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Abstract
Trial-dependent miscalibration can severely affect the perfor-
mance of speaker verification systems. Global calibration meth-
ods address the problem by incorporating side-information into
the calibration model. Alternatively, score normalization ap-
proaches exploit statistics computed from scores of impos-
tor cohorts. While effective in some scenarios, the latter ap-
proaches suffer from poor global calibration, and in some cases
may even increase trial-dependent miscalibration with respect
to unnormalized scores. While the former issue can be ad-
dressed through global calibration, the latter problem can result
in degraded performance. In this work, we provide a theoreti-
cal framework for incorporating impostor score statistics as side
information in discriminative calibration models. Our approach
allows us to improve both global and trial-dependent calibra-
tion, without incurring in some of the issues of score normal-
ization. Results on SRE 2019 and SITW datasets show that
our approach achieves similar or better (up to 15% relative)
results compared to state-of-the-art score normalization tech-
niques. The model can also be trivially extended to incorporate
additional side-information.

1. Introduction
Calibrated speaker verification systems classify a trial as be-
longing to a single speaker (same speaker or target trial) or to
different speakers (non-target trial) by computing a score that
represents the log-likelihood ratio (LLR) between the target
and non-target hypotheses. The score is then compared with
a threshold that depends on class priors and misclassification
costs to produce a hard decision. Mismatch between the train-
ing and the evaluation populations, or the intrinsic properties of
the classification back-end, however, may result in verification
scores that are not well calibrated. In this case, hard decisions
based only on class priors and error costs are sub-optimal, and
can result in significantly larger misclassification costs. Several
approaches have been proposed to address miscalibration. Dis-
criminative methods based on prior-weighted Logistic Regres-
sion (LogReg) [1, 2] are often employed, and good results are
also obtained by generative supervised and unsupervised tech-
niques based on Gaussian assumptions [3, 4] or more complex
distributions [5, 6, 7, 8]. For an in-depth analysis of genera-
tive calibration we refer the reader to [6]. Both LogReg and
the aforementioned generative approaches provide global, or
dataset-level, calibration: scores are mapped to LLRs through
a transformation that depends only on the score itself, and is
often assumed to be monotone as to avoid modifying the dis-
crimination power of the original scores. Global calibration is
effective in reducing the gap between actual and minimum de-

tection costs for a large set of possible applications, and is par-
ticularly useful for compensating global miscalibration effects
such as those deriving from models that are not able to directly
output verification log-likelihood ratios (e.g. Pairwise Support
Vector Machines (PSVM) [9, 10], cosine scoring [11]), or those
resulting from distribution mismatch between training and eval-
uation data. However, in many cases scores present also trial-
dependent miscalibration, i.e. trials are differently affected by
miscalibration sources, so that trial-dependent calibration trans-
formations are required to obtain well-calibrated LLRs. In these
cases trial-dependent calibration allows us to increase the dis-
crimination capabilities of the calibrated scores, reducing both
the actual and the minimum detection costs. A well-known
example is utterance duration: global calibration models that
are effective for long utterances usually are not effective for
short segments and vice versa, whereas calibration transforma-
tions that depend on the duration of the trial utterances usually
lead to improved minimum and actual costs [12, 13, 14, 15].
To address these issues, global calibration approaches have
been extended to partially handle trial-dependent miscalibra-
tion. Prior-weighted Logistic Regression has been modified
to incorporate side-information consisting, for example, in ut-
terance duration and noise levels [12, 13, 14]. Utterance du-
ration has also been effectively incorporated in generative ap-
proaches [15], and the latter work provides a framework that
may be extended to handle also different sources of trial-level
miscalibration. While effective, these methods require an ex-
plicit model for between-trial variability. Recently, an approach
that extracts side-information directly from speaker embeddings
has been proposed in [16]. The authors jointly train a discrim-
inative Probabilistic Linear Discriminant Analysis [17] classi-
fier and a calibration back-end that exploits a formulation that
closely mimics the scoring expression of discriminative mod-
els [9, 10, 17] to produce a classifier that is robust to different
evaluation conditions. While effective, the approach is, how-
ever, tied to a specific classification back-end.

As an alternative to trial-dependent calibration, score nor-
malization [18, 19, 20, 21, 22, 23] can also be used to mitigate
trial-level miscalibration [24, 25]. Score normalization aims at
mapping the distribution of non-target scores of different en-
rollment speakers and test segments to fixed, common distribu-
tions (usually, a standard Gaussian). In contrast with calibra-
tion, however, score normalization tends to produce scores that
are globally miscalibrated. A second step that performs global
re-calibration is therefore usually required to produce good de-
cisions. Furthermore, as we show in the next sections, while
these methods are effective for some tasks, in some cases they
may actually increase, rather than reduce, trial-level miscalibra-
tion, therefore lowering the discrimination power and the ver-
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ification accuracy with respect to the original scores. In this
work we address this issue by proposing a discriminative model
based on prior-weighted logistic regression which employs, as
side-information, the same kind of information that is used by
score normalization approaches. The model is motivated by an
analysis of the distribution of well-calibrated scores [3]. We
show that our approach is able to address both global and trial-
level miscalibration, with a negligible increase in complexity
compared to discriminative global methods. We propose the
model as an alternative to score normalization that provides
well-calibrated results. It’s worth noting that our approach is
complementary to other trial-dependent models. For example,
additional quality measures such as those used in [13] can be
straightforwardly incorporated in our model whereas it’s rel-
atively easy to extend the work [16] to incorporate our score
normalization-derived side-information.

The rest of the paper is organized as follows. In Section 2
we analyze the limitations of score normalization, showing that
it may increase, rather than decrease, trial-level miscalibra-
tion. In Section 3 we show how we can incorporate impostor
score statistics as quality measures for discriminative calibra-
tion based on logistic regression. Section 4 presents our experi-
mental results. Conclusions are drawn in Section 5.

2. Score normalization and calibration
Score normalization aims at reducing trial-dependent miscali-
bration by normalizing the impostor (non-target) score distribu-
tions of different enrollment and/or test utterances. It employs
(unlabeled) impostor cohorts to compute impostor scores for
both the enrollment and test sides of a trial. Impostor score
statistics are then used to normalize the trial score. Symmet-
ric normalization (S-norm) [20] and Adaptive S-norm (AS-
norm) [23, 22] are among the most successful approaches.
Given a trial (e, t) and an impostor cohort1 {xi}Ni=1 comprising
N samples, S-norm computes the normalized score as the aver-
age between Z-normalized [18] and T-normalized [19] scores

ss-norm(e, t) =
1

2

(
s(e, t)− µ(e)

σ(e)
+
s(e, t)− µ(t)

σ(t)

)
(1)

where s(e, t) is the unnormalized score for the trial (e, t). The
statistics

µ(e), σ(e), µ(t), σ(t) (2)

are the mean and standard deviation of the set of impostor scores
{s(e, xi)}Ni=1 and {s(xi, t)}Ni=1, respectively. Adaptive vari-
ants such as AS-norm [23, 22] introduce a cohort selection
step. The statistics in (2) are computed from a subset of im-
postors, rather than from the full cohort. The subset is usually
selected so that the cohort used to compute the enrollment statis-
tics µ(e), σ(e) is similar to the test utterance t, and vice-versa.
This allows for heterogeneous cohorts that can cover a wider
range of possible conditions, and often (but not always) results
in better accuracy with respect to non adaptive methods.

An advantage of score normalization is that it can lever-
age unlabeled datasets with just a single repetition per impos-
tor speaker, and does not require additional side-information to
be provided. On the contrary, current calibration approaches
can exploit unlabeled datasets to estimate calibration parame-
ters, but they still require multiple repetitions per speaker for
global calibration, and external side-information in order to im-
prove trial-level miscalibration. Score normalization, however,

1In general, enrollment and impostor cohort may be different. To
ease the exposition, we here consider a single cohort.
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Figure 1: Gaussian-distributed score densities for a single
speaker.
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Figure 2: Gaussian-distributed score densities for three differ-
ent speakers. Symmetric densities (densities with the same vari-
ance) correspond to the same speaker.

has two main drawbacks. First, it’s not able to provide good
global calibration, since it does not have access to information
on the distribution of target scores. Global calibration is there-
fore still necessary to obtain well-calibrated, normalized scores.
An additional dataset that includes multiple speaker repetitions
is thus required also in this case to estimate the calibration pa-
rameters. The second drawback is that score normalization may,
depending on the task, increase, rather than reduce, trial-level
miscalibration. To show this, we consider a simple scenario
where we fix an enrollment speaker i, and we assume that im-
postor and target scores are generated by Gaussian-distributed
R.V.s, as in Figure 1. We also assume that the scores are well-
calibrated LLRs. From [3], this requires that the same-speaker
and different speaker distribution densities fS and fD are re-
lated by

fD(s) = N
(
s

∣∣∣∣−
1

2
vi, vi

)
, fS(s) = N

(
s

∣∣∣∣
1

2
vi, vi

)

(3)
where vi is a variance term. It is worth noting that the vari-
ance vi affects the discriminability of the scores of the speaker:
larger variance implies easier trials, while smaller variance im-
plies harder trials. Since in practical use cases different enroll-
ment utterances convey different amounts of information (e.g.
because of different duration), it’s reasonable to expect that
different enrolled speakers will present score distributions that
have different variances, even for perfectly calibrated verifica-
tion models. We therefore consider a set where we have three
different enrolled speakers, whose score distributions have dif-
ferent variance, as shown in Figure 2. Symmetric density pairs
refer to the same enrollment speaker (and have the same vari-
ance). For each speaker, the corresponding scores are well cali-
brated by construction. If we assume a uniform probability that
a trial will be formed for any of the three enrolled speakers, re-
gardless of the class hypothesis, then the pooled scores for the
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three speakers are also perfectly calibrated.
We now consider applying Z-normalization: the scores of

each speaker are normalized so that the impostor densities be-
come standard Gaussian. The results are shown in Figure 3. As
we can see, the impostor score densities overlap, whereas the
target densities have the same scale, but different locations. If
we consider the pooled scores, it’s easy verifying that the scores
are no more globally well-calibrated, and equation (3) does not
hold anymore. Furthermore, we can also observe that, in gen-
eral, even if we are able to find a threshold that is optimal for
a given speaker, the same threshold would be sub-optimal for
the other two speakers, since the target densities have the same
shape but different location. Indeed, score normalization has
introduced speaker-dependent miscalibration. This is confirmed
by the Bayes error plots in Figure 4, which plot minimum costs2

for the original and Z-normalized scores. We can observe that
the original scores result in lower costs over the whole range of
application priors.

Summarizing, while score normalization may be effective
in applications with significant trial-dependent miscalibration,
for some tasks it may rather adversely affect performance. Fur-
thermore, a global calibration step is nevertheless required to
transform normalized scores in well-calibrated LLRs. To ad-
dress the first issue, we propose an alternative approach that
directly integrates the impostor score statistics used by score
normalization with a global discriminative calibrator.

3. Impostor statistics as quality measures
In this section we show how impostor score statistics can be
integrated into standard prior-weighted logistic regression as a
particular kind of side-information, that can be linearly com-
bined with the original scores to improve trial-dependent mis-
calibration while obtaining, at the same time, good global cal-
ibration. We start our derivations by considering again a Z-
norm-style approach, in which we re-calibrate the scores of a set
of given enrollment speakers with a speaker-dependent transfor-
mation. We will then extend the method to handle both sides of
a trial. We assume that, given a speaker i, the scores are sam-
ples of Gaussian3 distributed R.V.s XD,i, XS,i that are well
calibrated up to a speaker-dependent affine transformation:

XD,i ∼ aiXcal
D,i + bi, XS,i ∼ aiXcal

S,i + bi, (4)

where

Xcal
D,i ∼ N

(
−1

2
vi, vi

)
, Xcal

S,i ∼ N
(
1

2
vi, vi

)
. (5)

The term vi represents the variance of the well-calibrated R.V.s
Xcal

S,i and Xcal
D,i, while ai and bi are enrollment-dependent mis-

calibration parameters. If we knew both ai and bi for each
enrolled speaker, we would be able to re-calibrate the speaker
scores through the transformation

scal =
s− bi
ai

. (6)

We can observe that, if we assume ai = 1 for all speakers, then
bi can be computed once we know the mean mD,i and variance

2We compute minimum costs since Z-normalized scores would oth-
erwise require a further score calibration step.

3Although we have shown that the Gaussian assumption may be in-
accurate for some tasks [6, 15], in this context it’s sufficient for our
goals and allows us to greatly simplify the derivations.
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Figure 3: Score densities for the three speakers after Z-norm.
The non-target score densities (in blue) overlap.
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Figure 4: Bayes error plots for the synthetic scores of Figures 2
(in red) and 3 (in blue).

vi of XD,i:

bi = mD,i +
1

2
avi = mD,i +

1

2
vi. (7)

Although in practice also mD,i and vi are unknown, we may
replace them with an estimate obtained from the set of impostor
scores for speaker i. In the general case, however, ai is un-
known, and we are not able to estimate both ai and bi without
knowledge of the target score distribution for speaker i. Score
normalization addresses this issue by further assuming that the
impostor scores of each speaker have been generated by R.V.s
which have the same distribution, up to a speaker-dependent
affine transformation.

XD,i ∼ aiXcal
D + bi, Xcal

D ∼ N
(
−1

2
v, v

)
. (8)

For score normalization to be effective, the normalized scores
should be well-calibrated for each speaker, which requires that

XS,i ∼ aiXcal
S + bi, Xcal

S ∼ N
(
1

2
v, v

)
. (9)

The calibrated distributions are thus assumed to have the same
mean and the same variance vi = v for all speakers. This al-
lows estimating both terms ai and bi up to speaker-independent
(global) factors, which can then be estimated by a global lin-
ear calibration method. Score normalization can thus be close
to optimal for datasets that closely match the same-variance as-
sumption. However, as we have shown in the previous section,
this assumption may not be very accurate in real use cases, and
may result in an increase of trial-dependent miscalibration com-
pared to the original scores.

In this work we replace the same-variance assumption vi =
v with the dual assumption that the scaling factors ai are inde-
pendent of the enrollment speaker, i.e. ai = a for any speaker.
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This corresponds to the assumption that most trial-dependent
miscalibration can actually be modeled as a trial-dependent (or
speaker dependent, in a Z-norm-style scenario) shift, while the
variance variability is actually due to the intrinsic differences in
the amount of information provided by different utterances. We
therefore assume that the miscalibrated scores are generated by
R.V.s with distributions

XD,i ∼ aXcal
D,i + bi, XS,i ∼ aXcal

S,i + bi, (10)

where Xcal
D,i and Xcal

S,i are the calibrated R.V.s as defined in (5).
Putting together (10) and (5) we obtain the model

XD,i ∼ N (mD,i, vD,i) , XS,i ∼ N (mS,i, vS,i) , (11)

where mS,i,mD,i, vS,i and vD,i are the parameters of the tar-
get and non-target scores, tied as

mD,i = −1

2
avi+bi; mS,i =

1

2
avi+bi; vD,i = vS,i = a2vi.

(12)
From (10), the transformation that maps an uncalibrated score
s of speaker i to a calibrated score scal is simply given by

scal =
s− bi
a

. (13)

From (12) it follows that bi = mD,i +
1
2

vD,i

a
, thus we can

express scal in terms of a,mD,i and vD,i as

scal =
1

a
s− 1

a
mD,i − 1

2a2
vD,i. (14)

As for score normalization, we can replace the unknown terms
mD,i and vD,i with the estimates obtained from an impostor
cohort. However, we still need to estimate the scaling term
a. This requires knowledge of the target score distribution,
and thus (labeled) calibration data. Although we may proceed
with a Maximum Likelihood approach, we observe that the cal-
ibration transformation (14) corresponds to a linear calibration
model with a speaker-dependent shift. In particular, we can
interpret the terms mD,i and vD,i as side-information (qual-
ity measures) [13] that is linearly combined with a re-scaled
score. We can therefore employ discriminative linear fusion
models such as prior-weighted logistic regression [1] to esti-
mate the calibration transformation. Furthermore, we can ex-
tend the model so that the relevance of the different terms is
automatically estimated from the data. We assume a calibration
model, augmented with impostor side-information, given by

scal = αs+ βmD,i + γvD,i + k, (15)

where α, β, γ, k are estimated by training a prior-weighted lo-
gistic regression model over a set of labeled data. The model
presents two advantages: (i) normalization and calibration are
jointly estimated to optimize a proper scoring rule, and (ii)
in contrast with standard score normalization, since we esti-
mate weights β and γ, our model can avoid introducing trial-
dependent miscalibration (e.g. estimating β ≈ γ ≈ 0) for
scenarios that do not closely match our modeling assumptions.

We can trivially extend the model (14) to symmetrically
handle both enrollment and test statistics, by further incorpo-
rating the test statistics as additional side-information. We
consider again a trial (e, t), and we let me, ve,mt, vt be the
mean and variance of scores obtained comparing the enrollment
and test utterances, respectively, against the normalization co-
hort(s). The calibration function becomes

scal(e, t) = αs(e, t) + βme + γve + δmt + εvt + k. (16)

In practice, we have observed experimentally that we can fur-
ther improve the accuracy of the model by considering also in-
teractions between the test and the enrollment impostor distribu-
tions. The final model we propose includes an additional term:

scal(e, t) = αs(e, t)+βme+γve+δmt+ εvt+ζ
√
vevt+k.

(17)
All model parameters (α, β, γ, δ, ε, ζ, k) can be estimated by
means of prior-weighted logistic regression. We observe that
additional side-information, such as utterance duration [13],
can also be trivially incorporated in our model. At the same
time, it’s also straightforward to integrate our impostor statis-
tics as side information in alternative calibration approaches,
such as [16]. Furthermore, adaptive score normalization ap-
proaches have proven to be more effective in scenarios where
the impostor cohort is heterogeneous. We can easily extend our
approach to incorporate adaptive cohort selection by replacing
the statistics in (17) with those computed from the selected co-
hort subsets for each trial.

4. Experimental results
In this section we analyze the performance of our approach on
the SITW [26] and SRE 2019 [27] datasets. We contrast our
method with global calibration based on prior-weighted logistic
regression, and with S-norm and its adaptive variant AS-norm,
implemented4 as in [24]. We refer to our approach as C-norm.
We also consider an adaptive variant, Adaptive C-norm (AC-
norm). The cohort selection strategy is the same used for AS-
norm (the cohort subsets are the same for the two approaches).

4.1. Embedding extractors and classification backends

We tested two different speaker embedding extractors, trained
with data from Mixer6, NIST 2004–2010, Switchboard, Vox-
Celeb1, and the development set of VoxCeleb2. The first ex-
tractor is based on a Factorized Time-Delay Neural Network
(FTDNN) [28], implemented as in [29]. The network has been
trained for 20 epochs using softmax and cross-entropy loss on
clean data. Embeddings are 512-dimensional. The second net-
work is based on the ECAPA architecture [30]. The network has
been trained for 10 epochs using Additive Angular Margin soft-
max [31, 32] and cross-entropy loss. The MUSAN [33] and the
AIR [34] datasets were used to augment the training data with
music, noise, babble and reverberation. Embedding dimension-
ality was set to 192. As backends, we consider both Probabilis-
tic Linear Discriminant Analysis (PLDA) [35, 20] and Pairwise
Support Vector Machine (PSVM) [9, 10, 36, 37]. Both clas-
sifiers have been trained with data from Mixer6, NIST 2004–
2010, Switchboard, VoxCeleb1 and NIST SRE 2018 evaluation
data. FTDNN embeddings were reduced to 200 (PLDA) or 400
(PSVM) dimensions by means of LDA. Whitening and length-
normalization were applied for both front-ends. For PSVM em-
beddings were further processed by Within Class Covariance
Normalization (WCCN).

4.2. Evaluation metrics

Results are reported in terms of Cost of Log-Likelihood Ratio
Cllr [38, 39, 40] and of primary metrics CSITW

prim and CSRE19
prim

defined for each task. Additionally we report Equal Error Rate

4We adopt the AS-norm2 variant of [24]. AS-norm2 is slightly dif-
ferent from our original proposal [23], however the two models provide
almost identical results, and the former requires lower computational
resources.
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Figure 5: Results for different embedding extractors and different classifiers on the SITW Evaluation dataset. The AS-norm cohort size
(N = 100) was selected according to the results on the calibration set. For C-norm the best results are obtained with the full cohort,
both on the calibration and evaluation sets. As reference, the results with adaptive selection (N = 100) are given also for AC-norm.

(EER) and actual detection costs as defined for NIST SRE 2008
(DCF08 in the tables). We also provide normalized Bayes error
rate [39] plots that show the normalized Detection Cost Func-
tion (DCF) corresponding to different target prior log-odds.

4.3. Data organization

4.3.1. SITW

For SITW experiments the calibration models have been trained
on the SITW Development set. Results are reported on the
SITW Evaluation set. Since SITW contains some speakers that
are also in the VoxCeleb datasets that were used to train the em-
bedding extractors, we removed these speakers from the devel-
opment and evaluation sets. The development set was split into
two, non overlapping, parts. The first part, comprising about
30% of the speakers, was used as normalization cohort. The
second part was used to estimate the calibration parameters for
all models.

4.3.2. SRE 2019

For SRE 2019 experiments calibration models have been trained
on the SRE 2019 Progress set. The impostor cohort consists
of the unlabeled portion of SRE 2018 development data [41].
Results are reported on the SRE 2019 Evaluation dataset.

4.4. Results

4.4.1. SITW

The first set of experiments compares S-norm and its adaptive
variant AS-norm with C-norm on the SITW dataset. For AS-
norm, the cohort size N = 100 was selected as the optimal
size based on the results obtained on the development set. For
C-norm best results were obtained in all cases using the full
cohort set. Nevertheless, we also compare the performance
of AC-norm using the same cohort size N = 100. S-norm
and AS-norm scores have been re-calibrated by means of prior-
weighted logistic regression estimated on the development set.
All the calibration models have been trained with a target prior
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Table 1: Results for different embedding extractors and different classifiers on the SITW Evaluation dataset. Minimum costs are
reported for the unnormalized scores. LogReg rows correspond to global calibration.

(a) FTDNN - PLDA

EER DCF08 CSITW
prim Cllr

Min cost 3.0% 0.159 0.312 0.110
Log-Reg 3.0% 0.161 0.316 0.113

S-norm 3.5% 0.194 0.389 0.130
AS-norm (N = 100) 3.0% 0.161 0.305 0.116

C-norm 2.5% 0.145 0.298 0.098
AC-norm (N = 100) 2.7% 0.149 0.299 0.104

(b) FTDNN - PSVM

EER DCF08 CSITW
prim Cllr

Min cost 3.0% 0.144 0.292 0.109
Log-Reg 3.0% 0.145 0.295 0.113

S-norm 2.8% 0.146 0.301 0.107
AS-norm (N = 100) 2.8% 0.141 0.290 0.110

C-norm 2.5% 0.130 0.259 0.095
AC-norm (N = 100) 2.5% 0.126 0.262 0.098

(c) ECAPA - PLDA

EER DCF08 CSITW
prim Cllr

Min cost 2.7% 0.132 0.269 0.105
Log-Reg 2.7% 0.135 0.272 0.111

S-norm 2.6% 0.182 0.574 0.115
AS-norm (N = 100) 2.4% 0.156 0.433 0.103

C-norm 2.3% 0.131 0.303 0.096
AC-norm (N = 100) 2.5% 0.128 0.285 0.102

(d) ECAPA - PSVM

EER DCF08 CSITW
prim Cllr

Min cost 2.1% 0.097 0.198 0.079
Log-Reg 2.1% 0.098 0.202 0.083

S-norm 1.7% 0.087 0.200 0.072
AS-norm (N = 100) 1.7% 0.090 0.197 0.073

C-norm 1.7% 0.081 0.176 0.069
AC-norm (N = 100) 1.7% 0.084 0.173 0.072

equal to 0.1. Figure 5 shows the Bayes error plots for the differ-
ent front-end/back-end combinations. Table 1 reports minimum
costs computed on the original, unnormalized scores, as well as
the EER and actual costs of the different score normalization
and calibration methods.

We can observe that, for PLDA based systems (Figures 5a
and 5c, Tables 1a and 1c), S-norm provides significantly worse
results with respect to the other approaches, and in some cases
significantly degrades performance compared to unnormalized
scores. On the contrary, C-norm with the full cohort set is able
to significantly improve the results with respect to unnormalized
scores (LogReg row). Surprisingly, even though the full cohort
set is small, cohort selection is effective for AS-norm. A cohort
set of size N = 100 provides better results, even though it still
incurs in a degradation in terms of Cllr with respect to unnor-
malized scores. On the other hand, as we were expecting given
the cohort set size, adaptive cohort selection is not effective for
C-norm in this scenario. AC-norm models have slightly worse
Cllr than C-norm models, although we can observe an improve-
ment in terms of primary cost for the ECAPA-based system.

PSVM models (Figures 5b and 5d, Tables 1b and 1d) pro-
vide, in general, better results than PLDA models, especially
with the ECAPA frontend. S-norm is much more effective in
this case, with results that are similar to those of AS-norm with
N = 100. As for PLDA, however, C-norm with the full cohort
set provides the best results in terms of Cllr . For FTDNN em-
beddings we can observe a significant improvement compared
to both S-norm and raw scores. For the ECAPA-based models
the relative improvement is smaller, although we can observe a
significant improvement in terms of actual primary cost.

Overall, C-norm proves to be effective, consistently outper-
forming both global calibration, S-norm and AS-norm.

4.4.2. SRE 2019

In the second set of experiments we compare the results of S-
norm and AS-norm with C-norm and AC-norm on SRE 2019.
We concentrate on PSVM models, since the unnormalized re-
sults are significantly better than those of PLDA-based systems.
The results are shown in Figure 6 and Table 2. In contrast with
SITW results, for this task we can observe that adaptive mod-
els perform consistently better than their non-adaptive counter-
parts. This was expected, since the cohort size is much larger
and probably more heterogeneous. Comparing the non adaptive
models, we can see that C-norm performs better than S-norm.
Although the improvement in terms of Cllr is small, we can
observe that C-norm is consistently better than S-norm in the
low false reject region, whereas it achieves similar or slightly
better performance in the low false alarm region. Similar con-
siderations hold for the adaptive models. AC-norm provides
small but consistent improvements in terms of Cllr with respect
to AS-norm, is consistently better in the low false reject region
and achieves similar performance in the low false alarm region.

5. Conclusions
We have presented a novel approach for trial-dependent score
calibration that incorporates impostor score statistics that are
usually employed by score normalization methods as additional
side information that can be linearly combined with the origi-
nal score. The proposed approach overcomes some of the lim-
itations of score normalization, improving the performance of
the verification systems over a wide range of operating points.
Our method can be trivially implemented using existing tool-
kits (e.g. [42]) and can be trivially extended to incorporate ad-
ditional side information or integrated with recent, condition-
robust discriminative approaches. In the future we will analyze
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Figure 6: Results for different embedding extractors and PSVM classifier on the SRE 2019 Evaluation dataset. The AS-norm and
AC-norm cohort size (N = 400) was selected according to the results on the calibration set.

Table 2: Results for different embedding extractors and PSVM classifier on the SRE 2019 Evaluation dataset. Minimum costs are
reported for the unnormalized scores. LogReg rows correspond to global calibration.

(a) FTDNN - PSVM

EER DCF08 CSRE19
prim Cllr

Min cost 4.0% 0.188 0.374 0.153
Log-Reg 4.0% 0.188 0.380 0.158

S-norm 3.8% 0.178 0.392 0.155
AS-norm (400) 3.7% 0.166 0.337 0.148

C-norm 3.7% 0.180 0.381 0.149
AC-norm (400) 3.5% 0.162 0.336 0.142

(b) ECAPA - PSVM

EER DCF08 CSRE19
prim Cllr

Min cost 3.5% 0.162 0.326 0.136
Log-Reg 3.5% 0.164 0.329 0.145

S-norm 3.5% 0.166 0.356 0.147
AS-norm (400) 3.4% 0.152 0.307 0.137

C-norm 3.3% 0.161 0.337 0.142
AC-norm (400) 3.2% 0.150 0.310 0.134

possible methods to extend these results to generative calibra-
tion models.
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