JPEGResNet50 as well as the model of each single AIO return a discrete probability
distribution that can be used to estimate not only the MOS but also the distribution
of the opinion scores of the end users on the quality scale. The results related to
this particular advantage are presented in the following section.

6.5.3 Predicting the Distribution of Users’ Opinion Scores
Some applications might demand further measures such as the percentage of

end-users that will assess the quality of a given processed image at least as ”Fair”.
Knowing such a percentage would definitely help in enhancing the user QoE. The
computation of the probability of each option of the ACR scale, for each image,
was performed according to the Eq. (6.7) after passing the image as an input to
the 19 AIOs.

Let’s start by showcasing the effectiveness of the trained AIOs on an image
whose quality is progressively degraded by JPEG compression. Starting from the
original pristine image, five distorted images were created by employing different
level of JPEG compression. These images were then given as input to the 19 AIOs.
The distribution of opinion scores was derived on the basis of the output of the
various AIOs. Figure 6.5 illustrates the results. One can notice that the support
of the predicted distribution moves progressively to the right as the level of JPEG
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compression decreases. Furthermore, the predicted distribution shows a greater
variance when the JPEG quality parameter is 35, while for small values of this
parameter (5 and 15) the obtained distribution is almost totally concentrated on a
single opinion score. This is a very interesting observation because it suggests that
deep CNN-based AOIs can replicate the well-known ability of human subjects to
consistently evaluate low-quality content.

This preliminary experiment was then generalized by predicting the distribution
of user opinions for all the images included in five annotated datasets for which
the individual opinion scores are publicly available. Figure 6.6 shows the estimated
distribution for each image as a function of its MOS. It can be noticed, as expected,
that as the MOS increases, higher probability values are progressively concentrated
on the larger opinion scores. In fact, a positive correlation between the MOS and the
mode of the distribution of the user opinions can be observed. It is also important
to notice that, as it often happens in practice during subjective experiments, the
support of the predicted distribution is in almost all the cases concentrated on
consecutive opinion scores. This highlights the fact that the deep CNN-based AIOs,
during the training process, have been able to capture the ordinal nature of the
quality scale. This, however, was not trivial, since none of the constraints of the
optimization problem guiding the training process of the AIOs explicitly imposes
that.

Statistical tests aiming at determining, for each image, whether the predicted
distribution of the user opinion scores is different from the empirical fractions ob-
served during the subjective experiment, with a statistical significance were com-
puted. The Kolmogorov–Smirnov test was used. The tests are performed with 95%
of confidence. Table 6.6 reports, for each considered dataset, the percentage of
the images for which the predicted distribution can be considered not statistically
different than the one observed during the subjective test. In all the cases such a
percentage is greater than 50% and on average, in 75% of the cases, the predicted
distribution is to be considered not statistically different from the distribution of
opinion scores observed during the subjective experiment. The results show there-
fore a high potential of the AIOs-based approach for going beyond the MOS in QoE
measurement scenarios.

6.6 Conclusion
This chapter focused on the issue of modeling the quality perception of indi-

vidual observers using deep CNNs. The purpose of the study was to create deep
CNN-based models able to replicate the choices of a real observer in terms of per-
ceptual quality with a high accuracy. To cope with the difficulties related to the
training of deep CNNs on small-scale annotated datasets, a synthetically generated
large-scale dataset was first created. This was done by mapping progressive levels
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of JPEG compression to the ACR scale. Using this dataset, the JPEGResNet50,
i.e., a very deep neural network with 52 hidden convolutional layers was trained.
The results demonstrate that the JPEGResNet50 can be readily used to accurately
evaluate the quality of JPEG compressed images.

To obtain the desired deep CNN-based model of each single observer, a trans-
fer learning step was conducted exploiting the JPEGResNet50 and a small scale
subjectively annotated dataset. More precisely, the model that mimics the quality
perception of each of the 19 observers considered in this chapter was obtained by
continuing the training of the JPEGResNet50 on the considered small scale anno-
tated dataset. During this second learning phase, the perceptual features learned
by the pre-trained JPEGResNet50 were further updated/fine-tuned on the basis
of the opinions expressed by the observer during the subjective test. This allowed
to obtain, for each observer, the optimal set of features that can accurately model
his/her quality perception. A total of 19 deep CNNs were therefore trained, one
for each observer.

The experiments performed on several datasets highlighted the accuracy of the
trained deep CNNs in terms of MOS prediction, while promising results were ob-
tained when comparing the proposed models to the actual observers and estimating
the distribution of the user opinion scores on the quality of a given image.
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Chapter 7

Conclusions

This thesis focused on a number of open problems in the context of media
quality assessment that were briefly presented in Chapter 1. In Chapter 2, it
was highlighted the importance of reporting the perceptual quality score of any
processed video sequence (PVS) under probabilistic terms rather than using the
traditional deterministic mean opinion score (MOS) value. In fact, the large number
of stochastic influence factors (IFs) that affects the judgment of a human viewer
when rating the perceptual quality of a stimuli makes any MOS value, obtained
in a subjective test, a possible realization of a random variable, since by repeating
the same experience a different MOS value would be observed. Therefore the MOS
was treated as a random variable and an approach to compute an interval to which
it belongs with a user specified probability was presented. Computational results
showcased the effectiveness of such an approach. The approach was published
in [29].

The probabilistic representation of the perceptual quality presented in Chap-
ter 2 yields an estimation of a range of quality scores. However, discussions with
practitioners in the media industry revealed that having a single numerical qual-
ity score coupled with an index that measures the uncertainty that affects such a
quality score because of stochastic IFs could be a better option in some cases. For
this reason, in Chapter 3 and Chapter 4, approaches to derive indexes that can be
used to measure the reliability of any MOS prediction were introduced.

In Chapter 3, the standard deviation of opinion scores (SOS) observed during
a subjective text was modeled as the sum of two components: i) a deterministic
component, called ground truth SOS (gtSOS), predicted from the scores of several
different video quality measures (VQMs); ii) a normally distributed error term
caused by the quantization of the quality scale and the use of limited number
of participants in subjective tests. In that context, the gtSOS of a PVS can be
seen as an index that quantifies its actual ability to confuse viewers and hence the
VQMs that are trained using subjective scores. In Chapter 4 instead, a different
approach was adopted. An index measuring the level of disagreement between the
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quality scores predicted by different VQMs was introduced. A subjective test was
conducted to show the effectiveness of such an index in estimating the reliability of a
MOS prediction computed using a VQM. The results showed that this index allows
distinguishing cases in which the VQMs prediction is likely to be accurate and
those where they might fail in predicting the MOS. Part of the analysis presented
in Chapter 3 and Chapter 4 was summarized and published in the following journal
papers [30, 130].

The last two chapters of this thesis, i.e., Chapter 5 and Chapter 6, focused on
the concept of artificial intelligence-based observers (AIOs). An AIO is a neural
network (NN) trained to mimic an individual observer in terms of quality percep-
tion. Unlike the approaches from Chapter 2 to Chapter 4, the AIOs-based approach
to quality assessment accounts to single viewers’ characteristics and expectations.
A comparative analysis of the AIOs-based approach with respect to the traditional
approach based on MOS prediction yielded the conclusion that AIOs allow for a
more complete objective quality assessment. The research conducted on the AIOs-
based approach has yielded two journal papers [129, 31] and a conference paper
[32].

The derivation of AIOs requires performing a learning task in a more noisy
context than what typically happens when training models for MOS prediction.
This is because the MOS is less noisy than raw opinion scores. The learning task
associated with the design of AIOs is typically more demanding in terms of training
samples. This makes the learning task challenging, especially in the context of
media quality assessment field that is strongly missing large scale annotated dataset
with reliable subjective raw opinion scores.

In the context of this thesis, a data augmentation approach was introduced
in Chapter 5 in order to train AIOs suitable for a wide range of applications.
More precisely, an optimization problem aiming at identifying viewers with similar
perception of quality was formulated. Based on its solution, the opinion scores of
each observer to model were augmented by those of two observers that were seen to
have similar quality perception. The AIOs were then trained feeding shallow NNs
with a number of hand-crafted features.

In Chapter 6, two main sources of noise related to the use of hand-crafted
features and shallow NNs for the training of AIOs were highlighted. In particular,
hand-crafted features might not correctly represent the raw signal; also, the chosen
hand-crafted features could not be the most suitable ones to model a given observer.
It was then observed that deep convolutional NN (CNN)-based AIOs would not
suffer from these two sources of noise.

To overcome the challenges posed by the lack of large scale datasets for the train-
ing of deep CNNs, the transfer learning concept was leveraged in Chapter 6, in a
‘’two-steps” learning approach to obtain deep CNN-based AIOs. The first learning
step consisted in training, on a synthetically annotated large scale dataset, the so
called JPEGResNet50, i.e., a NN able to classify images based on their level of
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JPEG compression. As such, it is a deep CNN that learns relevant features char-
acterizing the perceptual quality. To obtain the deep CNN-based AIO modeling a
subject, a second learning step was conducted to adjust the weights of the JPE-
GResNet50 on the basis of that subject’s opinion scores. This approach yielded the
training of 19 deep CNN-based AIOs made publicly available for research purposes.

7.1 Future Developments
Future developments will mainly focus on the modeling of individual behaviors

in terms of quality perception and thus refining the preliminary results of Chapter 5
and Chapter 6. Also, individual behavior will be modeled by relying on some well
known discrete choice models.

To further illustrate how general the proposed AIOs-based approach is, addi-
tional computational experiments are required to properly assess the correlation
between the metrics deriving from AIOs and those proposed in Chapter 2 to Chap-
ter 4. This will constitute one of the directions to which future developments will
be devoted.

In particular, at a first glance, the problems addressed from the second chapter
of this thesis to the fourth may seem unrelated to the concept of AIO introduced
and treated in Chapter 5 and Chapter 6. However, this is not the case.

Since the AIOs can simulate, with their probabilistic output, the inability of
actual observers to repeat their first opinion score when rating again a PVS they
already evaluated, one can use them to derive many different realizations of the
MOS of the same PVS. From these realizations an empirical distribution of the
MOS can be computed and the related quantiles would yield quality ranges to be
compared to those introduced in Chapter 2.

The diversity observed among the opinion scores predicted by the AIOs for a
given PVS (AI-SOS introduced in Chapter 5) could be seen as an indicator of how
reliable a MOS prediction is. Hence, the AI-SOS is an alternative approach to be
put in comparison with those proposed in Chapter 3 and Chapter 4.

It is worth noting that models for the behavior of individual subjects in media
quality assessment are proving to be a very important tool. For instance, the
subjects’ model proposed in [55] has provided the theoretical foundation to support
the fact that reliable subjective experiments can be performed by collecting repeated
votes from a few subjects [95]. A future analysis will be dedicated to understanding
how the AIOs can concretely help in a similar direction, i.e., making subjective
experiments more efficient.

The deep CNN-based AIOs presented in Chapter 6 were designed for still image
applications. A natural extension of the approach would be that of deriving deep
CNN-based AIOs that can operate on video content. Another question of high
interest for the design of the AIOs is how to collect enough reliable subjective raw

125



Conclusions

opinion scores. In fact new recommendations, tailored for the design of subjective
tests aiming at the training of AIOs needs to be thought. Finally, it is important
to investigate the aspects of the human perception of quality that a deep NN can
really mimic. In other words, it would be interesting to understand whether a
deep NN, trained to predict the opinion scores of a human subject, attempts to
simulate the mental process that guides human choices or implements a totally
different approach that however yields the same prediction. A starting point in
this direction could be a comparative analysis of the sensitivity of a human subject
and that of his/her AIO to specific modifications on the input signal.

As an alternative to NNs, future work will investigate the modeling of individual
choices in media quality assessment using a discrete choice model called ”Logit
model”. The Logit model has already been used in different research fields to model
human subjects’ choices when they have to select one option from a finite number
of alternatives. This is exactly what happens in subjective experiments that use a
discrete scale. Being aware that the ability to model discrete choices could have
turned out to be a suitable asset in media quality assessment, in the context of my
PhD, I dedicated part of my research activity to this aspect. I have published two
journal papers involving discrete choice modeling [28, 111]. An application of my
findings in the context of discrete choice modeling to media quality assessment has
yielded really promising results that I am planning to publish in the next future.
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List of my Publications

My PhD research activities led to seven journal papers, of which six have already
been published and one is ready to be submitted for publication; one book chapter
and seven proceedings.

A.1 Journal Papers
1 2020. L. Fotio Tiotsop, A. Servetti, E. Masala. ”An Integer Linear Program-

ming Model for Efficient Scheduling of UGV Tasks in Precision Agriculture
under Human Supervision”. In: Computer and Operation Research journal.

2 2020. E. Fadda, L. Fotio Tiotsop, D. Manerba, R. Tadei. ”The stochastic
multi-path Traveling Salesman Problem with dependent random travel costs”.
In: Transportation Science.

3 2020. L. Fotio Tiotsop, T. Mizdos, M. Barkowsky, P. Pocta, E. Masala (2020).
”Modeling and Estimating the Subjects’ Diversity of Opinions in Media Qual-
ity Assessment: A Neural Network Based Approach”. In: Multimedia Tools
and Applications.

4 2021. L. Fotio Tiotsop, T. Mizdos, M. Barkowsky, P. Pocta, A. Servetti,
E. Masala. ”Mimicking Individual Media Quality Perception with Neural
Networks based Artificial Observers”. In: ACM Transactions on Multimedia
Computing, Communications and Applications .

5 2021. M. Roohnavazfar, D. Manerba, L. Fotio Tiotsop, S. H. Reza Pasandideh
R. Tadei. ”Stochastic single machine scheduling problem as a multi-stage
dynamic random decision process”. In: Computational Management Science
journal.
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6 2021. L Fotio Tiotsop, F Agboma, G Van Wallendael, A Aldahdooh, S Bosse,
L Janowski, M Barkowsky, E Masala. ”On the Link between Subjective Score
Prediction and Disagreement of Video Quality Metrics”. In: IEEE Access

A.2 To Be Submitted to Journal
7 2021. L. Fotio Tiotsop, A. Servetti, T. Mizdos, M. Uhrina, P. Pocta, G.Van

Wallendael, M. Barkowsky, E. Masala. ”Predicting Individual Quality Rat-
ings of Compressed Images through Deep Neural Networks-based Artificial
Observers”. To be submitted to Signal Processing: Image Communication.

A.3 Book Chapters
8 2020. E. Fadda, L. Fotio Tiotsop, D. Manerba, R. Tadei. ”Optimization

Problems under Uncertainty in Smart Cities” In the Handbook of Smart city

A.4 Proceedings
9 2018. Fadda, E., Fotio Tiotsop, L., Perboli, G., Tadei, R. ”The Multi-Path

Traveling Salesman Problem with Dependent Random Cost Oscillations”. In:
Proceedings of Odysseus 2018 - 7th International Workshop on Freight Trans-
portation and Logistics

10 2019. Fotio Tiotsop, L., Masala, E., Aldahdooh, A., Van Wallendael, G.,
Barkowsky, M. ”Computing Quality-of-Experience Ranges for Video Quality
Estimation”. In: Proceedings of QoMEX 2019 - 11th International Conference
on Quality of Multimedia Experience.

11 2019. Fotio Tiotsop, L., Servetti, A., Masala, E. ”Optimally Scheduling
Complex Logistics Operations Involving Acquisition, Elaboration and Ac-
tion Tasks”. In: Proceedings of RTSI 2019 IEEE 5th International Forum on
Research and Technologies for Society and Industry.

12 2020. L. Fotio Tiotsop, A. Servetti, E. Masala. ”Full Reference Video Qual-
ity Measures Improvement using Neural Networks”. In Proceedings of IEEE
ICASSP Conference.

13 2020. L. Fotio Tiotsop, A. Servetti, E. Masala. ”Investigating Prediction
Accuracy of Full Reference Objective Video Quality Measures through the
ITS4S Dataset”. In Proceedings of Human Vision and Electronic Imaging
(HVEI) Conference.
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14 2020. L. Fotio Tiotsop, T. Mizdos, M. Uhrina, P. Pocta, M. Barkowsky, E.
Masala. ”Predicting Single Observer’s Votes from Objective Measures using
Neural Networks”. In Proceedings of Human Vision and Electronic Imaging
(HVEI) Conference.

15 2021. L. Fotio Tiotsop, T. Mizdos, E. Masala, M. Barkowsky, P. Pocta.
”How to Train No Reference Video Quality Measures for New Coding Stan-
dards using Existing Annotated Datasets?”. In Proceedings of the IEEE 23th
international Workshop on Multimedia Signal Processing (MMSP 2021).
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Appendix B

Datasets Description and Usage

A brief description of the main datasets used in this thesis to train or motivate
the proposed models is provided here together with the main reason why they were
chosen. A list of the other datasets that have been used only as test set is also
provided with a reference the interested reader may refer to for further details.

B.1 VQEG HD Phase 1 Experiment Datasets
The VQEG HD Phase 1 Experiment was run in six different laboratories yielding

six different datasets traditionally called VQEG-HD1, 2, 3, 4, 5 and 6 within the
media quality assessment community. Each of these datasets contains around 160
processed video sequences (PVSs) that were evaluated by 24 subjects. The absolute
category rating with hidden reference approach was used to collect participants’
opinion scores.

The participants were carefully screened for normal visual acuity (with or with-
out corrective glasses) by means of the Snellen test [123] and for normal color vision
by means of the Ishihara test [18]. Furthermore, after the test, a statistical approach
was used to check whether the opinion scores provided by each participants were
consistent enough with those of the other participants. In case of large inconsis-
tency, the ratings of the related participant were discarded and a new participant
was invited. Futher details can be found in the test final report [139]

In each laboratory, the source video sequences were chosen in such a way to cover
a large range of content type, i.e., movies, sports, general TV material with much
variability as possible. The PVSs were then obtained from the selected source
content by applying both compression (e.g., AVC and MPEG-2 encoding) and
transmission artifacts (e.g., bursty packet loss).

Based on the efforts invested to ensure the consistency of the gathered opin-
ion scores and considering that a very large set of sources and distortions were
integrated, the VQEG Phase 1 experiment datasets can be considered a suitable
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assets for research. For this reason, this thesis has made extensive use of them in
Chapter 2, Chapter 3 and Chapter 5 where they have been used both as training
and testing set. This allowed to infer on the accuracy of the proposed models and
tools in a more general application context.

B.2 The ITS4S Dataset
The ITS4S dataset [96] includes 813 unique source sequences at 1280x720 reso-

lution, each about 4 second long. A subset comprising 514 of these sequences has
been AVC compressed by the authors at one of these 5 different bit rate values:
512, 951, 1256, 1732, 2340 kbps. For lower bit rate encoding, lower resolutions
have been used [96], however all content has been decoded and upscaled again at
1280x720 before performing any subjective evaluation.

It is worth noting that the ITS4S dataset was originally designed for the training
of a no reference video quality metric. As such, a single stimuli approach was
adopted during the test. This dataset is somewhat particular as the quality of each
PVS was evaluated in absolute terms, i.e., without referring neither to the related
source content nor to the quality of another PVS deriving from the same source.

The ITS4S dataset was used in Chapter 3 in order to evaluate whether the
proposed SOS model is valid also in the case where the quality is evaluated under
absolute terms, since one might expect such a situation to generate more diversity
among subjects’ opinion scores. It was then also used in Chapter 5 to train and
assess the effectiveness of the AIOs when dealing with coding only artifacts.

B.3 VQMs Disagreement-based Dataset
This dataset was specially designed to assess the effectiveness of the VQMs

disagreement index proposed in Chapter 4. The experiment was run from scratch
since there was no dataset in the literature including PVSs selected based on a
potential disagreement among the VQMs’ scores.

The PVSs used in the subjective test were carefully selected to include encoded
videos sequence that had high disagreements between the VQMs. A number of
encoded videos sequence where all the metrics were consistent with each other were
also included in the subjective test. A total of 83 PVSs were put forward to a
panel of viewers for the subjective tests. A total of 16 subjects participated in this
evaluation across two laboratories in Italy and Germany. The PVSs were selected
to cover the full range of impairments from low to high quality, and the double
stimuli impairment scale was used, i.e., the reference/source video was shown first,
followed by the PVS, and the subject was asked to score, on a five points scale, the
artifacts’ annoyance in the PVS with respect to the related source.
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B.4 – The LIVE Multiply Distorted Phase 1 Experiment Dataset

B.4 The LIVE Multiply Distorted Phase 1 Ex-
periment Dataset

This dataset derives from a subjective experiment run at the Laboratory for
Image and Video Engineering (LIVE). A total of 15 reference/source images was
considered. To each of these source images, nine hypothetical reference circuits
(HRCs) were applied. These HRCs included: three different levels of JPEG com-
pression, three different levels of blur, and finally 9 HRCs obtained by combining
blurring artifacts with JPEG compression. The 15 reference images were put to-
gether with the generated distorted images (15*15) yielding a total of 240 images
that were evaluated by 19 subjects on a 0 to 100 quality scale.

This dataset was used in Chapter 6 of this thesis to implement the transfer
learning step yielding the 19 trained AIOs. The choice to use this specific dataset
was mainly motivated by the fact that it offers up to 240 opinion scores for each
individual subject.

B.5 Other Datasets
• The Netflix Public Dataset [68] contains 70 Full HD PVSs subjectively anno-

tated by 26 viewers. While its small number of PVSs precludes the possibility
to use it as an effective training set, the fact that the qualities of the 70 PVSs
cover the whole quality scale makes it a valid test set. This dataset was used
in Chapter 2 and Chapter 3 to validate the proposed approaches.

• The JEG-Hybrid large scale dataset [14] contains around 60,000 HEVC en-
coded PVSs not subjectively annotated. It was used in Chapter 2 and Chap-
ter 5 to assess the accuracy of the proposed models on a large set of PVSs.

• The TID2013 [102], the MICT [89], the CSIQ [64], the SDIVL [23], the VCL-
FER [151] The LIVE image quality assessment dataset [117, 118] and the
LIVE multiply distortion phase 2 dataset [56] are well known datasets within
the media quality assessment community. They are commonly used to bench-
mark newly proposed quality metrics. These datasets were used in Chapter 6
to compare the proposed video quality measures with some state-of-the-art
ones.

• The ImageNet competition dataset [63] is a well known dataset within the
computer vision community. It contains over a million of images aimed at
the training of deep neural networks for image classification. 100,000 images
were selected from this dataset and used to generate a synthetically annotated
training set in Chapter 6
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