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Abstract—In this paper, the adoption of Machine Learn-
ing (ML) classifiers is addressed to improve the performance
of highly wearable, single-channel instrumentation for Brain-
Computer Interfaces (BCIs). The proposed BCI is based on
the classification of Steady-State Visually Evoked Potentials
(SSVEPs). In this setup, Augmented Reality Smart Glasses are
used to generate and display the flickering stimuli for the SSVEP
elicitation. An experimental campaign was conducted on 20
adult volunteers. Successively, a Leave-One-Subject-Out Cross
Validation was performed to validate the proposed algorithm.
The obtained experimental results demonstrate that suitable
ML-based processing strategies outperform the state-of-the-art
techniques in terms of classification accuracy. Furthermore, it
was also shown that the adoption of an inter-subjective model
successfully led to a decrease in the 3-σ uncertainty: this can
facilitate future developments of ready-to-use systems.

Index Terms—Augmented Reality, Brain-Computer Interface,
BCI, EEG, Industry 4.0, Instrumentation, Machine Learning,
SSVEP, Real-Time Systems, Wearable Systems.

I. INTRODUCTION

B rain-Computer Interfaces (BCIs) are a promising technol-
ogy able to create a direct communication path between

human brain and external devices, without using peripheral
nerves and muscles [1]. Among the existing BCI paradigms,
Steady-State Visually Evoked Potential (SSVEP) has been in-
creasingly adopted in a very wide variety of application fields,
such as gaming [2], entertainment [3], industrial inspection
[4], and healthcare [5]–[7]. SSVEPs are characterized by a

specific brain response to continuously observed flickering
stimuli [8], usually in the range from 6 Hz to 30 Hz, although
the best Signal to Noise Ratio is achieved in the range from
8 Hz to 15 Hz [9]. Generally, SSVEPs show a sinusoidal-like
waveform, with a fundamental frequency equal to that of the
gazed stimulus, and often higher harmonics [10], as shown in
Fig. 1. Therefore, in pratical applications, such SSVEP-based
systems allow the user to send commands to external devices
by simply staring at a desired flickering stimulus.

Traditionally, these flickering stimuli are visualized on LCD
monitors. Moreover, the elicited SSVEPs are acquired through
multi-channel electroencephalogram (EEG) data acquisition
[11]. This instrumentation is bulky and inevitably limits the
system portability, confining BCI-SSVEP applications to lab-
oratory environments only.

For this reason, more wearable solutions, based on single-
channel EEG acquisition, have gained momentum in recent
years [12], [13]. Most importantly, the use of Augmented Real-
ity (AR) smart glasses has emerged as a promising strategy to
render the flickering stimuli, while ensuring more immersivity
and engagement in the fruition of BCI applications [14]–[17].

However, the performance of AR-based BCI are strictly
dependent on the specification of the chosen AR device [5],
[18]. One of the major characteristics to be addressed is that
AR devices are characterized by the non-predictability of the
frame rate. This uncertainty inevitably leads to a shift in
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Fig. 1. Typical SSVEP in time domain (a) and frequency domain (b).

the frequency values of the rendered stimuli, reducing the
classification capability of the SSVEP elicited on the users
EEG [5].

Therefore, the current challenge is to keep the results
obtained by AR-based, single-channel BCI as close as possible
to those achieved by traditional setups [19]. To this aim, the
adoption of Machine Learning (ML) algorithms represents a
promising strategy [20]. In fact, several works have already
addressed the use of ML classifiers, such as Support Vector
Machine (SVM), k-Nearest Neighbors (k-NN) [21], [22], and
Artificial Neural Networks (ANNs) [23], by improving the
SSVEPs classification performance.

In this work, the metrological performance of highly-
wearable, AR-based SSVEP BCIs are enhanced by adopting
the aforementioned ML-based classifiers (SVM, k-NN, ANN).
An innovative algorithm was designed, implemented and com-

Fig. 2. System Architecture.

pared to previously adopted techniques such as traditional
Power Spectral Density and Canonical Correlation Analysis.

The paper is organized as follows. Section II provides a
description of the proposed wearable BCI instrumentation,
along with the design of the ML-based SSVEP classification
algorithm. Then, the experimental metrological characteriza-
tion is reported and discussed in Section III, along with the
obtained results. Finally, in Section IV, conclusions are drawn.

II. MATERIALS AND METHODS

This work proposes an improvement in the real-time classi-
fication of SSVEPs for highly wearable BCI instrumentation.
For this reason, the architecture of the single-channel BCI de-
veloped in [4]–[6], [24] was considered. Such instrumentation
is particularly challenging for wearable applications, since (i)
the number of electrodes is very limited, and (ii) AR smart
glasses are used to elicit users SSVEPs.

A. Architecture

In Fig. 2, the main block of the system architecture are
summarized. AR Glasses are used to render two flickering
stimuli (at 10 and 12 Hz) for the SSVEPs elicitation. Then, a
pair of active and dry Electrodes are used to capture the user
EEG signal in Oz and Fz positions according to the 10-20
International System [6]. A third, passive electrode (Driven
Right Leg, DRL) is placed on the earlobe and acts as a refer-
ence. The brain signal is collected by a portable Acquisition
Unit, which sends the EEG Samples to a portable Processing
Unit in real time. The digitized signal is processed by adopting
an enhanced, ML-based Algorithm, and the detected command
is sent in real time to the BCI Application, which actuates the
received command providing a visual feedback to the User to
show the output of the desired selection.

B. Hardware

The adopted hardware is shown in Fig. 3.
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Fig. 3. Hardware used: a) Epson Moverio BT-200; b) Olimex EEG-SMT; c)
Raspberry Pi 4.

• The AR Glasses used in this work are the Epson Moverio
BT-200. These Glasses are equipped with Android OS
and have a 60 Hz Refresh Rate, with a 23° diagonal field
of view.

• The wearable Acquisition Unit chosen to acquire the
users brain signals is the Olimex EEG-SMT, a 10-bit,
256 S/s, open source Analog-to-Digital converter.

• The adopted Processing Unit is the Raspberry Pi 4, a
single-board PC. A script written in Python 3 receives
via USB the digitized signal from the Olimex, process
it by means of the Scikit-learn tool, and sends the
related output command over TCP/IP protocol to the BCI
Application.

C. SSVEP Classification

The proposed SSVEP classification algorithm was designed
and implemented by the Authors. The main blocks are shown
in Fig. 4. The EEG Samples are processed both in frequency
and time domains, in order to obtain a reduced number of
significant features.

• In the frequency domain, first, a fast Fourier transform
(FFT) is performed. Then, the actual SSVEPs Peaks are
detected around the two rendered stimulus frequencies.
In this way, the peaks detection mitigates the uncertainty
introduced by the AR Glasses during the generation of
the flickering stimuli, resulting in more accurate Power
Spectral Densities (PSDs) P1 and P2 around the two
detected peaks.

• In the time domain, first, a Band pass Filtering between
5 and 25 Hz is applied by means of a Finite Impulsive
Response (FIR) filter with linear phase response. Then,
the Canonical Correlation Analysis (CCA) between
the filtered signal and a set of sinewaves, having the
frequencies of the two detected peaks and variable
phase, is performed. In this way, also the two canonical
correlation coefficients ρ1 and ρ2 obtained for each
frequency are more accurate.

Fig. 4. SSVEP Classification Algorithm with processing in frequency (blue
box) and time (yellow box) domain.

Ultimately, for a given brain signal composed of fs ·N EEG
samples and two stimulus frequencies to classify (where fs
is the sampling frequency, and N is the number of seconds)
only four features are extracted and Normalized.
The Classification is carried out by means of three ML
classifiers: in particular, Support Vector Machine (SVM), k-
Nearest Neighbour (k-NN), and Artificial Neural Network
(ANN) are employed.

• SVM is a classifier which separates data through a
decision hyperplane. SVM maps the inputs in a vector
space, finding an optimal hyperplane to maximize the
distance from the class boundaries.

• k-NN can be described as follows: given labeled points,
a positive integer value k, and a distance measure d for
a new input point p, k-NN labels p as the most present
class among its k neighbors (through the measure d) that
are in the labeled set.

• ANN is a Feed-Forward Artificial Neural Network with
one or more layers of hidden neurons between the input
and output layers. Each layer has weighted connections
(W ) entering from the previous layer and outgoing in
the next one. In the learning phase, a error function
E(W ) is minimized through a proper learning algorithm
as Gradient Descent.

The proposed algorithm was metrologically characterized
by conducting an experimental campaign on 20 untrained and
healthy volunteers, by acquiring 24 signals per subject. The
chosen flickering frequencies were 10 Hz (rendered on the
right side of the screen) and 12 Hz (rendered on the left).
Each subject was asked to focus on one stimulus at time,
for 10 s. Two metrics are used to evaluate the classification
performance: (i) classification accuracy, and (ii) acquisition
time. The classification accuracy is defined as the percentage
of brain signal correctly classified, while the acquisition time
represents the time duration of the signals considered.



TABLE I
CLASSIFIERS, OPTIMIZED HYPERPARAMETERS, AND VARIATION RANGES

Classifier Hyperparameter Range

k-Nearest Neighbour (k-NN)
Distance {Minkowski, Chebychev, Manhattan, Cosine, Euclidean}
Distance Weight {equal, inverse, squaredinverse}
Num Neighbors {3, 5, 6, 7}

Support Vector Machine (SVM)
C Regularization {0.01, 0.10, 1.00, 1.77, 5.00, 10.00, 15.00}
Kernel Function {linear, radial basis, polynomial}
Polynomial Order {2, 3, 4}

Artificial Neural Network (ANN)

Activation Function {relu, tanh}
Hidden Layer nr. of Neurons [5, 505] step: 50
Learning Rate {0.0005, 0.0001, 0.0010, 0.0050, 0.0100}
Validation Fraction {0.2, 0.3}

The SSVEP algorithm was tested on this realized data set
by means of Leave One Subject Out Cross Validation (LOSO
CV). It is very promising variant of the k-fold cross-validation
approach, as it highlights the inter-individual reproducibility.
This procedure divides the data set in 20 folds, where each
fold is constituted by a subject. Then, for each combination
of the models hyperparameters, the process will run 20 times,
each time with a different subject in the test set, taking the
remaining ones in the training set. Table I shows the adopted
grid search for the tuning of the hyperparameters.

III. EXPERIMENTAL RESULTS

Table II summarizes the classification accuracy obtained by
the proposed algorithm in function of the acquisition time T
and the ML model. The uncertainty is evaluated at 3-σ. As
visible, even with 0.5-s time duration, it is possible to evidently
discriminate the two classes. Clearly, increasing the duration of
T leads to an easier patterns separation and, thus, to an increase
of the classification accuracy. Overall, the best performance
are obtained by ANN; however, even a more simple classifier
like k-NN reaches comparable accuracy levels.

In Table III, a comparison between the results achieved
by ANN is compared with those obtained by two classifi-
cation algorithm previously developed. It can be seen that
the the proposed ML-based algorithm provides a significant
enhancement. The main contribution to this improvement is
given by the peak detection block, which allows to obtain
more accurate features both in time and frequency domains,
thus mitigating the uncertainty caused by unpredictable frame
rate variation of AR devices. In fact, the frame rate of Epson
Moverio BT-200 was assessed around the interval [58.0-62.0]
Hz. This leads to a generation of the flickering stimuli in
the intervals [9.7-10.3], and [11.6-12.4] Hz, instead of the
nominal 10 Hz and 12 Hz, respectively. Thus, an adaptive
strategy to find the FFT peak position represents the best
solution to improve the SSVEP classification, especially in
AR-based setup. Finally, it should be noted that both the CCA
and PSD strategy are characterized by a worse inter-individual
3-σ uncertainty. Hence, the model proposed in this work offers
a greater possibility to be generalized to every users.

IV. CONCLUSIONS

This work addresses a performance enhancement of a highly
wearable, single-channel instrumentation for BCI. This BCI is

TABLE II
ACCURACY RESULTS AS A FUNCTION OF ML MODELS AND TIME

RESPONSE

T (s) k-NN (%) SVM (%) ANN (%)
0.5 72.8 ± 6.2 74.8 ± 6.4 75.0 ± 6.4
1.0 80.7 ± 6.6 82.0 ± 6.6 82.1 ± 6.6
2.0 88.3 ± 3.9 89.2 ± 3.5 89.2 ± 3.5
3.0 93.3 ± 3.9 93.6 ± 3.5 93.7 ± 3.7
5.0 96.4 ± 3.2 96.4 ± 3.1 96.7 ± 2.6
10.0 99.0 ± 1.9 99.2 ± 1.9 99.4 ± 1.8

TABLE III
ANN RESULTS COMPARED WITH THE RESULTS FROM THE CCA AND

PSD ALGORITHMS

T (s) CCA [6] (%) PSD [4] (%) ANN (%)
0.5 70.8 ± 6.7 - 75.0 ± 6.4
1.0 74.8 ± 12.1 - 82.1 ± 6.6
2.0 84.9 ± 8.1 81.1 ± 11.4 89.2 ± 3.5
3.0 91.0 ± 6.3 87.7 ± 7.8 93.7 ± 3.7
5.0 95.4 ± 3.7 96.0 ± 3.9 96.7 ± 2.6
10.0 - 98.9 ± 1.5 99.4 ± 1.8

based on the detection and classification of SSVEPs elicited
by means of AR smart glasses. The adoption of AR guarantees
greater immersivity and engagement with respect to traditional
LCD displays. A ML-based algorithm was implemented to
improve the SSVEP classification, in terms of classification
accuracy and time response. Experimental results on 20 vol-
unteers showed a significant increase in the performance with
respect to the consolidated CCA and PSD-based algorithms.
In particular, the combined use of time-domain and frequency-
domain features leads to a mitigatation of the uncertainty
introduced by unpredictable frame rate variation during the
rendering of the flickering stimuli. This translates into a better
discrimination between classes, that leads to an improvement
of the system performance, without a significant increase of
computational complexity. In fact, even a simple classifier
like k-NN manages to outperform the previously obtained
results. This constitutes an advantage in the development of
wearable devices, when few channels are used and a small
computational complexity is required. Finally, an additional
advantage in using ML is the decrease in 3-σ uncertainty.
Therefore, such approach can facilitate future developments
of ready-to-use systems.
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