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Abstract: The non-invasive estimation of right atrial pressure (RAP) would be a key advancement in
several clinical scenarios, in which the knowledge of central venous filling pressure is vital for patients’
management. The echocardiographic estimation of RAP proposed by Guidelines, based on inferior
vena cava (IVC) size and respirophasic collapsibility, is exposed to operator and patient dependent
variability. We propose novel methods, based on semi-automated edge-tracking of IVC size and
cardiac collapsibility (cardiac caval index—CCI), tested in a monocentric retrospective cohort of
patients undergoing echocardiography and right heart catheterization (RHC) within 24 h in condition
of clinical and therapeutic stability (170 patients, age 64 ± 14, male 45%, with pulmonary arterial
hypertension, heart failure, valvular heart disease, dyspnea, or other pathologies). IVC size and
CCI were integrated with other standard echocardiographic features, selected by backward feature
selection and included in a linear model (LM) and a support vector machine (SVM), which were
cross-validated. Three RAP classes (low < 5 mmHg, intermediate 5–10 mmHg and high > 10 mmHg)
were generated and RHC values used as comparator. LM and SVM showed a higher accuracy
than Guidelines (63%, 71%, and 61% for LM, SVM, and Guidelines, respectively), promoting the
integration of IVC and echocardiographic features for an improved non-invasive estimation of RAP.

Keywords: inferior vena cava; ultrasound imaging; pulsatility; fluid volume assessment; right atrial
pressure

1. Introduction

Among the different imaging modalities available in cardiology, echocardiography is
surely the most useful tool when hemodynamic assessment of the cardiovascular system is
taken into account [1–4]. By exploiting basic principles of physics and different equations,
ultrasounds (US) have progressively replaced cardiac catheterization when evaluating the
severity of valvular heart disease [2,5]. Likewise, echocardiography has long been used
(still with some imprecision) to non-invasively estimate pulmonary artery pressure [6–8]
or cardiac output [9]. The prediction of left ventricular filling pressures has been more
challenging, with heterogenous performance of different (semiquantitative or quantitative)
algorithms and variable numbers of undetermined cases [10–12]. Recently, equations
have been developed to calculate vascular pulmonary resistances [12,13] or to distinguish
between precapillary or postcapillary pulmonary hypertension [14–16] in an overall effort
to decrease the need of invasive hemodynamic assessment.
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One of the highest imprecisions in the prediction of hemodynamic measures by
echocardiography is observed in the assessment of right atrial pressure (RAP) [17–20]. The
knowledge of RAP is clinically relevant, since it may help to stratify prognosis in both
patients with heart failure [21,22] and pulmonary hypertension [8,23], and it is vital to
optimize fluid management (loading and unloading) in several clinical scenarios [24]. RAP
is currently calculated by measuring inferior vena cava (IVC) dimension and collapsibility
during respiration (indicated as caval index or collapsibility index) [7]. Despite its wide use,
echocardiographic estimation of RAP may largely differ from the invasive measure [25,26].
Sources of imprecision are [25,26]: (a) variability in the IVC sampling position; (b) displace-
ment of IVC during inspiration with misalignment of echocardiographic original plane;
(c) variability in the individual inspiratory maneuver; and (d) lack of any other left and right
ventricular hemodynamic variables potentially influencing RAP in the current algorithm.

Recently, our group has developed a semi-automated method to delineate and track
displacements of the IVC borders in long [27] or short axis views [28]. In preliminary
studies, integrating the outputs of both methods showed promising results, providing
a more reliable estimation of the volemic status of patients than using the standard IVC
assessment [29]. Some attempts to estimate the RAP were also performed [30,31], but in
a small cohort of patients. In the current study, we aimed at developing novel linear and
non-linear algorithms for RAP estimation, using a larger dataset and incorporating, beyond
semi-automated tools for IVC edge tracking, also other key echocardiographic variables, in
a population of patients undergoing right heart catheterization (RHC).

2. Materials and Methods
2.1. Experimental Data

In the current study a series of patients in condition of clinical stability undergoing
echocardiography (Philips iE33 xMATRIX echocardiography system, Andover, MA, USA)
and RHC for any clinical indication within 24 h from echocardiography at Fondazione
Toscana G. Monasterio (FTGM, Pisa, Italy) were retrospectively analyzed. No changes in
patients’ medication of fluid therapy was allowed between echocardiography and RHC. Ex-
clusion criteria were duration of the US video < 1 s or poor echocardiographic image quality
(i.e., shadow cones on echocardiographic windows interfering with IVC visualization).

Due to the retrospective nature of the study, we did not ask for an approval of the
Ethics Committee: the feasibility assessment was internal to our Institute. In fact, the
patients data were acquired for clinical reasons; they did not carry out a research protocol,
but they signed consent for the execution of the right heart catheterization and for the
possible use of the recorded data for scientific purposes. An ID code was assigned to each
patient, in line with privacy policy.

Echocardiography and RHC were performed according to International Recommenda-
tions [1,7,10,32], as described in detail in the Appendices A and B. IVC was measured along
its long axis in 2D images in the subcostal view, with the patient in the supine position
at 1–2 cm from the junction of the right atrium. The diameter of IVC and the percentage
decrease during inspiration (brief sniff), or caval index were calculated and RAP was
estimated according to guidelines [7]: IVC with diameter < 2.1 cm and that collapses > 50%
with a sniff suggests normal RAP (range, 0–5 mmHg); IVC with diameter > 2.1 cm and that
collapses < 50% with a sniff suggests high RAP (range, 10–20 mmHg); intermediate values
(range, 5–10 mmHg) are assumed in the other cases [18,33].

Beyond standard echocardiographic assessment, a non-invasive estimation of pul-
monary artery wedge pressure (PAWP) was completed, using a previously validated
equation, which includes the following variables [12]: tricuspid regurgitation velocity
(TRV), left ventricular ejection fraction (LVEF), right ventricle fractional area change (FAC),
left atrial volume index (LAVi), E/E′, IVC, and mean pulmonary artery pressure (mPAP).
Then, pulmonary vascular resistance (PVR) was calculated as (mPAP− PAWP)/CO, where
CO is the cardiac output [12].



J. Clin. Med. 2022, 11, 3257 3 of 17

2.2. Processing of Ultrasound Scans with Edge-Tracking Technique

The echocardiographic video clips were exported in DICOM format and then sent
via a cloud platform to P.P. to perform the processing. The borders of a section of the IVC
were identified automatically, using the algorithm proposed in [27] and used in different
previous applications [29–31,34]. The processing method is semi-automated: the user
indicated different information for the processing in the first frame of the video, e.g.,
two reference points to track (in order to compensate IVC movements) and the portion of
interest. Each frame was then smoothed with a 2D median filter and the software computed
the IVC edges in the region of interest sampled on 30 points (edge points found as jumps
of intensity). From the two IVC borders, the IVC median line and 5 diameters orthogonal
to it were computed, so as to cover 15 mm of the central part of the portion of interest
(thus avoiding extremities). Pulsatility was assessed along each of these diameters in terms
of the cardiac caval index (CCI) [35], as the US videos were short (in the range 1–3 s), so
that respirophasic collapsibility could not be measured. The CCIs were measured along
each diameter and for each heartbeat within the considered US scan. All those values
were averaged, to obtain a stable characterization of the pulsations of the IVC induced by
the heartbeats. Moreover, the mean diameter was computed averaging across different
diameters and frames, to obtain an estimation of IVC size.

2.3. Estimation of Right Atrial Pressure

RAPs of patients were split into three classes: low (≤5 mmHg), intermediate (>5,
≤10 mmHg), and high (>10 mmHg), as suggested by the Guidelines [1,7]. RAP was
estimated considering two approaches: support vector machine (SVM) with a radial basis
function kernel and linear model (LM), the first estimating each class (by a one versus
all approach) and the latter computing continuous values (that were then also split into
3 classes to compare it to the other method). These models were built to estimate the RAP,
selecting the best echography features of our dataset, in addition to information extracted
from US scans of IVC. Specifically, we included the mean diameter and 1/(CCI + a), with
a = 0.3, as in [31], where this latter function of CCI was found to be maximally correlated to
RAP. Different features have been recorded by the medical doctors. Due to the retrospective
nature of this work, we established that only echocardiographic variables that were present
in more than 95% of subjects were included in the algorithm. To the missing values, we
assigned the medians of the distributions of the available measurements. Table 1 reports the
list of features that were included in this study, together with the number of missing values.

Backward feature selection was used to identify subsets of features that allow the
models to obtain maximal accuracy, but with the minimum number of essential inputs.
Specifically, one feature at a time was removed iteratively from the dataset. The cross-
validation accuracy was computed for each subset (k-fold cross-validation with k = 10),
selecting the one for which it was maximal, thus excluding the less informative feature.
Iterating the procedure, the least important feature was removed for each iteration, until a
single feature (i.e., the most important) remained. In this way, the features were selected
in order of importance. This allows the simplest model still providing good accuracy to
be identified, solving the curse of dimensionality and avoiding overfitting. As mentioned
above, this procedure was applied separately to the two models: SVM and LM (the latter
making a classification imposing thresholds at 5 and 10 mmHg to split the estimated
continuous values of RAP into 3 classes).

The best models were finally cross-validated by leave one out and compared to the
estimations obtained by guidelines, using the manual measurements of the caval index
and diameter.

2.4. Statistical Analysis

A preliminary exploration of the features was based on box and whiskers plots,
grouping values of patients with the same class of RAP. The Fisher ratio (i.e., the square of
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the difference of the means divided by the sum of variances of pairs of distributions) was
used as a measure of linear discrimination of two distributions of features.

The operator measurements of IVC size and pulsatility were compared with the
semi-automated estimations using scatter and Bland–Altman plots.

The performance of the continuous estimation of RAP of the LM was quantified by the
mean absolute error in mmHg. Moreover, a scatter plot was used to explore the estimation
error. The performances of the classifiers (SVM and LM, the latter after output splitting
into 3 classes) were quantified in terms of Sensitivity, Specificity, Precision, Accuracy, and
F-score, defined as

Sensitivity =
TP

TP + FN
Speci f icity =

TN
TN + FP

Precision =
TP

TP + FP
(1)

Accuracy =
TP + TN

FP + FN + TP + TN
F− score =

2 · Precision · Sensitivity
Precision + Sensitivity

(2)

where TP, TN, FP and FN indicate the number of true positives, true negatives, false
positives, and false negatives, respectively (one class against the other two), reported in
confusion matrixes.

Table 1. Features included in this study, with indication of the number of missing values (170 pa-
tients selected).

Feature Abbreviation Number of Missing Values

Rhythm
Heart rate HR 1
Rhythm (3 classes: sinus rhythm/atrial fibrillation/pacing) Rhythm 0

Left chambers
Left ventricular ejection fraction LVEF 0
Cardiac index CI 6
Left ventricular mass index LVMi 2
E/E′ E/E′ 0
Pulmonary artery wedge pressure PAWP 0
Left atrial volume index LAVi 1

Pulmonary circulation
Pulmonary vascular resistance PVR 0
Tricuspid regurgitation velocity TRV 0

Right chambers
Right atrial diameter RAd 0
Right ventricular diameter RVd 1
Tricuspid annular plane excursion TAPSE 3
RV fractional area change RV-FAC 0
Tricuspid regurgitation degree TRd 0
Cardiac caval index CCI 0
Mean IVC diametr IVCd 0

Biomarkers
Amino-terminal pro-B-type natriuretic peptide NT-proBNP 2
Troponin-T (high sensitivity) TnT-hs TnT-hs 4
Estimated Glomerular Filtration Rate eGFR 2

3. Results

Among the 212 patients randomly selected from the FTGM cohort (range of recruit-
ment: 28 March 2012–27 April 2021), 42 patients were excluded due to technical issues
(IVC not visualized by echocardiography, or poor image quality due to the presence of
shadow cones). Notice that the drop out is about 20%, which is in line with other studies on
IVC. Consider also that the videos were not acquired with the aim of carrying out the edge



J. Clin. Med. 2022, 11, 3257 5 of 17

tracking (as was the case in a precedent study by our group, in which we still discarded the
20% of cases [30]). Finally, 170 patients composed the final dataset, as indicated in Table 2.

Each patient was characterized by the two IVC estimated parameters (CCI and mean
diameter) together with other standard clinical and echocardiographic features, as indicated
in Table 1.

Figure 1 shows a few examples of data from patients with different values of RAP:
higher values of RAP were associated to IVC with greater size and smaller pulsatility.

Figure 1. Examples of US video frames of three subjects (A–I), IVC borders and midline highlighted
in red and white, respectively, (B,E,H) and vessel diameters over time (C,F,I) obtained by the semi-
automated algorithm, together with the values of CCI, mean diameter, and RAP. The three subjects
belong to different RAP classes: low (A–C), intermediate (D–F), or high (G–I).

A comparison between IVC features either measured by the operator or estimated
automatically by the algorithm is provided in Figure 2. Scatter and Bland–Altman plots
are shown for IVC diameter and pulsatility. A lower correlation and a wider variability
between the two methods were observed for IVC pulsatility compared to IVC diameter.
Notice that the caval index measured by the operator was induced by sniff maneuver,
while CCI automatically calculated by the software only considering oscillations induced
by heartbeats.

The distributions of the different features of patients belonging to different classes
of RAP are shown in Figure 3. Notice that there are large variations among patients with
overlapping distributions. However, many features show a clear trend of the median, e.g.,
an increasing IVC diameter and a decreasing CCI for higher values of RAP.
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Table 2. Characteristics of the population included in our dataset. CI: cardiac index; CCI: cardiac
caval index; eGFR: estimate glomerular filtration rate (mdrd equation); hs-TnT: high sensitivity
troponin T; IVCd: inferior vena cava diameter; LAVI: left atria volume index; LVEF: left ventricular
ejection fraction; LVMI: left ventricular mass index; NYHA: New York Heart Association; NT-
proBNP: amino terminal pro brain natriuretic peptide; PAWP: precapillary artery wedge pressure;
PVR: pulmonary vascular resistances; RAd: right atrial diameter; RVd: right ventricular diameter;
RV-FAC: right ventricular fractional area change; TAPSE: tricuspid annular plane excursion; TVR:
tricuspid regurgitation velocity; TRd: tricuspid regurgitation degree.

Age (years) 64 ± 14

Gender
Female (%) 55.3
Male (%) 44.7

Clinical referral for RHC
Pulmonary arterial hypertension (%) 42
Worsening/acute heart failure (%) 25
Evaluation of dyspnea of new onset (%) 22
Valvular heart disease (%) 4
Other (%) 7

Heart failure with reduced EF (%) 29

Risk factors and comorbidities
Systemic arterial hypertension 40
Diabetes 22
Dyslipidemia 22
Chronic obstructive pulmonary disease 17
Chronic kidney disease 15

NYHA class
I (%) 20
II (%) 45
III (%) 31
IV (%) 4

Rhythm
Heart rate 72 ± 13
Sinus rhythm (%) 65
Atrial fibrillation (%) 28
Pacing (%) 7

Left chambers
LVEF (%) 52 ± 18
CI (L/min/mq) 2.7 ± 0.7
LVMI (g/mq) 103 ± 36
E/E′ 12 ± 8
PAWP (mmHg) 15 ± 7
LAVi (mL/mq) 39 ± 14

Pulmonary circulation
PVR (w.u.) 3.3 ± 2.2
TRV (cm/s) 336 ± 65
TRd 1.876 ± 0.864

Right chambers
RAd (mm) 46 ± 8
RVd (mm) 29 ± 5
TAPSE (mm) 19 ± 6
RV-FAC (%) 35 ± 9
CCI (%) 42 ± 20
IVCd (mm) 19 ± 5

Biomarkers
NT-proBNP (ng/L) 785 (231–2429)
hs-TnT (ng/L) 16.34 (8.57–30.52)
eGFR (mL/min/1.73 mq) MDRD 74.4 ± 26.9
Serum creatinine (mg/dL) 0.98 ± 0.38
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Figure 2. Comparison of IVC properties measured by the operator or estimated by the semi-
automated algorithm. (A) Scatter plot and (B) Bland–Altman representation of IVC size. (C) Scatter
plot and (D) Bland–Altman representation of IVC pulsatility (in terms of caval index after sniff
measured by the operator and CCI obtained from short US videos).

Figure 4 shows the values of measured RAP and the estimated classes obtained by
guidelines and by the best selected LM and SVM classifiers. The selected LM is given by
the following equation:

RAP = 0.26 + 11.59
PAPW

33.7
+ 3.89

TAPSE
35

− 8.28
E/E′

30
− 2.3

TRd
4

+
3.69

3
1

CCI + 0.3
+ 2.82

D
34

(3)

The equation includes six features, which are among those with largest average Fisher
ratio. Each term is divided by the maximum value: this way, the multiplicative weight
allows to compare the effective influence of each term included in the model. The mean
of the absolute error in RAP estimation is 2.56 mmHg. Considering this average error as
the effective resolution of the estimation model, the range of RAP of our patients (around
0–24 mmHg) would be split into about nine values: this is an indication of the resolution of
our model in the follow-up of a patient. Accuracy is quite similar when the dataset is split
in different subgroups: Bland–Altman analysis is shown in the Appendix C for different
subgroups, including pulmonary hypertension, as well as patients with worsening/acute
HF and dyspnea of unknown origin. Another possible problem can be found in case of not
regular rhythm, as RR variability could potentially decrease the precision of the method,
as CCI could be affected: this problem is also investigated in the Appendix C, showing
that the accuracy of RAP estimation is not biased when considering patients without sinus
rhythm (e.g., with atrial fibrillation).
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Figure 3. Box and whisker plots of the different features, dividing the dataset in the 3 RAP classes
(1 = low, 2 = intermediate, 3 = high). The average of Fisher ratios (FR) is also indicated. CI: cardiac
index; CCI: cardiac caval index; eGFR: estimate glomerular filtration rate; hs-TnT: high sensitivity
troponin T; D: inferior vena cava diameter; LAVI: left atria volume index; LVEF: left ventricular
ejection fraction; LVMI: left ventricular mass index; NT-proBNP: amino terminal pro brain natriuretic
peptide; PAWP: precapillary artery wedge pressure; PVR: pulmonary vascular resistances; RAd: right
atrial diameter; RVd: right ventricular diameter; RV-FAC: right ventricular fractional area change;
TAPSE: tricuspid annular plane excursion; TVR: tricuspid regurgitation velocity; TRd: tricuspid
regurgitation degree.

The SVM model selected eight features, which were added to IVC size and pulsatility:
TAPSE, PAPW, LVEF, LVMi, E/E′, RV-FAC, TRV, and CI (written in order of importance for
the backward selection algorithm). Notice that most features included in the LM were also
selected by the SVM. Some features have not a good linear discrimination (such as TRV,
which has a vanishing average Fisher ratio): nevertheless, the non-linear model used by
SVM can exploit their information.

The confusion matrixes of the three considered classifiers, i.e., Guidelines, LM, and
SVM, are shown in Figure 5. Different performance indexes are shown or indicated in
the caption. Notice that they are all higher when considering the proposed innovative
models, than when using the guidelines. Specifically, guidelines algorithm showed a clear
limitation in recognizing the intermediate values of RAP.
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Figure 4. Classification of the subjects obtained by (A) guidelines, (B) LM, and (C) SVM. To avoid
superposition of different cases, the estimated values are randomly shifted around the categorical
output provided by guidelines and SVM (on the other hand, the continuous output of the linear
model is shown in (B) as a scatter plot). RAP classes are: 1 = low, 2 = intermediate, 3 = high. LM: linear
model; RAP: right atrial pressure; RHC right heart catheterization; SVM: support vector machine.
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Figure 5. Confusion matrix (CM) of leave-one-out cross validation of (A) guidelines, LM (B), and SVM
model (C). RAP classes are: 1 = low, 2 = intermediate, 3 = high. The following average performance
indexes were obtained. Guidelines: sensitivity 54.0%, specificity 76.4%, F1 score 49.3%, precision
55.4%. LM: sensitivity 63.7%, specificity 82.2%, F1 score 62.7%, precision 72.6%. SVM: sensitivity
62.3%, specificity 82.3%, F1 score 60.0%, precision 62.2%.

4. Discussion

In the current study, two novel multivariable algorithms (LM and SVM models) based
on IVC diameter and CCI automatically calculated by a software (without any respiratory
maneuver and with very short recordings, <3 s) and other echocardiographic features were
tested for the estimation of RAP in a retrospective cohort of patients undergoing echocar-
diography and RHC (within 24 h). Both methods showed a higher accuracy as compared
to the algorithm proposed by the guidelines [1,7], especially in the intermediate range of
RAP (5–10 mmHg), in which the performance of the guidelines seems particularly low.
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Echocardiography has long been used as a non-invasive tool to estimate cardiopul-
monary hemodynamics [36]. Echocardiography, by exploiting the dynamic combination
of 2D images and Doppler-derived metrics, outperforms other imaging modalities in this
specific setting. Further advantages of echocardiography are its relatively low-cost, the
possibility to be used at bedside even in critically ill inpatients and to be serially repeated
during follow-up in outpatients after treatment implementation [37].

In particular, the estimation of RAP by echocardiography would be of great importance
in several clinical scenarios, both for diagnostic and prognostic purposes, as well for man-
agement of fluid charge/unloading in acute and chronic conditions [26]. Unfortunately, the
estimation of RAP is so far burdened by a relatively high inaccuracy and imprecision [38].
The current algorithm, proposed by the Guidelines, only relies on IVC diameter and the
caval index obtained by making the subject inspire while recording IVC diameter relative
variation either in M-mode or B-mode. This method adds to the physiological variability
related to operator dependency of US other sources of variability due to patient capability
to perform the inspiratory maneuver [30]. Moreover, RAP is a complex measure that is not
only influenced by the central venous compartment, but obviously also by heart function
and compliance [25].

The use of automated approaches to extract information on IVC size and pulsatility
could overcome some of the above-mentioned limitations. Moreover, the integration of
other measurements obtained by echocardiography could help in refining RAP estimation.
Our work explored these two directions, providing some promising results. Specifically,
the automated processing of IVC video clips have been proposed to remove part of the
subjectivity in the assessment of IVC properties [39]. Moreover, tracking the respirophasic
movements of IVC [40] allows to investigate the same section in different frames (which
is not possible in M-mode and arbitrarily chosen by the operator when working in post-
processing on B-mode frames). Our automated processing allows, also, to average across a
portion of the IVC [27], making the characterization more reliable and repeatable [34].

However, many problems are still present and may have a great effect on our mea-
surements. For example, the geometry of IVC is very complicated [25]. The cross-section is
usually far from being circular [28], and the long axis view considered in this study cannot
account for this specific vascular geometry. Out-of-plane movements can also induce a
variation of section measured along a single plane [41]. Furthermore, different modalities
of breathing may generate different pressure distributions in the thorax and abdomen,
inducing different pulsatility of the IVC [42]. For this reason, a collapsibility index related
only to the heartbeat as the CCI has been proposed [43]. Recently, it was shown to have
good stability and to provide consistent information on fluid responsiveness [35]. However,
there are many parameters affecting hemodynamics that are not measured (e.g., compliance
of vessels and surrounding tissues, abdominal pressure variations, geometrical details,
blood rheology, etc.) and influence our estimations. Specifically, many variables affect IVC
size and pulsatility, such as its anatomy (so that a large size could be due either to a large
internal pressure or to the subject having an IVC with great cross-section), the stiffness
of its borders, or the compliance of the external tissues [25]. Indeed the addition of other
echocardiographic features to IVC size and CCI showed a significant improvement of the
model only based on IVC size and collapsibility. Their linear discrimination capability
was first explored, splitting echocardiographic values among subjects having either a low,
medium, or high values of RAP. PAPW, TRd, and IVC size were the three measurements
that better discriminated among those three classes of RAP. Thus, it emerges that a good
estimation of RAP requires information from both heart chambers and the IVC. An auto-
mated method (the backward elimination) was then employed to select the most important
features for our models. Those included in the LM had also good linear discrimination
ability. Some additional features were included by the SVM that, making a non-linear
processing, extracted information also from measurements, which did not show good linear
discrimination of RAP classes. Notice that the SVM allows a better classification than LM,
but the latter provides a continuous estimation of RAP, which could be useful in many
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conditions, e.g., a follow-up or the analysis of the response of a patient to a treatment. Our
methods achieved promising results: accuracy of about 70% in splitting patients in three
classes of RAP; mean absolute error in the estimation of the continuous value of RAP of
about 2.6 mmHg.

Many insights and other applications could be considered in the future involving
different subjects. For example, an important field to be explored is the performance of IVC
edge tracking in the study of athletes’ heart. Indeed an interesting IVC collapsibility pattern
was documented in this particular group [44] and our method could possibly provide
further insight.

However, we note that our proposed technique was born to provide a support
in decision-making in all the clinical settings in which continuous invasive monitor-
ing is unavailable. Of note, in intensive care unit, several others (more complex) tech-
niques are currently available to manage fluid therapy, diuretics or inotropes/vasodilators-
vasoconstrictors [45]. Likewise, we should stress that our tool could only provide informa-
tion at the level of the right heart, while other complementary techniques are suggested
to study the left heart, to provide a comprehensive assessment of congestion and fluid
overload [46].

Study Limitations

The retrospective nature of our study did not allow to record optimal data for our
automated processing. Specifically, as the US scans were short, other important pulsatility
indexes reflecting respiration could not be measured (i.e., the caval index and the respiratory
caval index [31]). Moreover, even CCI was likely affected by the specific phase of respiration
in which the video was recorded (a stable measurement is obtained by averaging the CCI
in a complete respiration cycle [35]). A further relevant problem is due to the lack of
feedback in real time by the operator performing the US acquisition. Prospective studies
are needed to make our processing algorithms extract the best information and to explore
this promising possibility of further improving the accuracy of non-invasive and automatic
echocardiographic estimation of RAP.

Finally, in most non-invasive studies, echocardiographic and invasive assessment are
performed within 6 h [30]. In our center, due to the intense clinical activity, this time interval
was wider, introducing a possible bias. However, as stated before, no diuretic, inotropes,
vasodilator, or fluid therapy was administered during this time interval, minimizing the
variability of key parameters between echo and RHC derived data in the current study.

5. Conclusions

The application of a semi-automated method of RAP estimation, based on IVC size
and cardiac pulsatility, as well as other key standard echocardiographic features, was
shown to be feasible even in low-quality and short acquisition recordings, as demonstrated
in this relatively large retrospective study. Both LM and SVM algorithms derived by IVC
edge-tracking outperformed the current guidelines, especially in cases of intermediate
RAP values. If confirmed by larger studies with multicentric and prospective design, this
work will open to the use of a novel valuable tool with a high accuracy and reproducibility,
widening (e.g., to nurses) and making more reliable the RAP estimation in several clinical
conditions in the future.

6. Patents

An instrument implementing the algorithms for IVC delineation used in this paper
was patented by Politecnico di Torino and Universitá di Torino (WO 2018/134726).
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Abbreviations
The following abbreviations are used in this manuscript:

CI Cardiac index
CCI Cardiac caval index
eGFR Estimate glomerular filtration rate
hs-TnT High sensitivity troponin T
IVC Inferior vena cava
IVCd Inferior vena cava diameter
LAVI Left atria volume index
LVEF Left ventricular ejection fraction
LVMI Left ventricular mass index
NYHA New York Heart Association
NT-proBNP Amino terminal pro brain natriuretic peptide
PAWP Precapillary artery wedge pressure
PVR Pulmonary vascular resistances
RAd Right atrial diameter
RAP Right atrial pressure
RVd Right ventricular diameter
RV-FAC Right ventricular fractional area change
TAPSE Tricuspid annular plane excursion
TRd Tricuspid regurgitation degree
TVR Tricuspid regurgitation velocity
US Ultrasound

Appendix A. Echocardiographic Assessment

Non-invasive estimations of the following hemodynamic parameters were obtained
with standard clinical approaches: RAP, systolic pulmonary artery pressure (sPAP), stroke
volume (SV), and cardiac output (CO). RAP was estimated according to latest guidelines,
both from inferior vena cava (IVC) diameters and from the collapsibility index. Maximum
and minimum diameters during the respiratory cycle were considered, usually correspond-
ing to inspiration and expiration, respectively; IVC diameter variations during the cardiac
cycle were not considered. A diameter greater than 2.1 cm and a collapsibility index lower
than 50% were used to distinguish three ranges of values [normal (0–5 mmHg), intermedi-
ate (5–10 mmHg), and elevated (10–20 mmHg) RAP]; LV E/E′ was calculated employing
annular velocities at the septal wall and E wave velocity of the pulse wave Doppler at
the level of the mitral leaflets and annular velocities measured by PW TDI at the level of
the interventricular septum (four chamber view) at the basal level. PAPs was estimated
using the maximum velocity of tricuspid regurgitation (TRV) and the echocardiographic
estimation of RAP, applying the modified Bernoulli’s equation

sPAP = 4TRV2 + RAP (A1)
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where RAP is the mean value of the class estimated by the guidelines. SV was estimated
using the diameter of the outflow tract of the left ventricle (dLVOT) to calculate the cross-
sectional area (CSA), and the time velocity integral (TVI) LVOT, with the following formula

SV = CSA · TVILVOT (A2)

CO was finally calculated by multiplying SV by HR.

Appendix B. Right Heart Catheterization

The invasive hemodynamic study was performed by a brachial, femoral. or jugular ve-
nous approach, based on the choice of the operator. The Swan Ganz catheter was advanced
with an inflated balloon until the capillary wedge position was reached. Then the average
capillary pressure was recorded. By subsequent deflation of the balloon, the pulmonary
pressures (systolic, diastolic, and mean) and then the RAP (by the appropriate channel)
were recorded. The classical morphology of the pressure wave had to be recognizable
(two positive deflections, a and v, and two negative deflections, x and y) when evaluating
the RAP. Subsequently the cardiac output was measured. If pharmacological interven-
tions were performed during the hemodynamic study, the RAP was measured before.
The transduction system was zeroed at the mid-thoracic level, before the measurement of
intracavitary pressure.

Appendix C. Further Results

Figure A1 shows Bland–Altman analysis of our dataset after splitting patients in
specific subgroups. Accuracy is quite similar in the different subgroups (with a bias found
in the group of Other Pathologies, but the number of patients included is fairly small).

Figure A1. Bland–Altman plots comparing estimated (by LM) and measured RAP on our dataset
split into different groups of patients.

Figure A2 shows Bland–Altman analysis of our dataset separating patients with
sinus rhythm from those showing an irregular rhythm. Accuracy is quite similar in the
two subgroups.
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Figure A2. Bland–Altman plots comparing estimated (by LM) and measured RAP on our dataset
split into patients with sinus rhythm or with irregular pacing.
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